
Preventing weaknesses on F-FCSR in IV mode and
tradeoff attack on F-FCSR 8

F. Arnault, T.P. Berger, C. Lauradoux

October 24, 2005

Abstract

E. Jaulmes and F. Muller have described some attacks on F-FCSR-8 and F-FCSR-H algo-
rithms [1]. These attacks pointed out three weaknesses on the algorithms. The first one is a
bottleneck effect due to a big mistake in our design. This can be repaired by only removing
one line of code in the F-FCSR-8 algorithm. The second weakness lies in the diffusion of the
IV which is not good for both algorithms, due to a too simple Key+IV–setup procedure. The
last weakness is that F-FCSR-8 is vulnerable to a TMD-tradeoff attack, using the fact that the
number of possible values of each subfilter is relatively small.

In this paper, we repair all the weaknesses that were pointed out. We propose a better
Key+IV–setup procedure to suppress the bottleneck and have a good diffusion of the IV. To
thwart the TMD tradeoff attack on F-FCSR-8, we had to increase the size of the main register
up to 256 bits. But we can now extract two pseudorandom bytes at each transition of the
automaton instead of one, so the performances remain at least as good as before.

1 Repairing F-FCSR-H : a better Key+IV–setup proce-

dure

As in the original version, we put the key and IV bits in the main register, but we then collect
the first twenty bytes output by the automaton and feed them back to the main register. Then
we wait enough transitions of the automaton, similarly as in the original version, before using
the pseudorandom stream.

Description of the new procedure ”Key+IV Setup”

Inputs a key K of length k = 80 and an IV of length v ≤ 80.

1. The main register M is initialized with the key and the IV:

M := K + 280 · IV = (080−v‖IV‖K).

2. The carries register is initialized to 0 :

C := 0 = (082).

1

3. A loop is iterated 20 times. Each iteration of this loop consists in clocking the FCSR and
then extracting a pseudorandom byte Si (0 ≤ i ≤ 19) using the filter.

4. The main register M is reinitialized with these bytes:

M :=
19∑
i=0

Si = (S19‖ · · · ‖S1‖S0).

5. The carries register is reinitialized to 0 : C := 0.

6. The FCSR is clocked 162 times (output is discarded in this step).

2 Update F-FCSR-8 to F-FCSR-8.2

Change of the connection integer

We had to change the registers length. So we replace the previous 129 bits connection integer
by a 257 bits one. The new value is:

− q = 18397144084561947112986916180934413165829831765592313575301712846
2155618715019

The corresponding bitstring d = (|q|+1)/2 which describes the positions of the carries cells
is

d = (CB5E129F AD4F7E66 780CAA2E C8C9CEDB BAF08F39 2102F996
EFB55A6E 390002C6)16. Its Hamming weight is 131 and there are ` = 130 cells

(the Hamming weight of d∗ = d − 2255) in the carries register and n = 256 cells in the main
register.

Modification of the extraction procedure

Due to the larger size of the main register (256 bits), it is now possible to output two bytes at
each iteration instead of one. Below is the new extraction method:

At each clock of the FCSR automaton, the content of the main register M is ANDed with
the filter F :

S = M ⊗ F
S is split in 16 words each of bitlength 16 S =

∑15
i=0 Si2

16i

The pseudorandom 16 bits word extracted is the XOR of these words:
Output word :=

⊕15
i=0 Si

Modification of the test about the quality of the filter

The changes on the extraction procedure implies minor modification of the function ”GoodFil-
ter” used to evaluate the quality of the filter F . Here is the new function GoodFilter, which
takes as input a bitstring of length 256 and outputs True if this bitstream is suitable as a filter.
Else, it outputs False.

Function GoodFilter (F)

2

Define the 16 subfilters F0, . . . , F15, each of bitlength 16, by

Fj = (fj, f16+j, f32+j, . . . , f16i+j, . . . , f240+j).

If any one of the subfilters Fj has an Hamming weight < 3 THEN output False;
Output True (in all other cases).

End Function

3 Key+IV Setup for F-FCSR-8.2

As the registers are now larger, we propose a new Key setup and change of IV procedure, very
similar to our new Key+IV Setup procedure described above for F-FCSR-H.

Description of the procedure ”Key+IV Setup”

Inputs a key K of length k = 128 and an IV of length v ≤ 128.

1. M := K + 2128 · IV = (0128−v‖IV ‖K)

2. C := 0 = (0130) (Clear the carries)

3. For i from 0 to 15 Repeat
Clock the FCSR automaton
Extract a pseudorandom word Si using the filter F

End For

4. M :=
∑15

i=0 Si · 256i = (S15‖ · · · ‖S0)

5. C := 0 = (0130) (Clear the carries)

6. Clock the FCSR automaton 258 times (discard output in this step)

4 Conclusion

As stated in [1], the core of F-FCSR-H and F-FCSR-8 was not broken. The found weaknesses
were related to flawed change of IV procedures and, for F-FCSR-8, to a too small register
length to prevent a carefully designed TMD-tradeoff attack. The modifications proposed here
do remove all known weaknesses to the F-FCSR algorithms.

References

[1] E. Jaulmes, F. Muller. Cryptanalysis of ECRYPT Candidates F-FCSR-8 and F-FCSR-H

http://www.ecrypt.eu.org/stream/ffcsr.html

3

