
A NEW STREAM CIPHER: DICING

Li An-Ping

Beijing 100085, P.R.China

apli0001@sina.com

Abstract: In this paper, we will propose a new synchronous stream cipher
named DICING, which can be taken as a clock-controlled one but with a new
mechanism of altering steps. With the simple construction, DICING has
satisfactory performance, faster than AES about two times. For the security,
there have not been found weakness for the known attacks, the key sizes can
be 128bits and 256bits respectively.

Keywords: stream cipher, LFSR, projector, finite field, correlation attack, algebraic
attack, distinguishing attack.

1. Introduction

In a synchronous stream cipher, the ciphertext is generally made by bitwise adding (XOR) the
plaintext with a binary sequence called keystream. Hence the principle task for a synchronous
stream cipher is to produce a secure keystream. For the real cases that there is the possibility that
the cipher is abused or the plaintext of some ciphertext are known by some people, thus the
keystream will become visible for them, the analysis for this case is called the plaintext-known
analysis. Therefore, a secure keystream should satisfy two basic conditions: The first is that the
original key can not be recovered from the keystream, the second is that the contents of the bits in
the keystream should be unpredictable for an adversary, in other words, for the adversaries the
keystream should look like a random one, i.e. pseudo-random. Clearly, if the keystream sequence
is periodic and the period is short, then it will be predictable, thus the keystream should have
enough large period. It is known that the technique of the linear feedback shift registers (LFSR) is
able to generate the larger periods of sequences, so LFSRs are often used in the stream ciphers as
the component parts. However, LFSR also has an obvious weakness that the each bit in a LFSR’s
sequence is linearly related to the initial state, and so this implies that the initial state is easy
deduced from some of the later bits in the sequence, the famous Berlekamp-Massey’s algorithm
[18,21] is such a example of the algorithms. In the almost of known attacks such as correlation
attacks, algebraic attacks and distinguishing attacks, etc. just exploited the weakness of LFSR. So,
LFSR-based stream ciphers should interfere the linear relations in the bits of the LFSRs. Clearly,
the clock-controlled methods comes from this consideration, see [12,21].

On the other hand, in respect to the implementation, the operation of the ordinary LFSRs is in bits,

that is, is based on the finite field)2(GF , not convenient for software implement, so the later

stream ciphers such as BLUETOOTH [1], SOBER [14,15], SNOW [7] and SCREAM [13] have

been developed to the finite field 32,16,8),2(orkGF k = .

In this paper, we will present a new synchronous stream cipher called DICING. It satisfies the
security requirement, with a simple construct and has a satisfactory performance.
The cipher DICING may be taken as a clock-controlled one, but with a new mechanism of altering
steps. It consists of a controller and a combiner. In the proposal cipher, we will substitute the

LFSR for the LFSR-like called projector (Pr.). A projector consists of an element tσ called state

from some finite field)2(mGF and an updating rule. The rule of updating states is that

multiplying tσ with kx , k is an integer, namely,

t
k

t x σσ ⋅=+1 . (1.1)

The finite fields used in here are)2(mGF , 126,127,128 orm = . In other word, the operation

shift in LFSR now is replaced by multiplying kx in the field)2(mGF .

The key sizes in DICING can be 128 bits or 256 bits, and the size of initial value is assumed same
as the key size, and the size of output of DICING is 128 bits.

In the section 2, we will give a detail description for the construction, the section 3 is security
analysis, the section 4 is a report of software implementation, the section 5 are some
considerations in the design, in the section 6 are some possible variance for the proposal cipher.

In this paper the finite field)2(GF is simply denoted as F , and []xF �is the polynomial ring

of unknown x over the field F. The symbols ⊕ , ⊗will represent the bitwise addition XOR,

bitwise and, that is the operation & in C, and symbols >>, <<, | and ~ stand for the operations

right-shift, left-shift, concatenate and complement respectively

Suppose that ζ is a binary string, denoted by biti][ζ and bitji],[ζ the i-th bit and the segment

from i-th bit to j-th bit respectively, and there are the similar expressions bytebyte jii],[,][ζζ and

wordword jii],[,][ζζ measured in bytes and words respectively, and if the meaning is explicit

from the context, the low-index bit, byte and word will be omitted. In this paper, the size of a word
is 32 bits.

2. Construction

As the general stream ciphers, the proposal cipher is also encrypt the plaintext and decrypt the
ciphertext by adding bitwise a binary string called keystream, namely,

Ciphertext Plain text Keystream= ⊕ (2.1)

The keystream generator contains two main parts, a controller H and a combiner C. The controller

H is made from two projectors 1Γ , 2Γ and two counters tD′ , tD ′′ which are also called dices.

Denoted by tα and tβ the states of 1Γ and 2Γ in time t respectively, which come from

the finite fields 1E and 2E respectively, 1 1[] / ()x p x=E F and 2 2[] / ()x p x=E F ,

)(1 xp and)(2 xp are the primitive polynomials with degree 127 and 126 respectively, which

expression are given in the List 1. They satisfy the simple recurrence equations

8 8
1 1, , 0,1, 2, .. .i i i ix x iα α β β+ += ⋅ = ⋅ = . (2.2)

In other words, tα and tβ move a byte in a cycling.

The dices tD′ and tD ′′ are two integers to record the last eight bits of tα and tβ

respectively. The combiner C also contains two projectors 3Γ and 4Γ , which are based on the

two finite fields 3E and 4E respectively, 3 3[] / ()x p x=E F , 4 4[] / ()x p x=E F ,)(3 xp and

)(4 xp are primitive polynomials of degree 128 given in the List 1. Denoted by tω and tτ the

states of 3Γ and 4Γ in the time t respectively, 3tω ∈E and 4tτ ∈E . Denoted by

)(ttt DDD ′′⊕′= , ,15&tDa = 4)(>>= tDb , then

t
b

tt
a

t xx ττωω ⋅=⋅= ++ 11 , . (2.3)

Besides, we use two memorizes tu and tv to assemble tω and tτ respectively,

1 1, , 0t t t t t tu u v v for tω τ− −= ⊕ = ⊕ > , (2.4)

where .011 == −− vu

We will employ a S-box)(0 xS , which is defined in the following. Suppose that K is a finite

field)2(8GF , [] / ()x p x=K F , where)(xp is an irreducible polynomial of degree eight,

which expression is given in the List 1. The 0 ()S x is defined as

127
0 () 5 (3) ,S x x x= ⋅ ⊕ ∈K . (2.5)

We also adopt the representation)(0 ζS for a bytes string ζ to represent that S-box 0S

substitute each byte of the array ζ .

The initialization process is as following. Suppose that K is the secret key, and IV is the initial
value. Let

256
,

| (~) 128,
I

I
I I

K if K
K K IV K

K K if K
⎧ =⎪′= ⊕ = ⎨ =⎪⎩

 (2.6)

Let ic be the constants, which are equal to the integer part of the logarithm of the i-th prime

number with multiplying properly w2 , 32, 31 30,w or= 1 8i≤ ≤ , and 1 2 8(, ,.. .,)c c c c= .

Define

0 ()ICSK S K c′= ⊕ . (2.7)

0 0[0,126] , [128, 253]ICS bit ICS bitK Kα β= = . (2.8)

Moreover, denoted by
0 32

[]ICS
i

s K i
≤ <

= ⊕ , let σ be a bytes string of length 32,

[] , 0 32i s iσ = ≤ < . Define

0 ((~))II ICSK S K cσ= ⊕ ⊕ , (2.9)

and

0 0[0,127] , [128, 255]II bit II bitK Kω τ= = . (2.10)

Follow the initializing, there is a self-cycling sub-process of 64 loops, in which only the states are
updated but without outputs. In this sub process, the states of the first 32 cycles are used to make
up two affine transformations A and B , which are used to renew the S-box and set up a mixed

transformation 1L on 4K respectively. The procedure is in the below: For a string ρ of 8 bytes,

we define a vector Vρ of 8 bits and a 8 8× matrix M ρ : [] [8] ,0 8,bitV i i i iρ ρ= + ≤ < and

u lM T Tρ = ⋅ . (2.11)

where 88,)(×= jiu aT and , 8 8()l i jT b ×= are the upper-triangular matrix and the lower-triangular

matrix respectively,

, ,

[8] , [8] ,
1 , 1 ,
0 , 0 .

bit bit

i j i j

i j if i j i j if i j
a if i j b if i j

if i j if i j

ρ ρ+ < + >⎧ ⎧
⎪ ⎪= = = =⎨ ⎨
⎪ ⎪> <⎩ ⎩

Let iλ be the strings of length 16 bytes, which is iteratively defined as

000 τωλ ⊕= , 1 () (),i i i i i iλ λ α β ω τ−= ⊗ ⊕ ⊕ ⊕ 1 32i≤ ≤ . (2.12)

Denoted by 32 32[0,7] , [8,15]byte byteλ λ λ λ′ ′′= = , and define two affine transformations

 1 8() () , () () , .A x M x V B x M M x V V xλ λ λ λ λ λ
−

′ ′ ′′ ′ ′ ′′= ⊕ = ⋅ ⊕ ⊕ ∈F (2.13)

In the 32-th loop of the self-cycling, we define a new S-box)(xS and a transformation 1L on

4K ,

0 1

1 1 1
1 1 1

() (),
1 1 1

1 1 1

B B
B B

S x A S x L
B B

B B

⊕⎛ ⎞
⎜ ⎟⊕⎜ ⎟= ⋅ =
⎜ ⎟⊕
⎜ ⎟
⊕⎝ ⎠

. (2.14)

Moreover, suppose that K is a finite field 32(2)GF , 5[] / ()x p x=K F �, 5 ()p x is an

irreducible polynomial of degree 32 , which expression given in List 1. We will employ another

linear transformation 2 , 4 4()i jL c ×= on 4K , which is a circulated matrix generated by the vector

(2,1,3,1) . Suppose that ζ is an array of 16 bytes, then ζ can be arranged as a 44× matrix,

, 4 4()i jaζ ×= , , [4] , 0 , 4i j bytea i j i jζ= + ≤ < . So, denoted by)(1 ζL the transformation 1L

takes on the each row of ζ , and by)(2 ζL the transformation 2L takes on the vector

([0] , [1] , [2] , [3])word word word wordζ ζ ζ ζ .

After self-cycling, the process enters the recurrence part of generating keystream, each cycle
includes two sub-processes of updating and combining. In the updating, all the states are updated

from the time 1t − to the time t . The combining functions 0 ()C ζ and (,)C ζ ϑ are defined

as

0 2 1 0() ((())), (,) ()C L L S C Cζ ζ ζ ϑ ζ ϑ= = ⊕ . (2.15)

where ϑ and ζ are two arrays of length 16 bytes. The combing process is controlled by the

case :t tD D′ ′′ , which is formulized as in the following, tz is denoted as the keystream,

(,) , ,
(,) , ,

, .

t t t t

t t t t t

t t t t

C u v if D D
z C v u if D D

u v if D D

′ ′′>⎧
⎪ ′ ′′= <⎨
⎪ ′ ′′⊕ =⎩

 (2.16)

We have summarized the whole process in a sketch as Fig. 1.

List of the Primitive Polynomials used

Polynomials Expression

)(xp 1568 ++++ xxxx

)(1 xp 127 89 41 3(1)(1)x x x x+ + + +

)(2 xp 126 83 35 7(1)(1)x x x x+ + + +

)(3 xp)1)(1(27355790128 ++++++ xxxxxx

)(4 xp)1)(1(7275897128 ++++++ xxxxxx

5 ()p x 32 19 17 11 4 2 1x x x x x x+ + + + + +

List 1

The Sketch of Encryption Process

Initializing Self-cycling

 Updating states

 :D Dt t′ ′′

 D Dt t′ ′′> D Dt t′ ′′= D Dt t′ ′′<

(,)C u vt t u vt t⊕ (,)C v ut t

 Keystream

 Plaintext ⊕ Ciphertext

Fig.1

Self-cycling 64 times

without outputs, in 32-th

cycle extending S-boxes

This is the

recurrence part

3. Security Analysis

In the design, we always take the security as the aspect of the first important. In the beginning of
this section, we will show some results about the periods and distributions for proposal stream
cipher, and then give an investigation with respect to standard cryptanalytic attacks, finally
provide some results of statistic tests.

Period and Distribution

Clearly, the periodicity of a sequence implies it is predictable after a period, so with a larger period

is a requisite for the keystream. Denoted by ()tPeriod π as the period of a sequence tπ .

Proposition 1

126 127() (2 1)(2 1),tPeriod D = − − (3.1)

126 127 128() () (2 1)(2 1)(2 1) /15t tPeriod Periodω τ= = − − − (3.2)

Proof. Note that polynomials)(1 xp and)(2 xp are primitive, and the order of x in the

fields 1E and 2E are 12127 − and 12126 − respectively, hence

 12)(,12)(126127 −=−= tt PeriodPeriod βα , (3.3)

and equation (3.1) is followed for 126 127(2 1, 2 1) 1− − = .

Write ik
i x⋅= 0ωω , and let)12)(12(126127 −−=n ,

0
i

i n
m k

≤ <

= ∑ , it is easy to calculate that

for each integer , 1 16c c≤ < , the occurrence times of c in the sum above is

122123249123122122123122123 2222)12(2)12(1422 −−=⋅−+⋅−+⋅⋅ .

Thus,

120)222(122123249 ⋅−−=m (3.4)

and

 352
00

2124 ⋅⋅−⋅=⋅= xxm
n ωωω (3.5)

In the field 3E or 4E , the order of x is equal to 1282 1− , and 15)352,12(2124128 =⋅⋅− ,

the formula (3.2) is followed.

Note that 1 1, ,t t t t t tu u v vω τ− −⊕ = ⊕ = so we have

Corollary 1

126 127 128(), () (2 1)(2 1)(2 1) /15t tPeriod u Period v ≥ − − − . (3.6)

In order to have some knowledge about the distributions of the sequences , , ,t t tuω τ and tv , we

show the following results.

Proposition 2 Suppose that [] / ()x q x=E�F is a finite field)2(mGF ,)(xq is a primitive

polynomial of degree m , and s is a positive integer, let)(xg be the generating function

0
() k

k s
g x x

≤ <

= ∑ ,
0 2 1

() ()
m

n i
i

i

g x c n x
≤ < −

= ∑ , then for each integer i , 0 2 1mi≤ < − .

)12/(1)/)((lim −=
→∝

mn
in

snc (3.7)

Proof. Let)(/)(npsnc i
n

i = , then 1)(=∑ np
i

i . Denoted by { }() min () ,ii
p n p n′ =

{ }() max ()ii
p n p n′′ = . It is easy to know that the sequence { ()}p n′ is non-decreasing and the

sequence { ()}p n′′ is non-increasing. Suppose that lim ()
n

p n µ′ = , j and k are two integers

such that () ()jp n p n′= , () ()kp n p n′′= , without loss generality, we can assume that

lim () lim ()jn n
p n p n µ′ = = . Let d be the least non-negative integer such that

)12(mod −≡− mdjk , and ⎡ ⎤ 0/ dsd = , then it has

sdsd
npnp

npdnp
m

jk
jj +

−−
≥

+

−
≥−+

µ)12/(1)()(
)()(0 .

Let ,→∝n it follows that

12

1
−

= mµ .

We know that m-sequences have good statistic properties in randomness [11,19], so we introduce

the following conception, for an event once , denoted by ˆ()P once the probability of the event

once occurs under the assumption the dices tD′ and tD′′ behave randomly. Then the Proposition

2 can be rewritten as following, for any integer 128, 0 2 1i i≤ < − ,

128

1ˆlim ()
2 1

i
tn

P xω
→∝

= =
−

, 128

1ˆlim ()
2 1

i
tn

P xτ
→∝

= =
−

. (3.8)

Similarly, we have

Proposition 3 For 3 4,orµ∀ ∈E E , it has

128

1ˆlim ()
2tt

P u µ
→∝

= = , 128

1ˆlim ()
2tt

P v µ
→∝

= = , (3.9)

moreover, for any finite subset J ⊂ Z , denoted by ,J J
t i t t i t

i J i J
U u V v+ +

∈ ∈

= =⊕ ⊕ , if

0 00, 0J JU V≠ ≠ , then

128

1ˆlim ()
2

J
tt

P U µ
→∝

= = , 128

1ˆlim ()
2

J
tt

P V µ
→∝

= = . (3.10)

Proof. The proof is similar to the one of Proposition 2, but note that the any element in

3 4,orE E is a polynomial with degree less than 128 , and so can be represented as a combination

of { }127

0t i i
u + =

, the detail proof is omitted.

With larger periods and good statistic properties, LFSRs are usually applied in the stream ciphers
as main components. However, on the other hand, the linear relations between the bits of a LFSR’s
sequence is the fatal weakness which incur the various attacks, such as correlation attacks,
algebraic attacks, distinguishing attacks, etc. In the cipher DICING, the relations between the
states are dynamic, so that the attacks that draw support from the correlations are foiled in some
degree. In the next, we give a discussion in respect to the main ones of the known attacks.

Correlation Attack
Correlation attack is one of main analyses for the stream ciphers, and there have been a lot of
researches on this topic since the earlier work T. Siegenthaler[25] and W. Meier, O. Staffelbach
[18]. See [3,10,21,23,24]. The cipher Deffe is a famous example in the stream ciphers that are
encountered this kind of attacks [22,25].
Suppose that x is a binary segment of length l , let

1

0
() []

l

i
x x iδ

−

=

=⊕ (3.11)

It is obvious that 1,0)(orx =δ , depending on that the number of s'1 bits in the segment x

is even or odd. Furthermore, suppose that)(xf is a function from nF to mF , for na∈F and

mb∈F , 0≠a . We write

)&())(&())(,,(xbxfaxfbaL δδ ⊕= . (3.12)

Clearly, 1,0))(,,(orxfbaL = as the variable x varies, namely, equal to 0 for some sx' and

equal to 1 for the other sx' . We call the equations

,0))(,,(=xfbaL or 1))(,,(=xfbaL (3.13)

the linear approximations of function)(xf with coefficients a and b , which are probabilistic

equations. Clearly, if one of the equations in (3.13) is certainly known true or wrong by some way,

then it will reveal a relation between the input x and the values of function)(xf in some bits,

and so a relation among the contents of the input x will be found, for the values of function)(xf

are known in a plaintext-known attack, thus this case should be avoided in a stream cipher. The
case that the equations in (3.13) have greater probabilities is this kind of case, since it is easier to
find true value by the samples test in statistics. This means that for a good cipher the chance of

1,0))(,,(orxfbaL = should be balanced for all possible a and b . We define

(, ,) (, , ())
x

d f a b L a b f x=∑ , (3.14)

(, ,) (2 (, ,) 2) / 2m mf a b d f a bΛ = − , (3.15)

 { }),,(max)(
,

baff
ba

Λ=∆ , (3.16)

{ })0,,(max)(
00 aff

a
Λ=∆

≠
, (3.17)

in (3.14) the summarize is the integer addition, which is just the times of 1))(,,(=xfbaL ,

and),,(bafΛ is the bias between the times of equations 1))(,,(=xfbaL and

0))(,,(=xfbaL as x run over the domain.,)(f∆ is the maximum bias as a and b run over

nF and mF respectively, and 0()f∆ is a special case of)(f∆ in 0.b =

We know that the keystream can be written as ()tf x , where ()tf x is a nonlinear function and

tx usually come from some LFSR’s. As each bit of LFSR is linearly related to the initial state, that

is, a linear combination of the initial bits { } 1
0 0
[] lx i −

of sequence tx , this means that every linear

approximation as (3.13) will return to an equation about the initial bits { } 1
0 0
[] lx i −

by, for example,

Berlekamp-Massey algorithm. So if there are l or more linear approximations as (3.13) which

are known absolutely true or with a rather higher probability, then the initial state will be deduced

by solving the resulting linear system about { } 1
0 0
[] lx i −

. The main idea of correlation attack is to

find the l linear approximations with higher probabilities. The first step in the attack is to look

for sufficient correlations satisfied by tx . Secondly, from these correlations, set up the

corresponding parity checks, in which some are equal to 0, the others are equal to 1.Then select
the l linear approximations with highest probabilities by maximum likelihood rule.
It is known that there are two ways to find these correlations, one is by squaring and shifting a
correlation polynomial iteratively, and another is by selecting the polynomial multiples of the
connection polynomial [10].
By squaring and shifting, it is easy to know that the number m of the correlations that one

tx satisfy is about

)2/(log2 kNtm ⋅≈ , (3.18)

where the parameters kN , and t are the length of the known keystream, the length of a

correlation and the number of nonzero terms in a correlation polynomial [20].
From formula (3.18), we can know the number of correlations that one x satisfying will be

limited, for example, in the case of the key space is 256 bits, and ,64≤t then

142 .m ≤ (3.19)

This implies that the attack will be incapable when the bias of the parity check sequence 71/ 2 .≤

The output size of the proposal cipher is 128 bits, so it is difficult to find (, ,)d C a b and ()C∆

for the computer capability limited. Nevertheless, we can provide an estimate for the upper bound

about the bias. For the S-box ()S x used in DICING, it has

3() 1 2S∆ = (3.20)

Moreover, in the combining function)(0 ϑC , there are at least four S-boxes are activated, so we

obtained the following estimation

12
0() () 1 2C C∆ ≤ ∆ ≤ . (3.21)

It is known that the bias of the parity check formed by w linear approximations with bias ∆ is
equal to w∆ , thus the correlation attack in this case is not feasible for DICING, as the number of
nonzero terms in a correlation no less than two, i.e. 2.w ≥
As to the second way, selecting polynomial multiples, it is known that to find N multiples with
the weight (number of nonzero monomials) no higher than w , the required computations is

/(1)(2)r w wCost N −≥ ⋅ (3.22)

where the parameter r is the degree of the connection polynomial, cf. [9].
On the other hand, we know that the bias of the parity check formed by w linear approximations

with bias ∆ is equal to w∆ , so, by the theory of hypothesis testing, about 2()wO −∆ tests of

parity checks are needed. From (3.21), we have known that 121/ 2∆ ≤ , and in the formula (3.22)

let 2 242 , 128,w wN r−= ∆ = = then the required computations will be greater than

(24 128) /(1) 2982 2w w w+ − > ,
thereby, this kind of correlation attack is also impossible for the cipher DICING.

Algebraic Attack.
In the above discussion for the correlation attack, we have seen that the stream ciphers should
avoid the linear relations between the output and the inside components. Thus, the functions are
generally used in the filters or the combiners are nonlinear, and the Boolean functions in each bit
are not linear functions. Algebraic attack is such an attack for these ciphers that the orders of
Boolean functions are not enough high, cf. [5]. In this analysis, the main idea is that taking every
possible monomial in the Boolean function as a new variable, so the original algebraic equations
become the linear equations but the number of the variables increases. If the size of the input is

m bits, then the number of the monomials of order no greater than k is ∑
≤≤ ki

i
mC

0
. Thus, if the

order of the Boolean functions is large, then the number of the variables will increase very fast in
the linearization. Hence, the Boolean functions used in the stream ciphers should have higher
order. However, on the other hand, it is known that by multiplying some multiplies can reduce the

order of Boolean functions such that the order of the result function is no more than ⎡ ⎤2/)1(+m ,

see [5].

In DICING, the S-box 127
0)3(5)(⊕⋅= xxS , it can be written as

0 0 1 7() (, ,...,)S x f f f= , (3.23)

where)(xfi , 0 7i≤ ≤ , are the Boolean functions of order seven. Hence the number of new

variables after the linearization will be about ∑
≤≤

≈
70

5.37
128 22

i

iC , In order to set up 372 linear

equations over the field F , 302 output blocks are needed. We have seen that in DICING the

relations between state tω (or tτ) and state 1+tω (or 1+tτ) are not known, the successful

probability of a guess the relation from the time t to time 1+t is no more than 42/1 , and so

the successful probability of a guess the relation between tu and ktu + is no more than k×42/1 .

Therefore, algebraic attack for DICING is impossible.

It maybe should mention that here we have not counted the efficiency of the key-defining method

used in S-box)(xS and the transformation 1L .

Distinguishing Attack
To guarantee the good randomness of the keystream, it is required that the keystream should not
be distinguished from a truly random sequence with computations less than the exhaustive search.
This implies that the keystream should be very balanced for statistics. It is shown by the practice
that this requirement is somehow severe for the design of stream ciphers, a number of the known
stream ciphers such as SNOW, SOBER and SCREAM etc. are encountered this kind of attack, see
[4,8,17]. The main tool used in this attack is the theory of hypothesis testing in statistics. There are
two ways to take this attack, one is directly to the distribution of output values of keystream,
which is usually for the stream ciphers with smaller output sizes, the another is through linear
approximations and parity checks. The following is a simple description for this kind of attack.

Assume that some linear approximations))(,,(xfbaL with bias s21 , and the states ix

satisfy the correlation

 1,0 orxi
Ji

=⊕
∈

 (3.24)

where J ⊂ Z is a finite subset of the non-negative integers. Then we have

1,0))(&()(,,(orxfaxfbaL i
Ji

i
Ji

==⊕⊕
∈∈

δ . (3.25)

Denoted by () ()t i
i J

y t f x +
∈

=⊕ , the cardinality J w= , then it is easy to know that the

sequence ()y t is of the distribution with the bias about 1 2ws , that is,

0 (()) 1/ 2wsy t∆ ≈ . (3.26)

By the theory of hypothesis testing, through about 2(2)wsO sample tests will distinguish this

distribution from a random one with a significant level.

In order to analysis the cipher DICING, let 1, ba and 2b be the arrays of length 16 bytes, write

),(21 bbb = , then

)))(&()&())(&((
)&()&()),(&()),(,,(

210

21

bavubuCa
vbubvuCavuCbaL

⊕⊕⊕=
⊕⊕=

δ
δδδ

. (3.27)

So, we have

0 2((,), ,) () (, ,0)d C u v a b C d v a b≤ ∆ ⋅ ⊕ (3.28)

From Proposition 2 and 3, we know that the distribution of the sequences tu and tv are nearly

uniform, so if ab ≠2 , then it has

12 128

1((,), ,)
2

d C u v a b +≤ . (3.29)

This means that if the linear approximation),),,((bavuCL is applied to a distinguishing attack,

it should be ab =2 , thereby, 02 ≠b . Moreover, it is clear the values of function)(0 uC is

uniformly distributed, so 01 ≠b . Consequently, if a subset J ⊂ Z is applied to form a parity

check, then it should be that

0i
i J

u
∈

=⊕ and 0i
i J

v
∈

=⊕ . (3.30)

This case seems very scarce for that the sequences tu and tv are nearly independent of each other.

We call a subset J ⊂ Z as a correlation set if J satisfies the equations (3.30). Define

{ }max ,J b a a b J= − ∈ , we conjecture that there is no identical correlation set J with

()tJ Period u< , where term identical means independent of the key K . On the other hand,

suppose J ⊂ Z is a correlation set, denoted by () t i
i J

y t z +
∈

=⊕ , then

 12
0 (()) 1/ 2 Jy t ⋅∆ ≤ ,

and so 10.J ≤

Time-memory trade-off attacks
This attack has the aid of a pre-computed table that list the correspondences between the states and
keystream. Clearly, this attack only success in the cases that the size of state is small or there are
the relations between a small part of states and the keystream, and these relations are independent
of the other part of the states. In DICING, the size of states is near to 5092 bits, and the states

tu and tv have similar status in the process of generating keystream, moreover, with the

transformations 1 2,L L , and S-box ()S x such that the content of each bit will effect all the other

bits in at most two cycles, so there are no the correspondences between some of small isolated
parts of the states and the keystream.

Guess-and-Determine attacks
In this attack, at first guess the contents of some variables, which usually are the bits of the key or
the states or the intermediary variables, and then deduce the contents of the rest variables by some
conventional ways. If total computations in this procedure are less than the exhaustive search, then
the attack is successful. The ciphers with bias construction or small states size are easy baffled by
this attack. For the same reason as above, it seems no flaws in the proposal cipher for this attack.

Inversion Attacks

Though it is possible to take the inversion operation for the linear transformation 2L in a block

of keystream, but as tu and tv mask alternately, thus it will have few results in this way.

Some tests in statistics
We have made some tests about the statistic property of DICING. One test is in respect to the bias

of linear approximations, for 2 , 0,1, .. .,127,da b d= = = with 302 outputs, the maximum

bias 13.31/ 2≤ . Another test is for the distributions of the bit segments of the keystream, we have

calculated the frequencies of segments of length 10 bits with 302 outputs, the standard deviation

of the frequencies 18.51/ 2≤ , indicates that it is near uniformly distributed

4. Implementation

The substitution ()S x and the transformation 1L can be combined into four 328× table

look-ups)(xSi , 41 ≤≤ i , and)(xSi acts on the i-th byte of each row respectively,

41 ≤≤ i . The method once was applied in AES [6].

In the platform of AMD G8.1 , 32-bit processor, Borland C++ 5.0, the performance of DICING is
presented in the following List 2

Report of Performance

Sub-processes Time or Rate
Initialization 918 cycles
Self-cycling 57600 cycles

Encrypt/Decrypt Rate 24 cycles/byte or 384 cycles/block

List 2

From the list above we have seen that the DICING is faster than AES about two times. It is likely
that there will be an improvement for the rate with an optimal code, and anticipatable that the
cipher DICING will run much better in the cases of 64-processor or hardware.

5. Some Considerations in the Design

In the proposal cipher we introduced the called projectors replacing of LFSRs for that it seems
more flexible for applications, which can be regarded as a combination of a LFSR and a FSM,

finite states machine. For example, in this paper, the projectors 1Γ and 2Γ play the role of

LFSR, and the projectors 3Γ and 4Γ resemble FSM.

The mechanism of applying two dices to control the process like the clock-controlled one is to
interfere the linear relations in regular LFSRs or the Projectors.
The purpose of applying a self-cycling sub-process is that first to have the data in the initial states
mixed enough, second to have the states start to output far from the initial states. This treatment
had once occurred in the existed ciphers before, e.g. SNOW [7].
As ordinarily, S-boxes are used to get higher order of non-linearity, and linear transformations are
employed for the diffusion of the data.
The key-defining procedure employed in (2.11) ~ (2.14) is to interfere the linear approximating,
which was once applied in our block cipher designs. The affine transformation B in fact may be
even arbitrary, not need restricted in non-singular.

6. Some possible variance in DICING

In the following are some possible simplifications if wish to enhance the performance rate.

1) The key-defining procedure may be leaved out, and simply let .,4,2,1 etcorBA == It is

noted that in the security analysis above, we have not relied on the advantage of this
procedure, therefore, the simplified will still satisfy the security requirement. But this only
decreases the startup time.

2) The Pr. 2Γ may be reduced, that only affect the period of the sequences, but it will have

enough security at least for the key size 128 bits.

3) In the updating of the states tω and tτ may adopt the method of that one go and one stop

instead of both forwards.

References

[1] Bluetooth SIG, Bluetooth specification, version 1.0.A
[2] T. Beth, F.C. Piper, The stop-and-go generator, Advances in Cryptology– Proceedings of

EUROCRYPT 84 (LNCS 209), 88–92, 1985.
[3] V. Chepyzhov, T. Johansson and B. Smeets, A simple algorithm for fast correlation attacks on

stream ciphers, Fast Software Encryptionm FSE’2000, LNCS Springer-Verlag,2000
[4] D. Coppersmith, S. Halevi, and C. Jutla. Cryptanalysis of stream ciphers with linear masking.

In CRYPTO’02, Lecture Notes in Computer Science. Springer-Verlag, 2002.
[5] N. Courtois, W. Meier, Algebraic attack on stream ciphers with linear feedback, In Advances

in Cryptology—EUROCRYPT ’2003, LNCS 2656, 346-359, Springer-Verlag, 2003.
[6] J. Daemen, V. Rijmen, AES Proposal: Rijndael, 1998.
[7] P. Ekdahl and T. Johansson, SNOW— a new stream cipher. Submitted to NESSIE. Available

on-line from http://www.it.lth.se/cryptology/snow/
[8] ------, Distinguishing attacks on SOBER-t16 and t32. In Fast Software Encryption FSE’ 2002

(LNCS 2365), 210-224, 2002.
[9] G. Dj Golic, Computation of low-weight parity-check polynomials, Electronic Letters, vol

32(21), Oct(1996), 1981-1982.
[10] G. Dj Golic, M. Salmasizadeh, Ed Dawson, Fast Correlation Attack on the Summation

Generator, J. Cryptology (2000)13: 245-262.
[11] S.W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, 1967. Reprinted by

Aegean Park Press, 1982.
[12] C.G. Gunther, Alternating step generators controlled by de Bruijn sequences, Advances in

Cryptology–EUROCRYPT ’87 (LNCS 304), 5–14, 1988.
[13] S. Halevi, D.Coppersmith, and C. Jutla, Scream: a software-efficient stream cipher, In Fast

Software Encryption FSE’ 2002 (LNCS 2365), 195-209, 2002.
[14] P. Hawkes, G. Rose, Primitive specification and supporting documentation for SOBER-t16,

submission to NESSIE. In Proceeding of the First Open NESSIE Workshop, 13-14
November 2000, Heverlee, Belgium.

[15] ------, Primitive specification and supporting documentation for SOBER-t32, submission to
NESSIE. In Proceeding of the First Open NESSIE Workshop, 13-14 November 2000,
Heverlee, Belgium. See:

[16] ------, Guess and Determine on SNOW (NESSIE), pdf
[17] T. Johansson, A. Maximov, A linear Distinguishing Attack on Scream, (ISIT 2003) pdf
[18] J.L. Massey, Shift-register synthesis and BCH decoding, IEEE Transactions on Information

Theory, 15 (1969), 122–127.
[19] R.J. Mceliece, Finite Fields for Computer Scientists and Engineeers, Kluwer Academic

Publishers, Boston, 1987.
[20] W. Meier and O. Staffelbach, Fast correlation attacks on certain stream ciphers, Journal of

Cryptology,1(3) (1989), 159–176.
[21] ------, Correlation properties of combiners with memory in stream ciphers, Journal of

Cryptology, 5 (1992), 67–86.
[22] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptograpgy, CRC

Press,1997.
[23] R.A. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, Berlin, 1986.
[24] T. Siegenthaler, Correlation-immunity of nonlinear combining functions for cryptographic

applications, IEEE Transactions on Information Theory, 30 (1984), 776–780.
[25] ------, Decrypting a class of stream ciphers using ciphertext only, IEEE Transactions on

Computers, 34 (1985), 81–85.

