
Distinguishing Attack on the ABC v.1 and v.2

Shahram Khazaei Mohammad Kiaei

{khazaaei, mohammadkiaei}@yahoo.com
Sharif University of Technology,

Electrical Engineering Department
Tehran, Iran
Sept 2005

Abstract

ABC is a synchronous stream proposed as a candidate to
ECRYPT Project which has been withdrawn because of
the attacks proposed in [4, 7]. The attacks benefit the
non-bijectivity property of one of the ABC components
called C which is a parametric function from GF(2)32

into GF(2)32. The designers of ABC updated it to a new
(longer) version called ABC v.2. The focus of those
cryptanalyses on ABC, which is called ABC v.1
hereafter, was to recover the initial state of the cipher.
Although these attacks are not any longer applicable on
ABC v.2, we use the same weakness of C function to
mount a distinguishing attack on both versions of ABC
with data, time and memory complexities of O(232).
Keywords. ECRYPT Stream Cipher Project, ABC
stream cipher, Cryptanalysis, Distinguishing Attack,
Security Evaluation.

1 Introduction

ABC v.11 [1] is a synchronous stream cipher proposed as a candidate to ECRYPT Stream
Cipher Project -a multi-year effort to identify new stream ciphers that might become
suitable for widespread adoption [5]. ABC v.1 was optimized for software applications
and work with a 128-bit key and a 128-bit IV. It consists of 38, 32-bit registers; three of
them denoted by z0, z1 and x are considered as the state of the cipher and the rest 35
registers, denoted by d0, d1, e, e0, e1, … and e31, are considered as constant parameters
fed to the cipher. The values of these 38 registers are determined during a key expansion
routine. Although each register is a 32-bit word, the total number of initial bits are 1195
bits and not 1216 bits because of restrictions z0 ≡ 2 or 3 (mod 4), e31 ≡ 216 (mod 217), d0 ≡
1 (mod 2) and d1 ≡ 0 (mod 4) which are made during initialization. The main components
of ABC are three functions denoted by A, B and C. In [4] and [7] it has been shown that
C is far from a random bijective function and more likely behaves as a randomly chosen
function. Using this weakness, a correlation-based divide and conquer attack with time
complexity of O(295) using O(232) keystream words has been applied by targeting the 263

1The original name is ABC, however it is called ABC v.1 in this paper to avoid uncertainty.

2

possible initial states of z0 and z1 registers. The recovery of the end of the internal state is
possible with time complexity of O(277) using the same O(232) keystream words [4].
Some flaws in the IV setup have also been mentioned in [4].
The designers of ABC v.1 proposed a new longer version of it, called ABC v.2 [2, 3].
The updated version uses three more 32-bit registers d2, z2 and z3. The new restrictions
on the initial value of the registers are z0 ≡ 2 or 3 (mod 4), e31 ≡ 216 (mod 217), d0 ≡ 1
(mod 4), d1 ≡ 0 (mod 4) and d2 ≡ 0 (mod 4) which increases the initial state size to 1288
bits.
Since the total number of possible initial states of z0, z1, z2 and z3 is 2127, the time
complexity of the attacks in [4] and [7] is O(2322127) which is more than that of
exhaustive key search. However, in this paper we show that a distinguishing attack with
data, time and memory complexities of O(232) is applicable to both versions of ABC
using the same non-bijectivity weakness of the C function. The goal of distinguishing
attack is to distinguish the keystream of the cipher from a truly random sequence with
small error probability.
The outline of this paper is as follows. In Sect. 2, a brief description of the ABC v.1 and
v.2 is given. The proposed distinguishing attack is described in Sect. 3 and the paper is
concluded in Sect. 4.

2 A Brief Description of ABC v.1 and v.2

ABC works with 32-bit integer values. A 32-bit vector (a[31], a[30], ..., a[1], a[0]) is

denoted by integer a where i

i
iaa 2][

31

0
∑
=

= . Throughout this paper the symbols ⊕, >>, <<

and >>> are respectively used for 32-bit XOR, right shift, left shift and right rotation, and
the symbols + and ⋅ are respectively used for addition and multiplication module 232.
Both versions of ABC consist of three components A, B and C. In the first version, the
component A is a linear transformation over GF(2)64 defined by

)),1()31((),A(101101 zzzzzz >>⊕<<⊕= (1)

and in the second version it is a linear transformation over GF(2)128 and defined by
),,),1()31((),,,A(1230120123 zzzzzzzzzz >>⊕<<⊕= (2)

The component B is a single cycle T-function over GF(2)32 defined by
)(5)B(00 dxdx ⊕⋅+= (3)

in v.1, and by

210))(()B(dddxx ⊕+⊕= (4)

in v.2, where d0, d1 and d2 represent 32-bit key and IV dependent constants.
The component C is a mapping over GF(2)32 which is the same for both versions of the
ABC and defined by

16)][()C(
31

0
>>>+= ∑

=i
ieixex (5)

where e and ei’s are key and IV dependent constants determined during the key schedule
and x[i] is the ith bit of the word x.

3

The key stream generation routine of both version of ABC involves the described
components and consists of the following 3 steps.

ABC v.1 KEY STREAM GENERATOR

INPUT: (z1, z0)∈GF(2)64, x∈GF(2)32

(z1, z0) ← A(z1, z0) (6)
x ← z1 + B(x) (7)
y ← z0 + C(x) (8)

OUTPUT: (z1, z0)∈GF(2)64, x∈GF(2)32 , y∈GF(2)32

ABC v.2 KEY STREAM GENERATOR

INPUT: (z3, z2, z1, z0)∈GF(2)128, x∈GF(2)32

(z3, z2, z1, z0) ← A(z3, z2, z1, z0) (9)
x ← z3 + B(x) (10)
y ← z0 + C(x) (11)

OUTPUT: (z3, z2, z1, z0)∈GF(2)128, x∈GF(2)32 , y∈GF(2)32

3 Description of the Attack

Since the result of applying our attack to both versions of ABC is exactly the same, it is
only considered for ABC v.1. Denote the state sequence of the registers z0, x and y
respectively by ∞

=0}{ nnz , ∞
=0}{ nnx and ∞

=1}{ nny . Then the key stream generation routine,
relations (6)-(8), can be expressed by the following recursive equations

ABC v.1 KEY STREAM GENERATOR

)1()31(11 >>⊕<<⊕= −+ nnnn zzzz (12)

)B(11 −+ += nnn xzx (13)

)C(nnn xzy += (14)

for n ≥ 1, where 0z , 1z and 0x are respectively the initial values of z0, z1 and x registers
in ABC v.1 which are determined by its key schedule.
It has been well discussed in [4] and [7] that the C function, with probability 321 21 −−− e ,
is non-bijective and behaves as a randomly chosen function over GF(2)32. The idea of our
distinguishing attack is to use the non-uniform distribution of the C function and
approximate the sum of two words module 232 with their bitwise XOR. The idea of
approximating + with ⊕ has already been used in [6] to perform distinguishing attack on

4

SOBER family stream ciphers. Applying this approximation for (14), introduce an error
denoted by nw . Using the linear recurrence (12) it then follows that

)1()1(
)31()31(

)1()31(

11

1122112

>>⊕>>⊕
<<⊕<<⊕

⊕⊕⊕=>>⊕<<⊕⊕

++

+++++++

nn

nn

nnnnnnnn

wC
wC

wCwCyyyy
(15)

where)(C nx is denoted by nC for simplicity.
The distribution of nw is quite biased and identical for all n. Although not being
necessary, it could be computed in time complexity of O(232) and saved in O(232)
memory [8]. The distribution of nC is also highly biased for a randomly chosen value of
e and ei’s [4, 7] and is the same for all n.
In order to distinguish between the following two hypotheses

H0: N
nny 1}{ = is a purely random sequence over GF(2)32.

H1: N
nny 1}{ = is the output sequence of ABC v.1.

we construct the sequence

)1()31(112 >>⊕<<⊕⊕= +++

∆
nnnnn yyyyu (16)

for 21 −≤≤ Nn .
Under hypothesis H0, nu is uniformly distributed while under hypothesis H1 it is biased
(non-uniformly distributed). Since the distribution of nu depends on the value of e and
ei’s, a LRT2 is not applicable here. Instead, for a given sequence N

nny 1}{ = , we build the

table F̂ with entries [x]F̂ (0 ≤ x ≤ 232 -1), defined as the number of occurrences of word
x in the sequence N

nnu 1}{ = . Then we can compute the following ad-hoc statistic

∑
−

=

−=
12

0x

22
32

)1[x]F̂(χ (17)

The statistic χ2 is expected to be much larger under hypothesis H1 corresponding to ABC
v.1 generator than under H0 corresponding to a truly random generator. The decision rule
for distinguishing between H0 and H1 then can be expressed as





<
≥

th
th

yn 2

2

ifGeneratorRandomTruely a
ifGenerator v.1ABCthe

fromis}{sequencethe
χ
χ

(18)

In [7] the distribution of ∑
−

=

− −=∆
1322

0x

32 |1[x]F̂|2 has been approximated by Normal

distribution for 1>>λ where 322λ=N , and the average and variance of ∆ have been
theoretically computed using some features of the distribution of nu . Similarly, it is
possible to compute the threshold th which minimizes the error probability of our
distinguishing method which is equal to

2 Likelihood Ratio Test

5

}H|HPr{2/1}H|HPr{2/1P 1001e += (19)

assuming 2/1}HPr{}HPr{ 01 == .
Since the results in [7] is valid for 1>>λ , i.e. 10≥λ , we did not follow the proposed
method. Instead, we have estimated Pe experimentally over 1000 samples under each one
of the hypothesis H0 and H1 on reduced versions3 of the ABC, where 32-bit words of the
actual ABC were replaced by m-bit words for 8,4,2,1=λ and

2018,16,14,12,10,,8=m . The results are given in Tables 1 and 2 respectively for ABC
v.1 and v.2. We also estimated Pe for the statistic ∆; the resulting error probability is
slightly more that that of the statistic χ2.

Table 1. Estimated Pe for an m-bit word version of ABC v.1 for N = λ2m and the statistic χ2

m
λ

8 10 12 14 16 18 20

1 0.4605 0.4770 0.4760 0.4935 0.4565 0.4190 0.3180
2 0.3815 0.4125 0.4175 0.4295 0.4140 0.2740 0.0155
4 0.2590 0.2885 0.3185 0.3355 0.3180 0.0370 0.0000
8 0.1305 0.1405 0.1565 0.1750 0.1160 0.0000 0.0000

Table 2. Estimated Pe for an m-bit word version of ABC v.2 for N = λ2m and the statistic χ2

m
λ

8 10 12 14 16 18 20

1 0.4805 0.4745 0.4735 0.4990 0.4465 0.3325 0.0225
2 0.4125 0.4105 0.4245 0.4510 0.3870 0.0330 0.0000
4 0.2875 0.2930 0.2910 0.3445 0.1075 0.0000 0.0000
8 0.1420 0.1515 0.1425 0.1985 0.0075 0.0000 0.0000

Theoretic analysis of error probability is interesting for small values of λ, but it seems to
be difficult. Due to accessing to an ordinary processor, we had to confine ourselves to
reduced versions of ABC. One with higher computational power can estimate the error
probability for the real versions of ABC. However, at least the results of Tables 1 and 2
convince us that the proposed distinguishing attack is applicable on both actual versions
of ABC with negligible error probability using about 232 output words.

4 Conclusion

In this paper, using the linear approximation of module some and non-bijectivity
weakness of C function in ABC family ciphers, we mount a distinguishing attack on them
with data, time and memory complexities of O(2m) where m is the word size of the cipher
(m = 32 for ABC v.1 and v.2). It seems hard to achieve a strong cipher using a randomly
chosen s-box.

3 The recurrence equation of {zn} was considered as)1())1((11 >>⊕−<<⊕= −+ nnnn zmzzz for v.1 and as
)1())1((113 >>⊕−<<⊕= −++ nnnn zmzzz for v.2.

6

References

1- V. Anashin, A. Bogdanov, I. Kizhvatov and S. Kumar “ABC: A New Fast Flexible
Stream Cipher”, ECRYPT Stream Cipher Project Report 2005/001, 2005, available
at http://www.ecrypt.eu.org/stream/

2- V. Anashin, A. Bogdanov, I. Kizhvatov, “Increasing the ABC Stream Cipher
Period”, ECRYPT Stream Cipher Project Report 2005/050, 2005, available at
http://www.ecrypt.eu.org/stream/

3- V. Anashin, A. Bogdanov, I. Kizhvatov and S. Kumar “ABC: A New Fast Flexible
Stream Cipher, Specification Version 2”, available at http://crypto.rsuh.ru/papers/

4- C. Berbain, H. Gilbert, “Cryptanalysis of ABC”, ECRYPT Stream Cipher Project
Report 2005/048, 2005, available at http://www.ecrypt.eu.org/stream/

5- eSTREAM, the ECRYPT Stream Cipher Project. http://www.ecrypt.eu.org/stream/

6- P. Ekdahl and T. Johansson, “Distinguishing Attacks on Sober-t16 and t32”, Fast
Software Encryption 2002, LNCS 2365, J. Daemen, V. Rijmen, Eds., Springer-
Verlag, pp. 210-224, 2002.

7- S. Khazaei, “Divide and Conquer Attack on ABC Stream Cipher”, ECRYPT Stream
Cipher Project Report 2005/052, 2005, available at http://www.ecrypt.eu.org/stream/

8- A. Maximov, “On Linear Approximation of Modulo Sum”, Fast Software
Encryption (FSE) 2004, India, February 2004, pp: 483-484.

