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Abstract. Salsa20 is a family of 256-bit stream ciphers designed in 2005
and submitted to eSTREAM, the ECRYPT Stream Cipher Project.
Salsa20 has progressed to the third round of eSTREAM without any
changes. The 20-round stream cipher Salsa20/20 is consistently faster
than AES and is recommended by the designer for typical cryptographic
applications. The reduced-round ciphers Salsa20/12 and Salsa20/8 are
among the fastest 256-bit stream ciphers available and are recommended
for applications where speed is more important than confidence. The
fastest known attacks use ≈ 2153 simple operations against Salsa20/7,
≈ 2249 simple operations against Salsa20/8, and ≈ 2255 simple operations
against Salsa20/9, Salsa20/10, etc. In this paper, the Salsa20 designer
presents Salsa20 and discusses the decisions made in the Salsa20 design.

1 Introduction

A sender and receiver share a short secret key. They use the secret key to encrypt
a series of messages. A message could be short, just a few bytes, but it could be
much longer, perhaps gigabytes. The series of messages could be short, just one
message, but it could be much longer, perhaps billions of messages.

The sender and receiver encrypt messages using an encryption function: a
function that produces the first ciphertext from the key and the first plaintext,
that produces the second ciphertext from the key and the second plaintext, etc.

An encryption function has to be fast. Many senders have to encrypt large
volumes of data in very little time using limited resources. Many receivers are
faced with even larger volumes of data—not just the legitimate messages but
also a flood of forgery attempts. A slow encryption function can satisfy some
senders and receivers, but my focus is on encryption functions suitable for a
wider range of applications.

An encryption function also has to be secure. Many users are facing, or at
least think that they are facing, years of cryptanalytic computations by well-
funded attackers equipped with millions of fast parallel processors. Some users
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Cycles/byte
Salsa20 Salsa20/8 Salsa20/12 Salsa20/20

Arch MHz Machine software long 576 long 576 long 576

amd64 3000 Xeon 5160 (6f6) amd64-xmm6 1.88 2.07 2.80 3.25 3.93 4.25
amd64 2137 Core 2 Duo (6f6) amd64-xmm6 1.88 2.07 2.57 2.80 3.91 4.33
ppc32 533 PowerPC G4 7410 ppc-altivec 1.99 2.14 2.74 2.88 4.24 4.39
x86 2137 Core 2 Duo (6f6) x86-xmm5 2.06 2.28 2.80 3.15 4.32 4.70
amd64 2000 Athlon 64 X2 (15,75,2) amd64-3 3.47 3.65 4.86 5.04 7.64 7.84
ppc64 2000 PowerPC G5 970 ppc-altivec 3.28 3.48 4.83 4.87 7.82 8.04
amd64 2391 Opteron (f5a) amd64-3 3.78 3.96 5.33 5.51 8.42 8.62
amd64 2192 Opteron (f58) amd64-3 3.82 4.18 5.35 5.73 8.42 8.78
x86 2000 Athlon 64 X2 (15,75,2) x86-1 4.50 4.78 6.27 6.55 9.80 10.07
x86 900 Athlon (622) x86-athlon 4.61 4.84 6.44 6.65 10.04 10.24
ppc64 1452 POWER4 merged 6.83 7.00 8.35 8.51 11.29 11.47
hppa 1000 PA-RISC 8900 merged 5.82 5.97 7.68 7.85 11.39 11.56
amd64 3000 Pentium D (f64) amd64-xmm6 5.38 5.87 7.19 7.84 10.69 11.73
x86 1300 Pentium M (695) x86-xmm5 5.30 5.53 7.44 7.70 11.70 11.98
x86 3000 Xeon (f26) x86-xmm5 5.30 5.86 7.41 8.21 11.64 12.55
x86 3200 Xeon (f25) x86-xmm5 5.30 5.84 7.40 8.15 11.63 12.59
x86 2800 Xeon (f29) x86-xmm5 5.33 5.95 7.44 8.20 11.67 12.65
x86 3000 Pentium 4 (f41) x86-xmm5 5.76 6.92 8.12 9.33 11.84 13.40
x86 1400 Pentium III (6b1) x86-mmx 6.37 6.79 8.88 9.29 13.88 14.29
sparc 1050 UltraSPARC IV sparc 6.65 6.76 9.21 9.33 14.34 14.45
x86 3200 Pentium D (f47) x86-athlon 7.13 7.66 9.90 10.31 15.29 15.94
ia64 1500 Itanium II merged 8.49 8.87 12.42 12.62 18.07 18.27
ia64 1400 Itanium II merged 8.28 8.65 12.56 12.76 18.21 18.40

Table 1.1. Salsa20 software speeds; measured by the official eSTREAM benchmarking
framework; sorted by final column. “576” means single-core cycles/byte to encrypt a
576-byte packet; “long” means single-core cycles/byte to encrypt a long stream.

are satisfied with lower levels of security, but again my focus is on encryption
functions suitable for a wider range of applications.

There is a conflict between these desiderata. One can reasonably conjecture,
for example, that every function that encrypts data in 0.5 Core-2 cycles/byte
is breakable. One can also conjecture that almost every function that encrypts
data in 5 Core-2 cycles/byte is breakable. On the other hand, several unbroken
submissions to eSTREAM, the ECRYPT Stream Cipher Project, encrypt data
in fewer than 5 Core-2 cycles/byte.

In particular, my 20-round stream cipher Salsa20/20 encrypts data in 3.93
Core-2 cycles/byte. (For comparison: Matsui and Nakajima recently reported 9.2
Core-2 cycles/byte for 10-round AES using a pre-expanded 128-bit key. See [18].)
The fastest known attack against Salsa20/20 is a 256-bit brute-force search. I
recommend Salsa20/20 for encryption in typical cryptographic applications.

Reduced-round ciphers in the Salsa20 family are attractive options for users
who value speed more highly than confidence. The 12-round stream cipher
Salsa20/12 encrypts data in 2.80 Core-2 cycles/byte; the fastest known attack



against Salsa20/12 is a 256-bit brute-force search. The 8-round stream cipher
Salsa20/8 encrypts data in 1.88 Core-2 cycles/byte; as discussed in Section 5,
papers by several cryptanalysts have culminated in an attack against Salsa20/8
taking “only” 2249 operations, but this is far beyond any computation that will
be carried out in the foreseeable future. Perhaps better attacks will be developed,
but competing ciphers at similar speeds seem to be much more easily broken!

I hadn’t heard of the Core 2 when I designed Salsa20. I was aiming for high
speed on a wide variety of platforms; I don’t find it surprising that Salsa20 is
able to take advantage of a new platform. Table 1.1 shows Salsa20’s software
speeds on various CPUs.

This paper defines Salsa20 and explains the decisions that I made in the
Salsa20 design. Section 2 discusses the selection of low-level operations used
in Salsa20—a deliberately limited set, in particular with no S-boxes. Section 3
discusses the high-level data flow in Salsa20—again quite limited, in particular
with no communication across blocks aside from a simple block counter. Section
4 discusses the middle-level structure of Salsa20. Section 5 reviews known attacks
on Salsa20.

2 Low level: Which operations are used?

2.1 What does Salsa20 do?

The Salsa20 encryption function is a long chain of three simple operations on
32-bit words:

• 32-bit addition, producing the sum a + b mod 232 of two 32-bit words a, b;
• 32-bit exclusive-or, producing the xor a⊕ b of two 32-bit words a, b; and
• constant-distance 32-bit rotation, producing the rotation a <<< b of a 32-bit

word a by b bits to the left, where b is constant.

On occasion I encounter the superstitious notion that these operations are
“too simple.” In fact, these operations can easily simulate any circuit, and are
therefore capable of reaching the same security level as any other selection of
operations. The real question for the cipher designer is whether a different mix
of operations could achieve the same security level at higher speed.

2.2 Should there be integer multiplications?

Some popular CPUs can quickly compute xy mod 264, given x, y. Some ciphers
are designed to take advantage of this operation. Sometimes one of x, y is a
constant; sometimes x, y are both variables.

The basic argument for integer multiplication is that the output bits are
complicated functions of the input bits, mixing the inputs more thoroughly than
a few simple integer operations.

The basic counterargument is that integer multiplication takes several cycles
on the fastest CPUs, and many more cycles on other CPUs. For comparison, a



comparably complex series of simple integer operations is always reasonably fast.
Multiplication might be slightly faster on some CPUs but it is not consistently
fast.

I do like the amount of mixing provided by multiplication, and I’m impressed
with the fast multiplication circuits included (generally for non-cryptographic
reasons) in many CPUs, but the potential speed benefits don’t seem big enough
to outweigh the massive speed penalty on other CPUs. Similar comments apply
to 64-bit additions, to 32-bit multiplications, and to variable-distance (“data-
dependent”) rotations.

A further argument against integer multiplication is that it increases the risk
of timing leaks. What really matters is not the speed of integer multiplication,
but the speed of constant-time integer multiplication, which is often much slower.

Example: On the Motorola PowerPC 7450 (G4e), a fairly common general-
purpose CPU, the mull multiplication instruction usually takes 2 cycles (with
4-cycle latency), but it takes only 1 cycle (with 3-cycle latency) if “the 15 msbs
of the B operand are either all set or all cleared.” See [1, page 6.45]. The same is
true for the 8641D, the newest CPU in the same family. It is possible to eliminate
the timing leak on these CPUs by, e.g., using the floating-point multiplier, but
moving data back and forth to floating-point registers costs CPU cycles, not to
mention extra programming effort.

2.3 Should there be S-box lookups?

An S-box lookup is an array lookup using an input-dependent index. Most
ciphers are designed to take advantage of this operation. For example, typical
high-speed AES software has several 1024-byte S-boxes, each of which converts
8-bit inputs to 32-bit outputs.

The basic argument for S-boxes is that a single table lookup can mangle its
input quite thoroughly—more thoroughly than a chain of a few simple integer
operations taking the same amount of time.

The basic counterargument is that a simple integer operation takes one or
two 32-bit inputs rather than one 8-bit input, so it effectively mangles several
8-bit inputs at once. It is not obvious that a series of S-box lookups—even with
rather large S-boxes, as in AES, increasing L1 cache pressure on large CPUs
and forcing different implementation techniques for small CPUs—is faster than
a comparably complex series of integer operations.

A further argument against S-box lookups is that, on most platforms, they are
vulnerable to timing attacks. NIST’s statement to the contrary in [19, Section
3.6.2] (table lookup is “not vulnerable to timing attacks”) is erroneous. It is
extremely difficult to work around this problem without sacrificing a tremendous
amount of speed. See my paper [5] for much more information on this topic,
including an example of successful remote extraction of a complete AES key.

For me, the timing-attack problem is decisive. For any particular security
level, I’m not sure whether adding S-box lookups would gain speed, but I’m sure
that adding constant-time S-box lookups would not gain speed.



Salsa20 is certainly not the first cipher without S-boxes. The Tiny Encryption
Algorithm, published by Wheeler and Needham in [23], is a classic example of a
reduced-instruction-set cipher: it is a long chain of 32-bit shifts, 32-bit xors, and
32-bit additions. IDEA, published by Lai, Massey, and Murphy in [17], is even
older and almost as simple: it is a long chain of 16-bit additions, 16-bit xors, and
multiplications modulo 216 + 1.

2.4 Should there be fewer rotations?

Rotations account for about 1/3 of the integer operations in Salsa20. If rotations
are simulated by shift-shift-xor (as they are on the UltraSPARC and with XMM
instructions) then they account for about 1/2 of the integer operations in Salsa20.
Replacing some of the rotations with a comparable number of additions might
achieve comparable diffusion in less time.

The reader may be wondering why I used rotations rather than shifts. The
basic argument for rotations is that one xor of a rotated quantity provides as
much diffusion as two xors of shifted quantities. There does not appear to be
a counterargument. Rotate-xor is faster than shift-shift-xor-xor on many CPUs
and is never slower.

3 High level: How do blocks interact?

3.1 What does Salsa20 do?

Salsa20 expands a 256-bit key and a 64-bit nonce (unique message number) into
a 270-byte stream. It encrypts a b-byte plaintext by xor’ing the plaintext with
the first b bytes of the stream and discarding the rest of the stream. It decrypts
a b-byte ciphertext by xor’ing the ciphertext with the first b bytes of the stream.
There is no feedback from the plaintext or ciphertext into the stream.

Salsa20 generates the stream in 64-byte (512-bit) blocks. Each block is an
independent hash of the key, the nonce, and a 64-bit block number; there is no
chaining from one block to the next. The Salsa20 output stream can therefore
be accessed randomly, and any number of blocks can be computed in parallel.

There are no hidden preprocessing costs in Salsa20. In particular, Salsa20
does not preprocess the key before generating a block; each block uses the key
directly as input. Salsa20 also does not preprocess the nonce before generating
a block; each block uses the nonce directly as input.

3.2 Should encryption and decryption be different?

The most common model of a stream cipher is that each ciphertext block is the
xor of the plaintext block and the stream block at the same position. Each stream
block is determined by its position, the nonce, the key, and the previous blocks
of plaintext—equivalently, the previous blocks of ciphertext. Salsa20 follows this
model, as does any block cipher in counter mode, OFB mode, CFB mode, et al.



Some ciphers mangle plaintext in a more complicated way. Consider, for
example, AES in CBC mode: the nth plaintext block pn is converted into the
nth ciphertext block cn by the formula cn = AESk(cn−1 ⊕ pn).

The popularity of CBC appears to be a historical accident. I have found very
few people arguing for CBC over counter mode, and none of the arguments are
even marginally convincing. On occasion I encounter the superstitious notion
that encryption by xor is “too simple”; but a one-time pad (in conjunction with,
for example, a Gilbert/MacWilliams/Sloane authenticator) provably achieves
perfect secrecy (and any desired level of integrity), so there is obviously nothing
wrong with xor.

There are several clear arguments against CBC. One disadvantage of CBC is
that it requires different code for encryption and decryption, increasing costs in
many contexts. Another disadvantage of CBC is that the extra communication
from the cryptanalyst into the cipher state is a security threat; regaining the
original level of confidence means adding rounds, taking additional time.

There is a security proof for CBC. How, then, can I claim that CBC is less
secure than counter mode? One answer is that CBC’s security guarantee assumes
that the block cipher outputs for attacker-controlled inputs are indistinguishable
from uniform, whereas counter mode applies the block cipher to highly restricted
inputs, with many input bits forced to be 0. There are many examples in the
literature of block ciphers for which CBC has been broken but counter mode is
unbroken.

3.3 Should the stream depend on the plaintext?

A more restricted model of a stream cipher is that ciphertext is plaintext xor
stream, where the stream is determined by the nonce and the key. The plaintext
and ciphertext do not affect the stream. Salsa20 follows this model, as does any
block cipher in counter mode.

Some stream ciphers violate this model: they produce a stream that depends
on the plaintext. One example is Helix, published in [13] by Ferguson, Whiting,
Schneier, Kelsey, Lucks, and Kohno. The tweaked cipher Phelix was submitted
to eSTREAM by Whiting, Schneier, Lucks, and Muller.

The basic argument for incorporating plaintext into the stream (specifically,
incorporating plaintext blocks into subsequent blocks of the stream) is that this
allows message authentication “for free.” After encrypting the plaintext, one can
generate a constant number of additional stream blocks and output those blocks
as an authenticator of the plaintext.

One counterargument is that “free” is a wild exaggeration. Incorporating
the plaintext into the stream takes time for every block, and generating an
authenticator takes time for every message.

Another counterargument is that the incorporation of plaintext, being extra
communication from the cryptanalyst into the cipher state, is a security threat.
Regaining the original level of confidence means adding rounds, which takes
additional time for every block.



Another counterargument is that state-of-the-art 128-bit authenticators can
be computed in just a few cycles per byte. This may exceed the cost of “free”
authentication for legitimate packets, but it is much less expensive than “free”
authentication for forged packets, because it skips the cost of decryption.

For me, the cost of rejecting forged packets is decisive. Consider a denial-
of-CPU-service attack in which an attacker floods a CPU with forged packets
through a large network. In this situation, a traditional authenticator, such as
Poly1305 from [4], is capable of handling a substantially larger flood than a
“free” authenticator. See [9] for a new strategy to compute authenticators at
even higher speeds.

The idea of incorporating plaintext into the stream clearly deserves further
study for users who value authenticated-encryption performance more highly
than forgery-rejection performance. In [8] I reported speed measurements for
many authenticated-encryption methods; Phelix provided impressive speeds for
authenticated encryption and verified decryption. Phelix was later eliminated
from eSTREAM for reasons I consider frivolous, namely an “attack” against
users who have trouble counting 1, 2, 3, . . .; I have no idea why this “attack”
should eliminate an attractive option for users who are able to count 1, 2, 3, . . ..

3.4 Should there be more state?

Salsa20 carries minimal state between blocks. Each block of the stream is a
separate hash of the key, the nonce, and the block counter.

Most stream ciphers use a larger state, reusing portions of the first-block
computation as input to the second-block computation, reusing portions of the
second-block computation as input to the third-block computation, etc.

The argument for a larger state is that one does not need as many cipher
rounds to achieve the same conjectured security level. Copying state across blocks
seems to provide just as much mixing as the first few cipher rounds. A larger
state therefore saves some time after the first block.

One counterargument is that a larger state reduces the number of communi-
cation channels that can be handled simultaneously by limited hardware. Ciphers
that chain between blocks typically use 64 or more bytes for each channel. With
Salsa20, each channel uses just 32 bytes for a key (less if several channels share
a key), at most 8 bytes for a nonce, and at most 8 bytes for a block counter.

Another counterargument is that reuse forces serialization. Chaining between
blocks prohibits random access to the stream (unless the stream is precomputed
and saved, consuming memory). Chaining between blocks means that one cannot
take advantage of extra hardware to reduce the latency of computing a long
stream.

For me, the serialization problem is decisive. Inability to exploit parallelism
is often a disaster. A few extra rounds are often undesirable but are never a
disaster.

Case study (due to Wei Dai): As discussed in Section 4, there are 4 parallel
32-bit operations in each step of computing a Salsa20 block. The Core 2 CPU
has more parallelism than this: it can carry out (in each core) 12 parallel 32-bit



arithmetic operations. Fortunately, thanks to the lack of chaining, there are 16
parallel 32-bit operations in each step of computing 4 consecutive Salsa20 blocks.

3.5 Should blocks be larger than 64 bytes?

Salsa20 hashes its key, nonce, and block counter into a 64-byte block. Similar
structures could easily produce a larger block.

The basic argument for a larger block size, say 256 bytes, is that one does
not need as many cipher rounds to achieve the same conjectured security level.
Using a larger block size, like copying state across blocks, seems to provide just
as much mixing as the first few cipher rounds. A larger state therefore saves
time.

The basic counterargument is that a larger block size also loses time. On
most CPUs, the communication cost of sweeping through a 256-byte block is
a bottleneck; CPUs are designed for computations that don’t involve so much
data.

Another way that a larger block size loses time is by increasing the overhead
for inconvenient message sizes. Expanding a 300-byte message to 512 bytes is
much more expensive than expanding it to 320 bytes.

3.6 Should keys be smaller than 256 bits?

The original eSTREAM call for submissions asked for 128-bit software ciphers
and 80-bit hardware ciphers. Salsa20 is a 256-bit cipher; it allows smaller keys
as options, but I recommend 256-bit keys.

Larger keys are more expensive than smaller keys, especially in hardware.
Are they necessary for security?

The basic argument for 128-bit keys is that they will never be found by a
brute-force attack. If checking about 220 keys per second requires a CPU costing
about 26 euros, then searching 2128 keys in a year will cost an inconceivable 289

euros.
The basic counterargument is that 128-bit keys will be found by a brute-force

attack. Here are three reasons that 289 euro-years is a wild exaggeration, even
without any improvements in computer technology:

• The attacker can succeed in far fewer than 2128 computations. He reaches
success probability p after just 2128p computations.

• More importantly, each key-checking circuit costs far less than 26 euros, at
least in bulk: 210 or more key-checking circuits can fit into a single chip,
effectively reducing the attacker’s costs by a factor of 210.

• Even more importantly, if the attacker simultaneously attacks (say) 240 keys,
he can effectively reduce his costs by a factor of 240.

One can counter the third cost reduction by putting extra randomness into
nonces, but putting the same extra randomness into keys is less expensive. See
[7] for a much more detailed discussion of these issues.



I predict that future cryptographers will settle on 256-bit keys as providing
a comfortable security level. They will regard 80-bit keys as a silly historical
mistake, and 128-bit keys as uncomfortably risky.

4 Medium level: How is a block generated?

4.1 What does Salsa20 do?

The goal of the Salsa20 core, as discussed in Section 3, is to produce a 64-byte
block given a key, nonce, and block counter. The tools available to the Salsa20
core, as discussed in Section 2, are addition, xor, and constant-distance rotation
of 32-bit words.

The Salsa20 core builds an array of 16 words containing the constant word
0x61707865, the first 4 key words, the constant word 0x3320646e, the 2 nonce
words, the 2 block-counter words, the constant word 0x79622d32, the remaining
4 key words, and the constant word 0x6b206574. Strings are always interpreted
in little-endian form. (Most current CPUs take extra time for big-endian accesses,
while big-endian CPUs generally have good support for little-endian accesses.)

For example, here is the starting array for key (1, 2, 3, 4, 5, . . . , 32), nonce
(3, 1, 4, 1, 5, 9, 2, 6), and block 7:

0x61707865, 0x04030201, 0x08070605, 0x0c0b0a09,

0x100f0e0d, 0x3320646e, 0x01040103, 0x06020905,

0x00000007, 0x00000000, 0x79622d32, 0x14131211,

0x18171615, 0x1c1b1a19, 0x201f1e1d, 0x6b206574.

The diagonal constants are the same for every block, every nonce, and every
32-byte key. As an extra (non-recommended) option, Salsa20 can use a 16-byte
key, repeated to form a 32-byte key; in this case the diagonal constants change to
0x61707865, 0x3120646e, 0x79622d36, 0x6b206574. Salsa20 can also use a 10-
byte key, zero-padded to form a 16-byte key; in this case the diagonal constants
change to 0x61707865, 0x3120646e, 0x79622d30, 0x6b206574.

Salsa20 now modifies each below-diagonal word as follows: add the diagonal
and above-diagonal words, rotate left by 7 bits, and xor into the below-diagonal
words. The result is the following array:

0x61707865, 0x04030201, 0x08070605, 0x95b0c8b6,

0xd3c83331, 0x3320646e, 0x01040103, 0x06020905,

0x00000007, 0x91b3379b, 0x79622d32, 0x14131211,

0x18171615, 0x1c1b1a19, 0x130804a0, 0x6b206574.

The underlined words were added, and the next word was modified.
Salsa20 then modifies each below-below-diagonal word as follows: add the

diagonal and below-diagonal words, rotate left by 9 bits, and xor into the below-



below-diagonal words. The result is the following array:

0x61707865, 0x04030201, 0xdc64a31d, 0x95b0c8b6,

0xd3c83331, 0x3320646e, 0x01040103, 0xa45e5d04,

0x71572c6d, 0x91b3379b, 0x79622d32, 0x14131211,

0x18171615, 0xbb230990, 0x130804a0, 0x6b206574.

Salsa20 continues down each column, rotating left by 13 bits:

0x61707865, 0xcc266b9b, 0xdc64a31d, 0x95b0c8b6,

0xd3c83331, 0x3320646e, 0x95f3bcee, 0xa45e5d04,

0x71572c6d, 0x91b3379b, 0x79622d32, 0xf0a45550,

0xf3e4deb6, 0xbb230990, 0x130804a0, 0x6b206574.

Salsa20 then modifies the diagonal words, this time rotating left by 18 bits:

0x4dfdec95, 0xcc266b9b, 0xdc64a31d, 0x95b0c8b6,

0xd3c83331, 0xe78e794b, 0x95f3bcee, 0xa45e5d04,

0x71572c6d, 0x91b3379b, 0xf94fe453, 0xf0a45550,

0xf3e4deb6, 0xbb230990, 0x130804a0, 0xa272317e.

Salsa20 finally transposes the array:

0x4dfdec95, 0xd3c83331, 0x71572c6d, 0xf3e4deb6,

0xcc266b9b, 0xe78e794b, 0x91b3379b, 0xbb230990,

0xdc64a31d, 0x95f3bcee, 0xf94fe453, 0x130804a0,

0x95b0c8b6, 0xa45e5d04, 0xf0a45550, 0xa272317e.

That’s the end of one round.
In the second round, Salsa20 performs exactly the same modifications, with

the same rotation counts, again starting with the below-diagonal words and
finishing with the diagonal words, and finally transposing the array:

0xba2409b1, 0x1b7cce6a, 0x29115dcf, 0x5037e027,

0x37b75378, 0x348d94c8, 0x3ea582b3, 0xc3a9a148,

0x825bfcb9, 0x226ae9eb, 0x63dd7748, 0x7129a215,

0x4effd1ec, 0x5f25dc72, 0xa6c3d164, 0x152a26d8.

That’s the end of two rounds. Note that implementors can eliminate the
transposes and perform the second round on rows instead of columns.

Salsa20/r continues for a total of r rounds, modifying each word r times. For
example, Salsa20/20 produces the following array:

0x58318d3e, 0x0292df4f, 0xa28d8215, 0xa1aca723,

0x697a34c7, 0xf2f00ba8, 0x63e9b0a1, 0x27250e3a,

0xb1c7f1f3, 0x62066edc, 0x66d3ccf1, 0xb0365cf3,

0x091ad09e, 0x64f0c40f, 0xd60d95ea, 0x00be78c9.



After these r rounds, Salsa20 adds the final 4× 4 array to the original array
to obtain its 64-byte output block. For example, here is the 64-byte output block
for Salsa20/20:

0xb9a205a3, 0x0695e150, 0xaa94881a, 0xadb7b12c,

0x798942d4, 0x26107016, 0x64edb1a4, 0x2d27173f,

0xb1c7f1fa, 0x62066edc, 0xe035fa23, 0xc4496f04,

0x2131e6b3, 0x810bde28, 0xf62cb407, 0x6bdede3d.

4.2 Should key words and nonce words be separated?

Salsa20 puts its key k and its nonce/counter n into a single array. It uses the k
words to modify the k words, the k words to modify the n words, the n words to
modify the n words, and the n words to modify the k words. After a few rounds
there is no reasonable distinction between the k parts of the array and the n
parts of the array. Both the k words and the n words are used as output. The
final addition prevents the cryptanalyst from inverting the computation.

For comparison, a “block cipher” uses the k words to modify the k words,
the k words to modify the n words, and the n words to modify the n words;
but it never uses the n words to modify the k words. The k words are kept
separate from the n words through the entire computation. Only the n words
are used as output. The omission of k prevents the cryptanalyst from inverting
the computation.

The basic argument for a block cipher—for keeping the k words independent
of the n words—is that, for fixed k, it is easy to make a block cipher be an
invertible function of n. But this feature seems to be of purely historical interest.
Invertible stream generation is certainly not necessary for encryption.

The basic disadvantage of a block cipher is that the k words consume valuable
communication resources. A 64-byte block cipher with a 32-byte key would need
to repeatedly sweep through 96 bytes of memory (plus a few bytes of temporary
storage) for its 64 bytes of output; in contrast, Salsa20 repeatedly sweeps through
just 64 bytes of memory (plus a few bytes of temporary storage) for its 64 bytes
of output.

I also see each use of a k word as a missed opportunity to spread changes
through the n words. The time wasted is not very large—in AES, for example,
80% of the table lookups and most of the xor inputs are n-dependent—and can be
reduced by precomputation in contexts where the cost of memory is unnoticeable;
but dropping the barrier between k and n achieves the same conjectured security
level at higher speed.

4.3 Should there be more code?

Salsa20 can be implemented as a loop of identical rounds, where each round
modifies each word once and then transposes the result. Or it can be implemented



as a loop of identical double-rounds, where each double-round modifies each word
twice, without any transposition. Either way, the Salsa20 code is very short.

Some ciphers have more code: e.g., using different structures for the first and
last rounds, or even using different code in every round. MARS, published by
Burwick et al. in [10], has about one third of its operations in initial and final
rounds that look quite different from the remaining rounds.

The basic argument for using two different kinds of rounds is the idea that
attacks will have some extra difficulty passing through the switch from one kind
to another. This extra difficulty would allow the cipher to reach the same security
level with fewer rounds.

The basic counterargument is that extra code is expensive in many contexts.
It increases pressure on a CPU’s L1 cache, for example, and it increases the
minimum size of a hardware implementation.

Even if larger code were free, I wouldn’t feel comfortable reducing the number
of rounds. The cryptanalytic literature contains a huge number of examples of
how extra rounds increase security; it’s much less clear how much benefit is
obtained from switching round types.

4.4 Should there be faster diffusion among words?

During the first round of Salsa20, there is no communication between words in
different columns; each column has its own chain of 12 operations modifying
the words in that column. During the second round, there is no communication
between words that were in different rows; each (transposed) row has its own
chain of 12 operations modifying the words in that row. Et cetera.

There are pairs (i, j) such that a change in word i has no opportunity to
affect word j until the third round. A different communication structure would
allow much faster diffusion of changes through all 16 words. On the other hand, it
doesn’t appear to be possible to achieve much faster diffusion of changes through
all 512 bits.

The current communication structure has speed benefits on CPUs that do
not have many fast registers. For example, my software for the Pentium III relies
on the ability to operate locally within 4 words for a little while.

4.5 Should there be modifications other than xor-a-rotated-sum?

There are many plausible ways to modify each word in a column using other
words in the same column. I settled on “xor a rotated sum” as bouncing back
and forth between incompatible structures on the critical path. I chose “xor a
rotated sum” over “add a rotated xor” for simple performance reasons: the x86
architecture has a three-operand addition (LEA) but not a three-operand xor.

4.6 Should there be other rotation distances?

I chose the Salsa20 rotation distances 7, 11, 13, 18 as doing a good job of spreading
every low-weight change across bit positions within a few rounds. The exact
choice of distances doesn’t seem very important.



My software uses SIMD vector operations for the Pentium 4, the Core 2, et
al. These operations rely on the fact that each column uses the same sequence
of distances.

5 Cryptanalysis

This section briefly reviews the history of third-party cryptanalysis of Salsa20.
2005.05 [6]: I presented Salsa20 at the ECRYPT Symmetric-Key Encryption

Workshop in Aarhus. I offered a $1000 prize for the most interesting Salsa20
cryptanalysis made public that year.

2005.10 [11]: Crowley posted a 2165-operation attack on Salsa20/5. Crowley
received the $1000 prize and presented his attack at the 2006.02 ECRYPT State
of the Art of Stream Ciphers workshop in Leuven. The attack works forwards
from a small known input difference to a biased bit 3 rounds later, and works 2
rounds backwards from an output after guessing 160 relevant key bits.

2006.12 [14]: Fischer, Meier, Berbain, Biasse, and Robshaw reported a 2177-
operation attack on Salsa20/6 (and a much faster attack on Salsa20/5, clearly
breaking Salsa20/5) at the Indocrypt conference in Calcutta. The attack works
forwards from a small known input difference to a biased bit 4 rounds later, and
works 2 rounds backwards from an output after guessing 160 relevant key bits.

2007.01 [22]: Tsunoo, Saito, Kubo, Suzaki, and Nakashima reported a 2184-
operation attack on Salsa20/7 (and a much faster attack on Salsa20/6, clearly
breaking Salsa20/6) at the ECRYPT State of the Art of Stream Ciphers work-
shop in Bochum. The attack works forwards from a small known input difference
to a biased bit 4 rounds later, and works 3 rounds backwards from an output
after guessing 171 highly relevant key bits.

2007.12 [2]: Aumasson, Fischer, Khazaei, Meier, and Rechberger reported a
2249-operation attack on Salsa20/8 and a 2153-operation attack on Salsa20/7.
The Salsa20/8 attack works forwards from a small known input difference to a
biased bit 4 rounds later, and works 4 rounds backwards from an output after
guessing 228 extremely relevant key bits.
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