
Understanding brute force

Daniel J. Bernstein ?

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago

Chicago, IL 60607–7045
djb@cr.yp.to

1 Introduction

There is a widespread myth that parallelizing a computation cannot improve its
price-performance ratio.

The reality is that a parallel computer is often several orders of magnitude
faster than a comparably priced serial computer. Consider multiplying two n-
bit numbers, for example, or sorting n elements of

{

1, 2, . . . , n2
}

. A properly

designed 2-dimensional parallel computer of size n1+o(1) can do both jobs in time
n1/2+o(1). A serial computer for either problem is much, much, much slower and
can’t be much smaller: it needs n1+o(1) serial accesses to n1+o(1) bits of memory.

A related myth is that analyzing the time of a computation on a huge serial
computer is equivalent to analyzing the price and performance of parallel versions
of the same computation. The reality is that parallelization has different effects
on different algorithms. When computations that take serial time n1+o(1) are
put on a parallel computer of size n1+o(1), some of them end up taking time
no(1); some of them end up taking time n1+o(1); some of them end up taking
time n1/2+o(1); etc.

These myths cause three problems in cryptography:

• Cryptographers often wildly overestimate the real-world security of their
cryptographic systems—specifically, the cost of carrying out the best attack
known—because they are restricting attention to serial attacks.

• Cryptographers often assert that a system has been “broken” by a marginally
improved serial attack—even though the serial attack is slower and more
expensive than a standard parallel attack.

• Cryptographers often make incorrect choices among systems: they switch to
a system that is stronger against serial attacks but is weaker against the best
attacks—i.e., against parallel attacks.

? The author was supported by the National Science Foundation under grant CCR–
9983950, and by the Alfred P. Sloan Foundation. Date of this document: 2005.04.25.
Permanent ID of this document: 73e92f5b71793b498288efe81fe55dee. This is a
preliminary version meant to announce ideas; it will be replaced by a final version
meant to record the ideas for posterity. There may be big changes before the final
version. Future readers should not be forced to look at preliminary versions, unless
they want to check historical credits; if you cite a preliminary version, please repeat
all ideas that you are using from it, so that the reader can skip it.



I first encountered these errors in the context of integer factorization. This paper
discusses the same errors in the simpler context of brute-force key search.

Sections 2 and 5 of this paper describe two parallel brute-force key-search
machines:

• The “standard parallel machine” in Section 2 is a straightforward parallel
implementation of a well-known brute-force algorithm, specifically Oechslin’s
“rainbow-tables” algorithm in [5].

• The “variant parallel machine” in Section 5 is a straightforward parallel
implementation of another well-known brute-force algorithm, specifically
Rivest’s “distinguished-points” algorithm.

Wiener in [6, Section 6] analyzed the amazing speed of a distinguished-points
computation on a 3-dimensional parallel machine. Unfortunately, the capabilities
of these machines are still far less widely appreciated than they should be. Section
3 discusses some vastly inferior serial machines in the recent literature.

Section 4 discusses the question of how we can protect against the parallel
brute-force key-search machines. This question leads to several additional areas
of confusion in the literature.

2 The standard parallel brute-force key-search machine

This section describes the standard parallel brute-force key-search machine. A
competent attacker uses the standard parallel machine—and not the inferior
serial machines described in Section 3—when he cannot find any cipher-specific
weaknesses.

The problem

The attacker is trying to find a 16-byte AES key k, given the 16 bytes H(k) =
AESk(8675309). There’s nothing special about the number 8675309, or about
AES: this is a brute-force attack that applies to a huge variety of ciphers.

The attacker is actually trying to simultaneously solve the same problem for
many independent keys k1, k2, . . .. He’s given H(k1),H(k2), . . .; he’d like to find
k1, k2, . . .. Let’s say he’s facing 210 keys overall.

The standard key-search circuit

The attacker builds a very small key-search circuit. The key-search circuit has
three inputs: a 12-byte string β, a 4-byte integer n, and a 16-byte string s. The
key-search circuit has one output: a 16-byte string Z(β, n, s) defined recursively
by Z(β, 0, s) = s and Z(β, n + 1, s) = Z(β, n,H(s ⊕ (β, n)).

The key-search circuit is slightly larger than an AES circuit. It takes slightly
more time than n AES computations.

This key-search circuit is attached to a comparable-size memory circuit that
buffers some inputs and outputs. Let’s say the memory circuit is big enough to
hold 24 inputs and 24 corresponding outputs.



The standard key-search machine

The attacker now builds a machine with 232 key-search circuits in a 216 × 216

mesh. Each key-search circuit has its own comparable-size memory circuit. Each
key-search circuit is also connected to its immediate neighbors (north, south,
east, west) in the mesh. As we’ll see later, this network doesn’t have to be
terribly fast.

Note that quite a few key-search circuits will fit onto a single low-cost chip.
This machine is expensive but clearly could be built: it has about 242 bytes of
memory, comparable to a 64 × 64 array of PCs.

The attacker feeds 236 inputs to his 232 key-search circuits; recall that each
circuit can buffer 24 inputs. Specifically, the attacker selects a 12-byte string β
and 236 − 233 random 16-byte strings r1, r2, . . .; generates one input (β, 223, rj)
for each random rj ; and generates 223 inputs for each target H(ki), namely
(β, 0,H(ki)), (β, 1,H(ki)), (β, 2,H(ki)), . . . , (β, 223 − 1,H(ki)).

All 232 key-search circuits now run in parallel, producing Z(β, 223, rj) for each
random rj and Z(β, 0,H(ki)), . . . , Z(β, 223−1,H(ki)) for each target H(ki). This
takes slightly more time than 223 · 24 = 227 AES computations.

The attacker then applies (for example) Schimmler’s sorting algorithm to
sort the 236 Z values. This algorithm takes just 221 adjacent compare-exchange
steps—not a bottleneck compared to 227 AES computations.

If the sorting encounters a collision between two Z(β, 223, rj)’s, it throws one
of those rj ’s away. If the sorting encounters a collision between Z(β, n,H(ki)) and
Z(β, 223, rj), the machine pauses to redo 223−n iterations of the computation of
Z(β, 223, rj). If the intermediate value (β, n+1, s) satisfies H(s⊕(β, n)) = H(ki)
then the machine prints s ⊕ (β, n) as a guess for ki.

Heuristic analysis

What’s the chance that a particular key, say k1, is found by this machine?
Here is a crude estimate. There are 236 values Z(β, 223, rj), each of which

involved 223 intermediate values (β, n + 1, s) and 223 inputs s⊕ (β, n) to H, for
a total of 259 inputs to H. If any of those pseudorandom inputs bumped into k1

then the machine will find k1. Specifically, if an intermediate value (β, n + 1, s)
in the computation of Z(β, 223, rj) satisfies s ⊕ (β, n) = k1, then Z(β, 223, rj) =
Z(β, n,H(s ⊕ (β, n))) = Z(β, n,H(k1)); the sorting will discover this collision,
will locate the same intermediate value (β, n+1, s), and will print s⊕(β, n) = k1

as its guess for k1. This occurs with probability 259/2128 = 2−69.
This estimate is slightly overoptimistic, for three reasons: first, there are not

quite as many rj ’s; second, there might be collisions among the inputs to H;
third, there might be a collision between two Z(β, 223, rj)’s, eliminating the rj

relevant to k1. But the first effect is small and the other effects are conjecturally
negligible. The machine finds k1 with probability conjecturally close to 2−69.

Of course, the machine simultaneously has a chance of finding k2, and a
chance of finding k3, and so on. Its chance of finding at least one of the 210

target keys is, conjecturally, close to 2−59.



The attacker can increase the chance of success by running the machine
repeatedly with new choices of β. For example, after running the machine 25

times, the attacker has chance close to 2−64 of finding k1, and chance close to
2−54 of finding at least one key. These 25 runs take only slightly more time
than 232 AES computations. If the machine does find a key—or a collision that
doesn’t produce a key—then the machine has to take extra time; but this is a
rare event, so it can be ignored in evaluating the machine’s performance.

Let me summarize. This machine has, conjecturally,

• chance close to 2−64 of finding k1 after the time for 232 AES computations;
• chance close to 2−54 of finding at least one of the 210 target keys after the

time for 232 AES computations;
• chance close to 2−32 of finding k1 after the time for 264 AES computations;
• chance close to 2−22 of finding at least one of the 210 target keys after the

time for 264 AES computations;
• chance close to 1 of finding at least one key after the time for 286 AES

computations; and
• chance close to 1 of finding most of the 210 target keys after the time for 296

AES computations.

The machine has reasonable size: 232 AES circuits, plus a comparable amount
of memory.

Asymptotics

The same machine design can be scaled up to p parallel key-search circuits, for
a wide range of values of p. The size-p machine has a good chance of discovering
a target b-bit key in the time for 2b/p cipher evaluations.

Even better, the machine can be simultaneously applied to q keys for any q
up to roughly

√
p. The machine then has a good chance of discovering most of

the keys in the time for 2b/p cipher evaluations.
The

√
p limit arises as follows. Each key is fed to 24p/8q key-search circuits.

Each circuit runs for 24p/8q iterations. The subsequent sorting of 24p numbers

takes 8
√

24p adjacent compare-exchange steps, which become a bottleneck as q
grows past

√
p.

See Section 5 for a variant that efficiently handles larger q.
The success probability of the machine against each key scales linearly with

time. For example, in the time for 2b/pq cipher evaluations, the attacker has
a good chance of discovering at least one key. In the time for 2b−20/pq cipher
evaluations, the attacker has roughly a 2−20 chance of discovering at least one
key. This pattern continues down to a very small amount of time.

For q = 1, a simpler machine does the same job: distribute H(k1) to many
circuits, each of which searches sequentially through a range of possibilities for
k1. Computations for one key can be merged to some extent with computations
for the next key, saving time.



3 The serial alternative

A very small serial computer—a single key-search circuit—can compute a b-
bit key k from H(k) in at most 2b evaluations of H; e.g., at most 2128 AES
evaluations for a 128-bit AES key.

If that’s too much time, what does the attacker do? The obvious answer is to
build the standard parallel brute-force key-search machine described in Section
2. This is a time-processor tradeoff, trading price linearly for performance.

A much worse answer is to use a time-memory tradeoff: a serial computer
that computes k from H(k) in fewer than 2b evaluations of H, after a massive
precomputation. This time-memory tradeoff trades price for performance, but
not linearly; it might set speed records for serial computers, but it is painfully
slow compared to a properly designed parallel computer.

Consider, for example, the same attack as in Section 2, but using memory
on a serial computer, rather than processors on a massively parallel computer.
We’ll see that the serial computer is much, much, much slower and not much
smaller.

The attacker selects a 12-byte string β and 236 − 233 random 16-byte strings
r1, r2, . . .. He computes, serially, Z(β, 223, rj) for each random rj , and stores the
results in an associative array. Then, for each target H(ki) in turn, the attacker
computes Z(β, 0,H(ki)), . . . , Z(β, 223 − 1,H(ki)), and looks up each result in
the associative array. Conjecturally he has probability close to 2−69 of finding
ki, exactly as in Section 2.

This serial machine is billions of times slower than the parallel machine.
The serial machine performs 223(223 − 1)/2 AES evaluations for each target
ki, totalling about 255 AES evaluations; and, even worse, 223 AES evaluations
for each random rj , totalling about 259 AES evaluations. For comparison, the
parallel machine finishes in the time for just 227 AES evaluations.

The serial machine is not billions of times less expensive than the parallel
machine. It isn’t even ten times less expensive. It’s about half the size of the
parallel machine: it doesn’t have the 232 AES circuits, but it does have the
same ≈ 242 bytes of memory. Perhaps I’m overestimating the cost of memory
compared to an AES circuit; if so, simply expand the amount of memory in both
machines to balance the memory-circuit cost with the AES-circuit cost, and the
conclusion will be the same.

To summarize: The time-memory tradeoff produces a ludicrously unbalanced
machine with tons of memory waiting for one serial CPU. The attacker would
have to be completely insane to use this serial machine.

Asymptotics

The disadvantage of a time-memory tradeoff, compared to a time-processor
tradeoff, grows linearly with the size of the machine. For example, a serial key-
search machine with about 274 bytes of memory is about 263 times slower than a
comparably priced parallel key-search machine, and about 233 times slower than
a parallel key-search machine costing 230 times less.



Sometimes I see one cryptanalyst arguing that a system has been “broken”
by a time-memory tradeoff on a serial computer with 290 bytes of memory,
and another cryptanalyst arguing that building 290 bytes of memory is awfully
difficult so the system has not been “broken.” This is a pointless argument about
an incompetent machine design. The standard parallel brute-force key-search
machine is billions of times less expensive than that serial computer and billions
of times faster. Anyone who thinks that time-memory tradeoffs are worrisome
should be utterly terrified by the vastly superior price and performance of a
properly designed parallel machine.

Fancier serial attacks

A recent paper advertises a serial computer with 2380 bits of fast memory that,
using a complicated algorithm, takes only 2534 cycles to identify a 544-bit key.
This attack is portrayed as being successful because it is (slightly) “faster than
exhaustive search.”

Let’s compare this serial computer to the standard parallel brute-force key-
search machine with, say, 2200 key-search circuits. The parallel machine is nearly
2200 times faster than this serial computer, and vastly less expensive.

Why did the author of this paper characterize this serial attack as successful
cryptanalysis? It’s simply not true that the attack is “faster than exhaustive
search”—unless you assume that the attacker is forcing himself to use a serial
computer, i.e., that the attacker is an idiot. Perhaps a parallelization of the
complicated algorithm could beat the parallel brute-force key-search machine,
but I doubt it: at first glance, parallelization will improve the price-performance
ratio of the complicated algorithm by a factor of only about 2180.

This is certainly not an isolated mistake. Most of the “breaks” that I see
in the literature are slightly faster than serial brute-force search but are much
slower than a much less expensive parallel brute-force search. Many people seem
to think that the number of cipher rounds “broken” by a differential attack, for
example, is the number of rounds for which the differential attack is marginally
faster than a serial brute-force search—ignoring the question of whether the
differential attack is faster than a parallel brute-force search.

This mistake should not be tolerated. A cryptanalytic machine is a failure if
it’s slower than the standard parallel brute-force key-search machine at the same
price. New attacks must be compared to the best previous attacks, not merely
the best previous serial attacks.

4 Defending against the standard attack

Consider again the standard parallel machine in Section 2, with 232 AES circuits.
Recall that, after 264 AES computations, this machine has chance close to 2−32

of finding a target key k1, and chance close to 2−22 of finding at least one of the
210 target keys.



Is this an acceptable level of security? Many people don’t think so. This
section analyzes two different ways to modify cryptographic systems to make
the attacker’s job more difficult.

Input-space separation

The standard parallel machine attacks a large batch of target keys at about the
same cost as attacking a single key.

Often the attacker’s benefit is proportional to the number of target keys
successfully found. Perhaps the attacker is trying to steal the computational
power of as many target computers as possible, and each extra key lets him
steal power from an extra computer. The attacker’s cost-benefit ratio is then
divided by the number of target keys.

This amortization relies on the attacker being given H(k1),H(k2), . . . for
the same function H: e.g., AESk1

(8675309),AESk2
(8675309), . . .. If there’s no

overlap between the inputs to AESk1
and the inputs to AESk2

then the attacker
can’t simultaneously attack k1 and k2.

“Aha!” one might say. “We should design our cryptographic protocols so that
different keys are applied to disjoint input sets!”

Example: De Canniére, Lano, and Preneel in [2, Section 5] suggest designing
stream ciphers so that nonces are as long as keys, and then choosing nonces
pseudorandomly. This suggestion fails to achieve the goal—a typical nonce will
still be used for many keys if the number of nonces is below the number of keys
times the number of messages per key—but one can make nonces even longer to
prevent repetition.

Unfortunately, [2] focuses entirely on the costs and benefits for the attacker,
and neglects to consider the costs and benefits for the cryptographic users:

• Many stream ciphers—counter-mode AES, for example—have small input
sizes and would have to be radically reworked, presumably losing speed, to
handle long nonces. The authors of [2] assert that “the state is already at
least twice the key size”; this is true for some stream ciphers but false for
counter mode.

• Even when a stream cipher easily accepts a long nonce, generating a long
pseudorandom nonce is much more expensive than generating a standard
sequential nonce. Long pseudorandom nonces cost CPU cycles to compute—
the pseudorandom number generator is another attack target, so it needs
to be at least as strong as the main cipher—and they cost bandwidth to
transmit.

• As for benefits: Input-space separation doesn’t make my key more difficult
to find. It stops the attacker from finding other people’s keys as part of the
same computation, and perhaps this difference will deter the attacker, but
perhaps it won’t.

To summarize, input-space separation has limited benefits and quite noticeable
costs. See below for a different approach that has much larger benefits and much
smaller costs.



Larger keys

A more obvious way to make the attacker’s job much more difficult is to use a

larger key. Why fool around with 128-bit keys when we can simply use 256-bit
keys?

The benefits to users are clear, and far outweigh the benefits of input-space
separation. Brute-force key-search attacks suddenly become 2128 times slower—
i.e., completely impractical for the foreseeable future.

“But 256-bit AES takes 14 rounds, while 128-bit AES takes only 10!” some
people will argue. “In general, 256-bit ciphers have more rounds than 128-bit
ciphers. That’s a quite serious cost in speed; we need to consider other ways to
use the same CPU cycles.”

But this argument confuses two different changes. We can switch to 256-bit
keys, effectively eliminating brute-force attacks, without increasing the number
of rounds. The only cost is the cost of generating and storing larger keys, which
is normally much smaller than the cost of generating and transmitting large
random nonces for every message. The benefit is much larger.

“But 256-bit AES deliberately uses 14 rounds to keep us secure against non-
brute-force attacks!” some people will argue. “There’s an 8-round attack taking
time only 2204, for example. Okay, okay, that’s on a machine with 2104 bits of
memory, but maybe some additional ideas will produce a 10-round attack more
efficient than a 256-bit parallel brute-force key-search attack.”

But this argument confuses security level with key size. I never said that this
change would produce a 256-bit security level. I said that it would make the
attacker’s job much more difficult—producing larger benefits than input-space
separation at lower cost. If the resulting security level is, say, 192 bits, then the
mission has been accomplished.

“But you’re not allowed to use keys larger than the target security level!”
some people will argue. “It’s, um, against the law! The standard definition of
security varies with your key size!”

But that’s a silly definition of security. Perhaps the most efficient way to
achieve a 192-bit security level is with a system having a 256-bit key. If the user
wants a 192-bit security level, then the user should select that system. There’s
no justification for demanding a reduced key size.

(Helix, introduced by Ferguson, Whiting, Schneier, Kelsey, Lucks, and Kohno
in [3], is an example of a fast stream cipher that uses a key size above its target
security level. I don’t know whether this is the most efficient approach, but I
certainly would not want it to be excluded from consideration.)

I’m not saying that increasing the number of rounds is a bad idea. On the
contrary: extra rounds have, historically, been quite effective at stopping non-
brute-force attacks. But this has nothing to do with the question of whether
randomness should be added to nonces or to keys.



5 The variant parallel brute-force key-search attack

This section describes a variant of the standard parallel brute-force key-search
machine. This variant is a little slower but has the advantage that it can handle
many more keys simultaneously.

The problem

The problem is the same as in Section 2: the attacker is trying to find 16-byte
AES keys k1, k2, . . ., given H(k1),H(k2), . . .. Let’s again assume that the attacker
is facing 210 keys overall.

The variant key-search circuit

The attacker builds a very small key-search circuit. The key-search circuit has
three inputs: a 23-bit string α, a 16-byte string β, and a 16-byte string s. The
key-search circuit has one output: a 16-byte string D(α, β, s) defined recursively
as β ⊕ s if β ⊕ s begins with α, and as D(α, β,H(β ⊕ s)) otherwise.

This key-search circuit is attached to a comparable-size memory circuit that
buffers 24 inputs and 24 outputs, as in Section 2.

How long does the key-search circuit take to produce its 24 outputs? The
16-byte strings β ⊕ s bounce around pseudorandomly, and one out of every 223

strings begins with α, so the number of iterations per output is typically on the
scale of 223. Maybe less; maybe more; occasionally the circuit falls into a loop
and never produces an output; but the key-search circuit typically computes
outputs for most of its inputs within 227 iterations.

The variant key-search machine

The attacker now builds a machine with 232 key-search circuits in a 216 × 216

mesh. Each key-search circuit has its own comparable-size memory circuit, and
is connected to its immediate neighbors, as in Section 2.

The attacker feeds 236 inputs to his 232 key-search circuits. Specifically, the
attacker selects a 23-bit string α, a 16-byte string β, and 236 − 210 random 16-
byte strings r1, r2, . . .; generates one input (α, β, rj) for each random rj ; and
generates one input (α, β,H(ki)) for each target H(ki).

All 232 key-search circuits now run in parallel for 227 iterations, producing
D(α, β, rj) for (conjecturally) most j’s and D(α, β,H(ki)) for (conjecturally)
most i’s. This takes slightly more time than 227 AES computations.

The attacker then sorts the D values. If the sorting encounters a collision
between two D(α, β, rj)’s, it throws one of those rj ’s away. If it encounters a
collision between D(α, β,H(ki)) and D(α, β, rj), the machine pauses to redo the
D(α, β, rj) computation. If any intermediate value (α, β, s) satisfies H(β ⊕ s) =
H(ki) then the machine prints β ⊕ s as a guess for ki.



Heuristic analysis

What’s the chance that a particular key, say k1, is found by this machine?
The crude estimate is that there are 236 values D(α, β, rj), each involving

223 intermediate values (α, β, s) and 223 inputs β ⊕ s to H, for a total of 259

inputs to H. If any of those inputs bumped into k1 then the machine will find k1.
Specifically, if an intermediate value (α, β, s) in the computation of D(α, β, rj)
satisfies β ⊕ s = k1, then D(α, β, rj) = D(α, β,H(β ⊕ s)) = D(α, β,H(k1));
the sorting will discover this collision, will locate the same intermediate value
(α, β, s), and will print β⊕s = k1 as its guess for k1. This occurs with probability
259/2128 = 2−69.

This estimate is slightly overoptimistic, for all the reasons in Section 2 and
more: for example, some rj ’s fail to produce values D(α, β, rj). These failures
are a disadvantage of the variant machine compared to the standard machine.
But one can reasonably conjecture that a random choice of α, β has probability
larger than 2−71 of finding k1, not much worse than the standard machine.

As in Section 2, the machine simultaneously has a chance of finding other
keys; and the attacker can increase the chance of success by running the machine
repeatedly with new choices of α, β. The variant machine also has an advantage
over the standard machine: it uses far fewer key-search-circuit inputs per target
key, so it can handle far more target keys simultaneously.

References

1. Dan Boneh (editor), Advances in cryptology: CRYPTO 2003, 23rd annual interna-

tional cryptology conference, Santa Barbara, California, USA, August 17–21, 2003,

proceedings, Lecture Notes in Computer Science, 2729, Springer, Berlin, 2003. ISBN
3–540–40674–3. MR 2005d:94151.

2. Christophe De Cannière, Joseph Lano, Bart Preneel, Comments on the rediscovery

of time memory data tradeoffs (2005). URL: http://www.ecrypt.eu.org/stream/.
3. Niels Ferguson, Doug Whiting, Bruce Schneier, John Kelsey, Stefan Lucks, Ta-

dayoshi Kohno, Helix: fast encryption and authentication in a single cryptographic

primitive, in [4] (2003), 330–346. URL: http://www.macfergus.com/helix/.
4. Thomas Johansson (editor), Fast software encryption: 10th international workshop,

FSE 2003, Lund, Sweden, February 24–26, 2003, revised papers, Lecture Notes in
Computer Science, 2887, Springer-Verlag, Berlin, 2003. ISBN 3–540–20449–0.

5. Philippe Oechslin, Making a faster cryptanalytic time-memory trade-off, in [1]
(2003), 617–630.

6. Michael J. Wiener, The full cost of cryptanalytic attacks, Journal of Cryptol-
ogy 17 (2004), 105–124. ISSN 0933–2790. URL: http://www3.sympatico.ca/

wienerfamily/Michael/.


