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Abstract. SipHash is a family of pseudorandom functions optimized for
short inputs. Target applications include network traffic authentication
and hash-table lookups protected against hash-flooding denial-of-service
attacks. SipHash is simpler than MACs based on universal hashing, and
faster on short inputs. Compared to dedicated designs for hash-table
lookup, SipHash has well-defined security goals and competitive perfor-
mance. For example, SipHash processes a 16-byte input with a fresh key
in 140 cycles on an AMD FX-8150 processor, which is much faster than
state-of-the-art MACs. We propose that hash tables switch to SipHash
as a hash function.

1 Introduction

A message-authentication code (MAC) produces a tag ¢ from a message m and
a secret key k. The security goal for a MAC is for an attacker, even after seeing
tags for many messages (perhaps selected by the attacker), to be unable to guess
tags for any other messages.

Internet traffic is split into short packets that require authentication. A 2000
note by Black, Halevi, Krawczyk, Krovetz, and Rogaway [8] reports that “a fair
rule-of-thumb for the distribution on message-sizes on an Internet backbone is
that roughly one-third of messages are 43 bytes (TCP ACKSs), one-third are
about 256 bytes (common PPP dialup MTU), and one-third are 1500 bytes
(common Ethernet MTU).”

However, essentially all standardized MACs and state-of-the-art MACs are
optimized for long messages, not for short messages. Measuring long-message
performance hides the overheads caused by large MAC keys, MAC initialization,
large MAC block sizes, and MAC finalization. These overheads are usually quite
severe, as illustrated by the examples in the following paragraphs. Applications
can compensate for these overheads by authenticating a concatenation of several
packets instead of authenticating each packet separately, but then a single forged
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packet forces several packets to be retransmitted, increasing the damage caused
by denial-of-service attacks.

Our first example is HMAC-SHA-1, where overhead effectively adds between
73 and 136 bytes to the length of a message: for example, HMAC-SHA-1 requires
two 64-byte compression-function computations to authenticate a short message.
Even for long messages, HMAC-SHA-1 is not particularly fast: for example,
the OpenSSL implementation takes 7.8 cycles per byte on Sandy Bridge, and
11.2 cycles per byte on Bulldozer. In general, building a MAC from a general-
purpose cryptographic hash function appears to be a highly suboptimal ap-
proach: general-purpose cryptographic hash functions perform many extra com-
putations for the goal of collision resistance on public inputs, while MACs have
secret keys and do not need collision resistance.

Much more efficient MACs combine a large-input universal hash function
with a short-input encryption function. A universal hash function h maps a long
message m to a short hash h(ki,m) under a key k. “Universal” means that
any two different messages almost never produce the same output when £ is
chosen randomly; a typical universal hash function exploits fast 64-bit multipliers
to evaluate a polynomial over a prime field. This short hash is then strongly
encrypted under a second key ks to produce the authentication tag t. The original
Wegman—Carter MACs [27] used a one-time pad for encryption, but of course
this requires a very long key. Modern proposals such as UMAC version 2 [8],
Poly1305-AES [3], and VMAC(AES) [20] [10] replace the one-time pad with
outputs of AES-128: i.e., t = h(ky, m) ® AES(k2,n) where n is a nonce. UMAC
version 1 argued that “using universal hashing to reduce a very long message to
a fixed-length one can be complex, require long keys, or reduce the quantitative
security” [7, Section 1.2] and instead defined ¢ = HMAC-SHA-1(h(k,m),n)
where h(k,m) is somewhat shorter than m.

All of these MACs are optimized for long-message performance, and suffer
severe overheads for short messages. For example, the short-message performance
of UMAC version 1 is obviously even worse than the short-message performance
of HMAC-SHA-1. All versions of UMAC and VMAC expand k; into a very
long key (for example, 4160 bytes in one proposal), and are timed under the
questionable assumptions that the very long key has been precomputed and
preloaded into L1 cache. Poly1305-AES does not expand its key but still requires
padding and finalization in h, plus the overhead of an AES call.

(We comment that, even for applications that emphasize long-message perfor-
mance, the structure of these MACs often significantly complicates deployment.
Typical universal MACs have lengthy specifications, are not easy to implement
efficiently, and are not self-contained: they rely on extra primitives such as AES.
Short nonces typically consume 8 bytes of data with each tag, and force applica-
tions to be stateful to ensure uniqueness; longer nonces consume even more space
and require either state or random-number generation. There have been propos-
als of nonceless universal MACs, but those proposals are significantly slower
than other universal MACs at the same security level.)
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The short-input performance problems of high-security MACs are even more
clear in another context. As motivation we point to the recent rediscovery of
“hash flooding” denial-of-service attacks on Internet servers that store data in
hash tables. These servers normally use public non-cryptographic hash functions,
and these attacks exploit multicollisions in the hash functions to enforce worst-
case lookup time. See Section 7 of this paper for further discussion.

Replacing the public non-cryptographic hash functions with strong small-
output secret-key MACs would solve this problem. However, to compete with
existing non-cryptographic hash functions, the MACs must be extremely fast for
very short inputs, even shorter than the shortest common Internet packets. For
example, Ruby on Rails applications are reported to hash strings shorter than 10
bytes on average. Recent hash-table proposals such as Google’s CityHash [13]
and Jenkins’ SpookyHash [16] provide very fast hashing of short strings, but
these functions were designed to have a close-to-uniform distribution, not to
meet any particular cryptographic goals. For example, collisions were found in
an initial version of CityHash128 [17], and the current version is vulnerable to
a practical key-recovery attack when 64-bit keys are used.

This paper introduces the SipHash family of hash functions to address the
needs for high-security short-input MACs. SipHash features include:

e High security. Our concrete proposal SipHash-2-4 was designed and eval-
uated to be a cryptographically strong PRF (pseudorandom function), i.e.,
indistinguishable from a uniform random function. This implies its strength
as a MAC.

e High speed. SipHash-2-4 is much faster for short inputs than previous
strong MACs (and PRFs), and is competitive in speed with popular non-
cryptographic hash functions.

o Key agility. SipHash uses a 128-bit key. There is no key expansion in setting
up a new key or hashing a message, and there is no hidden cost of loading
precomputed expanded keys from DRAM into L1 cache.

e Simplicity. SipHash iterates a simple round function consisting of four ad-
ditions, four xors, and six rotations, interleaved with xors of message blocks.

e Autonomy. No external primitive is required.

e Small state. The SipHash state consists of four 64-bit variables. This small
state size allows SipHash to perform well on a wide range of CPUs and to
fit into small hardware.

e No state between messages. Hashing is deterministic and doesn’t use
nonces.

e Minimal overhead. Authenticated messages are just 8 bytes longer than
original messages.

§2 presents a complete definition of SipHash; §3 makes security claims; §4 ex-
plains some design choices; §5 reports on our preliminary security analysis; §6
evaluates the efficiency of SipHash in software and hardware; §7 discusses the
benefits of switching to SipHash for hash-table lookups.
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2 Specification of SipHash

SipHash is a family of PRFs SipHash-c-d where the integer parameters ¢ and d
are the number of compression rounds and the number of finalization rounds. A
compression round is identical to a finalization round and this round function is
called SipRound. Given a 128-bit key k and a (possibly empty) byte string m,
SipHash-c-d returns a 64-bit value SipHash-c-d(k, m) computed as follows:

1. Initialization: Four 64-bit words of internal state vg, vy, v9, v3 are initialized
as

vy = ko ® 736£6d6570736575
v1 = k1 @ 646£72616e646£6d
Vo = ko @ 6c7967656e657261
Vg = k1 D T465646279746573

where kg and k; are the little-endian 64-bit words encoding the key k.

2. Compression: SipHash-c-d processes the b-byte string m by parsing it as
w = [(b+1)/8] > 0 64-bit little-endian words my, ..., my,—1 where my,_1
includes the last 0 through 7 bytes of m followed by null bytes and ending
with a byte encoding the positive integer b mod 256. For example, the one-
byte input string m = ab is parsed as mg = 01000000000000ab. The m;’s are
iteratively processed by doing

v3 b =my;
and then c iterations of SipRound, followed by
Vo @ = my;

3. Finalization: After all the message words have been processed, SipHash-c-d
xors the constant £f to the state:

Vg P = ff
then does d iterations of SipRound, and returns the 64-bit value
Vo B v B Doug .
Fig. 2.1 shows SipHash-2-4 hashing a 15-byte m.

The function SipRound transforms the internal state as follows (see also Fig.2.2):

vo+ = U1 Vg + = Vs
v K=13 vy K= 16
V1 D = g V3 D = V2
vy K= 32

vy + = vy Vo + = vs
v K= 17 vy K= 21
v1 D = vg v3 D = vg

Uy K= 32
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Fig. 2.1. SipHash-2-4 processing a 15-byte message. SipHash-2-4(k, m) is the output
from the final @ on the right.
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Fig. 2.2. The ARX network of SipRound.

3 Expected strength

SipHash-c-d with ¢ > 2 and d > 4 is expected to provide the maximum PRF
security possible (and therefore also the maximum MAC security possible) for
any function with the same key size and output size. Our fast proposal is thus
SipHash-2-4. We define SipHash-c-d for larger ¢ and d to provide a higher security
margin: our conservative proposal is SipHash-4-8, which is about half the speed
of SipHash-2-4. We define SipHash-c-d for smaller ¢ and d to provide targets for
cryptanalysis. Cryptanalysts are thus invited to break

e SipHash-1-0, SipHash-2-0, SipHash-3-0, SipHash-4-0, etc.;
e SipHash-1-1, SipHash-2-1, SipHash-3-1, SipHash-4-1, etc.;
e SipHash-1-2, SipHash-2-2, SipHash-3-2, SipHash-4-2, etc.;

and so on.

Note that the standard PRF and MAC security goals allow the attacker ac-
cess to the output of SipHash on messages chosen adaptively by the attacker.
However, they do not allow access to any “leaked” information such as bits of
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the key or the internal state. They also do not allow “related keys”, “known
keys”, “chosen keys”, etc.

Of course, security is limited by the key size (128 bits). In particular, attackers
searching 2° keys have chance 257128 of finding the SipHash key. This search is
accelerated in standard ways by speedups in evaluation and partial evaluation of
SipHash, for one key or for a batch of keys; by attacks against multiple targets;
and by quantum computers.

Security is also limited by the output size (64 bits). In particular, when
SipHash is used as a MAC, an attacker who blindly tries 2° tags will succeed
with probability 25764,

We comment that SipHash is not meant to be, and (obviously) is not, collision-
resistant.

4 Rationale

SipHash is an ARX algorithm, like the SHA-3 finalists BLAKE and Skein.
SipHash follows BLAKE’s minimalism (small code, small state) but borrows
the two-input MIX from Skein, with two extra rotations to improve diffusion.
SipHash’s input injection is inspired by another SHA-3 finalist, JH.

Choice of constants. The initial state constant corresponds to the ASCII
string “somepseudorandomlychosenbytes”. There is nothing special about this
value; the only requirement was some asymmetry so that the initial vy and vq
differ from v, and w3. This constant may be set to a “personalization string” but
we have not evaluated whether it can safely be chosen as a “tweak”.

The other constant in SipHash is ££, as xored to vs in finalization. We could
have chosen any other non-zero value. Without this constant, one can reach the
internal state after finalization by just absorbing null words. We found no way
to exploit this property, but we felt it prudent to avoid it given the low cost of
the defense.

Choice of rotation counts. Finding really bad rotation counts for ARX algo-
rithms turns out to be difficult. For example, randomly setting all rotations in
BLAKE-512 or Skein to a value in {8,16,24,...,56} may allow known attacks
to reach slightly more rounds, but no dramatic improvement is expected.

The advantage of choosing such “aligned” rotation counts is that aligned rota-
tion counts are much faster than unaligned rotation counts on many non-64-bit
architectures. Many 8-bit microcontrollers have only 1-bit shifts of bytes, so
rotation by (e.g.) 3 bits is particularly expensive; implementing a rotation by
a mere permutation of bytes greatly speeds up ARX algorithms. Even 64-bit
systems can benefit from alignment, when a sequence of shift-shift-xor can be
replaced by SSSE3’s pshufb byte-shuffling instruction. For comparison, imple-
menting BLAKE-256’s 16- and 8-bit rotations with pshufb led to a 20% speedup
on Intel’s Nehalem microarchitecture.
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For SipHash, the rotation distances were chosen as a tradeoff between secu-
rity and performance, with emphasis on the latter. We ran an automated search
that picks random rotation counts, estimates the number of significant statistical
biases on three SipRounds with respect to a specific significance threshold, and
finally sorts the sets of rotation counts according to that metric. We then manu-
ally shortlisted a few sets, by choosing the ones with rotation counts the closest
to multiples of eight. We changed some of those values to the closest multiple of
eight and benchmarked them against our original security metric, and repeated
this process several times until finding a satisfying set of rotation counts.

We chose counts 13, 16, 17, and 21 for the rotations in the two MIX layers:
13 and 21 are three bits away from a multiple of 8, whereas 17 is just one bit
away, and 16 can be realized by byte permutation only. We aggressively set the
two “asymmetric” rotation counts to 32 to minimize the performance penalty—
it is just a swap of words on 32-bit systems. The 32-bit rotations significantly
improve diffusion, and their position on the ARX network allows for an efficient
scheduling of instructions.

Choice of injection structure. Like JH, SipHash injects input before and
after each block, with the difference that SipHash leaves less freedom to attackers:
whereas JH xors the message block to the two halves of the state before and after
the permutation, SipHash xors a block to two quarters of the state. Any attack
on the SipHash injection structure can be applied to the JH injection structure,
so security proofs for the JH injection structure [23] also apply to the SipHash
injection structure.

A basic advantage of the JH/SipHash injection structure compared to the
sponge/Keccak injection structure is that message blocks of arbitrary length
(up to half the state) can be absorbed without reducing preimage security. A
disadvantage is that each message block must be retained while the state is being
processed, but for SipHash this extra storage is only a quarter of the state.

Choice of padding rule. SipHash’s padding appends a byte encoding the
message length modulo 256. We could have chosen a slightly simpler padding
rule, such as appending a 80 byte followed by zeroes, as in CubeHash. However,
our choice forces messages of different lengths modulo 256 to have different last
blocks, which may complicate attacks on SipHash; the extra cost is negligible.

5 Preliminary cryptanalysis

We first consider attacks that are independent of the SipRound algorithm, and
thus that are independent of the ¢ and d parameters. We then consider attacks
on SipRound iterations, with a focus on our proposal SipHash-2-4.

5.1 Generic attacks

Key-recovery. Brute force will recover a key after on average 2'27 evaluations

of SipHash, given two input/output pairs (one being insufficient to uniquely
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identify the key). The optimal strategy is to work with 1-word padded messages,
so that evaluating SipHash-c-d takes ¢ + d SipRounds.

State-recovery. A simple strategy to attack SipHash is to choose three input
strings identical except for their last word, query for their respective SipHash
outputs, and then “guess” the state that produced the output vo Hvy HveBvs for
one of the two strings. The attacker checks the 192-bit guessed value against the
two other strings, and eventually recovers the key. On average d2'°! evaluations
of SipRound are computed.

Internal collisions. As for any MAC with 256-bit internal state, internal col-
lisions can be exploited to forge valid tags with complexity of the order of 2128
queries to SipHash. The padding of the message length forces attackers to search
for collisions at the same position modulo 256 bytes.

5.2 Differential cryptanalysis

Truncated differentials. To assess the strength of SipRound, we applied the
same techniques that were used [2] to attack Salsa20, namely a search for sta-
tistical biases in one or more bits of output given one or more differences in the
input. We considered input differences in v and sought biases in v ®v1 B ve Dvg
after iterating SipRound.

The best results were obtained by setting a 1-bit difference in the most sig-
nificant bit of v3. After three iterations of SipRound many biases are found. But
after four or more iterations we did not detect any bias after experimenting with
sets of 230 samples.

To attempt to distinguish our fast proposal SipHash-2-4 by exploiting such
statistical biases, one needs to find a bias on six rounds such that no input
difference lies in the most significant byte of the last word (as this encodes the
message length).

XOR-linearized characteristics. We considered an attacker who injects a
difference in the first message word processed by SipHash-2-4, and then that
guesses the difference in v3 every two SipRounds in order to cancel it with the
new message word processed. This ensures that at least a quarter of the internal
state is free of difference when entering a new absorption phase. Note that such
an omniscient attacker would require the leakage of vz every two SipRounds,
and thus is not covered by our security claims in §3.

We used Leurent’s ARX toolkit [21] to verify that our characteristics contain
no obvious contradiction, and to obtain refined probability estimates. Table 5.1
shows the best characteristic we found: after two rounds there are 20 bit dif-
ferences in the internal state, with differences in all four words. The message
injection reduces this to 15 bit differences (with no difference in v3), and after
two more rounds there are 96 bit differences. The probability to follow this dif-
ferential characteristic is estimated to be 27134, For comparison, Table 5.2 shows
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Round Differences Prob.
................................................ -

1 1(1
................................ - R : D - B 1
- P - P T - PR 8 1

2 13 (14)
B - 9... 8 1.8.1.8 - A
..1.8..... 1ouu.. 8..... 11a.1.1... 8.1.1...8..... .

3 33 (47)
a...1...8.1.8.11 8.12b413a2...... 8.1.1...8.....1. 8.1.1...8.....1.
2.1.......1.8..1 6825e.1322.1..35 22....1....22a413 2........ 2..82.3

4 87 (134)

22118.344835e.13 £4378453.2172d3. .2....1..2.2261. .2...21.8..1.61.

a..1..24c834e4.3 fe918.6dba74e34f ..15.b2.f6378443 ....ivveiiiirnnn
924..74c5e9.8.49 6e9d2b.7.e29f89% ..15.b2.f6378443 ..15.b2.f6378443
9255.c6caBa7.4.a 38863c74.922ale7 £81e7cdd6e882.27 f64bca9c2.c7.6ab

6 160 (439)
al8babedaad33.18 6d5db13cfbb942fd .e55b6414e4f268c c4c9968648e4d.c7

145 (279)

Table 5.1. For each SipRound, differences in vg, v1, v2, vs before each half-round in the
xor-linear model. Every two rounds a message word is injected that cancels the differ-
ence in vs; the difference used is then xored to vy after the two subsequent rounds. The
probability estimate is given for each round, with the cumulative value in parentheses.

the characteristic obtained with the same input difference, but for an attacker
who does not guess the difference in v3: the probability to follow four rounds of
the characteristic is estimated to be 27159,

Better characteristics may exist. However we expect that finding (collections
of) characteristics that both have a high probability and are useful to attack
SipHash is extremely difficult. SipRound has as many additions as xors, so lin-
earization with respect to integer addition seems unlikely to give much better
characteristics than xor-linearization.

Vanishing characteristics. A particularly useful class of differential charac-
teristics is that of vanishing characteristics: those start from a non-zero difference
and yield an internal state with no difference, that is, an internal collision. Van-
ishing characteristics obviously do not exist for any iteration of SipRound; one
has to consider characteristics for the function consisting of SipRound iterations
followed by vg® = A, with an input difference A in v3.

No vanishing characteristic exists for one SipRound, as a non-zero difference
always propagates to vo. We ensured that no vanishing xor-linear characteristic
exists for iterations of two, three, or four SipRounds, by attempting to solve the
corresponding linear system. For sequences of two words, we ensured that no
sparse vanishing characteristic exists.

Other attacks. We briefly examine the applicability of other attacks to attack
SipHash:
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Round Differences Prob.
................................................ -

1 1(1
................................ - R : D - B 1
- P - P T - PR 8.....1...1.8...

2 13 (14)
B - 9... 8 1.8.1.8... 8.1....... 1.....
..1.8..... 1ouu.. 8..... 11a.1.1... 8.1.1...8.....1. 8.1.82....... 2..

3 42 (56)
a...1...8.1.8.11 8.12b413a2...... .... 92..8....21. 82..92..82..82..
22..82...21..211 e835621322.1.235 22...21.8.122613 621.c21.42..42.3

4 103 (159)

2.11..24ca3be.13 66778453..57bd22 4.1.c...c212641. 82..82..8.11.6..

5 a21182244a24e613 2ec144fcb8.116dd c245d93226674453 e2.18..48a34a6.3 152 (311)
f225f3ce8cd.c6d8 a44f51d8d.9e5616 2.445936acb3e2b. a.4.d3.2.ab5...51

6 52652.¢cc868.c689 27baa9d2d.e.fcd8 7ccdb44684.b.8ee 32246accBcb4ce9d3l 187 (498)
566.3ab175df891e 2.e5d3.249fb3eab 4ee9de8a.8bfc67d 2425523ec62cf459

Table 5.2. For each SipRound, differences in wvg,v1,v2,vs before each half-round in
the xor-linear model. Every two rounds a message with no difference is injected. The
probability estimate is given for each half-round, with the cumulative value in paren-
theses.

e Rotational attacks are differential attacks with respect to the rotation oper-
ator; see, e.g., [4, Section 4] and [18]. Due to the asymmetry in the initial
state—at most half of the initial state can be rotation-invariant—rotational
attacks are ineffective against SipHash.

e Cube attacks exploit a low algebraic degree in the primitive attacked. Due
to the rapid growth of the degree in SipHash, as in other ARX primitives,
cube attacks are unlikely to succeed.

e Rebound attacks are not known to be relevant for keyed primitives.

e Side-channel attacks cannot exploit any secret-dependent memory address
or execution time. The cost of masking SipHash to protect against DPA
etc. will be comparable to the cost of masking other ARX primitives.

5.3 Fixed point

Any iteration of SipRound admits a trivial distinguisher: the zero-to-zero fixed-
point. This may make theoretical arguments based on the “ideal permutation”
assumption irrelevant. But exploiting this property to attack SipHash seems very
hard, for

1. Hitting the all-zero state, although easy to verify, is expected to be as hard
as hitting any other predefined state;

2. The ability to hit a predefined state implies the ability to recover the key,
that is, to completely break SipHash.

That is, the zero-to-zero fixed point cannot be a significant problem for SipHash,
for if it were, SipHash would have much bigger problems.



SipHash: a fast short-input PRF 11

6 Performance

6.1 Lower bounds for a 64-bit implementation

SipRound involves 14 64-bit operations, so SipHash-2-4 involves 30 64-bit oper-
ations for each 8 bytes of input, i.e., 3.75 operations per byte. A CPU core with
2 64-bit arithmetic units needs at least 1.875 cycles per byte for SipHash-2-4,
and a CPU core with 3 64-bit arithmetic units needs at least 1.25 cycles per
byte for SipHash-2-4. A CPU core with 4 64-bit arithmetic units needs at least
1 cycle per byte, since SipRound does not always have 4 operations to perform
in parallel.

The cost of finalization cannot be ignored for short messages. For example, for
an input of length between 16 and 23 bytes, a CPU core with 3 64-bit arithmetic
units needs at least 49 cycles for SipHash-2-4.

6.2 Lower bounds for a 32-bit implementation

32-bit architectures are common in embedded systems, with for example proces-
sors of the ARM11 family implementing the ARMv6 architecture. To estimate
SipHash’s efficiency on ARMv6, we can directly adapt the analysis of Skein’s per-
formance by Schwabe, Yang, and Yang [24, §7], which observes that six 32-bit
instructions are sufficient to perform a MIX transform. Since SipRound consists
of four MIX transforms—the 32-bit rotate is transparent—we obtain 24 instruc-
tions per SipRound, that is, a lower bound of 3¢ cycles per byte for SipHash
on long messages. This is 6 cycles per byte for SipHash-2-4. An input of length
between 16 and 23 bytes needs at least 240 cycles.

6.3 Implementation results

We wrote a portable C implementation of SipHash, and ran preliminary bench-
marks on three machines:

e “bulldozer”, a Linux desktop equipped with a processor from AMD’s last
generation (FX-8150, 4 x 3600 MHz, “Zambezi” core), using gcc 4.5.2;

e “ishmael”, a Linux laptop equipped with a processor from AMD’s previ-
ous generation (AthlonIT Neo Mobile, 1700 MHz, “Geneva” core), using gcc
4.6.3.

e “latour”, a Linux desktop equipped with an older Intel processor (Core 2
Quad Q6600, 2394 MHz, “Kentsfield” core), using gcc 4.4.3.

We used compiler options -03 -fomit-frame-pointer -funroll-loops. For
more comprehensive benchmarks, we will submit implementations of SipHash to
SUPERCOP.

On “bulldozer”, our C implementation of SipHash-2-4 processes long mes-
sages at a speed of 1.96 cycles per byte. On “ishmael”, SipHash-2-4 reaches 1.44
cycles per byte; this is due to the Athlon II’s K10 microarchitecture having three
ALUs, against only two for the more recent Bulldozer. Similar comments apply
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Data byte length 8 16 24 32 40 48 56 64
Cycles 124 141 156 171 188 203 218 234

“bulldozer”
Cycles per byte 15.50 881 6.50 5.34 4.70 4.23 3.89 3.66
Sishmael” Cycles 123 134 145 158 170 182 192 204
Cycles per byte 15.38 8.38 6.00 4.94 4.25 3.79 3.43 3.19
« ” Cycles 135 144 162 171 189 207 216 225

latour

Cycles per byte 16.88 10.29 6.75 5.34 4.50 4.31 3.86 3.52

Table 6.1. Speed measurements of SipHash-2-4 for short messages.

to “latour”. These speeds are close to the lower bounds reported in §6.1, with
respective gaps of approximately 0.10 and 0.20 cycles per byte.

Table 6.1 reports speeds on short messages. For comparison, the fastest SHA-3
finalist on “bulldozer” (BLAKE-512) takes approximately 1072 cycles to process
8 bytes, and 1280 cycles to process 64 bytes.

Figures 6.1, 6.2, and 6.3 compare our implementation of SipHash with the
optimized C++ and C implementations of CityHash (version CityHash64) and
SpookyHash (version ShortHash) on short messages, as well as with OpenSSL’s
MD5 implementation. Figure 6.4 presents a refined view of relative performance
of SipHash-2-4, CityHash, and SpookyHash.

One can see from these tables and diagrams that SipHash-2-4 is extremely fast,
and competitive with non-cryptographic hashes. For example, hashing 16 bytes
takes 141 Bulldozer cycles with SipHash-2-4, against 82 and 126 for CityHash
and SpookyHash, and 600 for MD5. Our conservative proposal SipHash-4-8 is
still twice as fast as MD5.

6.4 Hardware efficiency

ASICs can integrate SipHash with various degrees of area/throughput tradeoffs,
with the following as extreme choices:

e Compact architecture with a circuit for a half-SipRound only, that is,
two 64-bit full adders, 128 xors, and two rotation selectors. For SipHash-
c-d this corresponds a latency of ¢/4 cycles per byte plus 2d cycles for the
finalization.

e High-speed architecture with a circuit for e = max(c, d) rounds, that is,
4e 64-bit full adders and 256e xors. For SipHash-c-d this corresponds to a
latency of 1/8 cycle per byte plus one cycle for finalization.

Both architectures require 256 D-flip-flops to store the internal state, plus 64 for
the message blocks. For a technology with 8 gate-equivalents (GE) per full adder,
3 per xor, and 7 per D-flip-flop, this is a total of approximately 3700 GE for the
compact architecture of SipHash-2-4, and 13500 GE for the high-speed architec-
ture. With the compact architecture a 20-byte message is hashed by SipHash-2-4
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Fig. 6.1. Performance of SipHash-2-4 compared to non-cryptographic hash functions
CityHash and SpookyHash and to MD5 on “bulldozer” (AMD FX-8150), for messages
of 1,2,...,128 bytes. Curves on the right, from top to bottom, are MD5, SipHash,
SpookyHash, and CityHash.

in 20 cycles, against 4 cycles with the high-speed architecture. An architecture
implementing ¢ = 2 rounds of SipHash-2-4 would take approximately 7900 GE
to achieve a latency of 1/8 cycles per byte plus two cycles for finalization, thus
5 cycles to process 20 bytes.

7 Application: defense against hash flooding

We propose that hash tables switch to SipHash as a hash function. On startup a
program reads a secret SipHash key from the operating system’s cryptographic
random-number generator; the program then uses SipHash for all of its hash
tables. This section explains the security benefits of SipHash in this context.

The small state of SipHash also allows each hash table to have its own key
with negligible space overhead, if that is more convenient. Any attacks must
then be carried out separately for each hash table.
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Fig. 6.2. Performance of SipHash-2-4 compared to non-cryptographic hash functions
CityHash and SpookyHash and to MD5 on “ishmael” (AMD Athlon IT), for messages
of 1,2,...,128 bytes. Curves on the right, from top to bottom, are MD5, SipHash,
SpookyHash, and CityHash.

7.1 Review of hash tables

Storing n strings in a linked list usually takes a total of ©(n?) operations, and
retrieving one of the n strings usually takes @(n) operations. This can be a
crippling performance problem when n is large.

Hash tables are advertised as providing much better performance. The sim-
plest type of hash table contains ¢ separate linked lists L[0], L[1],..., L[¢ — 1]
and stores each string m inside the linked list L[H (m) mod /], where H is a hash
function and ¢ is a power of 2. Each linked list then has, on average, only n//¢
strings. Normally this improves performance by a factor close to n if £ is chosen
to be on the same scale as n: storing n strings usually takes only ©(n) operations
and retrieving a string usually takes ©(1) operations.

There are other data structures that guarantee, e.g., O(nlgn) operations to
store n strings and O(lgn) operations to retrieve one string. These data struc-
tures avoid all of the security problems discussed below. However, hash tables
are perceived as being simpler and faster, and as a result are used pervasively
throughout current programming languages, libraries, and applications.
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Fig. 6.3. Performance of SipHash-2-4 compared to non-cryptographic hash functions
CityHash and SpookyHash and to MD5 on “latour” (Intel Core 2 Quad Q6600), for
messages of 1,2,...,128 bytes. Curves on the right, from top to bottom, are MD5,
SipHash, SpookyHash, and CityHash.

7.2 Review of hash flooding

Hash flooding is a denial-of-service attack against hash tables. The attacker
provides n strings m that have the same hash value H(m), or at least the same
H(m) mod ¢. The hash-table performance then deteriorates to the performance
of one linked list.

The name “hash flooding” for this attack appeared in 1999, in the source
code for the first release of the dnscache software from the second author of this

paper:
if (++loop > 100) return O; /* to protect against hash flooding */

This line of code protects dnscache against the attack by limiting each linked
list to 100 entries. However, this is obviously not a general-purpose solution to
hash flooding. Caches can afford to throw away unusual types of data, but most
applications need to store all incoming data.

Crosby and Wallach reintroduced the same attack in 2003 under the name
“algorithmic complexity attack” [9] and explored its applicability to the Squid
web cache, the Perl programming language, etc. Hash flooding made headlines



16 Jean-Philippe Aumasson and Daniel J. Bernstein

40(:' T II T T T T T T T T T T T T
SipHash
CityHash ——

350 SpoolyHash

300

250

cydes

200

150

100

5O i i i i i i i i
8 16 24 32 40 48 56 64 72 80 B8 96 104112120128

bytes

Fig. 6.4. Performance of SipHash-2-4 compared to non-cryptographic hash func-
tions CityHash and SpookyHash on “bulldozer” (AMD FX-8150), for messages of
1,2,...,128 bytes. Curves on the right, from top to bottom, are SipHash, Spooky-
Hash, and CityHash.

again in December 2011, when Klink and Walde [19] demonstrated its continued
applicability to several commonly used web applications. For example, Klink and
Walde reported 500 KB of carefully chosen POST data occupying a PHP5 server
for a full minute of CPU time.

7.3 Advanced hash flooding

Crosby and Wallach recommended replacing public functions H with secret
functions, specifically universal hash functions, specifically the hash function
H(mg,mq,...) =mg-ko+mq-ki+--- using a secret key (ko, k1, ...). The idea
is that an attacker has no way to guess which strings will collide.

We question the security of this approach. Consider, for example, a hash
table containing one string m, where m is known to the attacker. Looking up
another string m’ will, with standard implementations, take longer if H(m') =
H(m) (mod ¢) than if H(m') Z H(m) (mod ¢). This timing information will
often be visible to an attacker, and can be amplified beyond any level of noise
if the application allows the attacker to repeatedly query m’. By guessing /¢
choices of strings m’ # m the attacker finds one with H(m') = H(m) (mod /).
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The linearity of the Crosby—Wallach choice of H then implies that adding any
multiple of m’ — m to m will produce another colliding string. With twice as
many guesses the attacker finds an independent string m” with H(m'") = H(m)
(mod ¢); then adding any combination of multiples of m’ — m and m” — m
to m will produce even more collisions. With a moderate number of guesses
the attacker finds enough information to solve for (ko mod ¢, k; mod ¢,...) by
Gaussian elimination, and easily computes any number of strings with the same
hash value.

One can blame the hash-table implementation for leaking information through
timing; but it is not easy to build an efficient constant-time hash table. Even
worse, typical languages and libraries allow applications to see all hash-table
entries in order of hash value, and applications often expose this information to
attackers. One could imagine changing languages and libraries to sort hash-table
entries before enumerating them, but this would draw objections from applica-
tions that need the beginning of the enumeration to start quickly. One could also
imagine changing applications to sort hash-table entries before exposing them
to attackers, but ensuring this would require reviewing code in a huge number
of applications.

We comment that many of the hash-flooding defenses proposed since De-
cember 2011 are vulnerable to the same attack. The most common public hash

functions are of the form mg - kg + mq - k1 + --- where kg, k1, ... are public,
and many of the proposed defenses simply add some entropy to kg, k1, ...; but
the attack works no matter how kg, k1, ... are chosen. Many more of the pro-

posed defenses are minor variations of this linear pattern and are broken by easy
variants of the same attack.

We do not claim novelty for observing how much damage a single equation
H(m') = H(m) (mod ¢) does to the unpredictability of this type of hash func-
tion; see, e.g., the attacks in [6] and [14] against related MACs. However, the
fact that hash tables leak such equations through side channels does not seem
to be widely appreciated.

7.4 Stopping advanced hash flooding

The worst possible exposure of hash-table indices would simply show the attacker
H(m) mod ¢ for any attacker-selected string m. We advocate protecting against
this maximum possible exposure, so that applications do not have to worry
about how much exposure they actually provide. The attacker’s goal, given this
exposure, is to find many strings m having a single value H(m) mod /.

We propose choosing H to be cryptographically strong: i.e., a PRF. If H is a
PRF then the truncation H mod ¢ is also a PRF (recall that ¢ is a power of 2),
and therefore a maximum-security MAC: even after seeing H(m) mod ¢ for se-
lected strings m, the attacker cannot predict H(m) mod /¢ for any other string m.
The PRF property for H implies the same unpredictability even if the attacker
is given hash values H(m), rather than just hash-table indices H(m) mod /.
Achieving this level of unpredictability does not appear to be significantly easier
than achieving the full PRF property.
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Typical hash-table applications hash a large number of short strings, so the
performance of H on short inputs is critical. We therefore propose choosing
SipHash as H: we believe that SipHash is a PRF, and it provides excellent
performance on short inputs. There are previous hash functions with competitive
performance, and there are previous functions that have been proposed and
evaluated for the same security standards, but as far as we know SipHash is the
first function to have both of these features.

Of course, the attacker’s inability to predict new hash values does not stop
the attacker from exploiting old hash values. No matter how strong H is, the
attacker will find two colliding strings after (on average) about V0 guesses, and
then further strings with the same hash value for (on average) ¢ guesses per
collision. However, finding n colliding strings in this way requires the attacker
to communicate about nf ~ n? strings, so n—the CPU amplification factor
of the denial-of-service attack—is limited to the square root of the volume of
attacker communication. For comparison, weak secret hash functions and (weak
or strong) public hash functions allow n to grow linearly with the volume of
attacker communication. A strong secret hash function thus greatly reduces the
damage caused by the attack.
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A Test values

This appendix shows intermediate values of SipHash-2-4 hashing the 15-byte
string 000102 - - 0c0dOe with the 16-byte key 000102 - - 0d0eOf.
Initialization little-endian reads the key as

ko = 0706050403020100
k1 = 0£0e0d0c0b0a0908

The key is then xored to the four constants to produces the following initial state
(v to vs, left to right):

7469686173716475 6b617£6d656e6665 6b7£62616d677361 7b6b696e727e6c7b
The first message block 0706050403020100 is xored to v3 to give

7469686173716475 6b617£6d656e6665 6b7£62616d677361 7c6d6c6a717c6d7b
and after two SipRounds the internal state is:

4d07749cdd0858e0 0d52f6f62a4f59a4 634cb3577b01fd3d ab5224d6£55c7d9c8
Xoring the first message block to vy concludes the compression phase:

4a017198de0ab9e0 0d52f6f62a4f59a4 634cb3577b01£fd3d a5224d6£55c7d9c8

The second and last block is the last seven message bytes followed by the
message’s length, that is, 0f0e0d0c0b0a0908. After xoring this block to vs, doing
two SipRounds, xoring it to vy and xoring 00000000000000£ff to vy, the internal
state is

3c85b3ab6f55bebl 414fc3fb98efe374 ccf13eab27b9f442 5293f54a84008£82
After the four iterations of SipRound, the internal state is
£f6bcdb3893fecffl 54b9964c7ea0d937 1b38329c099bbb5a 1814bb89ad7beb79

and the four words are xored together to return a129ca6149be45e5.
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