
Proving tight security

for Rabin-Williams signatures

Daniel J. Bernstein ∗

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago, Chicago, IL 60607–7045

djb@cr.yp.to

February 20, 2007

Abstract

This paper proves “tight security in the random-oracle model relative to factorization” for
the lowest-cost signature systems available today: every hash-generic signature-forging attack
can be converted, with negligible loss of efficiency and effectiveness, into an algorithm to factor
the public key. The most surprising system is the “fixed unstructured B = 0 Rabin-Williams”
system, which has a tight security proof despite hashing unrandomized messages. At a lower
level, the three main accomplishments of the paper are (1) a “B ≥ 1” proof that handles some of
the lowest-cost signature systems by pushing an idea of Katz and Wang beyond the “claw-free
permutation pair” context; (2) a new expository structure, elaborating upon an idea of Koblitz
and Menezes; and (3) a proof that uses a new idea and that breaks through the “B ≥ 1” barrier.

1 Introduction

Variants of the Rabin-Williams public-key signature system have, for twenty-five years, held the
speed records for signature verification. Are these systems secure?

There are many other signature systems of RSA/Rabin type. One can break each system by
computing roots modulo the signer’s public key pq or by breaking the system’s hash function H.
Are there other attacks? This is not an idle concern: some RSA-type systems have been broken by
embarrassing attacks that (1) are much faster than known methods to compute roots modulo pq
and (2) work for every function H (or a large fraction of choices of H), given oracle access to H.

Some systems have been proven immune to embarrassing attacks. For example, in the 1993
paper [3] that popularized this line of work (along with the terminology “secure in the random-
oracle model”), Bellare and Rogaway proved the following security property for the traditional
“FDH” form of exponent-e RSA: every H-generic attack on RSA-FDH can be converted (without
serious loss of efficiency) into an algorithm to compute eth roots modulo pq.

Unfortunately, a closer look reveals that most of these proofs merely limit the embarrassment,
without actually ruling it out. For example, the Bellare-Rogaway root-finding algorithm has only a
1/Q chance of success, where Q is the number of hash values seen by the FDH attack. Coron in [7]

∗Date of this document: 2007.02.20. Permanent ID of this document: c30057d690a8fb42af6a5172b5da9006.

1

introduced a better algorithm having a 1/S chance of success, where S is the number of signatures
seen by the FDH attack; but S can still be quite large.

Randomized signatures, in which B-bit random strings are prepended to messages before the
messages are signed, allow much tighter proofs if B is large. For example, every H-generic attack on
randomized exponent-e RSA (or Rabin’s 1979 signature system) can be converted into a algorithm
to compute eth roots modulo pq (or to factor pq) with a good chance of success. But generating
random strings takes time, and transmitting the strings consumes bandwidth. Can we do better?

A 2002 theorem of Coron is widely interpreted as saying that FDH is stuck at 1/S, i.e., that tight
proofs require randomization of hash inputs; see [9]. A tight security proof by Katz and Wang in [12]
allows much shorter random strings for some RSA variants but breaks down for Rabin-Williams.
There are other systems with tight security proofs, but none of them offer state-of-the-art efficiency.

Contributions. This paper proves tight security for several state-of-the-art variants of the Rabin-
Williams public-key signature system. What’s most surprising is the “fixed unstructured B = 0”
variant, a specific type of FDH that has a tight security proof despite hashing unrandomized
messages. In the Rabin-Williams context, a minor technical assumption in Coron’s theorem—the
assumption of “unique” signatures—turns out to be a major loophole, producing a tight security
proof from a random choice later in the signing process, after all hashing is done.

There are actually two security proofs in this paper. The “B ≥ 1” proof uses a more general
approach, pushing the Katz-Wang idea beyond the well-known “claw-free permutation pair” setting
and carefully handling the “tweaked square roots” that appear in the Rabin-Williams system. The
“unstructured B = 0” proof relies on a new proof idea that is more specific but also responsible for
the aforementioned surprise. As far as I can tell, the new proof idea is tied to Rabin-Williams and
cannot say anything useful about RSA; within the Rabin-Williams context, the new proof idea is
tied to “unstructured” signatures and does not cover “principal” or “|principal|” signatures. The
specific case of “fixed unstructured B = 0” Rabin-Williams signatures is nevertheless worth study
because it is a state-of-the-art signature system of particular interest to implementors; among all
high-speed systems with tight security proofs it is the only one that does not need to randomize
hash inputs.

My proofs follow a new expository structure that explicitly separates five levels of hard problems
(generic blind inversion, generic selective inversion using one signature, generic selective inversion
using many signatures, generic existential inversion, and generic attacks) and that closely tracks
the intuition of a cryptanalyst studying potential attacks. My impression is that previous proofs
can be, and would gain in clarity from being, rewritten within the same structure; for example, the
structure formalizes the standard idea of a simulator as a very easy step from the first-level hard
problem to the second-level hard problem, with all other difficulties stripped away. I can easily
imagine the structure being useful for future proofs in the area. I hope that one proof suffices to
make the general structure clear.

These proofs owe a heavy debt to the efforts of Koblitz and Menezes to clarify the limits of
“provable security”; see [18] and [19]. In particular, in [18, Section 3.2], in the case of RSA with
B = 0, Koblitz and Menezes explicitly stated an apparently new “RSA1” hard problem (which
I call “generic existential inversion”) and conjectured that it had the same difficulty as the usual
hard problem (which I call “generic blind inversion”). The simplicity and clarity of the new hard
problem inspired me to consider the analogous problem for Rabin-Williams. Koblitz and Menezes
had commented that Coron’s 1/S reduction could be translated to a 1/S reduction between these
two hard problems, and that it was unreasonable to hope for a better reduction in light of Coron’s

2

2002 theorem. I was quite surprised to discover that the “unstructured” case of the analogous
Rabin-Williams conjecture could in fact be proven.

Acknowledgments and priority dates: Thanks to Dan Boneh for pointing out [12] to me. I posted
a “B ≥ 1” Katz-Wang-style proof in 2003. I posted the new expository structure in November 2006.
I posted the “unstructured B ≥ 0” proof, with the new proof idea, in November 2006.

2 Parameters; keys; verification; signing

This section defines the family of signature systems whose security is analyzed later in the paper.
Standardizing a particular signature system in the family means standardizing various parameters:
K, the number of key bits; D, the distribution of secret keys; H, the hash function; and B, the
number of bits of randomization of the hash input. The signer’s behavior is further controlled by
two parameters relevant to security: first, whether signatures are “unstructured” or “principal”
or “|principal|”; second, whether signatures are “fixed” or “variable.” All of these parameters are
explained in detail below.

Readers wondering “Why are you looking at these particular systems?” should consult Appendix
A for a cost analysis and a historical survey. The short answer is that, among all the signature
systems that are conjectured to provide a reasonable security level, these systems were engineered
to minimize cost. Exception: in applications where signature length is much more important than
verification time, lower costs are achieved by systems of ElGamal/Schnorr/ECDSA type.

Secret keys and public keys. All users of the system know an integer K ≥ 10. Typical
choices of K include 1024 (not recommended), 1536, and 2048. All users of the system also know
a distribution D (for example, the uniform distribution) of pairs of prime numbers (p, q) such that
p ∈ 3 + 8Z, q ∈ 7 + 8Z, and 2K < pq < 2K+1.

Each user of the system chooses a random secret key (p, q) from the distribution D, and com-
putes a corresponding public key pq.

The difficulty of factoring pq depends on the parameters (K, D); no security is possible when
these parameters are chosen poorly. If K = 512, for example, then the attacker can use the number-
field sieve to factor arbitrary integers between 2K and 2K+1 with a moderate amount of effort, and
can then freely forge signatures. As another example, if D has highly limited randomness and is
concentrated on 232 pairs (p, q), the attacker can factor pq by simply trying each of those 232 pairs.

Theoreticians often simplify this picture by assuming that D is the uniform distribution. In
the real world, however, implementors often choose non-uniform distributions to save time in key
generation. This paper considers arbitrary distributions of pairs (p, q), and thus arbitrary distri-
butions of public keys pq. For each distribution D, this paper proves that various hard problems
involving public keys from distribution D are equivalent to factoring public keys from distribution
D.

Hashing and verification. All users of the system know an integer B ≥ 0. Three interesting
choices of B are 0, 1, and 128. All users of the system also know a function H : {B-bit strings} ×
{messages} →

{
1, 2, . . . , 2K

}
. For example, for B = 0 and K = 2048, the function H assigns an

element of
{
1, 2, . . . , 22048

}
to each message. There are many popular choices of H, usually built

from components such as MD5, SHA-1, and SHA-256.
A vector (e, f, s) is a tweaked square root of an integer h modulo a public key pq if e ∈ {1,−1};

f ∈ {1, 2}; s ∈ {0, 1, . . . , pq − 1}; and efs2 ≡ h (mod pq). A vector (e, f, r, s) is a signature of

3

a message m under a public key pq if r is a B-bit string and (e, f, s) is a tweaked square root of
H(r, m).

For example, the algorithm displayed in Appendix A computes a tweaked square root of h,
specifically the principal tweaked square root of h. This is the unique tweaked square root
(e, f, s) such that e is 1 if h is a square modulo q, otherwise −1; f is 1 if eh is a square modulo p,
otherwise 2; and s is a square modulo pq.

The difficulty of forging signatures depends on H. No security is possible when the hash
function is chosen poorly. For example, if H(r, m) is determined by MD5(m), then an attacker can
find collisions in H by finding collisions in MD5.

Reader beware: Many authors allow the output range of H to be a function of the public key,
but there cannot actually be any such dependence when H is a system parameter shared by all
users, as it always is in practice. Putting a shared limit on the output range of H also means
slightly changing the notion of a generic attack, and slightly changing the security proofs. My
proofs include these minor changes.

Unstructured signatures, principal signatures, |principal| signatures. Each message m
has exactly 2B+2 signatures under pq: there are 2B choices of r, and then 4 choices of tweaked
square root (e, f, s) of H(r, m) modulo pq. Which signature does the signer choose?

A stupid signer could easily expose his secret key to the attacker through this choice. For
example, the signer could leak the ith bit of p in the ith signature as the bottom bit of r (if B ≥ 0),
as the Jacobi symbol of s modulo pq, etc. This example demonstrates that there is no hope of
security if the signing function is chosen poorly. How do we know that a smarter-sounding signing
algorithm does not have a similar leak?

There are three signature distributions proposed in the literature:

• Unstructured: The signer chooses a uniform random string r, and then a uniform random
tweaked square root of H(r, m), independently of all previous choices.

• Principal: The signer chooses a uniform random string r independently of all previous
choices, and then chooses the principal tweaked square root of H(r, m).
• |Principal|: The signer chooses a uniform random string r independently of all previous

choices, and then chooses the “|principal|” tweaked square root of H(r, m). If the principal
tweaked square root is (e, f, s) then the |principal| tweaked square root is (e, f,min{s, pq − s});
the point is that min{s, pq − s} takes a bit less space than s.

One step in this paper’s security proofs—see Section 4—is split into three cases accordingly. A
later step—see Section 7—is affected much more dramatically by the choice.

Variable signatures, fixed signatures. What happens if the signer is given the same message
to sign once again? There are two choices in the literature:

• Fixed: Given the same message again, the signer chooses the same signature again.
• Variable: Given the same message again, the signer generates a fresh signature, making

random choices independently of the previous choices.

To understand the importance of this choice for security, consider the fact that “fixed unstructured
B = 0” signatures now have a tight security proof, whereas “variable unstructured B = 0” sig-
natures are easily breakable. The importance of this choice for tight security proofs was pointed

4

out by Katz and Wang in [12]; the conventional wisdom before [12] was that tight security proofs
required a large B.

The above description of fixed signatures might sound as if each signer needs to remember
all previous signed messages. However, the signer can produce indistinguishable results without
memory, assuming standard conjectures in secret-key cryptography. The trick is simple: the signer
replaces the random bits with secret functions of m. This trick was posted to sci.crypt in
1997 by Barwood and independently by Wigley; it was reinvented several years later by Katz and
Wang in [12]. The usual construction is for the signer to first compress m with a very fast “almost
universal hash function,” and then scramble the result, for example with a block cipher; the relevant
conjecture is that the scrambling function is indistinguishable from uniform.

For principal and |principal| signatures with B = 0, no randomness is required, and variable
signatures are the same as fixed signatures.

3 Generic blind inversion

The security proof in this section is well known, but readers are nevertheless encouraged to read it
as a warmup for the security proofs in subsequent sections.

Suppose we are given a public key pq and an integer h′ ∈
{
1, 2, . . . , 2K

}
. How quickly can we

compute a tweaked square root of h′ modulo pq? One approach is to factor pq; are there better
approaches?

More formally: Fix K and D. Consider any algorithm A1 that, given an integer n with
2K < n < 2K+1 and an integer h′ ∈

{
1, 2, . . . , 2K

}
, computes a vector (e′, f ′, s′) ∈ {−1, 1} ×

{1, 2} × {0, 1, . . . , n− 1}. Define A1 as successful if e′f ′(s′)2 ≡ h′ (mod n). Define X1(A1) as the
probability that A1 is successful when n is a random public key from the distribution D, h′ is a
uniform random element of

{
1, 2, . . . , 2K

}
, and n, h′ are independent. How large can X1(A1) be,

as a function of the resources consumed by A1?
An always-successful fast algorithm A1 for this generic-blind-inversion problem immediately

implies an always-successful fast algorithm to forge Rabin-Williams signatures, given oracle access
to the hash function H. The attacker simply chooses the message m′ that he wants to sign, chooses
any B-bit string r′, computes h′ = H(r′,m′), and computes a tweaked square root (e′, f ′, s′) of h′.
Then (e′, f ′, r′, s′) is a signature of m′. Conversely, cryptanalysts trying to forge Rabin-Williams
signatures will naturally consider this simple attack strategy as a first possibility.

Tight security proof. Unfortunately for the cryptanalyst, this problem is provably as difficult
as factorization of public keys. Any successful fast algorithm A1 for this problem immediately
implies a successful fast factorization algorithm A0. The proof is completely standard, except for
the details of how the tweaks e, f are handled.

Write X0(A0) for the chance that an algorithm A0, given a random public key n with distribu-
tion D, computes a nontrivial factor of n. Starting from A1, consider the following factorization
algorithm A0:

1. Generate a uniform random vector (e, f, s) ∈ {−1, 1} × {1, 2} × {0, . . . , n− 1}.
2. Compute h′ = efs2 mod n.
3. Start over if h′ /∈

{
1, 2, . . . , 2K

}
.

4. Compute (e′, f ′, s′) = A1(n, h′).

5

5. If gcd{n, s′ − s} /∈ {1, n}, print it and stop.
6. If gcd{n, s′} /∈ {1, n}, print it and stop.

The following theorem states that a large success chance X1(A1) implies a large factorization chance
X0(A0). The time of A0 is practically identical to the time of A1: the only difference is a few easy
operations modulo n to generate h′, repeated only n/2K < 2 times on average.

Theorem 3.1. X0(A0) ≥ (1/2)X1(A1).

Proof. Let n be a random public key with distribution D. At step 4 of A0(n), the quantity
h′ = efs2 mod n is a uniform random element of

{
1, 2, . . . , 2K

}
; recall that each choice of h′ is

produced by exactly four choices of e, f, s. Thus the event e′f ′(s′)2 ≡ h′ (mod n) occurs with
probability exactly X1(A1). I claim that, given this event, there is conditional probability at least
1/2 that one of s′, s′ − s has a nontrivial factor in common with n.

Case 1: gcd{h′, n} = n. This is impossible, since 1 ≤ h′ ≤ 2K < n.

Case 2: gcd{h′, n} = p. In this case gcd{s′, n} = p as desired.

Case 3: gcd{h′, n} = q. In this case gcd{s′, n} = q as desired.

Case 4: gcd{h′, n} = 1. I claim that (s′)2 ≡ s2 (mod n). Notice first that e′f ′(s′)2 ≡ efs2

(mod n), and recall that n = pq for primes p, q with p ∈ 3 + 8Z and q ∈ 7 + 8Z. Both possibilities
for f , namely 1 and 2, are squares modulo q, so f ′(s′)2 and fs2 are squares modulo q, and both
are nonzero since gcd{h′, q} = 1; the ratio e′/e is therefore a square modulo q and hence cannot
be −1. Consequently e′ = e and f ′(s′)2 ≡ fs2 (mod n). Both (s′)2 and s2 are squares modulo p,
and both are nonzero since gcd{h′, p} = 1; the ratio f ′/f is therefore a square modulo p and hence
cannot be 2. Hence f ′ = f and (s′)2 ≡ s2 (mod n).

Recall that there are exactly four choices of e, f, s consistent with h′, and observe that e′, f ′, s′

is independent of this choice. All four choices have the same e, f as I just showed, so only two of
them have s ≡ s′ or s ≡ −s′. The other two choices occur with conditional probability 1/2; for
those choices, n divides (s′)2 − s2 without dividing s′ − s or s′ + s, so gcd{n, s′ − s} is a nontrivial
factor of n.

4 Generic selective inversion using one signature

Suppose we’re given a public key pq, two integers h, h′ ∈
{
1, 2, . . . , 2K

}
, and a tweaked square root

(e, f, s) of h modulo pq. How quickly can we compute a tweaked square root of h′ modulo pq? One
approach is to factor pq; are there better approaches?

More formally: Fix K and D. Fix α ∈ {unstructured,principal, |principal|}. Consider any
algorithm A2 that, given an integer n with 2K < n < 2K+1, an integer h ∈

{
1, 2, . . . , 2K

}
, a vector

(e, f, s) ∈ {−1, 1}×{1, 2}×{0, 1, . . . , n− 1}, and an integer h′ ∈
{
1, 2, . . . , 2K

}
, computes a vector

(e′, f ′, s′) ∈ {−1, 1} × {1, 2} × {0, 1, . . . , n− 1}. Define A2 as successful if e′f ′(s′)2 ≡ h′ (mod n).
Define X2(A2) as the probability that A2 is successful when n is a random public key from the
distribution D, h is a uniform random element of

{
1, 2, . . . , 2K

}
, (e, f, s) is a random tweaked

square root of h modulo n with distribution α, h′ is a uniform random element of
{
1, 2, . . . , 2K

}
,

and all of these choices are independent. How large can X2(A2) be, as a function of the resources
consumed by A2?

6

This problem is a natural step for the cryptanalyst beyond the generic-blind-inversion problem
in Section 3. Any always-successful algorithm A2 for this problem immediately implies an always-
successful fast algorithm to forge Rabin-Williams signatures, given oracle access to the hash function
H. The forgery algorithm takes h and (e, f, s) from a legitimately signed message m, chooses a
message m′ 6= m, chooses a B-bit string r′, computes h′ = H(r′,m′), computes (e′, f ′, s′) =
A2(pq, h, e, f, s, h′), and outputs (e′, f ′, r′, s′) as a successful forgery of m′.

Similar comments apply to the problems articulated in subsequent sections. Each problem is
a natural problem for the cryptanalyst to consider, providing more flexibility than the previous
problem and potentially making attacks easier.

Tight security proof. Unfortunately for the cryptanalyst, this problem is provably as difficult
as factorization of public keys. Any successful fast algorithm A2 for this problem immediately
implies a successful fast algorithm A1 for the generic-blind-inversion problem, and therefore implies
a successful fast factorization algorithm A0.

The intuition here is that A2 learns nothing from seeing h, e, f, s. It is well known how to
formalize this intuition: namely, build a simulator that, given n, generates (h, e, f, s) with exactly
the same distribution as a signer who first generates h and then uses the factorization of n to
generate (e, f, s).

There are three different constructions of the simulator, and therefore three different construc-
tions of A1, one for each of the three choices of α. Here is a construction of A1 for the simplest
choice, α = unstructured:

1. Generate a uniform random vector (e, f, s) ∈ {−1, 1} × {1, 2} × {0, . . . , n− 1}.
2. Compute h = efs2 mod n.
3. Start over if h /∈

{
1, 2, . . . , 2K

}
.

4. Print A2(n, h, e, f, s, h′).

Here is a construction of A1 for α ∈ {principal, |principal|}:

1. Generate a uniform random vector (e′, f ′, x) ∈ {−1, 1} × {1, 2} × {0, . . . , n− 1}.
2. Compute g = gcd{x, n}.
3. If g = n or g mod 8 = 7, set e = 1; otherwise set e = e′.
4. If g = n or g mod 8 = 3, set f = 1; otherwise set f = f ′.
5. Compute s = x2 mod n.
6. Compute h = efs2 mod n.
7. Start over if h /∈

{
1, 2, . . . , 2K

}
.

8. Print A2(n, h, e, f, s, h′) if α = principal, else A2(n, h, e, f,min{s, n− s}, h′).

The following theorem states that a large success chance X2(A2) implies a large factorization chance
X1(A1). The time of A1 is practically identical to the time of A2: the only difference is a few easy
operations modulo n to generate h′, repeated only n/2K < 2 times on average.

Theorem 4.1. X1(A1) = X2(A2).

7

The reader may have noticed that the constructions of A1, in the principal and |principal| cases,
go to some extra work to handle extremely rare events such as g = n. The reward for this work is
a particularly clean theorem. The simulators produce exactly the right output distribution, rather
than producing almost exactly the right output distribution and forcing the user to worry about
the difference.

Proof. Consider A1(n, h′), where n is a random public key with distribution D, h′ is a uniform
random element of

{
1, 2, . . . , 2K

}
, and n, h′ are independent.

Unstructured: There are exactly four choices of (e, f, s) for each possible h; so the distribution
of h is uniform, and (e, f, s) is a uniform random tweaked square root of h. Thus e′f ′(s′)2 ≡ h′

with probability exactly X1(A1).

Principal: If e = 1 then h ≡ efs2 = fs2 is a square modulo q since 2 is a square modulo q. If
e = −1 then h ≡ efs2 = −fs2, which I claim is a non-square modulo q; otherwise q divides s, so
q divides x, so g = gcd{x, n} ∈ {n, q}, so g = n or g mod 8 = 7, so e = 1, contradiction. Similarly,
if f = 1 then eh ≡ s2 is a square modulo p, and if f = −1 then eh ≡ −s2, which I claim is a
non-square modulo p; otherwise p divides s, so p divides x, so g = gcd{x, n} ∈ {n, p}, so g = n
or g mod 8 = 3, so f = 1, contradiction. Furthermore, by construction s is a square modulo n.
Therefore (e, f, s) is the principal tweaked square root of h. The only remaining task is to show
that the distribution of h is uniform.

Which choices of (e′, f ′, x) lead to h? Write (e, f, s) for the principal tweaked square root of
h. If gcd{h, n} = 1 then gcd{s, n} = 1 so g = gcd{x, n} = 1; thus e′ = e, f ′ = f , and x is one of
the four square roots of s modulo n. If gcd{h, n} = p then gcd{s, n} = p so g = gcd{x, n} = p;
thus e′ = e, f ′ ∈ {1, 2}, and x is one of the two square roots of s modulo n. If gcd{h, n} = q then
gcd{s, n} = q so g = gcd{x, n} = q; thus e′ ∈ {−1, 1}, f ′ = f , and x is one of the two square
roots of s modulo n. If gcd{h, n} = n then gcd{s, n} = n so g = gcd{x, n} = n; thus e′ ∈ {−1, 1},
f ∈ {1, 2}, and x = 0. To summarize, each integer h ∈ {0, 1, . . . , n− 1} is produced by at most
four choices of (e′, f ′, x). There are n possibilities for h and 4n possibilities for (e′, f ′, x), so each
integer h ∈ {0, 1, . . . , n− 1} is produced by exactly four choices of (e′, f ′, x).

|Principal|: As above h is uniform, and (e, f, s) is the principal tweaked square root of h, so
(e, f,min{s, n− s}) is the |principal| tweaked square root of h.

5 Generic selective inversion using many signatures

Suppose we’re given a public key pq, integers h1, h2, . . . , hQ, h′ ∈
{
1, 2, . . . , 2K

}
, and a tweaked

square root of each hi modulo pq. How quickly can we compute a tweaked square root of h′ modulo
pq? One approach is to factor pq; are there better approaches?

More formally: Fix K and D. Fix Q ≥ 0. Fix α ∈ {unstructured,principal, |principal|}.
Consider any algorithm A3 that, given an integer n with 2K < n < 2K+1, a vector (hi, ei, fi, si) ∈{
1, 2, . . . , 2K

}
× {−1, 1} × {1, 2} × {0, 1, . . . , n− 1} for each i ∈ {1, 2, . . . , Q}, and an integer h′ ∈{

1, 2, . . . , 2K
}
, computes a vector (e′, f ′, s′) ∈ {−1, 1} × {1, 2} × {0, 1, . . . , n− 1}. Define A3 as

successful if e′f ′(s′)2 ≡ h′ (mod n). Define X3(A3) as the probability that A3 is successful
when n is a random public key from the distribution D, each hi is a uniform random element of{
1, 2, . . . , 2K

}
, (ei, fi, si) is a random tweaked square root of hi modulo n with distribution α, h′ is

8

a uniform random element of
{
1, 2, . . . , 2K

}
, and all of these choices are independent. How large

can X3(A3) be, as a function of the resources consumed by A3?
The answer is that this problem is provably as difficult as factorization of public keys. The

construction of A1 from A3 is an easy generalization of last section’s construction of A1 from A2.
For example, here is A1 for α = unstructured:

1. For each i ∈ {1, 2, . . . , Q}:
2. Generate a uniform random vector (ei, fi, si) in the usual range.
3. Compute hi = eifis

2
i mod n.

4. Go back to step 2 if hi /∈
{
1, 2, . . . , 2K

}
.

5. Print A3(n, h1, e1, f1, s1, . . . , hQ, eQ, fQ, sQ, h′).

The remaining constructions work similarly.

Theorem 5.1. X1(A1) = X3(A3).

Proof. Exactly as in Section 4.

6 Generic existential inversion: the unstructured B = 0 case

Suppose we’re given a public key pq and integers h1, . . . , hQ+1 ∈
{
1, 2, . . . , 2K

}
. We’re allowed to

(adaptively) select Q distinct i’s and see tweaked square roots of the corresponding hi’s. Our goal
is to compute a tweaked square root of the other hi. How quickly can we do this?

The big difference between this problem and the generic-selective-inversion problem in Section
5 is that we’re now allowed to decide which of the hi’s will be easiest to attack. Does this make
the problem easier? Perhaps we gain from the extra flexibility.

This section uses a new idea to show that there is no gain in the case of unstructured signatures.
The reader might guess, after previous sections, that the proof constructs an algorithm for generic
selective inversion (A2, A3) or generic blind inversion (A1); in fact, the proof jumps directly to
A0, the factorization problem. I don’t know any way to get from a generic-existential-inversion
algorithm A4 to A1, in the case B = 0, except via A0.

The new idea. Let’s review the standard proof that the gain is at most a factor Q + 1. Given
a generic-existential-inversion algorithm A4, build a generic-selective-inversion algorithm A3 that
handles inputs (n, h1, e1, f1, s1, . . . , hQ, eQ, fQ, sQ, h′) as follows:

• Choose a uniform random integer π ∈ {1, . . . , Q + 1}.
• Insert h′ at position π in the list h1, . . . , hQ, and relabel the resulting list as h1, . . . , hQ+1.

Also relabel ei, fi, si accordingly.
• Run A4(n, h1, . . . , hQ+1), using ei, fi, si to answer query i from A4; abort if A4 selects i = π

for a query rather than for output.

The choice of π is independent of the operation of A4 before an abort occurs, so A3 aborts with
probability Q/(Q + 1). If A3 does not abort then it runs A4 with the correct input distribution.

The random choice of π is a guess for the index i that A4 will use for its output. When a cor-
rect guess does occur, it makes the generic-existential-inversion problem equivalent to the generic-
selective-inversion problem, eliminating the extra flexibility of the generic-existential-inversion prob-
lem.

9

Now let’s review how this algorithm A3 is converted into a factorization algorithm. First A3

is converted into a generic-blind-forgery algorithm A1: the input hi is replaced by an output from
the simulator. Then A1 is converted into a factorization algorithm A0: the input h′ is replaced by
a random efs2, so that a tweaked square root of h′ reveals a factorization of n.

Wait a minute! What’s happening to hi is almost the same as what’s happening to h′. In fact,
with the unstructured simulator, what’s happening to hi is exactly the same as what’s happening
to h′! Why did we bother to distinguish hi from h′ in the first place? The new idea is to treat all of
h1, . . . , hQ+1 the same way, directly producing a factorization algorithm; there is no need to guess
which one is h′, and there is no need for a detour through A3 and A1.

Here is the new, direct, almost ludicrously simple construction of a factorization algorithm A0

from a generic-existential-inversion algorithm A4:

1. For each i ∈ {1, 2, . . . , Q + 1}:
2. Generate a uniform random vector (ei, fi, si) in the usual range.
3. Compute hi = eifis

2
i mod n.

4. Go back to step 2 if hi /∈
{
1, 2, . . . , 2K

}
.

5. Compute (j, e′, f ′, s′) = A4(n, h1, . . . , hQ+1), using (ei, fi, si) to answer query i from A4. There
is no possibility of aborting here; we have an answer for every i!

6. If gcd{n, s′ − sj} /∈ {1, n}, print it and stop.
7. If gcd{n, s′} /∈ {1, n}, print it and stop.

The time for A0 is the time for A4, on average the time for (Q + 1)n/2K < 2(Q + 1) generations of
hi, and the time for the final gcd computations.

Theorem 6.1. X0(A0) ≥ (1/2)X4(A4).

Proof. Let n be a random public key with distribution D. Inside A0(n), the quantities h1, . . . , hQ+1

are independent uniform random elements of
{
1, 2, . . . , 2K

}
. Thus the event e′f ′(s′)2 ≡ hj (mod n)

occurs with probability exactly X4(A4). Given this event, there is conditional probability at least
1/2 that one of s′, s′− sj has a nontrivial factor in common with n, exactly as in Theorem 3.1.

7 Generic existential inversion: the B ≥ 1 case

Fix B ≥ 0. Suppose we’re given a public key pq and random access to integers h1(0), . . . , h1(2B −
1), h2(0), . . . , h2(2B − 1), . . . , hQ+1(0), . . . , hQ+1(2B − 1). We’re allowed to (adaptively) select Q
distinct i’s; for each selected i we see a uniform random ri ∈

{
0, 1, . . . , 2B − 1

}
and a tweaked

square root of hi(ri). Our goal is to compute some r and some tweaked square root of hi(r) for the
remaining i. How quickly can we do this?

As usual, the answer depends on α ∈ {unstructured,principal, |principal|}, the signature-choice
parameter. The case α = unstructured was discussed in Section 6. The tight security proof for
unstructured signatures for B = 0 generalizes immediately to a tight security proof for unstructured
signatures for all B. The initial computations of hi(r) might sound overly time-consuming when
B is large, because there are 2B(Q + 1) pairs (i, r); but these computations can be deferred until
they are actually needed.

What about α ∈ {principal, |principal|}? There is a tight security proof for all B ≥ 1, com-
ing from a different way to build a factorization algorithm out of a generic-existential-inversion
algorithm A5. The construction, given n,

10

• chooses a uniform random ri for each i ∈ {1, 2, . . . , Q + 1};
• uses the α simulator to build ei(ri), fi(ri), si(ri), hi(ri);
• uses the unstructured simulator to build ei(r), fi(r), si(r), hi(r) for each r 6= ri;
• runs A5, answering query i with ri, ei(ri), fi(ri), si(ri);
• aborts if the output j, r′, e′, f ′, s′ has r′ = rj ; and
• tries gcd{s′, n} and gcd{s′ − sj(r′), n} as factors of n.

This algorithm aborts with probability exactly 1/2B: rj is independent of everything seen by A5

and therefore independent of r′. If the algorithm does not abort then it has conditional probability
at least 1/2 of factoring n, exactly as in Theorem 3.1.

Readers should recognize the central idea of this construction—choosing a random ri, building
hi(ri) according to the target simulator, and building hi(r) for r 6= ri to solve the underlying hard
problem—as exactly the Katz-Wang idea used to prove [12, Section 4.1, Theorem 2]. Readers
should also recognize, however, that [12, Section 4.1, Theorem 2] is stated at the level of generality
of “claw-free permutation pairs” (following [11] and a suggestion of Dodis and Reyzin), which might
sound quite general but are incapable of handling Rabin-Williams signatures. Several exponent-2
“claw-free permutation pairs” have been stated in the literature, but all of them have considerably
slower signature verification than the Rabin-Williams system. One can easily recognize claws in
the Rabin-Williams context, but they are claws between a 4-to-1 map and a 1-to-1 map, with two
different algorithms for generating the inputs to the two maps. I’m considering adding an appendix
to this paper to state a “claw-free map pairs” generalization of the Katz-Wang theorem; if you’re
interested in this, please let me know.

For B = 0, the above construction accomplishes nothing: it never uses the unstructured simu-
lator and always aborts. The construction needs at least one bit of hash-input randomization to
separate the target simulator from the unstructured simulator. Eliminating the abort does not pro-
duce a security proof: if sj was produced by (e.g.) the principal simulator then it is not a uniform
random square root of its square and there is no reason to believe that s′− sj(r′) will have a factor
in common with n.

For α = unstructured, eliminating the abort does produce a security proof, and further elimi-
nating the selection of ri produces exactly the new construction of Section 6. This is another way to
see both the limitations and the power of the new idea in Section 6: the construction refuses to dis-
tinguish the α simulator from the unstructured simulator, and therefore requires α = unstructured,
but the construction also skips the selection of ri, and therefore can handle B = 0.

8 Generic attacks

Let’s review three typical examples of attacks on the Rabin-Williams system:

• NFS factorization: The attacker uses the number-field sieve to factor pq into (p, q). The
attacker then chooses a message m′, chooses a B-bit string r′, computes h′ = H(r′,m′) using
an oracle for H, uses (p, q) to compute a tweaked square root (e′, f ′, s′) of h′, and forges the
signature (e′, f ′, r′, s′) of m′. This attack always succeeds, for all functions H. Fortunately,
this attack is very slow when K is large.

11

• Signing leaks: The attacker chooses a message m and asks the signer for two signatures of m.
The signer responds with (e1, f1, r1, s1) and (e2, f2, r2, s2). The attacker computes gcd{s2, n}
and gcd{s1 − s2, n}, hoping to factor n and proceed as in the previous attack. In the case of
variable unstructured B = 0 signatures, this attack succeeds with probability ≥ 1/2, for all
functions H: notice that r1 = r2 since B = 0, and therefore that e1f1s

2
1 ≡ e2f2s

2
2; continue as

in Theorem 3.1. Fortunately, this attack does not work for fixed signatures, or for principal
or |principal| signatures, or for signatures with large B.

• MD5 collisions: The attacker finds distinct messages m,m′ such that MD5(m) = MD5(m′).
The attacker asks the signer for a signature of m and then forges the same signature of m′.
This attack works if B = 0 and H is determined by MD5, a surprisingly common situation
in practice. Fortunately, one can easily change H to stop the attack.

The first two attacks work for all functions H. The third does not. Let’s ignore the third attack
for the moment.

Consider the class of “H-generic attacks” that work for all functions H—or that at least work
for a large fraction of all functions H. How powerful are H-generic attacks against the Rabin-
Williams system? Can they be better than factorization? Given an attack A6 that uses H as an
oracle, define X6(A6) as the success probability of A6 against a D-distributed random public key
n and a uniformly distributed random function H. Can X6(A6) be much larger than the other
probabilities considered in this paper, as a function of the resources consumed by A6?

The signing-leak example shows that these attacks can be quite successful: variable unstructured
B = 0 signatures are broken by an extremely fast generic attack. But the picture is different
for fixed signatures. For fixed signatures, generic attacks that see hash values of Q + 1 distinct
messages are as difficult as Q-query generic existential inversion. A generic-attack algorithm A6

is straightforwardly converted into a generic-existential-inversion algorithm A5 as follows: A5 runs
A6, keeps track of the distinct messages m1,m2, . . . ,mQ+1 that are hashed, answers a hash query
for (r, mi) as hi(r), and answers a signature query for mi by feeding i to its tweaked-square-root
oracle. The distribution of signatures in this algorithm is identical to the distribution of fixed
signatures produced by a legitimate signer, so A5’s chance of success is the same as A6’s chance of
success against fixed signatures.

In particular, generic attacks on fixed signatures are as difficult as factorization whenever generic
existential inversion is as difficult as factorization. The bottom line is that there cannot be any
embarrassing generic attacks—attacks better than factorization—against fixed unstructured B ≥ 0
Rabin-Williams signatures, or against fixed principal B ≥ 1 Rabin-Williams signatures, or against
fixed |principal| B ≥ 1 Rabin-Williams signatures.

Of course, there are severe limits on the comfort that a user can draw from these tight security
proofs. Maybe the attacker doesn’t need anything better than factorization: perhaps an implemen-
tor chose K = 512; perhaps the attacker knows a fast factorization algorithm; perhaps the attacker
owns a quantum computer. Even if pq really is difficult to factor, there is no guarantee of security
against non-generic attacks.

Proofs of this type are nevertheless valuable time-savers for cryptographers. The proofs help
focus cryptanalytic effort: cryptanalysts who aren’t interested in factorization are guided by the
knowledge that they’ll have to come up with non-generic attacks. Furthermore, the literature
is littered with examples of systems (usually without security proofs, but occasionally with non-
tight security proofs) subsequently broken by embarrassing generic attacks. Experience shows that

12

proof construction and cryptanalysis are linked—a link I have tried to emphasize in my expository
structure!—and that authors who attempt to build a proof for each system frequently end up
discovering embarrassing attacks that would otherwise have been missed. Weeding out these bad
systems saves far more time for the community than could possibly be saved by skipping security
proofs.

I would not advocate a general rule of ignoring systems without tight security proofs. Sometimes
insisting on tight security proofs is in conflict with choosing the most efficient system. In particular,
Schnorr’s short-signature system does not have a tight security proof but remains unbroken and
is roughly twice as efficient as the closest competitors with tight security proofs—see, e.g., [12,
Section 3]. On the other hand, the conflict for systems of RSA/Rabin type seems to have been
mostly, if not entirely, eliminated by the proofs in this paper.

References

[1] Victoria Ashby (editor), First ACM conference on computer and communications security,
Association for Computing Machinery, New York, 1993. See [3].

[2] Rana Barua, Tanja Lange (editors), Progress in Cryptology—INDOCRYPT 2006, 7th Interna-
tional Conference on Cryptology in India, Kolkata, India, December 11–13, 2006, Proceedings,
Lecture Notes in Computer Science, 4329, Springer, 2006. ISBN 3–540–49767–6. See [19].

[3] Mihir Bellare, Phillip Rogaway, Random oracles are practical: a paradigm for designing effi-
cient protocols, in [1] (1993), 62–73. Citations in this document: §1.

[4] Mihir Bellare, Phillip Rogaway, The exact security of digital signatures: how to sign with RSA
and Rabin, in [20] (1996), 399–416; see also newer version [5].

[5] Mihir Bellare, Phillip Rogaway, The exact security of digital signatures: how to sign with
RSA and Rabin (1996); see also older version [4]. URL: http://www-cse.ucsd.edu/~mihir/
papers/exactsigs.html. Citations in this document: §A, §A, §A, §A, §A.

[6] Mihir Bellare (editor), Advances in cryptology—CRYPTO 2000: proceedings of the 20th Annual
International Cryptology Conference held in Santa Barbara, CA, August 20–24, 2000, Lecture
Notes in Computer Science, 1880, Springer-Verlag, Berlin, 2000. ISBN 3–540–67907–3. MR
2002c:94002. See [7].

[7] Jean-Sébastien Coron, On the exact security of Full Domain Hash, in [6] (2000),
229–235. MR 2002e:94109. URL: http://www.eleves.ens.fr/home/coron/publications/
publications.html. Citations in this document: §1, §A, §A.

[8] Jean-Sébastien Coron, Security proof for partial-domain hash signature schemes, in [25] (2002),
613–626. URL: http://www.gemplus.com/smart/r d/publications/. Citations in this doc-
ument: §A.

[9] Jean-Sébastien Coron, Optimal security proofs for PSS and other signature schemes,
in [13] (2002), 272–287. URL: http://www.eleves.ens.fr/home/coron/publications/
publications.html. Citations in this document: §1, §A, §A.

13

[10] Martin Gardner, A new kind of cipher that would take millions of years to break, Scientific
American (1977), 120–124. Citations in this document: §A, §A.

[11] Shafi Goldwasser, Silvio Micali, Ronald L. Rivest, A digital signature scheme secure against
adaptive chosen-message attacks, SIAM Journal on Computing 17 (1988), 281–308. ISSN 0097–
5397. MR 89e:94009. URL: http://theory.lcs.mit.edu/~rivest/publications.html. Ci-
tations in this document: §7, §A.

[12] Jonathan Katz, Nan Wang, Efficiency improvements for signature schemes with tight secu-
rity reductions (2003). URL: http://www.cs.umd.edu/~jkatz/papers.html. Citations in this
document: §1, §1, §2, §2, §2, §7, §7, §8, §A, §A, §A, §A.

[13] Lars Knudsen (editor), Advances in cryptology—EUROCRYPT 2002: proceedings of the 21st
International Annual Conference on the Theory and Applications of Cryptographic Techniques
held in Amsterdam, April 28–May 2, 2002, Lecture Notes in Computer Science, 2332, Springer-
Verlag, Berlin, 2002. ISBN 3–540–43553–0. See [9].

[14] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms, 1st
edition, 1st printing, Addison-Wesley, Reading, 1969; see also newer version [15]. MR 44:3531.

[15] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms,
1st edition, 2nd printing, Addison-Wesley, Reading, 1971; see also older version [14]; see also
newer version [16]. MR 44:3531.

[16] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms,
2nd edition, Addison-Wesley, Reading, 1981; see also older version [15]; see also newer version
[17]. ISBN 0–201–03822–6. MR 83i:68003. Citations in this document: §A.

[17] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms,
3rd edition, Addison-Wesley, Reading, 1997; see also older version [16]. ISBN 0–201–89684–2.
Citations in this document: §A.

[18] Neal Koblitz, Alfred J. Menezes, Another look at “provable security”, revised 4 May 2005
(2005). URL: http://eprint.iacr.org/2004/152/. Citations in this document: §1, §1.

[19] Neal Koblitz, Alfred J. Menezes, Another look at “provable security”. II, in [2] (2006). URL:
http://eprint.iacr.org/2006/229. Citations in this document: §1.

[20] Ueli M. Maurer (editor), Advances in cryptology—EUROCRYPT ’96: Proceedings of the Fif-
teenth International Conference on the Theory and Application of Cryptographic Techniques
held in Saragossa, May 12–16, 1996, Lecture Notes in Computer Science, 1070, Springer-
Verlag, Berlin, 1996. ISBN 3–540–61186–X. MR 97g:94002. See [4].

[21] Michael O. Rabin, Digitalized signatures and public-key functions as intractable as factor-
ization, Technical Report 212, MIT Laboratory for Computer Science, 1979. URL: http://
ncstrl.mit.edu/Dienst/UI/2.0/Describe/ncstrl.mit lcs/MIT/LCS/TR-212. Citations in
this document: §A, §A, §A, §A, §A.

14

[22] Ronald L. Rivest, Adi Shamir, Leonard M. Adleman, A method for obtaining digital signatures
and public-key cryptosystems, Communications of the ACM 21 (1978), 120–126. ISSN 0001–
0782. URL: http://cr.yp.to/bib/entries.html#1978/rivest. Citations in this document:
§A, §A, §A, §A, §A.

[23] Douglas R. Stinson, Cryptography: theory and practice, CRC Press, Boca Raton, Florida, 1995.
ISBN 0–8493–8521–0. MR 96k:94015. Citations in this document: §A.

[24] Hugh C. Williams, A modification of the RSA public-key encryption procedure, IEEE Transac-
tions on Information Theory 26 (1980), 726–729. ISSN 0018–9448. URL: http://cr.yp.to/
bib/entries.html#1980/williams. Citations in this document: §A.

[25] Moti Yung (editor), Advances in cryptology—CRYPTO 2002: 22nd annual international cryp-
tology conference, Santa Barbara, California, USA, August 2002, proceedings, Lecture Notes
in Computer Science, 2442, Springer-Verlag, Berlin, 2002. ISBN 3–540–44050–X. See [8].

A Appendix: the Rabin-Williams public-key signature system

This appendix surveys, and traces the history of, several useful features of the Rabin-Williams
public-key signature system. These features motivate practical use of the Rabin-Williams signature
system. These features also motivate theoretical study of the security of the system.

The first few features are widely understood, and are discussed here purely to set the his-
tory straight. Some features later in the list are much less widely known; readers who think of
Rabin-Williams as a minor variant of RSA are specifically encouraged to read the discussions of
compression and expansion.

Warning: The Rabin-Williams “signature system” is actually a family of signature systems
parametrized by key size, hash function, randomizer length, signature choice, etc. Some of the
features depend on particular parameter choices. These dependencies are stated explicitly.

Readers are expected to be familiar with the general idea of modular-root signature systems:
a signature is an eth root of something modulo a public key n whose prime factorization is known
to the signer. This idea was introduced by Rivest, Shamir, and Adleman in [10] and [22]. This
appendix can be viewed as a comparison chart surveying the features of various modular-root
signature systems.

Hashing. In the Rabin-Williams system, messages are scrambled by a public hash function H. A
signature of m is an eth root of H(m), not an eth root of m. This is essential for security.

History: The signature system proposed by Rivest, Shamir, and Adleman did not hash messages;
it was trivially breakable. Specifically, [22, page 122, first display] defines a signature S of a message
M under a public key B by “S = DB(M),” never mentioning hashing; [22, page 122, third display]
defines D as a power of its input; one trivial attack is to forge the message 1 with signature 1.
Rabin’s system in [21] did hash messages; it remains unbroken today. The apparent security benefit
of hashing was mentioned in [21, page 10, last sentence]: “Actually, this [attack idea] does not seem
a serious threat because of the hashing effected by C(M).”

Reader beware: Many authors unjustifiably refer to an oversimplified, trivially breakable, non-
hashing system as “Rabin’s system”; consider, for example, the claim by Goldwasser, Micali, and
Rivest in [11, Section 3] that “Rabin’s signature scheme is totally breakable if the enemy uses a

15

directed chosen-message attack.” Furthermore, many authors—see, e.g., [23, Section 7.1]—describe
hashing as merely a way to handle long messages, rather than as an essential component of the
system no matter what the message length might be. Modern treatments of “RSA” usually include
hashing but usually fail to give Rabin any credit for the idea.

Small exponent. In the Rabin-Williams system, the exponent of a signature s is a small fixed
integer, rather than a large integer chosen randomly by the signer. This makes verification much
faster. It also saves space in public keys.

History: The system proposed by Rivest, Shamir, and Adleman used large exponents. See [22,
page 123, fifth line]: “You then pick the integer d to be a large, random integer which is relatively
prime to (p − 1) ? (q − 1) . . . The integer e is . . . the ‘multiplicative inverse’ of d.” Rabin in [21,
page 5] pointed out the huge speed advantage of small exponents.

Most modern descriptions of “RSA,” and the vast majority of “RSA” implementations, include
small fixed exponents, typically 3 or 17 or 65537. Usually the descriptions fail to give Rabin any
credit for the idea. For example, Knuth in [16, pages 386–389] (and again in [17, pages 403–
406]) explained an exponent-3 system and unjustifiably called it “RSA.” Many treatments actively
miscredit small exponents to [10] and [22]. For example, here’s a quote from a well-known algorithms
book by Cormen, Leiserson, Rivest, and Stein: “The RSA cryptosystem . . . Select a small odd
integer e . . . The RSA cryptosystem was proposed in 1977 by Rivest, Shamir, and Adleman.”
(Emphasis added.)

Large exponents have inexplicably attracted somewhat more attention than small fixed expo-
nents as the topic of security proofs, even though small exponents are just as easy for theoreticians
to handle and much more interesting for practitioners. Bellare and Rogaway in [5] analyzed a tradi-
tional system that they called “FDH,” and a system of their own design called “PSS,” in both cases
using large exponents. See [5, Section 2.1]; see also Coron’s [7, Section 2.3] and [9, Definition 4].
Katz and Wang were exponent-agnostic in [12]: they stated their results for more general “claw-free
permutation pairs.” The “PRab” claim in [5, Theorem 6.1] used a small exponent, but the proof
was merely outlined; [8, Theorem 4] used a small exponent, but no proof was given.

“Strong RSA” proofs require large exponents, but those systems do not provide fast verification
and do not seem to have attracted any practical interest.

Exponent 2. The Rabin-Williams system uses exponent 2 rather than exponent 3. This speeds
up verification, and improves the compression and expansion features discussed below. The signer’s
secret primes p and q are chosen from 3 + 4Z to simplify signing.

I’ve noticed that some programmers fear exponent 2: there appears to be a widespread belief
that fast exponent-2 signing requires Euclid-type computations of Jacobi symbols. For example, the
“IEEE Standard Specifications for Public-Key Cryptography” claim that, compared to exponent
2, exponent 3 has a “code-size and speed advantage because there is no need to compute the
Jacobi symbol.” However, the simple fact is that Euclid-type computations of Jacobi symbols
are not required. See below for a state-of-the-art algorithm to compute principal Rabin-Williams
signatures with the same “code-size and speed advantage”; the information that would be extracted
from a Euclid-type Jacobi-symbol computation is trivially extracted from a few multiplications.

Exponent 2 does require some extra effort in security proofs, because a uniform distribution
of s mod pq does not correspond to a uniform distribution of s2 mod pq. The proof strategy here
depends on whether signers choose uniform random square roots, or square roots distinguished by
being squares, or square roots distinguished by being absolute values of squares.

16

History: Exponent 2 was introduced by Rabin in [21]. Most writers fail to give credit to Rabin
for hashing and small exponents but do give credit to Rabin for exponent 2. I see no reason to use
any other exponent; perhaps 2 will eventually become the most popular exponent, and, as a side
effect, Rabin will receive more of the recognition that he deserves.

Message randomization: r. The Rabin-Williams system actually computes a square root of
H(r, m), not a square root of H(m). Here r is a string selected randomly by the signer. The
number of bits of r is a system parameter B. This randomization was introduced in [21]: Rabin
suggested B = 60, with a random choice of r.

One can see, in the literature, five different strategies to choose the parameter B:

• Choose B = 0. This means that r is empty and that the H input is not actually randomized.
The main argument for this choice is that any larger B means extra effort to generate r, extra
effort to include r in the H input, and extra effort to transmit r along with s.

• Choose B = 1. The main argument for this choice is that a nonzero B is required for the
type of tight security proof introduced by Katz and Wang in [12]. The conventional wisdom
is that B = 0 does not allow a tight security proof; see the “FDH” analyses in [5] and [7]. On
the other hand, this paper challenges the conventional wisdom; this paper’s new proof idea
shows tight security for “fixed unstructured” signatures even in the case B = 0.
• Choose B = 8. As a historical matter, Rabin’s system was able to produce signatures for

only about 1/4 of all choices of r (since only a small fraction of all integers mod pq are
squares), and Rabin suggested trying again if the first r failed; having 256 choices of r means
that all choices will fail with probability about 2−106. However, the Rabin-Williams system
eliminates these failures, as discussed below. The only remaining argument for B = 8 is that
it marginally improves the tightness of the Katz-Wang approach.

• Choose B large enough to prevent the attacker from guessing r in advance; for example,
B = 128. This choice allows a different type of tight security proof that is not considered in
this paper and that seems to have been rendered obsolete by the idea of “fixed” signatures.

• Choose B large enough to prevent all collisions in r: for example, B = 256. This choice allows
an older type of tight security proof that seems to have been obsolete for many years.

My impression is that, in practice, the choice B = 0 is by far the most popular choice, although I
haven’t done a scientific study.

One might wonder, from the above description, why large choices of B would attract any interest,
and in particular why Rabin chose B = 60 rather than B = 8. The answer is that large choices
of B are often conjectured to make non-generic attacks, attacks that pay attention to the hash
function H, more difficult. For example, MD5-based signatures have been broken for B = 0 but
not for B = 128. Does a larger B allow us to choose a smaller, faster hash function H? Could this
compensate for the direct costs of a longer r? Resolving these questions means understanding the
cost-security tradeoff for hash functions, obviously not an easy task. For the moment I recommend
that theoreticians remain agnostic and continue to investigate all possible B’s.

Reader beware: Many authors have failed to give Rabin proper credit for his randomized
signatures (r, s). For example, Goldwasser and Bellare have posted lecture notes (1) claiming that
Rabin introduced a signature system with neither H nor r; (2) assigning credit to a 1983 paper
of Goldwasser, Micali, and Yao for “pioneering” randomized signatures; and then (3) describing

17

a “PSS0” system—randomized (r, s)—as if it were new. Similar comments apply to the “PFDH”
system in [9] and [12].

The tweaks e and f . Recall that Rabin’s system needed to try several values of r, on average
about 4 values, before finding a square H(r, m) modulo pq. The Rabin-Williams system eliminates
this problem by using tweaked square roots in place of square roots. A tweaked square root of h
modulo pq is a vector (e, f, s) such that e ∈ {−1, 1}, f ∈ {1, 2}, and efs2 − h ∈ pqZ; the signer’s
secret primes p and q are chosen from 3 + 8Z and 7 + 8Z respectively. Each h has exactly four
tweaked square roots, so each choice of r works, speeding up signatures.

Here is a straightforward high-speed fault-tolerant algorithm to compute the “principal” tweaked
square root (e, f, s) of h modulo pq:

1. Compute U ← h(q+1)/8 mod q.
2. If U4 − h mod q = 0, set e = 1; otherwise set e = −1.
3. Compute V ← (eh)(p−3)/8 mod p.
4. If (V 4(eh)2 − eh) mod p = 0, set f = 1; otherwise set f = 2.
5. Compute W ← f (3q−5)/8U mod q. (The power 2(3q−5)/8 mod q can be precomputed.)
6. Compute X ← f (9p−11)/8V 3eh mod p. (The power 2(9p−11)/8 mod p can be precomputed.)
7. Compute Y ←W + q(qp−2(X −W) mod p). (The power qp−2 mod p can be precomputed.)
8. Compute s← Y 2 mod pq.
9. At this point efs2 mod pq = h; check this explicitly and restart in case of a fault.

The bottlenecks in this algorithm are one exponentiation modulo p in the first step and one expo-
nentiation modulo q in the third step.

History: The tweaks e and f were introduced by Williams in [24]. I posted an example of a
no-explicit-Jacobi-symbol signing algorithm in October 2000.

Message recovery. Hash functions H can be, and often are, designed to allow “message recovery.”
This means that a fixed-length prefix of (r, m) can be computed from H(r, m). See [5, Section 5]
and [12, Section 4.2] for generically safe methods to construct H from another hash function.

The advantage of “message recovery” is that it allows compression of signed messages: one
simply omits the fixed-length prefix from (r, m, s). The verifier sees s, computes the alleged H(r, m)
by computing s2 mod pq, recovers the prefix of (r, m), and then checks that H(r, m) matches.

Message recovery is often viewed as an argument for choosing a large B, such as B = 128.
The argument is as follows: “Message recovery eliminates the space required by r. The space
required by r was the only disadvantage of a large B. Maybe a large B stops attacks.” There are
several problems with this argument. First, bandwidth is only part of the picture: for example, a
larger B means a larger cost to generate r. Second, signed messages are usually uncompressed; one
important reason is that uncompressed signatures (and expanded signatures, as discussed below)
allow faster verification. Third, except when (r, m) is extremely short, the alleged savings is a
myth. Adding 128 bits to r means pushing 128 bits of m out of the compressed prefix of (r, m),
and therefore expanding signed messages by 128 bits.

Signature compression. Another way to save space—more effective than message recovery when
(r, m) is short—is to transmit all of (r, m) but transmit only the top half of the bits of s. The
receiver can use Coppersmith’s algorithm to find a square root of H(r, m) modulo pq given the top

18

half of the bits of the square root. Bleichenbacher proposed a better approach, allowing the same
amount of compression with much faster decompression and verification: s is transmitted as the
largest under-half-size denominator in the continued fraction for fs/pq.

A similar compression method applies to exponent-3 “RSA” but saves only 1/3 of the signature
bits rather than 1/2.

Key compression. Yet another way to save space is to compress public keys pq. It is widely known
that RSA/Rabin keys can be compressed to 1/2 size. It is not so widely known that Coppersmith
found a method to compress keys to 1/3 size. It is also not widely known that this compression—
done properly!—can be proven to preserve security, not just against generic attacks but against
all attacks. The critical point is that generating one key p1q1 in the conventional way, and then
generating another key pq that shares the top 1/2 (or 2/3) of the bits of p1q1, produces exactly the
same distribution of pq that would have been produced by generating pq in the conventional way.

Key compression has the same benefits for higher-exponent “RSA,” so it is orthogonal to a com-
parison of Rabin-Williams with “RSA.” It is, however, relevant to a a comparison of Rabin-Williams
with signature systems of ElGamal/Schnorr/ECDSA type. For example, a 1024-bit Rabin-Williams
signature can be compressed to a 512-bit signature, and a 1024-bit key can be compressed to a
352-bit key. A typical ECDSA variant at the same conjectured security level has a smaller signature
(320 bits) and a smaller key (160 bits) but has much slower verification; for many applications, the
slowdown in verification outweighs the 192-bit savings in signature length.

Bleichenbacher pointed out a way to further compress keys pq—all the way down to 0 bits!—
inside vectors (pq, e, f, s, r,m). The idea is to recover pq as a divisor of efs2 − H(r, m). The
standard compression method (or, as an alternative, Coppersmith’s compression method) already
reveals the top 1/2 (or 2/3) of the bits of the divisor, and the remaining bits are easily (or very
easily) found by lattice-basis-reduction techniques.

Signature expansion. The Rabin-Williams system offers another attractive option for applica-
tions where verification speed is much more important than signature length: signatures can be
expanded for faster verification. Specifically, the signature (e, f, r, s) satisfying efs2 ≡ H(r, m)
(mod pq) can be converted into an expanded signature (e, f, r, s, t) satisfying efs2−pqt = H(r, m).
The verifier can efficiently check the latter equation modulo a random 128-bit prime (or several
smaller primes) with negligible chance of error. The verifier can amortize the prime-generation cost
across any number of signatures by keeping the prime secret and reusing it.

A similar idea applies to exponent-3 “RSA” but requires a double-length t, considerably slowing
down verification.

History: I posted this expansion idea to sci.crypt in March 1997.

19

