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PROVING TIGHT SECURITY FOR

STANDARD RABIN-WILLIAMS SIGNATURES

DANIEL J. BERNSTEIN

Abstract. This paper discusses the security of the Rabin-Williams public-
key signature system with a deterministic signing algorithm that computes
“standard signatures.” The paper proves that any generic attack on standard
Rabin-Williams signatures can be mechanically converted into a factorization
algorithm with comparable speed and approximately the same effectiveness.
“Comparable” and “approximately” are explicitly quantified.

1. Introduction

In the Rabin-Williams signature system, (e, f, r, s) is a signature of a message
m under a public key n if e ∈ {1,−1}, f ∈ {1, 2}, r is a B-bit string, and fs2 ≡
eH(0, r, m) (mod n). Here B is a fixed nonnegative integer (for example, 4), and
H is a public function that maps strings to integers in an appropriate range.

This paper proves that any generic attack on the Rabin-Williams system—i.e.,
any signature-forging algorithm that works for all functions H—can be converted
into an algorithm to factor n at comparable speed with probability (2B − 1)/2B+1,
if the signer chooses the “standard signature” of each message. Standard signatures
are defined in Section 3. “Comparable speed” is quantified in Section 5.

Of course, there might be a surprisingly fast factorization algorithm. There
might also be surprisingly fast non-generic attacks on any particular function H.
But the proof nevertheless provides some confidence that there are no silly mistakes
in the design of the system.

Section 3 specifies all relevant details of the signature system. In particular,
it presents a deterministic signing algorithm that produces standard signatures.
Sections 4 and 5 present the proof. As background, Section 2 surveys similar
signature systems, and explains why I’m focusing on this particular system.

Context. Fiat and Shamir in [10], after proposing another public-key signature
system, proved that any generic attack against that system could be converted into
a factorization algorithm with the “same” effectiveness and efficiency—although
their notion of “same” was purely asymptotic and ignored polynomial factors.

Bellare and Rogaway in [3] published similar proofs for public-key encryption
systems, and advocated designing systems to allow such proofs. I tend to avoid
their “secure in the [uniform] random oracle model” terminology; “secure against
generic attacks” is more comprehensible to the uninitiated.
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Proofs of this type were subsequently published for several modular-root (“RSA-
Rabin-type”) signature systems. There are three reasons that I’m not satisfied with
the previous proofs:

• None of those systems are as efficient as the state-of-the-art system analyzed
in this paper, namely the Rabin-Williams signature system with standard
signatures. Section 2 discusses the relevant features of this system.

• Some of the proofs are merely outlined. I do not understand why this is
tolerated, especially after the OAEP fiasco.

• The speed of the conversion is almost never stated (let alone optimized) in
detail. For example, [5, Theorem 6.1] allows an added cost of “[qsig(k) +
qhash(k) + 1] · k0 ·Θ(k2)”; this could be the dominant cost for large q’s, but
the reader has no way to tell without seeing an upper bound on Θ. Bellare
and Rogaway suggest choosing key sizes in light of these theorems, but that
requires quantification of effectiveness and efficiency. The theorems in [5]
do not justify the 1024-bit/3447-bit example in [5, Section 1.4].

My goal in this paper is to produce a detailed, quantified, carefully optimized proof
for the most efficient known signature system.

2. Why this particular system?

This section explains several useful features of the Rabin-Williams signature
system with standard signatures.

This section can also be viewed as a comparison chart surveying the features of
various modular-root signature systems. It is a pleasant surprise that one system—
this system—manages to simultaneously provide all the features; I see no reason
to use any modular-root system that does not provide all the features listed below.
Of course, users are still faced with a difficult choice between modular-root systems
(fast verification) and other systems (short keys and signatures).

Hashing. This system scrambles messages by feeding them to H: the signature of
m is a root of a hash of m rather than a root of m itself. This is crucial for security.

History: The signature system proposed by Rivest, Shamir, and Adleman in [23]
did not hash messages; it was trivially breakable. Rabin’s system in [22] did hash
messages; it remains unbroken today. The apparent security benefit of hashing was
mentioned in [22, page 10, last sentence].

Reader beware: Many authors unjustifiably refer to an oversimplified, trivially
breakable, non-hashing system as “Rabin’s system”; consider, for example, the
claim by Goldwasser, Micali, and Rivest in [12, Section 3] that “Rabin’s signature
scheme is totally breakable if the enemy uses a directed chosen-message attack.”
Furthermore, many authors—see, e.g., [24, Section 7.1]—describe hashing as merely
a way to handle long messages, rather than as an essential component of the system
no matter what the message length might be.

Small exponent. In this system, the exponent of s is a small fixed integer, rather
than a large integer chosen randomly by the signer. This makes verification much

faster. It also saves space in public keys.
History: The RSA system in [23] used large exponents. Rabin in [22, page 5]

pointed out the huge speed advantage of small exponents. Reader beware: Many
authors incorrectly credit the use of small exponents to [23] rather than to [22]. For



PROVING TIGHT SECURITY FOR STANDARD RABIN-WILLIAMS SIGNATURES 3

example, Knuth in [17, pages 386–389] (and again in [18, pages 403–406]) explained
an exponent-3 system and unjustifiably called it “RSA.”

Exponent-3 proofs are just as easy as large-exponent proofs, but large exponents
have inexplicably attracted more attention in this context. Bellare and Rogaway in
[5] analyzed a traditional system that they called “FDH,” and a system of their own
design called “PSS,” in both cases using large exponents. See [5, Section 2.1]; see
also Coron’s [6, Section 2.3] and [7, Definition 4]. Katz and Wang were exponent-
agnostic in [13]: they stated their results for more general “claw-free permutation
pairs,” following [12] and a suggestion of Dodis and Reyzin. The “PRab” claim
in [5, Theorem 6.1] used a small exponent, but the proof was merely outlined; [8,
Theorem 4] used a small exponent, but no proof was given.

Exponent 2. This system uses exponent 2, as introduced by Rabin in [22], rather
than exponent 3. This speeds up verification; it saves space when signatures are
expanded for even faster verification; and, in the other direction, it allows more
compression of signatures.

I’ve noticed that some programmers fear exponent 2: there appears to be a
widespread belief that exponent-2 signing requires Euclid-type computations of
Jacobi symbols. That belief is incorrect. See Algorithm 3.1.

Exponent 2 does require some extra effort in security proofs, because a uniform
distribution of s mod n does not correspond to a uniform distribution of s2 mod
n. There are several proof strategies here, depending on whether signers choose
uniform random square roots, or square roots distinguished by being squares, or
square roots distinguished by being absolute values of squares.

Message prefix: r. This system inserts a signer-selected B-bit string into each
message. This was introduced in [22]: Rabin suggested B = 60, with a random
choice of r.

It isn’t clear whether r helps security, but it certainly helps these security proofs.
Without r (equivalently, with B = 0), the proofs become quantitatively weaker as
the signer signs more and more messages; see the “FDH” analyses in [5] and [6].
This problem disappears when B is sufficiently large.

Reader beware: Many authors have failed to give Rabin proper credit for his
randomized signatures (r, s). For example, Goldwasser and Bellare have posted
lecture notes (1) claiming that Rabin introduced a signature system with neither
H nor r; (2) assigning credit to a 1983 paper of Goldwasser, Micali, and Yao for
“pioneering” randomized signatures; and then (3) describing a “PSS0” system—
randomized (r, s)—as if it were new. Similar comments apply to the “PFDH”
system in [7] and [13].

Explicit transmission of r. This system includes r in signatures; the verifier
does not need to reconstruct r. This is a prerequisite for the fastest signature-
verification algorithms.

The “PSS”/“PRab” alternative, proposed by Bellare and Rogaway in [5], is to
build a function H ′ from H so that r can be recovered from H ′(0, r, m), and thus
from s, where s2 ≡ H ′(0, r, m). This is incompatible with the fastest signature-
verification algorithms.

No bad r’s. This system has an s for every r. This speeds up and simplifies
signing. It also allows deterministic r’s and small B’s, as discussed below.



4 DANIEL J. BERNSTEIN

History: The existence of s is trivial for injective powering. For squaring, the
existence of s relies on the factors e ∈ {−1, 1} and f ∈ {1, 2} (and a related
restriction on n) introduced by Williams in [25]. Rabin’s signatures in [22] were,
in retrospect, Rabin-Williams signatures with e = f = 1. With Rabin’s system, s
existed for only about 1/4 of all r’s, so any choice of B below 8 would risk having
users bump into some non-signable messages.

Deterministic signatures. This system chooses r deterministically (although not
predictably!): viz., r = H(1, z, m), where z is a secret held by the signer. Note that
the same message will produce the same signature later. This idea was posted
on sci.crypt by George Barwood in February 1997, and independently by John
Wigley in March 1997.

This system then chooses e, f, s deterministically. See Section 3. This is standard
practice: usually there are four possibilities for s in exponent 2, but implementations
generate only one of the four. (Exception: Bellare and Rogaway in [5, Section 6]
required randomization of s, which also means that r must be random and B must
be large.)

The deterministic choice of signatures simplifies signing, because the signer does
not need to generate a new random number for each message. It also allows small
B’s, as discussed below.

Tight security. Generic attacks on this system imply factorization algorithms
with essentially the same success probability, even if many messages are signed.

This feature was introduced by Bellare and Rogaway with “PSS” in [5], and
has appeared in most proofs since then. However, it has not been proven for the
simplest (“FDH”; i.e., B = 0) systems, or for small B’s in several other systems.

Short message prefix. In this system, B is small, although not 0; I suggest B =
4. This is useful because it makes r very short, saving space in signatures.

History: It was widely believed for years that a tight security proof required a
considerably larger B. For example, I took B = 256 in a proof I posted several years
ago, and B = 128 after seeing how Coron in [6] quantitatively improved the “FDH”
analysis. But then Katz and Wang in [13, Theorem 2] pointed out that B = 1
allows a tight security proof if r’s are chosen deterministically (but unpredictably).
Thanks to Dan Boneh for pointing out [13] to me.

I’m suggesting B = 4 rather than B = 1 because it noticeably improves the
success probability (2B − 1)/2B+1. I haven’t seen any applications without room
for the 3 extra signature bits.

As discussed earlier, the Bellare-Rogaway “PSS” and “PRab” proposals use a
different technique to eliminate the space consumption of a long r.

By the way, here’s something that’s been bugging me. What most people
now call the “RSA signature system” is a combination of three indispensable ideas:

(1) using roots modulo n as signatures;
(2) for security, hashing messages;
(3) for efficiency, using a small exponent.

Other ideas are certainly helpful, as explained above; but these are the three core
ideas that produce a useful signature system of continuing interest today.

Rivest, Shamir, and Adleman published the first idea in [11] and [23]; I see no
evidence that they came up with the second and third ideas. Rabin said in [21,
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page 156] that he had come up with the first idea independently; he then published
the second and third ideas in [22].

Why, in light of this history, should these signature systems be credited to RSA
and not Rabin? Even if we give RSA all the credit for the first idea—we do, after
all, want to encourage quick publication—we should still be giving Rabin credit for
the second and third ideas.

Most people do seem to suddenly start saying “Rabin signatures” when a fourth
idea, exponent 2, is tossed into the mix. I see no reason to use any other exponent.
Perhaps 2 will eventually become the most popular exponent, and, as a side effect,
Rabin will receive more of the recognition that he deserves.

3. Standard signatures

This section specifies the signature system analyzed in this paper. In particular,
it defines standard signatures and explains how to generate standard signatures.

This section does not present algorithms for key generation, key compression,
signature verification, or signature compression. These algorithms, while important
to implementors, are not relevant to the security analysis in this paper.

Parameters; key generation. The users of the system share four parameters:

• an integer B ≥ 0 (for example, 4);
• an integer K ≥ 10 (for example, 1536);
• a function H that maps strings of the form (0, . . . ) to

{

1, 2, . . . , 2K
}

and
maps strings of the form (1, . . . ) to B-bit strings; and

• a distribution D (for example, the uniform distribution) of pairs of prime
numbers (p, q) with p mod 8 = 3, q mod 8 = 7, and 2K < pq < 2K+1.

B, K, D are fixed throughout this paper. H is not fixed; Section 5 averages over all
functions H.

Key generation works as follows. The signer generates a uniform random 256-bit
string z, and a random pair (p, q) from the distribution D. The signer’s public key
is the product pq. The signer’s secret key is (p, q, z). It is also helpful for the signer
to precompute the secrets 2(3p−5)/4 mod p, 2(3q−5)/4 mod q, and qp−2 mod p.

Many authors assume that the distribution D is uniform. In the real world,
however, implementors often choose non-uniform distributions D to save time in
key generation. This paper considers arbitrary distributions of pairs (p, q), and
thus arbitrary distributions of public keys pq; it converts generic algorithms to
forge signatures under those public keys into generic algorithms to factor those
public keys.

Many authors specify a larger range of H(0, . . . ), namely {0, 1, . . . , pq − 1}, for
the sake of convenience in averaging over all functions H. Of course, for H to
actually produce a key-dependent range of output, H must be changed from a
system parameter into a part of the public key. In this paper I make the more
realistic assumption that H is independent of the key.

Messages; signature verification. A message is a string. An H-signature of
a message m under a public key pq is a vector (e, f, r, s) such that e ∈ {1,−1};
f ∈ {1, 2}; r is a B-bit string; and s is an integer satisfying fs2 ≡ eH(0, r, m)
(mod pq).

Signers are required to generate s in
{

0, 1, . . . , 2K − 1
}

; in fact, in the smaller
range {0, 1, . . . , (pq − 1)/2}. Thus s can be encoded in K bits, and a signature
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can be encoded in K + B + 2 bits. Verifiers are permitted to enforce these range
requirements on s. However, this paper’s security analysis does not require any
such restriction.

Signatures can be expanded to accelerate verification, or compressed at only a
slight cost in verification time. These operations are public, so they have no effect
on security.

Standard signatures; signature generation. The standard H-signature of
a message m under a secret key (p, q, z) is the unique vector (e, f, r, s) such that

• r = H(1, z, m);
• fs2 ≡ eh (mod pq) where h = H(0, r, m);
• e is 1 if h is a square modulo q, otherwise −1;
• f is 1 if eh is a square modulo p, otherwise 2;
• s ∈ {0, 1, . . . , (pq − 1)/2}; and
• {s, pq − s} contains a square modulo pq.

Note that the standard signature of m under (p, q, z) is a signature of m under pq.
The existence of the standard signature is proven constructively; see Theorem 3.2.
The uniqueness of the standard signature follows from the fact that, modulo pq,
each square has a unique square root that is itself a square.

Algorithm 3.1. To print the standard signature of m under (p, q, z):

1. Compute r ← H(1, z, m).
2. Compute h← H(0, r, m).
3. Compute u← h(q+1)/4 mod q.
4. If u2 ≡ h (mod q), set e← 1; otherwise set e← −1.
5. Compute v ← (eh)(p+1)/4 mod p.
6. If v2 ≡ eh (mod p), set f ← 1; otherwise set f ← 2.
7. Compute w ← f (3q−5)/4u mod q and x← f (3p−5)/4v mod p.
8. Compute y ← w + q(qp−2(x− w) mod p).
9. If 2y < pq, set s← y; otherwise set s← pq − y.

10. Print (e, f, r, s).

The signer can precompute 2(3q−5)/4 mod q and 2(3p−5)/4 mod p for Step 7, and
qp−2 mod p for Step 8, so Steps 1, 2, 3, and 5 take most of the time in Algorithm
3.1. Note that the algorithm does not require any Euclid-type computations of
Jacobi symbols; it determines the squareness of h and eh much more efficiently by
squaring u and v. I posted this idea on sci.crypt in October 2000.

Signers who worry about faults in their computations can double-check that y
is a square modulo pq and that fs2 ≡ eh (mod pq). Both checks are very fast, and
as above can be done without Euclid-type computations.

Theorem 3.2. Algorithm 3.1 prints the standard signature of m under (p, q, z).

Proof. If h is a square modulo q, say h ≡ a2 (mod q), then u2 ≡ h(q+1)/2 ≡ aq+1 ≡
a2 ≡ h, so e = 1 as claimed. Otherwise u2 6≡ h so e = −1 as claimed; but
u4 ≡ hq+1 ≡ h2, so u2 ≡ −h. Either way, u2 ≡ eh (mod q), so f3(q−1)/2u2 ≡ eh
(mod q); recall that 2(q−1)/2 ≡ 1 (mod q).

Similarly, if eh is a square modulo p, then v2 ≡ eh as above, so f = 1 as claimed.
Otherwise v2 6≡ eh so f = 2 as claimed; also, v2 ≡ −eh as above. Either way,
f3(p−1)/2v2 ≡ eh (mod p); recall that 2(p−1)/2 ≡ −1 (mod p).
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Next y ≡ w (mod q), and s ≡ ±y, so fs2 ≡ fy2 ≡ fw2 ≡ ff (3q−5)/2u2 =
f3(q−1)/2u2 ≡ eh (mod q). Similarly, y ≡ w + qp−1(x − w) ≡ x (mod p), and
s ≡ ±y, so fs2 ≡ fy2 ≡ fx2 ≡ ff (3p−5)/2v2 = f3(p−1)/2v2 ≡ eh (mod p). Thus
fs2 ≡ eh (mod pq).

Furthermore, y ≡ f (3q−5)/4h(q+1)/4 (mod q), and y ≡ f (3p−5)/4(eh)(p+1)/4 ≡
f (3p−5)/4(eh)(p−3)/4eh ≡ f (3p−5)/4(eh)(p−3)/4f3(p−1)/2v2 ≡ f (9p−11)/4(eh)(p−3)/4v2

(mod p). All the exponents here are even, so y is a square modulo both p and q,
hence modulo pq; so {s, pq − s} = {y, pq − y} contains a square modulo pq.

Finally, 0 ≤ w ≤ q − 1 and 0 ≤ (qp−2(x − w) mod p) ≤ p − 1, so 0 ≤ y ≤
q − 1 + q(p − 1) = pq − 1. If y ≤ (pq − 1)/2 then s = y ∈ {0, 1, . . . , (pq − 1)/2}
as claimed; otherwise y ≥ (pq + 1)/2 so s = pq − y ∈ {0, 1, . . . , (pq − 1)/2} as
claimed. �

4. Squares

Consider vectors (e, f, s, h) obtained as follows: a signer generates a uniform
random number h ∈

{

1, 2, . . . , 2K
}

, and then uses his secrets p and q to generate
(e, f, s) from h as in Algorithm 3.1. This section explains how to generate vectors
(e, f, s, h) with the same distribution, using only the public key pq. The conclusion
in Section 5 will be that an attacker doesn’t learn anything from such vectors.

How do we find a square root s of a random number h modulo pq without
knowing p and q? Answer: Generate s first, with the right distribution, and then
square it to obtain h.

How do we also ensure that ±s is a square, as the signer would have done?
Answer: Generate the square root of±s first, with the right distribution. A different
answer is to check the Jacobi symbol of s; but that isn’t as fast as squaring.

The rest of this section goes through the details of properly handling e, f , K,
etc. and generating exactly the right distribution. Algorithm 4.1, with c = 1, prints
the advertised vectors (e, f, s, h).

Algorithm 4.1. Given a public key n and an integer c coprime to n, to print
(e, f, s, h):

1. Generate a uniform random x ∈
{

0, 1, . . . , 2K+1 − 1
}

.
2. Generate a uniform random e′ ∈ {−1, 1}.
3. Generate a uniform random f ′ ∈ {1, 2}.
4. If x ≥ n, go back to Step 1.
5. Set g ← gcd{x, n}.
6. If g = n or g mod 8 = 7, set e← 1; otherwise set e← e′.
7. If g = n or g mod 8 = 3, set f ← 1; otherwise set f ← f ′.
8. Set y ← x2 mod n.
9. If 2y < n, set s← y; otherwise set s← n− y.

10. Set h← ef(cs)2 mod n.
11. If h ≤ 0 or h > 2K , go back to Step 1.
12. Print (e, f, s, h).

Theorem 4.2. Let n = pq be a public key, and let c be an integer coprime to n.

For each h ∈
{

1, 2, . . . , 2K
}

, there are exactly 4 choices of (x, e′, f ′) in Steps 1–3 of

Algorithm 4.1 that produce h in Step 12 without going back to Step 1. Furthermore,

if Algorithm 4.1 prints (e, f, s, h), then e is 1 if h is a square modulo q, otherwise

−1; and f is 1 if eh is a square modulo p, otherwise 2.
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Proof. Recall that each nonzero square modulo p has exactly two fourth roots
modulo p; I will write those roots as ± 4

√
. The same comment applies to q.

Assume that Algorithm 4.1 prints (e, f, s, h). Then h ≡ efc2s2 ≡ efc2y2 ≡
efc2x4 (mod n). By construction e ∈ {1,−1} and f ∈ {1, 2}, so ef is coprime to
n, as is c. There are three possibilities for the quadratic character of h modulo q:

• h mod q = 0. Then x mod q = 0, so g is either n or q, so e = 1 in Step 6;
e′ could be either 1 or −1.

• h is a nonzero square modulo q. Then −h is not a square, so e cannot be
−1, so e = 1, so x ≡ ± 4

√

h/fc2 (mod q). Furthermore, g 6= n and g 6= q,
so e′ = e.

• h is a nonsquare modulo q. Then e cannot be 1, so e = −1, so x ≡
± 4

√

−h/fc2 (mod q). Furthermore, e′ = e as above.

Similarly, there are three possibilities for the quadratic character of eh modulo p:

• eh mod p = 0. Then x mod p = 0, so g is either n or p, so f = 1 in Step 7;
f ′ could be either 1 or 2.

• eh is a nonzero square modulo p. Then eh/2 is not a square, so f cannot

be 2, so f = 1, so x ≡ ± 4

√

eh/c2 (mod p). Furthermore, f ′ = f as above.
• eh is a nonsquare modulo p. Then f cannot be 1, so f = 2, so x ≡
± 4

√

eh/2c2 (mod p). Furthermore, f ′ = f as above.

In every case, h determines (e, f); there are exactly 2 possibilities for (x mod q, e′);
and there are exactly 2 possibilities for (x mod p, f ′). Thus there are exactly 4
possibilities for (x mod n, e′, f ′). Step 4 restricts attention to x ∈ {0, 1, . . . , n− 1},
so there are exactly 4 possibilities for (x, e′, f ′).

Conversely, if (x, e′, f ′) is one of these 4 possibilities, then Algorithm 4.1 does
not stop in Step 4; it produces the e and f noted above; it produces h in Step 10;
and it does not stop in Step 11. �

Theorem 4.3. Let n = pq be a public key, and let c be an integer coprime to n.

Given n and c, Algorithm 4.1 prints a random vector (e, f, s, h) such that h is a

uniform random element of
{

1, 2, . . . , 2K
}

; f(cs)2 ≡ eh (mod n); e is 1 if h is a

square modulo q, otherwise −1; f is 1 if eh is a square modulo p, otherwise 2;
s ∈ {0, 1, . . . , (n− 1)/2}; and {s, n− s} contains a square modulo n.

Proof. By Step 8, y is a square modulo n, and 0 ≤ y ≤ n − 1. By Step 9, s ∈
{0, 1, . . . , (n− 1)/2}; also, {s, n− s} = {y, n− y}, so {s, n− s} contains a square
modulo n. By Step 10, eh ≡ e2f(cs)2 = f(cs)2 (mod n). By Step 11, 1 ≤ h ≤ 2K .
Theorem 4.2 guarantees the choice of e, the choice of f , and the uniformity of h. �

Notes on speed. Algorithm 4.1 is applied in two ways in Section 5. In the first
application, c is taken as 1, so the multiplication by c can be omitted from Step
10. In the second application, there is no need for s to be a square or in a limited
range, so Steps 8 and 9 can be replaced by “Set s← x.”

The cost of Step 5 can be amortized over many invocations of Algorithm 4.1,
as in Pollard’s ρ method of factorization: multiply all the x’s together and do a
single gcd to see whether any of them has a factor in common with n, recovering
appropriately if so. Even better, one can skip all these gcd computations; the
chance of g 6= 1 is negligible, so setting (e, f) ← (e′, f ′) does not noticeably affect
the distribution of (e, f, s, h). However, generating exactly the right distribution
simplifies the proof in Section 5.
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Out of the 2K+3 choices of (x, e′, f ′), exactly 4n survive Step 4, and exactly
2K+2 also survive Step 11, by Theorem 4.2. Thus Algorithm 4.1 loops exactly
twice on average. One can reduce the number of loops to about n/2K by generating
x ∈

{

0, 1, . . . , 2K+10 − 1
}

, starting over if bx/nc =
⌊

2K+10/n
⌋

, and then replacing

x with x mod n. The remaining gap between n/2K and 1 accounts for the limited
range of h. Of course, the gap is small if n is close to 2K .

5. Security

This section explains how to convert an attack A into a factorization algorithm
F ; compares the success probability of F to the generic success probability of A;
compares the speed of F to the speed of A; and discusses some variants of the
proof.

Attacks; generic success probability. An attacker is faced with the following
situation. The signer generates a public key n and gives it to the attacker. The
attacker provides a message to the signer, and receives the standard signature of
the message; the attacker provides another message to the signer, and receives the
standard signature of that message; and so on. Eventually the attacker prints a
forgery (m, e′, f ′, r, s′). This forgery is successful if (e′, f ′, r, s′) is a signature of
m under n and m is different from any of the messages provided to the signer.

Of course, if the attacker actually has this much power, the attacker doesn’t need
to forge signatures: he can simply provide a message of his choice to the signer.
Any signer in the real world will restrict the messages signed, and thus restrict
the set of possible attacks. But the security proof does not depend on any such
restrictions.

More formally, an attack is an algorithm given access to two oracles, a hashing

oracle and a signing oracle. The algorithm receives a random public key n as
input and prints a forgery as output. The success probability of the algorithm
against a function H is the probability that the algorithm prints a successful H-
forgery under n, when it uses H as its hashing oracle and “standard H-signature
under n” as its signing oracle. The generic success probability of the algorithm
is its success probability against a uniform random function H; in other words, the
average of its success probabilities against all functions H.

Consider, for example, an algorithm that factors n and then computes a signature
of any desired message with Algorithm 3.1, using the hashing oracle to evaluate
H. This algorithm has success probability 1 against all functions H, and thus
generic success probability 1, but it is extremely slow with our current factorization
algorithms when K is large.

As another example, fix K = 1536, and consider an algorithm that looks for
forgeries (m, 1, 1, r, s) by feeding 250 different pairs (r, m) to H and checking whether
H(0, r, m) is an integer square s2 with 1 ≤ s ≤ 2768. This algorithm has generic
success probability 2−718, but it has success probability 1 against a function H
that maps (0, r, m) to MD5(0, r, m)2. As this example illustrates, a small generic
success probability does not guarantee a small success probability for any particular
function H.

Converting an attack A into a factorization algorithm F . Fix an attack A.
The following algorithm F , given n as input, tries to use A to factor n.
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F begins by choosing a uniform random integer c such that c ∈ {0, 1, . . . , n− 1}
and c is coprime to n. F also chooses a uniform random 256-bit string z.

F builds random functions Q and H as follows. For each string x, define H(1, x)
as a uniform random B-bit string. For each pair (r, m) where r is a B-bit string and
m is a string, define Q(r, m) as a random vector (e, f, s, h) produced by Algorithm
4.1 with input (n, 1) if r = H(1, z, m) or with input (n, c) if r 6= H(1, z, m); and
define H(0, r, m) as h. Note that the distribution of H is uniform by Theorem 4.3.

Of course, F does not build the entire function H at once. It generates the values
of H and Q only upon demand, saving those values in a table for future reference.

F now runs A with this function H. The function Q allows F to compute the
standard signature of any requested message m as (e, f, r, s) where r = H(1, z, m)
and (e, f, s, h) = Q(r, m). Indeed, (e, f, s, h) is an output of Algorithm 4.1 with
input (n, 1), by definition of Q; h = H(0, r, m), by definition of H; e and f are
chosen properly, s is in the right range, {s, n− s} contains a square modulo n, and
fs2 ≡ eh (mod n), by Theorem 4.3; so (e, f, r, s) is the standard signature of m as
desired.

Eventually A produces a forgery (m, e′, f ′, r, s′). If r 6= H(1, z, m) then F looks
up (e, f, s, h) = Q(r, m) and computes both gcd{n, s′} and gcd{n, s′ − cs}, hoping
to obtain a nontrivial factor of n. That’s it.

Effectiveness of F . Because F runs A with a uniform random function H, the
probability that A generates a successful forgery inside F is exactly the generic
success probability of A. Define ε as this probability, and assume that A provides
at most α queries of the form (1, . . . ) to the hashing oracle. What is the probability
that F successfully uses A’s output to factor n?

All bets are off if A’s queries to the hashing oracle included (1, z, m) for some
m. This happened with probability at most 2−256α. Assume that it did not, in
fact, happen, and that A’s forgery (m, e′, f ′, r, s′) is successful; this happens with
probability at least ε− 2−256α.

By definition of “successful forgery,” A never provided m as a query to the signing
oracle. Thus F never evaluated H(1, z, m) while A was running; so the value of
H(1, z, m) is independent of A’s output. F now checks whether r = H(1, z, m);
this happens with conditional probability at most 1/2B .

Assume that, in fact, r 6= H(1, z, m). F now looks up (e, f, s, h) = Q(r, m). This
is, by definition of Q, an output of Algorithm 4.1 with input (n, c); by Theorem
4.3, fc2s2 ≡ eh (mod n). On the other hand, f ′(s′)2 ≡ e′h (mod n), by definition
of “successful forgery.” Hence efc2s2 ≡ e′f ′(s′)2 (mod n).

If s′ has a factor in common with n then gcd{n, s′} is a nontrivial factor of n:
recall that h 6= 0, so s′ cannot be divisible by n.

If, on the other hand, s′ is coprime to n, then e′f ′/ef ≡ c2s2/(s′)2 (mod n); but
none of {−1, 2,−2, 1/2,−1/2} are squares modulo n, so ef must equal e′f ′. Thus
c2s2 ≡ (s′)2 (mod n); i.e., c is a square root of (s′/s)2 modulo n. The choice of
square root is independent of A’s output: Algorithm 4.1 depends solely on c2 mod n.
Thus the conditional probability is 1/2 that c is neither s′/s nor −s′/s, and hence
that gcd{n, s′ − cs} is a nontrivial factor of n.

To summarize: F factors n with probability at least (ε− 2−256α)(1− 1/2B)/2.

Efficiency of F . There are several major costs in this factorization algorithm:
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• Generating B random bits for H(1, x). This happens at most once for each
of A’s oracle calls, plus once at the end of F .

• Algorithm 4.1. Each call involves generating, on average, 2K + 6 random
bits, and performing 8 multiplications mod n; see Section 4. This happens
at most once for each of A’s oracle calls, plus once at the end of F . For
comparison, when A is used to attack the signature system, each call to
the hashing oracle means evaluating H, and each call to the signing oracle
means waiting for the signer to run Algorithm 3.1.

• Maintaining and consulting tables of values of H and Q. Data structures
such as B-trees are reasonably fast in simple models of computation that
do not charge for space, but they could easily dominate the cost of F in
more realistic models of computation. An alternative is to scrap the tables
in favor of a fast, conjecturally strong pseudorandom number generator;
[12] credits this idea to Levin. Of course, it’s conceivable that F will end
up breaking the generator rather than factoring n—there are no known
generators with good reductions to factoring.

• A’s internal computations. This is the bottleneck for some attacks A, but
there is no reason to believe that it is always the bottleneck.

For example, consider again the (low-probability) attack A that looks for integer
squares among many values of H(0, r, m). The corresponding (low-probability)
factorization algorithm will be an order of magnitude slower than signature forgery
if Algorithm 4.1 is an order of magnitude slower than H.

Variants. The crucial objects in the construction of F are

• a set U of hash values, namely
{

1, 2, . . . , 2K
}

;
• a set S1 of signature vectors, namely the set of vectors (e, f, s) ∈ {−1, 1}×
{1, 2} × Z such that efs2 mod n ∈ U ;

• a surjective verifying function v1 : S1 → U , namely the function (e, f, s) 7→
efs2 mod n;

• a subset T1 ⊆ S1 such that v1 is a bijection from T1 to U , namely the set
of standard vectors, defined in the obvious way;

• an algorithm A1, namely Algorithm 4.1, to generate a uniform random
element of T1; and

• analogous sets S2, v2, T2, A2, defined using ef(cs)2 instead of efs2.

With probability at least (ε− 2−256α)(1− 1/2B), the algorithm F obtains a claw:
a pair (x1, x2) ∈ S1 × S2 such that v1(x1) = v2(x2). It then uses this claw, namely
((e′, f ′, s′), (e, f, s)), to factor n with probability at least 1/2.

In the special case S1 = T1 = S2 = T2 = U , generating a uniform random
element of T1 or T2 means simply generating a uniform random element of U . This
is the “claw-free permutation pair” setting discussed in [12] and [13]. In contrast,
in the Rabin-Williams setting, the set of standard signatures T1 is smaller and more
complicated than the set of signatures S1.

One could improve (ε−2−256α)(1−1/2B)/2 to (ε−2−256α)(1−1/2B) by changing
S1 and S2, imposing the additional condition that the Jacobi symbol of s modulo
n be 1. Then s′/s and −s′/s both have Jacobi symbol 1; so the choice c = 2, with
Jacobi symbol −1, guarantees a factorization from any successful forgery. But I
wouldn’t use this variant in practice: the Jacobi-symbol computation would make
signature verification much slower.
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Coron in [8] suggested a way to handle a smaller set U , using an idea of Vallée
for finding small squares modulo n. The speed of Coron’s construction hasn’t been
quantified. My impression is that the construction is substantially slower than
Algorithm 4.1, so it will need a larger value of K, countering any possible savings
from faster functions H.
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