179870286739608110908793986433779282952709437186980111027634886806680 105430306203504772087724415765187628536569403357866962021859070432575 840490938673081114568020802801572639107433385488013533823889359543365 805739639724297106495248013808227417948954846716576431759705516797612 912096782118234207449553394447817in the range {2^1024,2^1024+1,...,2^1024+10^306-1}.
Instead of generating my own random digits, I took the first 306 digits from the RAND tables published in 1955:
10097 32533 76520 13586 34673 54876 80959 09117 39292 74945 37542 04805 64894 74296 24805 24037 20636 10402 00822 91665 08422 68953 19645 09303 23209 02560 15953 34764 35080 33606 99019 02529 09376 70715 38311 31165 88676 74397 04436 27659 12807 99970 80157 36147 64032 36653 98951 16877 12171 76833 66065 74717 34072 76850 36697 36170 65813 39885 11199 29170 31060 1This selection strategy means that anyone can verify that I didn't cheat.
Of course, it's conceivable that the creators of the RAND tables cheated and constrained their digits. However, it isn't conceivable that anyone in 1955 knew so much about factorization and public-key cryptography to be able to (or want to!) choose a weak value of c for this application.