Hash functions and ciphers

The Salsa20 core is a function from 64-byte strings to 64-byte strings: the Salsa20 core reads a 64-byte string x and produces a 64-byte string Salsa20(x).

The Salsa20 stream cipher has a separate page. The Salsa20 stream cipher uses the Salsa20 core to encrypt data.

The Rumba20 compression function has a separate page. The Rumba20 compression function uses the Salsa20 core to compress a 192-byte string to a 64-byte string.

I originally introduced the Salsa20 core as the "Salsa20 hash function," but this terminology turns out to confuse people who think that "hash function" means "collision-resistant compression function." The Salsa20 core does not compress and is not collision-resistant. If you want a collision-resistant compression function, look at Rumba20. (I wonder what the same people think of the FNV hash function, perfect hash functions, universal hash functions, etc.)

History: I introduced Salsa20 in March 2005. It is a refinement of Salsa10, which I introduced in November 2004.

Each modification involves xor'ing into one word a rotated version of the sum of two other words modulo 2^32. Thus the 320 modifications involve, overall, 320 additions, 320 xor's, and 320 rotations. The rotations are all by constant distances.

The entire series of modifications is a series of 10 identical double-rounds. Each double-round is a series of 2 rounds. Each round is a set of 4 parallel quarter-rounds. Each quarter-round modifies 4 words.

The complete function is defined as follows:

#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) void salsa20_word_specification(uint32 out[16],uint32 in[16]) { int i; uint32 x[16]; for (i = 0;i < 16;++i) x[i] = in[i]; for (i = 20;i > 0;i -= 2) { x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9); x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18); x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9); x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18); x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9); x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18); x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9); x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18); x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9); x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18); x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9); x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18); x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9); x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18); x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9); x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18); } for (i = 0;i < 16;++i) out[i] = x[i] + in[i]; }Here