
What output size resists collisions
in a xor of independent expansions?

Daniel J. Bernstein

Department of Mathematics, Statistics, and Computer Science (MC 249)
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to

Abstract. Bellare and Micciancio proposed compressing (m1, m2, . . .)
to f1(m1) ⊕ f2(m2) ⊕ · · · . Collisions are easy to find for long messages
but are much more difficult to find for short messages. Exactly how
secure is the 4-xor compression function (m1, m2, m3, m4) 7→ f1(m1) ⊕
f2(m2) ⊕ f3(m3) ⊕ f4(m4), with an output size of 4b bits? This paper
analyzes, under constraints on machine cost and computation time, the
chance of finding 4b-bit collisions using an improved version of Wagner’s
generalized-birthday algorithm. In particular, as the machine cost grows
past 22b/3, the price-performance ratio of this paper’s attack drops below
22b, eventually reaching a limit of 24b/3. This paper also proposes the
Rumba20 compression function, reusing large components of the Salsa20
stream cipher as a specific choice of functions f1, f2, f3, f4.

Keywords: hash functions, compression functions, collision resistance,
cryptanalysis, generalized birthday attacks, parallelization, compression-
function design, stream-cipher synergy

1 Introduction

How hard is it to find collisions in the compression function (m1,m2,m3,m4) 7→
f1(m1)⊕ f2(m2)⊕ f3(m3)⊕ f4(m4)?

Assume, for concreteness, that each fi expands a 384-bit input to a 512-
bit output. This compression function then maps a 1536-bit input to a 512-bit
output, effectively eliminating 256 bits for each fi evaluation. More generally, if
each fi expands a 3b-bit input to a 4b-bit output, then the compression function
maps a 12b-bit input to a 4b-bit output. How large does b have to be for this
function to resist collisions?

Previous answers. The standard answer is that Wagner’s generalized-birthday
algorithm in [15] takes time 2b, improving on the time 22b taken by traditional
4b-bit collision search. But this answer has several glaring deficiencies:

* Date of this document: 2007.05.03.
* Permanent ID of this document: dee774697b66f19a00071db1b0666cab.
* This work was carried out while the author was visiting Technische Universiteit

Eindhoven.

• The standard answer fails to account for limits on the attacker’s time. The
generic success chance of traditional collision search is well known to drop
quadratically as the time spent drops; how badly does the generic success
chance of Wagner’s algorithm drop as the time spent drops? (“Generic suc-
cess chance” here means the average success chance for all functions; the
success chance for a particular choice of function could be different.)

• The standard answer fails to account for limits on machine cost. Wagner’s
algorithm needs a terrifyingly large machine with 2b blocks of memory—
for example, 2128 blocks for b = 128. For comparison, traditional collision
search can be carried out by a tiny circuit, only slightly larger than a circuit
to compute the compression function. How badly does the generic success
chance of Wagner’s algorithm drop with the machine cost?

• The standard answer relies on the assumption that each memory access in
Wagner’s algorithm takes constant time. In fact, speed-of-light delays force
each storage access to take time 2b/2, so the 2b serial storage accesses in
Wagner’s algorithm take time 23b/2.

The bottom line is that Wagner’s algorithm has a price-performance ratio on the
scale of 25b/2, considerably worse than the price-performance ratio of traditional
collision search, despite being advertised as a faster algorithm. An attacker with
any particular hardware budget and time budget will find more collisions with
traditional collision search than with Wagner’s algorithm.

Wagner in [15, Section 5, “Open Problems,” under “Memory and communi-
cation complexity”] asked whether his algorithm’s memory requirements could
be reduced; asked whether the algorithm could be “parallelized effectively with-
out enormous communication complexity”; and advised designers “to assume
that such algorithmic improvements may be forthcoming.”

Contributions of this paper. This paper presents new upper bounds for
the price-performance ratio of generic collision-finding algorithms for f1(m1) ⊕
f2(m2)⊕f3(m3)⊕f4(m4). In particular, this paper improves Wagner’s algorithm,
drastically reducing the time to 24b/9 while reducing the machine size from 2b

to 28b/9.
More generally, for each c between 0 and 8b/9, this paper presents an attack

taking time 24b−4c on a circuit of size 2c. The price-performance ratio of the
circuit is 24b−3c, rising from 24b/3 for c = 8b/9 to 22b for c = 2b/3 and then
higher as c drops. For c < 2b/3 it is better to use the parallel-collision-search
circuit of van Oorschot and Wiener in [13], taking time approximately 22b−c on
a circuit of size 2c.

Even more generally, for each c between 0 and 8b/9 and for each t between
c/2 and 4b− 4c, this paper presents an attack taking time 2t on a circuit of size
2c and having generic success probability approximately 2t+4c−4b. For t > 2c it
is better to use the parallel-collision-search circuit of van Oorschot and Wiener,
taking time 2t on a circuit of size 2c and having generic success probability
approximately 22t+2c−4b.

Section 2 presents the new attack. Section 3 discusses the history of the
compression function (m1,m2,m3,m4) 7→ f1(m1)⊕f2(m2)⊕f3(m3)⊕f4(m4) and

the motivation for using this function; it also presents the Rumba20 compression
function, with a specific choice of f1, f2, f3, f4, reusing large components of the
Salsa20 stream cipher.

Open questions. The new success probability 2t+4c−4b increases linearly with
the time spent but quartically with the circuit size (up to size 28b/9). For compar-
ison, the van Oorschot-Wiener success probability 22t+2c−4b increases quadrati-
cally with time and quadratically with circuit size. What other functions of t, c
can be achieved? Can one achieve 2t + 3c− 4b, for example, or 2t + 4c− 4b, or
4t + c− 4b?

The only obvious limit is 28t+8c−4b. A circuit of size 2c cannot generate
more than 2t+c values fi(mi) in time 2t; there exist at most 24t+4c combinations
f1(m1)⊕f2(m2)⊕f3(m3)⊕f4(m4); there exists a collision among those combina-
tions with probability at most 28t+8c−4b. Is there any better upper bound? The
Brent-Kung theorem [6, Theorem 3.1] (predating [16, Theorem 1] by more than
twenty years) produces better-than-information-theoretic bounds on the price-
performance ratio of broadcast computations such as sorting; to what extent can
collision-finding algorithms avoid sorting?

Generalizations. One can ask the same questions about, e.g., f1(m1)⊕f2(m2)⊕
f3(m3) ⊕ f4(m4) ⊕ f5(m5) ⊕ f6(m6) ⊕ f7(m7) ⊕ f8(m8). This paper’s analysis
readily generalizes to a larger (or smaller) number of inputs. But this 8-xor
compression function is not much faster than the 4-xor compression function—it
eliminates 2.5b bits for each fi evaluation, compared to 2b bits—and the gain in
compression speed seems to be offset by the gain in attack speed.

2 The attack

This section reviews Wagner’s algorithm to find collisions in (m1,m2,m3,m4) 7→
f1(m1)⊕ f2(m2)⊕ f3(m3)⊕ f4(m4). This section then adapts the algorithm to
handle constraints on machine cost, to take advantage of parallel processing,
and to take advantage of low-cost precomputation. This section concludes by
evaluating and improving constant factors in the cost of the algorithm.

Review of Wagner’s algorithm. Choose 2b different values of m1 and 2b

different values of m2. There are 22b pairs (m1,m2), and on average (generically)
there are 2b pairs having the first b bits of f1(m1) ⊕ f2(m2) equal to 0. Find
those pairs as follows: compute the 2b values (f1(m1),m1) and sort them into
lexicographic order; compute the 2b values (f2(m2),m2) and sort them into
lexicographic order; merge the sorted lists to find all pairs (m1,m2) for which
the first b bits of f1(m1) agree with the first b bits of f2(m2).

Wagner states that the sorting takes “O(n log n) time” where n = 2b. Presum-
ably “O(n log n)” is meant to refer to heap sort or another standard comparison-
based sorting algorithm that sorts n items using O(n log n) comparisons and
O(n log n) memory accesses.

One can object that a comparison of b-bit strings actually takes time pro-
portional to b, not constant time, so heap sort uses O(2bb2) bit comparisons, not

merely the claimed O(2bb); one can, on the other hand, replace heap sort with
radix sort, which eliminates the log n factor and uses only O(2bb) bit compar-
isons. Similarly, and more importantly, one can object that memory accesses do
not take constant time; one can, on the other hand, choose a sorting algorithm
with much smaller communication costs, as discussed below.

After finding 2b vectors (f1(m1)⊕ f2(m2),m1,m2) with first b bits equalling
0, use the same idea to find 2b vectors (f3(m3)⊕f4(m4),m3,m4) with first b bits
equalling 0. Sort and merge these lists of vectors to find, on average, 2b vectors
(f1(m1)⊕f2(m2)⊕f3(m3)⊕f4(m4),m1,m2,m3,m4) with first 2b bits equalling
0.

Finally, sort this list of vectors to find any collisions in the 4b-bit strings
f1(m1)⊕ f2(m2)⊕ f3(m3)⊕ f4(m4). The average number of collisions found is
(1/2)24b(24b − 1)2−8b = 1/2− 1/24b+1.

One can object that there is no reason for the chance of finding at least
one collision to be as large as the average number of collisions found; but a
more detailed analysis shows that the gap is negligible for large b. Limiting the
intermediate lists to exactly 2b vectors also makes very little difference in the
success probability of the algorithm.

Handling constraints on machine size. Wagner’s algorithm needs Θ(2bb)
bits of memory to store Θ(2b) vectors, each having Θ(b) bits. What if the attacker
cannot afford to pay for Θ(2bb) bits of memory?

Let’s say the attacker can afford to store only 2c vectors (f1(m1),m1) rather
than 2b vectors, and only 2c vectors (f2(m2),m2) rather than 2b vectors. Here c
is a parameter that will be reflected in the final machine cost.

The attacker now finds, on average, 22c−b vectors (f1(m1)⊕ f2(m2),m1,m2)
where the first b bits are 0. Together with 22c−b similar vectors (f3(m3) ⊕
f4(m4),m3,m4) the attacker finds 24c−3b vectors (f1(m1)⊕ f2(m2)⊕ f3(m3)⊕
f4(m4),m1,m2,m3,m4) where the first 2b bits are 0. The expected number of
collisions is approximately 28c−8b.

Improvement: Increase the number of vectors (f1(m1)⊕ f2(m2),m1,m2) up
to the machine capacity 2c, by requiring only the first c bits to be 0; similarly
increase the number of vectors (f3(m3)⊕ f4(m4),m3,m4). The number of these
vectors is reflected quadratically in the number of 4-xor vectors, and quartically
in the final number of collisions, outweighing the loss of b− c bits. Similarly, in-
crease the number of vectors (f1(m1)⊕f2(m2)⊕f3(m3)⊕f4(m4),m1,m2,m3,m4)
up to the machine capacity 2c. The revised attack is as follows:

• Generate and sort 2c vectors (f1(m1),m1).
• Generate and sort 2c vectors (f2(m2),m2).
• Merge to find 2c vectors (f1(m1)⊕ f2(m2),m1,m2) having first c bits equal

to 0.
• Similarly find 2c vectors (f3(m3)⊕ f4(m4),m3,m4) having first c bits equal

to 0.
• Sort and merge again to find 2c vectors (f1(m1)⊕f2(m2)⊕f3(m3)⊕f4(m4),

m1,m2,m3,m4) having first 2c bits equal to 0.
• Sort again to find, on average, about (1/2)22c−(4b−2c) = 24c−4b−1 collisions.

One can also view the revised attack as follows: truncate each fi to 4c bits; use
the original attack to search for collisions in the 4c-bit strings f1(m1)⊕f2(m2)⊕
f3(m3) ⊕ f4(m4); hope that the collisions are actually collisions in the original
4b-bit strings.

Parallelization. As mentioned in Section 1, a realistic model of computation
cannot support constant-latency random access to 2c bits of memory as c grows;
one needs at least 2c/2 time to reach a typical position in a 2-dimensional circuit
of size 2c. A sorting algorithm that issues 2c serial memory accesses ends up
taking time proportional to at least 23c/2.

Parallelism offers dramatic improvements. A circuit of size 2c can handle
a pipeline of 2c/2 parallel memory accesses from a single CPU; some sorting
algorithms can take advantage of this, reducing the sorting time from roughly
23c/2 to roughly 2c. Furthermore, a realistic circuit of size 2c can have roughly
2c tiny processors acting in parallel; some sorting algorithms can take advantage
of this, reducing the sorting time from roughly 2c to roughly 2c/2.

Specifically, Schimmler’s algorithm in [10] uses an n × n mesh of n2 small
processors to sort n2 small objects in approximately 8n steps. Each processor
has storage for one object, a small amount of comparison circuitry, and wires
connecting it to the four adjacent processors. In each step, each processor per-
forms a compare-exchange with an adjacent processor, sorting the two objects
in the two processors in an order specified by the algorithm. An alternative to
Schimmler’s algorithm is the Schnorr-Shamir algorithm in [11], which uses a
more complicated order of operations but reduces 8 to approximately 3.

In particular, one can sort 2c vectors (f1(m1),m1, 1) together with 2c vec-
tors (f2(m2),m2, 2) by applying Schimmler’s algorithm with n = 2(c+1)/2. The
algorithm uses 2c+1 small processors to sort these 2c+1 objects in approximately
2(c+7)/2 compare-exchange steps. Similar comments apply to the other sorting
steps required in Wagner’s algorithm.

The algorithm also needs 2c evaluations of f1, 2c evaluations of f2, etc., but
2c (or fewer) parallel processors can handle these evaluations at negligible cost
for any reasonable choice of f1, f2, f3, f4.

Summary: This parallelized attack uses time on the scale of 2c/2; uses a
machine whose size is on the scale of 2c; and produces on the scale of 24c−4b

collisions.

Precomputation. There is an imbalance in the above parallelized attack. The
computation of 2c values of f1(m1) takes very little time—the same time as com-
puting one value—because it is parallelized perfectly across 2c small processors.
The sorting of those values takes much more time, the time for roughly 2c/2

compare-exchange steps.
Improvement: Spend more time searching for useful values of m1. For exam-

ple, rather than taking the first m1 that comes to mind, each processor can try
2c/2 values of m1, choosing the smallest f1(m1) in reverse lexicographic order—
typically one where the last c/2 bits are 0. Similarly spend more time searching
for useful values of m2,m3,m4.

This improvement increases the final number of collisions to the scale of
29c/2−4b. It increases the time for the attack to roughly 2c/2 compare-exchange
steps and roughly 2c/2 evaluations of fi; still on the scale of 2c/2 overall, when
evaluation of fi is reasonably fast.

By repeating the same attack 2t−c/2 times one increases the time to the scale
of 2t and increases the number of collisions to the scale of 2t+4c−4b, as advertised
in Section 1.

Constant-factor improvements. Assume for definiteness that c is odd, and
that there are 2c+1 processors in a 2(c+1)/2 × 2(c+1)/2 mesh. Also assume that
9c ≤ 8b.

Half of the processors compute f1(m1) for various m1’s, while the other half
of the processors compute f2(m2) for various m2’s. Specifically, each processor
puts a c-bit processor ID into mi (the ID and i determining the processor), varies
the next (c + 1)/2 bits of mi, sets the remaining mi bits to 0, and computes the
2(c+1)/2 values fi(mi), remembering the mi whose fi(mi) value is smallest in
reverse lexicographic order. The fi(mi) values can be safely compressed to their
last c bits; other bits will be needed later but will also be recomputed later,
taking negligible extra time.

The processors then sort into lexicographic order the 2c+1 vectors

(first c bits of fi(mi),mi, i).

Each vector can be stored and communicated as (5c+3)/2 bits: c bits of fi(mi),
(3c + 1)/2 variable bits of mi, and 1 bit for i. Schimmler’s algorithm performs
this sorting with 2(c+7)/2 compare-exchange steps.

All pairs (m1,m2) having the same first c bits of f1(m1) and f2(m2) have now
been brought very close together. A negligible number of local communication
steps finds all of the pairs (discarding extras if there are more than 2c) and
spreads them among the 2c+1 processors. Each pair is stored as one mi per
processor, i.e., (3c + 1)/2 bits per processor.

The processors now repeat with f3 and f4, using another 2(c+1)/2 evaluations
of fi and another 2(c+7)/2 compare-exchange steps for Schimmler’s algorithm.
Each processor needs (5c + 3)/2 bits to store the vectors being sorted, and
(3c+1)/2 bits for the saved pairs from the previous vectors, totalling 4c+2 bits.

The processors then sort the 2c+1 vectors

(next c− 1 bits of fi(mi)⊕ fi+1(mi+1),mi,mi+1, i)

for i ∈ {1, 3}, using another 2(c+7)/2 compare-exchange steps. Each vector is
stored in 4c + 1 bits.

All (m1,m2) and (m3,m4) colliding in the next c−1 bits of f1(m1)⊕f2(m2)
and the next c − 1 bits of f3(m3) ⊕ f4(m4) have now been brought very close
together. As before, a negligible amount of extra work finds all of these collisions
(discarding extras if there are more than 2c+1) and spreads them among the 2c+1

processors.
The processors replace each (m1,m2,m3,m4) with the next 4c + 1 bits of

f1(m1) ⊕ f2(m2) ⊕ f3(m3) ⊕ f4(m4). If 6c > 4b then only 4b − 2c + 1 bits are

available and the extra 6c − 4b bits can be profitably occupied by some bits of
(m1,m2,m3,m4). The processors then find collisions in these 4c + 1 bits, using
another 2(c+7)/2 compare-exchange steps.

If a collision occurs, the processors find the relevant m1 etc. by recomputing
the possibilities for f1(m1) etc.; this occurs rarely (when c is not very close to
8b/9), so recomputation is better than spending memory on remembering m1

etc. Finally, the processors check whether there is a collision in all of the bits of
f1(m1)⊕ f2(m2)⊕ f3(m3)⊕ f4(m4).

The total time for this attack is dominated by 2(c+3)/2 evaluations of fi and
2(c+11)/2 compare-exchange steps on (4c + 1)-bit strings. Each processor needs
four (4c + 1)-bit links to adjacent processors, 4c + 2 bits of storage, a similar
amount of comparison circuitry, and a circuit that can compute two of the fi’s.
The chance of finding a collision is approximately 2(9c+1)/2−4b.

Repeating the same computation 2t−(c+1)/2 times raises the collision-finding
chance to approximately 2t+4c−4b, raises the number of evaluations of fi to 2t+1,
and raises the number of compare-exchange steps to 2t+5. Of course, the relative
number of fi evaluations and compare-exchange steps can and should be adjusted
to account for the relative costs of these operations.

3 History, motivation, etc.

Incrementality. Bellare and Micciancio in [3] proposed the general structure
(m1,m2, . . .) 7→ f1(m1) + f2(m2) + · · · for a collision-resistant function allowing
“incrementality,” i.e., fast adjustment of the function value if mi changes to m′

i.
They considered several choices of group operations +:

• “XHASH”: xor, i.e., addition of vectors modulo 2, i.e., addition in (Z/2)k.
• “AdHASH”: addition modulo a large integer m, i.e., addition in Z/m.
• “LtHASH”: addition of vectors modulo m, i.e., addition in (Z/m)k.
• “MuHASH”: multiplication modulo a prime.

Bellare and Micciancio rejected xor (“the most tempting choice, XOR, doesn’t
work”) because of the following easy attack for very long inputs: consider the
4b-bit vectors f1(m′

1)−f1(m1), f2(m′
2)−f2(m2), etc.; use linear algebra to find a

linear dependency modulo 2 between these vectors, i.e., to find δ1, δ2, . . . ∈ {0, 1},
not all zero, such that δ1(f1(m′

1) − f1(m1)) + δ2(f2(m′
2) − f2(m2)) + · · · = 0;

observe that f1(m1 + δ1(m′
1 −m1)) + f2(m2 + δ2(m′

2 −m2)) + · · · collides with
f1(m1)+ f2(m2)+ · · · . But this attack breaks down for short inputs: the chance
of a linear dependency among 4 vectors is only about 24−4b.

Wagner then introduced his algorithm, and in [15, page 14] stated that the
algorithm could find long-message collisions in AdHash

with complexity O(22
√

lg m). . . . As a consequence of this attack, we will
need to ensure that m � 21600 if we want 80-bit security. The need for
such a large modulus may reduce or negate the performance advantages
of AdHash.

But the speed of the attack is not nearly as impressive for short messages, such
as the 4-block messages considered in this paper.

Of course, limiting the input length to 4 blocks also makes the incrementality
of the function less impressive, but updates can still be 4 times faster than they
would have been otherwise.

Reusing ciphers. A stream cipher can be viewed as a function expanding its
input (a key and a nonce) into an output stream. Many stream ciphers have
large setup costs and aim only at efficiency for long outputs, but some stream
ciphers have much smaller setup costs and can be used for very short outputs.
At an extreme is the Salsa20 stream cipher that I introduced in [5], which allows
random access to blocks of the output stream: Salsa20 expands a 256-bit key,
a 64-bit nonce, and a 64-bit block counter into a 512-bit block. Classic “filter
generator” stream ciphers also allow fast random access.

It is natural to consider ways to reuse these expansion functions inside hash
functions. Reuse allows some sharing of software, some sharing of precious hard-
ware resources, and some sharing of cryptanalysis. The Bellare-Micciancio struc-
ture is one of the simplest imaginable approaches, with the interesting feature
of allowing highly parallel computation given adequate hardware resources.

Similarly, block ciphers can be viewed as expansion functions: for example,
counter-mode AES expands a 128-bit key k and a 128-bit nonce n into the 384-
bit string AES(k, n),AES(k, n + 1),AES(k, n + 2). There is a long history of
reuse of block ciphers inside hash functions; see, e.g., [8]. But the constraint of
small-block invertibility seems to interfere with attempts to achieve security at
high speed. The fastest unbroken block ciphers are considerably slower than the
fastest unbroken stream ciphers.

Do ciphers and compression functions have the same security goals? Cer-
tainly not. For example, weakness of a negligible fraction of keys has no rele-
vance to stream-cipher security but often allows easy collisions when the keys
are viewed as compression-function inputs. One can nevertheless recognize con-
siderable overlap between, e.g., differential cryptanalysis of a stream cipher and
differential cryptanalysis of a compression function. The community saves time
when this cryptanalytic effort is focused on one function.

The Rumba20 compression function. Here is a 1536-bit-to-512-bit compres-
sion function Rumba20 obtained by feeding Salsa20 to the above design strategy.

Salsa20 packs its 384-bit input and 128 bits of “diagonal constants” into a
512-bit block, which is then transformed to produce the 512-bit Salsa20 output.
The diagonal constants can easily be tweaked to produce four 384-bit-to-512-bit
functions f1, f2, f3, f4:

• f1 uses diagonal constants firstRumba20bloc in ASCII.
• f2 uses diagonal constants secondRumba20blo in ASCII.
• f3 uses diagonal constants thirdRumba20bloc in ASCII.
• f4 uses diagonal constants fourthRumba20blo in ASCII.

Rumba20 compresses a 1536-bit string (m1,m2,m3,m4) to the 512-bit string
f1(m1)⊕ f2(m2)⊕ f3(m3)⊕ f4(m4), eliminating 1024 bits.

Rumba20 will take about twice as many cycles per eliminated byte as Salsa20
takes per encrypted byte. The eSTREAM project has measured Salsa20 as taking
4.36 cycles per byte on a PowerPC G4 7410, 7.83 cycles per byte on an Athlon
64 X2, 11.89 cycles per byte on a Pentium M, and 16.96 cycles per byte on a
Pentium 4 f29, so Rumba20 will be competitive in speed with SHA-256. Detailed
comparison will of course require an implementation.

This paper’s attack improves the price-performance ratio of Rumba20 col-
lision search if the attacker has more than 285 small processors, and reaches a
limiting price-performance ratio on the scale of 2171 when the attacker reaches
2114 small processors. These computations obviously will not be carried out in
the foreseeable future, and would have to be dramatically improved before they
become a threat.

Can one do better with non-generic attacks that somehow take advantage
of Salsa20? One approach is to find many Salsa20 inputs whose outputs begin
with many 0’s, or that are confined to some other linear subspace. The Rumba20
output will then be confined to the same subspace, speeding up the attack in
this paper. The problem is that finding the inputs seems difficult.

Salsa20, like MD5 and AES and many other cryptographic functions, has a
multiple-round structure. Existing cryptanalysis of the Salsa20 stream cipher has
focused on reduced-round variants, using fewer than half of Salsa20’s 20 rounds—
and suggesting that Salsa20 can be made twice as fast with no loss in security.
Presumably 20 rounds are also overkill for Rumba20’s collision resistance, but
it is not obvious exactly how many rounds are required. I look forward to seeing
independent cryptanalysis of reduced-round variants of Rumba20.

Going beyond collision resistance. Saarinen in [9] criticized the “VSH” com-
pression function for (1) not hiding its input very well—r unknown bits of a
preimage could be found in time 2r/2, and sometimes much less, rather than the
hoped-for 2r; (2) not allowing truncation—collisions in an r-bit truncation of
VSH could be found in time much less than 2r/2; and (3) in general not hiding
its algebraic structure.

Similar criticisms could be leveled against Rumba20, and against any other
compression function of the form (m1,m2,m3,m4) 7→ f1(m1)⊕f2(m2)⊕f3(m3)⊕
f4(m4).

The obvious response is that, in applications needing more than collision
resistance (and perhaps in all applications), the compression-function output
should be fed through an output filter before it is given to the application.

References

1. — (no editor), Proceedings of the 18th annual ACM symposium on theory of com-
puting, Association for Computing Machinery, New York, 1986. ISBN 0–89791–
193–8. See [11].

2. Rana Barua, Tanja Lange (editors), Progress in Cryptology—INDOCRYPT 2006,
7th International Conference on Cryptology in India, Kolkata, India, December 11–
13, 2006, Proceedings, Lecture Notes in Computer Science, 4329, Springer, 2006.
ISBN 3–540–49767–6. See [9].

3. Mihir Bellare, Daniele Micciancio, A new paradigm for collision-free hashing: incre-
mentality at reduced cost (1996); see also newer version [4]. URL: http://www-cse.
ucsd.edu/~mihir/papers/incremental.html. Citations in this document: §3.

4. Mihir Bellare, Daniele Micciancio, A new paradigm for collision-free hashing: in-
crementality at reduced cost, in [7] (1997), 163–192; see also older version [3].

5. Daniel J. Bernstein, Salsa20, eSTREAM, ECRYPT Stream Cipher Project, Report
2005/025 (2005). URL: http://www.ecrypt.eu.org/stream. Citations in this doc-
ument: §3.

6. Richard P. Brent, H. T. Kung, The area-time complexity of binary multiplication,
Journal of the ACM 28, 521–534. URL: http://wwwmaths.anu.edu.au/~brent/
pub/pub055.html. Citations in this document: §1.

7. Walter Fumy (editor), Advances in cryptology: EUROCRYPT ’97, Lecture Notes
in Computer Science, 1233, Springer-Verlag, Berlin, 1997. ISBN 3–540–62975–0.
See [4].

8. Bart Preneel, René Govaerts, Joos Vandewalle, Hash functions based on block ci-
phers: a synthetic approach, in [12] (1994), 368–378. Citations in this document:
§3.

9. Markku-Juhani O. Saarinen, Security of VSH in the real world, in [2] (2006), 95–
103. URL: http://eprint.iacr.org/2006/103. Citations in this document: §3.

10. Manfred Schimmler, Fast sorting on the instruction systolic array, report 8709,
Christian-Albrechts-Universität Kiel, 1987. Citations in this document: §2.

11. Claus P. Schnorr, Adi Shamir, An optimal sorting algorithm for mesh-connected
computers, in [1] (1986), 255–261. Citations in this document: §2.

12. Douglas R. Stinson (editor), Advances in cryptology—CRYPTO ’93: 13th annual
international cryptology conference, Santa Barbara, California, USA, August 22–
26, 1993, proceedings, Lecture Notes in Computer Science, 773, Springer-Verlag,
Berlin, 1994. ISBN 3–540–57766–1, 0–387–57766–1. MR 95b:94002. See [8].

13. Paul C. van Oorschot, Michael Wiener, Parallel collision search with cryptana-
lytic applications, Journal of Cryptology 12 (1999), 1–28. ISSN 0933–2790. URL:
http://members.rogers.com/paulv/papers/pubs.html. Citations in this docu-
ment: §1.

14. David Wagner, A generalized birthday problem (extended abstract), in [17] (2002),
288–303; see also newer version [15]. URL: http://www.cs.berkeley.edu/~daw/
papers/genbday.html.

15. David Wagner, A generalized birthday problem (extended abstract) (long version)
(2002); see also older version [14]. URL: http://www.cs.berkeley.edu/~daw/

papers/genbday.html. Citations in this document: §1, §1, §3.
16. Michael J. Wiener, The full cost of cryptanalytic attacks, Journal of Cryptol-

ogy 17 (2004), 105–124. ISSN 0933–2790. URL: http://www3.sympatico.ca/

wienerfamily/Michael/. Citations in this document: §1.
17. Moti Yung (editor), Advances in cryptology—CRYPTO 2002: 22nd annual inter-

national cryptology conference, Santa Barbara, California, USA, August 2002, pro-
ceedings, Lecture Notes in Computer Science, 2442, Springer-Verlag, Berlin, 2002.
ISBN 3–540–44050–X. See [14].

