Putnam Mathematical Competition, 3 December 2005

Problem A1

Show that every positive integer is a sum of one or more numbers of the form $2^r 3^s$, where r and s are nonnegative integers and no summand divides another. (For example, 23 = 9 + 8 + 6.)

Problem A2

Let $S = \{(a, b) \mid a = 1, 2, ..., n, b = 1, 2, 3\}$. A rook tour of S is a polygonal path made up of line segments connecting points $p_1, p_2, ..., p_{3n}$ in sequence such that (i) $p_i \in S$, (ii) p_i and p_{i+1} are a unit distance apart, for $1 \le i < 3n$, (iii) for each $p \in S$ there is a unique i such that $p_i = p$. How many rook tours are there that begin at (1, 1) and end at (n, 1)?

(An example of such a rook tour for n = 5 is depicted below.)

Problem A3

Let p(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in the complex plane. Put $g(z) = p(z)/z^{n/2}$. Show that all zeros of g'(z) = 0 have absolute value 1.

Problem A4

Let H be an $n \times n$ matrix all of whose entries are ± 1 and whose rows are mutually orthogonal. Suppose H has an $a \times b$ submatrix whose entries are all 1. Show that $ab \leq n$.

Problem A5

Evaluate $\int_0^1 \frac{\ln(x+1)}{x^2+1} dx$.

Problem A6

Let n be given, $n \ge 4$, and suppose that P_1, P_2, \ldots, P_n are n randomly, independently and uniformly, chosen points on a circle. Consider the convex n-gon whose vertices are the P_i . What is the probability that at least one of the vertex angles of this polygon is acute?

Problem B1

Find a nonzero polynomial P(x, y) such that $P(\lfloor a \rfloor, \lfloor 2a \rfloor) = 0$ for all real numbers a. (Note: $\lfloor v \rfloor$ is the greatest integer less than or equal to v.)

Problem B2

Find all positive integers n, k_1, \ldots, k_n such that $k_1 + \cdots + k_n = 5n - 4$ and

$$\frac{1}{k_1} + \dots + \frac{1}{k_n} = 1.$$

Problem B3

Find all differentiable functions $f: (0, \infty) \to (0, \infty)$ for which there is a positive real number a such that

$$f'\left(\frac{a}{x}\right) = \frac{x}{f(x)}$$

for all x > 0.

Problem B4

For positive integers m and n, let f(m, n) denote the number of n-tuples (x_1, x_2, \ldots, x_n) of integers such that $|x_1| + |x_2| + \cdots + |x_n| \le m$. Show that f(m, n) = f(n, m).

Problem B5

Let $P(x_1, \ldots, x_n)$ denote a polynomial with real coefficients in the variables x_1, \ldots, x_n , and suppose that

(a)
$$\left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2}\right) P(x_1, \dots, x_n) = 0$$
 (identically)

and that

(b)
$$x_1^2 + \dots + x_n^2$$
 divides $P(x_1, \dots, x_n)$.

Show that P = 0 identically.

Problem B6

Let S_n denote the set of all permutations of the numbers 1, 2, ..., n. For $\pi \in S_n$, let $\sigma(\pi) = 1$ if π is an even permutation and $\sigma(\pi) = -1$ if π is an odd permutation. Also, let $v(\pi)$ denote the number of fixed points of π . Show that

$$\sum_{\pi \in S_n} \frac{\sigma(\pi)}{v(\pi) + 1} = (-1)^{n+1} \frac{n}{n+1}.$$

Solutions

D. J. Bernstein, 4 December 2005

Problem A1

Show that every positive integer is a sum of one or more numbers of the form $2^r 3^s$, where r and s are nonnegative integers and no summand divides another. (For example, 23 = 9 + 8 + 6.)

Solution: For each $n \ge 0$ define a sequence E(n) of elements of $2^{\mathbf{N}}3^{\mathbf{N}}$ as follows:

- if n = 0 then E(n) is the empty sequence ();
- if n > 0 and n is even then E(n) is 2E(n/2), the sequence obtained by doubling each component of E(n/2);
- if n > 0 and n is odd then E(n) is $(E(n 3^k), 3^k)$, the sequence obtained by appending 3^k to $E(n 3^k)$, where k is the largest integer such that $3^k \le n$.

I claim that the sum of E(n) is n; that each component of E(n) is even if n is even; and that no component of E(n) divides another component. Proof:

- n = 0: E(n) is empty so it has sum 0.
- n > 0 and n is even: Assume inductively that E(n/2) has sum n/2 and that no component of E(n/2) divides another component. Then E(n) = 2E(n/2) has sum 2(n/2) = n; each component of E(n) is even; and no component divides another component.
- n > 0 and n is odd: Find the largest integer k such that $3^k \le n$. Note that $n 3^k$ is even. Assume inductively that $E(n 3^k)$ has sum $n 3^k$; that each component of $E(n 3^k)$ is even; and that no component of $E(n 3^k)$ divides another component. Then $E(n) = (E(n 3^k), 3^k)$ has sum $(n 3^k) + 3^k = n$; each component of $E(n 3^k)$, being even, does not divide 3^k ; and each component of $E(n 3^k)/2$, being at most $(n 3^k)/2 < (3^{k+1} 3^k)/2 = 3^k$, is not divisible by 3^k , so each component of $E(n 3^k)$ is not divisible by 3^k .

In particular, for $n \ge 1$, the components of E(n) are one or more elements of $2^{\mathbf{N}}3^{\mathbf{N}}$, adding up to n, none dividing the others.

Problem A2

Let $S = \{(a, b) \mid a = 1, 2, ..., n, b = 1, 2, 3\}$. A rook tour of S is a polygonal path made up of line segments connecting points $p_1, p_2, ..., p_{3n}$ in sequence such that (i) $p_i \in S$, (ii) p_i and p_{i+1} are a unit distance apart, for $1 \le i < 3n$, (iii) for each $p \in S$ there is a unique *i* such that $p_i = p$. How many rook tours are there that begin at (1, 1) and end at (n, 1)?

(An example of such a rook tour for n = 5 is depicted below.)

Solution: The answer is 0 for n = 1 and 2^{n-2} for $n \ge 2$.

For each $n \ge 1$, define r_n as the number of $n \times 3$ rook tours beginning at (1,1) and ending at (n,1), and define s_n as the number of $n \times 3$ rook tours beginning at (1,1) and ending at (n,3).

One can obtain an $n \times 3$ rook tour beginning at (1, 1) and ending at (n, 1) as follows. Choose $k \in \{1, 2, ..., n-1\}$. Take a $k \times 3$ rook tour beginning at (1, 1) and ending at (k, 3). Step to the right n-k times to (n, 3); then down once to (n, 2); then left n-k-1 times to (k+1, 2); then down once to (k+1, 1); then right n-k-1 times to (n, 1).

Every $n \times 3$ rook tour beginning at (1, 1) and ending at (n, 1) can be obtained uniquely in this way. Indeed, the final step down on the tour must be from (k + 1, 2) to (k + 1, 1)for a unique $k \in \{1, 2, ..., n - 1\}$; it must be followed by n - k - 1 steps right to (n, 1); it must be preceded by n - k - 1 steps left from (n, 2), since any earlier step up (or left) would prevent the tour from reaching (n, 2); (n, 2) must be preceded by a step down from (n, 1); and (n, 1) must be preceded by n - k steps right from (k, 1).

Consequently $r_n = s_1 + s_2 + \cdots + s_{n-1}$ for all $n \ge 1$. In particular, $r_1 = 0$.

Similarly, one can obtain an $n \times 3$ rook tour beginning at (1, 1) and ending at (n, 3) by choosing $k \in \{1, 2, \ldots, n-1\}$, taking a $k \times 3$ rook tour beginning at (1, 1) and ending at (k, 1), stepping to the right n - k times, stepping up once, stepping left n - k - 1 times, stepping up once, and stepping right n - k - 1 times; or by simply starting from (1, 1), stepping to the right n - 1 times, stepping up once, stepping left n - 1 times, stepping up once, and stepping right n - 1 times. Every $n \times 3$ rook tour beginning at (1, 1) and ending at (n, 3) can be obtained uniquely in this way.

Consequently $s_n = r_1 + r_2 + \cdots + r_{n-1} + 1$ for all $n \ge 1$. In particular, $s_1 = 1$.

Now $r_n = s_n = 2^{n-2}$ for all $n \ge 2$. Indeed, assume inductively that $r_k = s_k = 2^{k-2}$ for $2 \le k < n$. Then $r_n = s_1 + s_2 + \dots + s_{n-1} = 1 + 2^0 + \dots + 2^{n-3} = 2^{n-2}$ and $s_n = r_1 + r_2 + \dots + r_{n-1} + 1 = 0 + 2^0 + \dots + 2^{n-3} + 1 = 2^{n-2}$.

Problem A3

Let p(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in the complex plane. Put $g(z) = p(z)/z^{n/2}$. Show that all zeros of g'(z) = 0 have absolute value 1.

Solution: I'm annoyed by this problem, for two reasons.

First, the definition of g(z) is ambiguous when n is odd. Does $z^{n/2}$ mean the principal branch of the n/2 power, applied to z? Or does it mean the principal branch of the square root, applied to z^n ? Or is z not actually a complex number, but an element of a Riemann sheet chosen so that the square root does not need a branch cut? My proof works for any of these choices of g, but I can imagine proofs that work with all the roots of g and that occasionally break down for the first two choices of g. The problem should have said "Show that all zeros of zp'(z) - (n/2)p(z) have absolute value 1."

Second, the statement is false for n = 0. Consider, for example, p(z) = 1. This is a polynomial of degree 0, and it has no zeros, so all of its zeros have absolute value 1. The function $g(z) = p(z)/z^{n/2}$ is then constant, so its derivative is 0, so its derivative has every complex number (in the ambiguous domain) as a root, not just complex numbers of absolute value 1.

Assume from now on that $n \ge 1$. Factor p(z) as $p_n(z - r_1)(z - r_2)\cdots(z - r_n)$. By hypothesis each r_i has absolute value 1. If |z| > 1 then, by Lemma 2, $(z + r_j)/(z - r_j)$ has positive real part for each j, so—since $n \ge 1 - \sum_j (z + r_j)/(z - r_j)$ has positive real part. Similarly, if |z| < 1 then $\sum_j (z + r_j)/(z - r_j)$ has negative real part. Either way $\sum_j (z + r_j)/(z - r_j)$ is nonzero; i.e., $\sum_j 2z/(z - r_j) \ne \sum_j (z - r_j)/(z - r_j) = n$; i.e., $2zp'(z)/p(z) \ne n$; i.e., $g'(z) \ne 0$.

Lemma 1: If $z \in \mathbb{C}$ then (z+1)/(z-1) has positive real part when |z| > 1 and negative real part when |z| < 1.

Proof: Write z in polar coordinates as $re^{i\theta}$. Then $(z+1)/(z-1) = (re^{i\theta}+1)/(re^{i\theta}-1)$ has real part $(r^2-1)/((r\cos\theta-1)^2+(r\sin\theta)^2)$, which is positive if r > 1 and negative if $0 \le r < 1$.

Lemma 2: If $r \in \mathbf{C}$, |r| = 1, and $|z| \in \mathbf{C}$, then (z+r)/(z-r) has positive real part when |z| > 1 and negative real part when |z| < 1.

Proof: Apply Lemma 1 to z/r.

Problem A4

Let H be an $n \times n$ matrix all of whose entries are ± 1 and whose rows are mutually orthogonal. Suppose H has an $a \times b$ submatrix whose entries are all 1. Show that $ab \leq n$.

Solution: Write v_1, v_2, \ldots, v_b for the length-*n* row vectors covering *H*. By assumption

each entry of v_i is ± 1 , so v_i has squared length n. By assumption v_1, v_2, \ldots, v_b are pairwise orthogonal, so $v_1 + v_2 + \cdots + v_b$ has squared length nb. On the other hand, by assumption $v_1 + v_2 + \cdots + v_b$ has a entries equal to b, so $v_1 + v_2 + \cdots + v_b$ has squared length at least ab^2 . Thus $ab^2 \leq nb$; consequently $ab \leq n$, whether or not b = 0.

Problem A5

Evaluate $\int_0^1 \frac{\ln(x+1)}{x^2+1} dx.$

Solution: The answer is $(\pi/8) \log 2$. Fast proof by Bhargava, Kedlaya, and Ng: The integral is $\int_0^{\pi/4} \log(\tan \theta + 1) d\theta = \int_0^{\pi/4} ((1/2) \log 2 + \log \cos(\pi/4 - \theta) - \log \cos \theta) d\theta = \int_0^{\pi/4} ((1/2) \log 2) d\theta = (\pi/8) \log 2$ since $\int_0^{\pi/4} \log \cos(\pi/4 - \theta) d\theta = \int_0^{\pi/4} \log \cos \theta d\theta$.

Problem A6

Let n be given, $n \ge 4$, and suppose that P_1, P_2, \ldots, P_n are n randomly, independently and uniformly, chosen points on a circle. Consider the convex n-gon whose vertices are the P_i . What is the probability that at least one of the vertex angles of this polygon is acute?

Solution: The answer is $(n^2 - 2n)/2^{n-1}$.

Define $\theta(p,q) \in [0, 2\pi)$, where p and q are points on the circle, as the angle from p to q in the clockwise direction.

Define a vertex as "happy" if it is immediately *before* an acute-angled vertex. In other words, if v, w, x are consecutive vertices in clockwise order, then v is happy if and only if the angle at vertex w is acute. Equivalently: v is happy if and only if $\theta(v, x) > \pi$. Equivalently: v is happy if and only if at most one other vertex P has $\theta(v, P) \leq \pi$.

Critical fact 1: P_1 is happy with probability $n/2^{n-1}$.

Indeed, here is a partition of P_1 's happiness into n disjoint possibilities, each occurring with probability $1/2^{n-1}$:

• $\theta(P_1, P_i) > \pi$ for all $i \neq 1$;

•
$$\theta(P_1, P_i) > \pi$$
 for all $i \notin \{1, 2\}$ while $\theta(P_1, P_2) \leq \pi$

- $\theta(P_1, P_i) > \pi$ for all $i \notin \{1, 3\}$ while $\theta(P_1, P_3) \le \pi$;
- ...;
- $\theta(P_1, P_i) > \pi$ for all $i \notin \{1, n\}$ while $\theta(P_1, P_n) \le \pi$.

Critical fact 2: P_1 and P_2 are simultaneously happy with probability $1/2^{n-3}(n-1)$.

This probability is the average, over P_1, P_2 , of the conditional probability given P_1, P_2 . I

claim that the conditional probability is exactly $((\pi - \alpha)^{n-2} + (n-2)\alpha(\pi - \alpha)^{n-3})/(2\pi)^{n-2}$ where $\alpha = \min \{\theta(P_1, P_2), \theta(P_2, P_1)\}$. The distribution of α is uniform over $[0, \pi]$, so the average of $((\pi - \alpha)^{n-2} + (n-2)\alpha(\pi - \alpha)^{n-3})/(2\pi)^{n-2}$ is

$$\frac{1}{\pi} \int_0^{\pi} \frac{(\pi - \alpha)^{n-2} + (n-2)\alpha(\pi - \alpha)^{n-3}}{(2\pi)^{n-2}} d\alpha$$
$$= \frac{1}{\pi} \int_0^{\pi} \frac{(3-n)(\pi - \alpha)^{n-2} + (n-2)\pi(\pi - \alpha)^{n-3}}{(2\pi)^{n-2}} d\alpha$$
$$= \frac{1}{2^{n-2}\pi^{n-1}} \left((3-n)\frac{\pi^{n-1}}{n-1} + (n-2)\pi\frac{\pi^{n-2}}{n-2} \right)$$
$$= \frac{3-n}{2^{n-2}(n-1)} + \frac{n-1}{2^{n-2}(n-1)} = \frac{1}{2^{n-3}(n-1)}.$$

Proof of the claim: Assume without loss of generality that $\theta(P_1, P_2) \leq \pi$, i.e., that $\alpha = \theta(P_1, P_2)$. Now P_1 is happy if and only if $\theta(P_1, P_3), \ldots, \theta(P_1, P_n)$ are all $> \pi$; and P_2 is happy if and only if at most one of $\theta(P_2, P_3), \ldots, \theta(P_2, P_n)$ is $\leq \pi$. Thus P_1 and P_2 are simultaneously happy if and only if one of the following disjoint events occurs:

- $\pi + \alpha < \theta(P_1, P_i) < 2\pi$ for each $i \notin \{1, 2\}$ —which, given P_1 and P_2 , occurs with conditional probability $(\pi \alpha)^{n-2}/(2\pi)^{n-2}$;
- $\pi + \alpha < \theta(P_1, P_i) < 2\pi$ for each $i \notin \{1, 2, 3\}$ while $\pi < \theta(P_1, P_3) \le \pi + \alpha$ —which, given P_1 and P_2 , occurs with conditional probability $\alpha(\pi \alpha)^{n-3}/(2\pi)^{n-2}$;
- $\pi + \alpha < \theta(P_1, P_i) < 2\pi$ for each $i \notin \{1, 2, 4\}$ while $\pi < \theta(P_1, P_4) \le \pi + \alpha$ —which, given P_1 and P_2 , occurs with conditional probability $\alpha(\pi \alpha)^{n-3}/(2\pi)^{n-2}$;
- •...;
- $\pi + \alpha < \theta(P_1, P_i) < 2\pi$ for each $i \notin \{1, 2, n\}$ while $\pi < \theta(P_1, P_n) \le \pi + \alpha$ —which, given P_1 and P_2 , occurs with conditional probability $\alpha(\pi \alpha)^{n-3}/(2\pi)^{n-2}$.

Add to obtain $((\pi - \alpha)^{n-2} + (n-2)\alpha(\pi - \alpha)^{n-3})/(2\pi)^{n-2}$ as claimed.

Critical fact 3: P_1, P_2, P_3 are all happy with probability 0.

Indeed, in each of the above ways for P_1, P_2 to be happy, P_3 is visibly unhappy: either $\pi + \alpha < \theta(P_1, P_3) \le 2\pi$, in which case both $\theta(P_3, P_1)$ and $\theta(P_3, P_2)$ are below π , or $\pi < \theta(P_1, P_3) \le \pi + \alpha$ while $\pi + \alpha < \theta(P_1, P_4) \le 2\pi$, in which case both $\theta(P_3, P_1)$ and $\theta(P_3, P_1)$ are below π . This is where the proof uses the hypothesis that $n \ge 4$.

Putting it all together: Permute indices to see that P_i is happy with probability $n/2^{n-1}$; that P_i, P_j are simultaneously happy with probability $1/2^{n-3}(n-1)$, if the indices i, j are distinct; and that P_i, P_j, P_k are simultaneously happy with probability 0, if i, j, k are distinct. By inclusion-exclusion, the probability of at least one happy vertex is $n(n/2^{n-1}) - {n \choose 2}(1/2^{n-3}(n-1)) = (n^2 - 2n)/2^{n-1}$.

Problem B1

Find a nonzero polynomial P(x, y) such that $P(\lfloor a \rfloor, \lfloor 2a \rfloor) = 0$ for all real numbers a. (Note: $\lfloor v \rfloor$ is the greatest integer less than or equal to v.)

Solution: One answer is the nonzero polynomial P(x, y) = (y - 2x)(y - 2x - 1).

Define $i = \lfloor a \rfloor$. Then $i \leq a < i+1$. If $i \leq a < i+0.5$ then $2i \leq 2a < 2i+1$ so $\lfloor 2a \rfloor = 2i = 2\lfloor a \rfloor$ so $\lfloor 2a \rfloor - 2\lfloor a \rfloor = 0$. Otherwise $i+0.5 \leq a < i+1$ so $2i+1 \leq 2a < 2i+2$ so $\lfloor 2a \rfloor = 2i+1 = 2\lfloor a \rfloor + 1$ so $\lfloor 2a \rfloor - 2\lfloor a \rfloor - 1 = 0$. Either way $P(\lfloor a \rfloor, \lfloor 2a \rfloor) = 0$.

Problem B2

Find all positive integers n, k_1, \ldots, k_n such that $k_1 + \cdots + k_n = 5n - 4$ and

$$\frac{1}{k_1} + \dots + \frac{1}{k_n} = 1.$$

Solution: 1, 1; 3, 2, 3, 6; 3, 2, 6, 3; 3, 3, 2, 6; 3, 3, 6, 2; 3, 6, 2, 3; 3, 6, 3, 2; 4, 4, 4, 4, 4.

By inspection each of these possibilities works. Conversely, assume that $k_1 + \cdots + k_n = 5n-4$ and $1/k_1 + \cdots + 1/k_n = 1$; I will show that n, k_1, \ldots, k_n is one of these possibilities.

If k_1, \ldots, k_n are all equal then $1 = 1/k_1 + \cdots + 1/k_n = n/k_1$ so $k_1 = n$ and $5n - 4 = k_1 + \cdots + k_n = nk_1 = n^2$. Hence $(n - 4)(n - 1) = n^2 - 5n + 4 = 0$. Either n = 1, in which case $(n, k_1, \ldots, k_n) = (1, 1)$; or n = 4, in which case $(n, k_1, \ldots, k_n) = (4, 4, 4, 4, 4)$.

Assume from now on that k_1, \ldots, k_n are not all equal. The average of k_1, \ldots, k_n is (5n-4)/n so the geometric average of k_1, \ldots, k_n is below (5n-4)/n. The average of $1/k_1, \ldots, 1/k_n$ is 1/n so the geometric average of $1/k_1, \ldots, 1/k_n$ is below 1/n. Thus the geometric average of $k_1, \ldots, k_n, 1/k_1, \ldots, 1/k_n$ is below $\sqrt{((5n-4)/n)(1/n)}$; but this geometric average is equal to 1. Therefore $1 < (5n-4)/n^2$; so (n-1)(n-4) < 0; so 1 < n < 4; so n = 2 or n = 3.

If n = 2 then $k_1 + k_2 = 5n - 4 = 6$ so $1/k_1 + 1/k_2$ is one of 1/1 + 1/5, 1/2 + 1/4, 1/3 + 1/3, none of which equal 1.

If n = 3 then $k_1 + k_2 + k_3 = 5n - 4 = 11$ so $1/k_1 + 1/k_2 + 1/k_3$ is one of $1/1 + \dots , 1/2 + 1/2 + \dots , 1/2 + 1/3 + 1/6, 1/2 + 1/4 + 1/5, 1/3 + 1/3 + 1/5, 1/3 + 1/4 + 1/4$. By inspection none of these are 1 except 1/2 + 1/3 + 1/6. Thus (k_1, k_2, k_3) is a permutation of (2, 3, 6).

Problem B3

Find all differentiable functions $f: (0, \infty) \to (0, \infty)$ for which there is a positive real number a such that

$$f'\left(\frac{a}{x}\right) = \frac{x}{f(x)}$$

for all x > 0.

Solution: Here are two classes of qualifying functions f:

- Define f(x) = x. Then f'(x) = 1 so f'(1/x) = 1 = x/f(x).
- Choose positive real numbers α, β with $\beta \neq 1$, and define $f(x) = \alpha x^{\beta}$. Then $f'(a/x)f(x) = \alpha\beta(a/x)^{\beta-1}\alpha x^{\beta} = \alpha^2\beta a^{\beta-1}x = x$ where $a = (1/\alpha^2\beta)^{1/(\beta-1)}$.

I claim that there are no other possibilities: if f'(a/x) = x/f(x) then f is one of the above functions. Indeed, substitute a/x for x: f'(x) = a/xf(a/x). The right side is differentiable, so the left side is too:

$$f''(x) = \frac{-a}{(xf(a/x))^2} \left(xf'(a/x)\frac{-a}{x^2} + f(a/x) \right).$$

Substitute f(a/x) = a/xf'(x) and f'(a/x) = x/f(x):

$$f''(x) = \frac{-a}{(a/f'(x))^2} \left(\frac{x^2}{f(x)} - \frac{a}{x^2} + \frac{a}{xf'(x)}\right)$$
$$= \frac{-f'(x)^2}{a} \left(\frac{-a}{f(x)} + \frac{a}{xf'(x)}\right) = \frac{f'(x)^2}{f(x)} - \frac{f'(x)}{x}$$

Define $g(x) = \log f(x)$. Then g'(x) = f'(x)/f(x); note that f'(x) > 0 so g'(x) > 0. Differentiate again:

$$g''(x) = \frac{f(x)f''(x) - f'(x)^2}{f(x)^2} = \frac{-f(x)f'(x)/x}{f(x)^2} = \frac{-f'(x)}{xf(x)} = \frac{-g'(x)}{x}$$

Define $h(x) = \log g'(x)$. Then h'(x) = g''(x)/g'(x) = -1/x. Integrate: there is a real number d such that $h(x) = d - \log x$. Exponentiate: $g'(x) = \beta/x$ where $\beta = \exp d$. Integrate again: there is a real number c such that $g(x) = c + \beta \log x$. Exponentiate: $f(x) = \alpha x^{\beta}$ where $\alpha = \exp c$. If $\beta = 1$ then $f(x) = \alpha x$ so $\alpha = f'(a/x) = x/f(x) = 1/\alpha$ so $\alpha = 1$ so f(x) = x as claimed. Otherwise α, β are positive real numbers, $\beta \neq 1$, and $f(x) = \alpha x^{\beta}$ as claimed.

Problem B4

For positive integers m and n, let f(m, n) denote the number of n-tuples (x_1, x_2, \ldots, x_n) of integers such that $|x_1| + |x_2| + \cdots + |x_n| \le m$. Show that f(m, n) = f(n, m).

Solution: Extend the same definition to all nonnegative integers m, n.

If n = 0 then there is exactly one *n*-tuple, and its sum of absolute values is $0 \le m$. Thus f(m, 0) = 1.

If m = 0 then the only qualifying *n*-tuple is (0, 0, ..., 0). Thus f(0, n) = 1.

If $n \ge 1$ and $m \ge 0$ then one can construct a qualifying *n*-tuple as follows: choose x_n in $\{-m, -m+1, \ldots, m-1, m\}$; choose an (n-1)-tuple $(x_1, x_2, \ldots, x_{n-1})$ satisfying $|x_1| + |x_2| + \cdots + |x_{n-1}| \le m - |x_n|$. Every qualifying *n*-tuple arises uniquely in this way. Thus $f(m, n) = f(m, n-1) + 2f(m-1, n-1) + 2f(m-2, n-1) + \cdots + 2f(0, n-1)$.

Consequently, f(m + 1, n + 1) = f(m, n + 1) + f(m + 1, n) + f(m, n) if $n \ge 0$ and $m \ge 0$. Indeed, $f(m, n+1) = f(m, n) + 2f(m-1, n) + 2f(m-2, n) + \dots + 2f(0, n)$. and $f(m + 1, n + 1) = f(m + 1, n) + 2f(m, n) + 2f(m - 1, n) + 2f(m - 2, n) + \dots + 2f(0, n)$; subtract.

Theorem: f(m,n) = f(n,m) for all nonnegative integers m,n. Proof: If m = 0 then f(m,n) = f(0,n) = 1 = f(n,0) = f(n,m) as claimed. If n = 0 then f(m,n) = f(m,0) = 1 = f(0,m) = f(n,m) as claimed. So assume that $m \ge 1$ and $n \ge 1$. Then f(m,n) = f(m-1,n) + f(m,n-1) + f(m-1,n-1) and f(n,m) = f(n-1,m) + f(n,m-1) + f(n-1,m-1). Induct on m+n.

Alternate approaches: One can, with marginally more work, prove the symmetric formula f(m,n) = 1 + 2(m+n-1)!/(m-1)!(n-1)!. One can use other bijections; partitioning by choices of x_n is straightforward but might not produce the shortest proof.

Problem B5

Let $P(x_1, \ldots, x_n)$ denote a polynomial with real coefficients in the variables x_1, \ldots, x_n , and suppose that

(a)
$$\left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2}\right) P(x_1, \dots, x_n) = 0$$
 (identically)

and that

(b) $x_1^2 + \dots + x_n^2$ divides $P(x_1, \dots, x_n)$.

Show that P = 0 identically.

Solution: Assume that $n \ge 1$. Define $X = x_1^2 + \cdots + x_n^2$ and $D = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2}$. The problem is to show that if X divides P and D(P) = 0 then P = 0.

Suppose that $P \neq 0$. Find the maximum positive integer e such that X^e divides P. Write P/X^e as $\sum_{i>0} H_i$ where H_i is homogeneous of degree i.

Then $0 = D(P) = D(\sum_i X^e H_i) = \sum_i D(X^e H_i)$. The terms $D(X^e H_i)$ are homogeneous of different degrees, namely 2e - 2 + i, so $D(X^e H_i) = 0$ for each *i*. Thus $XD(H_i) + e(4(e-1) + 4 \deg H_i + 2n)H_i = 0$ by Lemma 2. The coefficient $e(4(e-1) + 4 \deg H_i + 2n)$ is positive since $n \ge 1$ and $e \ge 1$; thus H_i is a multiple of X. This is true for every *i*, so P/X^e is a multiple of X, contradicting the definition of *e*. Lemma 1: If H is homogeneous then $D(XH) = XD(H) + (4 \deg H + 2n)H$.

Proof:
$$\frac{\partial^2 XH}{\partial x_i^2} = X \frac{\partial^2 H}{\partial x_i^2} + 2 \frac{\partial X}{\partial x_i} \frac{\partial H}{\partial x_i} + H \frac{\partial^2 X}{\partial x_i^2} = X \frac{\partial^2 H}{\partial x_i^2} + 4x_i \frac{\partial H}{\partial x_i} + 2H.$$
 By homogeneity
$$\sum_i x_i (\partial H/\partial x_i) = (\deg H)H.$$

Lemma 2: If H is homogeneous and $e \ge 0$ then

$$D(X^{e}H) = X^{e}D(H) + e(4(e-1) + 4\deg H + 2n)X^{e-1}H.$$

Proof: For e = 0: $D(X^e H) = D(H) = X^e D(H) + e(\cdots)$. For $e \ge 1$: $D(X^e H) = XD(X^{e-1}H) + (4 \deg X^{e-1}H + 2n)X^{e-1}H$ by Lemma 1. Assume inductively that $D(X^{e-1}H) = X^{e-1}D(H) + (e-1)(4(e-2) + 4 \deg H + 2n)X^{e-2}H$. Then

$$\begin{split} D(X^e H) &= X^e D(H) + (e-1)(4(e-2) + 4 \deg H + 2n) X^{e-1} H \\ &+ (4 \deg X^{e-1} H + 2n) X^{e-1} H \\ &= X^e D(H) + (4(e-1)(e-2) + 4(e-1) \deg H + 2(e-1)n \\ &+ 4(e-1) \deg X + 4 \deg H + 2n) X^{e-1} H \\ &= X^e D(H) + (4(e-1)(e) + 4e \deg H + 2en) X^{e-1} H \end{split}$$

since $\deg X = 2$.

Problem B6

Let S_n denote the set of all permutations of the numbers 1, 2, ..., n. For $\pi \in S_n$, let $\sigma(\pi) = 1$ if π is an even permutation and $\sigma(\pi) = -1$ if π is an odd permutation. Also, let $v(\pi)$ denote the number of fixed points of π . Show that

$$\sum_{\pi \in S_n} \frac{\sigma(\pi)}{v(\pi) + 1} = (-1)^{n+1} \frac{n}{n+1}$$

Solution: Define e_n as the number of even permutations of $\{1, 2, ..., n\}$. Recall that $e_n = 1$ if n = 0; $e_n = 1$ if n = 1; and $e_n = n!/2$ if $n \ge 2$.

Define f_k as the number of even derangements of $\{1, 2, \ldots, k\}$, i.e., the number of even permutations with no fixed points. Define g_k as the number of odd derangements of $\{1, 2, \ldots, k\}$, i.e., the number of odd permutations with no fixed points.

By choosing k elements of $\{1, \ldots, n\}$, choosing an even derangement of those k elements, and fixing the other n - k elements, one obtains an even permutation of $\{1, \ldots, n\}$ with exactly n - k fixed points. Every such permutation arises in this way. Thus there are exactly $\binom{n}{k}f_k$ even permutations of $\{1, \ldots, n\}$ with exactly n - k fixed points. Sum over k to see that $\sum_{0 \le k \le n} \binom{n}{k}f_k = e_n$. Similarly, there are exactly $\binom{n}{k}g_k$ odd permutations of $\{1, \ldots, n\}$ with exactly n-k fixed points, and $\sum_{0 \le k \le n} \binom{n}{k}g_k = n! - e_n$.

I claim that $f_n - g_n = (-1)^{n-1}(n-1)$ for all $n \ge 0$. Proof: The point is that $f_n - g_n$ is determined recursively by the equation $\sum_k \binom{n}{k} (f_k - g_k) = 2e_n - n!$; so one simply has to check that $\sum_k \binom{n}{k} (-1)^{k-1} (k-1) = 2e_n - n!$. For n = 0 the latter sum is $(-1)^{-1} (-1) = 1 = 2e_0 - 0!$ as desired. For n = 1 the sum is $(-1)^{-1} (-1) + (-1)^0 (0) = 1 = 2e_1 - 1!$ as desired. For $n \ge 2$ one has $\sum_k \binom{n}{k} (-1)^k = (1-1)^n = 0$ and $\sum_k \binom{n}{k} (-1)^{k-1} k = \sum_k \binom{n-1}{k-1} (-1)^{k-1} = (1-1)^{n-1} = 0$ so $\sum_k \binom{n}{k} (-1)^{k-1} (k-1) = 0 = 2e_n - n!$ as desired.

Now if $n \ge 1$ then $\sum_{0 \le k \le n} {\binom{n+1}{k}} (f_k - g_k) = (-1)^{n+1} n$. Proof: ${\binom{n+1}{n+1}} (f_{n+1} - g_{n+1}) = (-1)^n n$ and $\sum_{0 \le k \le n+1} {\binom{n+1}{k}} (f_k - g_k) = 2e_{n+1} - (n+1)! = 0$.

The problem asks for the sum of $\sigma(\pi)/(1+v(\pi))$ over all permutations π of $\{1,\ldots,n\}$. There are $\binom{n}{k}f_k$ even permutations π with $v(\pi) = n-k$, contributing $\binom{n}{k}f_k/(1+n-k) = \binom{n+1}{k}f_k/(n+1)$ to the sum. There are also $\binom{n}{k}g_k$ odd permutations π with $v(\pi) = n-k$, contributing $-\binom{n}{k}g_k/(1+n-k) = -\binom{n+1}{k}g_k/(n+1)$ to the sum. Overall the sum is $\sum_{0 \le k \le n} \binom{n+1}{k}(f_k - g_k)/(n+1) = (-1)^{n+1}n/(n+1)$ if $n \ge 1$.

Beware that this formula is wrong for n = 0. The problem should have said that n is a positive integer.