Problem A1
Show that every positive integer is a sum of one or more numbers of the form $2^r 3^s$, where r and s are nonnegative integers and no summand divides another.
(For example, $23 = 9 + 8 + 6$.)

Problem A2
Let $S = \{(a,b) \mid a = 1,2,\ldots,n, \ b = 1,2,3\}$. A rook tour of S is a polygonal path made up of line segments connecting points p_1, p_2, \ldots, p_{3n} in sequence such that (i) $p_i \in S$, (ii) p_i and p_{i+1} are a unit distance apart, for $1 \leq i < 3n$, (iii) for each $p \in S$ there is a unique i such that $p_i = p$. How many rook tours are there that begin at $(1,1)$ and end at $(n,1)$?
(An example of such a rook tour for $n = 5$ is depicted below.)

Problem A3
Let $p(z)$ be a polynomial of degree n, all of whose zeros have absolute value 1 in the complex plane. Put $g(z) = p(z)/z^{n/2}$. Show that all zeros of $g'(z) = 0$ have absolute value 1.

Problem A4
Let H be an $n \times n$ matrix all of whose entries are ± 1 and whose rows are mutually orthogonal. Suppose H has an $a \times b$ submatrix whose entries are all 1. Show that $ab \leq n$.

Problem A5
Evaluate $\int_0^1 \frac{\ln(x + 1)}{x^2 + 1} \, dx$.

Problem A6
Let n be given, $n \geq 4$, and suppose that P_1, P_2, \ldots, P_n are n randomly, independently and uniformly, chosen points on a circle. Consider the convex n-gon whose vertices are the P_i. What is the probability that at least one of the vertex angles of this polygon is acute?
Problem B1

Find a nonzero polynomial $P(x, y)$ such that $P(\lfloor a \rfloor, \lfloor 2a \rfloor) = 0$ for all real numbers a. (Note: $\lfloor v \rfloor$ is the greatest integer less than or equal to v.)

Problem B2

Find all positive integers n, k_1, \ldots, k_n such that $k_1 + \cdots + k_n = 5n - 4$ and

$$\frac{1}{k_1} + \cdots + \frac{1}{k_n} = 1.$$

Problem B3

Find all differentiable functions $f : (0, \infty) \to (0, \infty)$ for which there is a positive real number a such that

$$f'(\frac{a}{x}) = \frac{x}{f(x)}$$

for all $x > 0$.

Problem B4

For positive integers m and n, let $f(m, n)$ denote the number of n-tuples (x_1, x_2, \ldots, x_n) of integers such that $|x_1| + |x_2| + \cdots + |x_n| \leq m$. Show that $f(m, n) = f(n, m)$.

Problem B5

Let $P(x_1, \ldots, x_n)$ denote a polynomial with real coefficients in the variables x_1, \ldots, x_n, and suppose that

(a) \(\left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2} \right) P(x_1, \ldots, x_n) = 0 \) \hspace{1cm} \text{(identically)}

and that

(b) \(x_1^2 + \cdots + x_n^2 \) divides $P(x_1, \ldots, x_n)$.

Show that $P = 0$ identically.

Problem B6

Let S_n denote the set of all permutations of the numbers $1, 2, \ldots, n$. For $\pi \in S_n$, let $\sigma(\pi) = 1$ if π is an even permutation and $\sigma(\pi) = -1$ if π is an odd permutation. Also, let $v(\pi)$ denote the number of fixed points of π. Show that

$$\sum_{\pi \in S_n} \frac{\sigma(\pi)}{v(\pi) + 1} = (-1)^{n+1} \frac{n}{n+1}.$$
Problem A1

Show that every positive integer is a sum of one or more numbers of the form 2^r3^s, where r and s are nonnegative integers and no summand divides another.

(For example, $23 = 9 + 8 + 6$.)

Solution: For each $n \geq 0$ define a sequence $E(n)$ of elements of 2^N3^N as follows:

- if $n = 0$ then $E(n)$ is the empty sequence (\emptyset);
- if $n > 0$ and n is even then $E(n)$ is $2E(n/2)$, the sequence obtained by doubling each component of $E(n/2)$;
- if $n > 0$ and n is odd then $E(n)$ is $(E(n-3^k), 3^k)$, the sequence obtained by appending 3^k to $E(n-3^k)$, where k is the largest integer such that $3^k \leq n$.

I claim that the sum of $E(n)$ is n; that each component of $E(n)$ is even if n is even; and that no component of $E(n)$ divides another component. Proof:

- $n = 0$: $E(n)$ is empty so it has sum 0.
- $n > 0$ and n is even: Assume inductively that $E(n/2)$ has sum $n/2$ and that no component of $E(n/2)$ divides another component. Then $E(n) = 2E(n/2)$ has sum $2(n/2) = n$; each component of $E(n)$ is even; and no component divides another component.
- $n > 0$ and n is odd: Find the largest integer k such that $3^k \leq n$. Note that $n - 3^k$ is even. Assume inductively that $E(n-3^k)$ has sum $n - 3^k$; that each component of $E(n-3^k)$ is even; and that no component of $E(n-3^k)$ divides another component. Then $E(n) = (E(n-3^k), 3^k)$ has sum $(n - 3^k) + 3^k = n$; each component of $E(n-3^k)$, being even, does not divide 3^k; and each component of $E(n-3^k)/2$, being at most $(n - 3^k)/2 < (3^{k+1} - 3^k)/2 = 3^k$, is not divisible by 3^k, so each component of $E(n-3^k)$ is not divisible by 3^k.

In particular, for $n \geq 1$, the components of $E(n)$ are one or more elements of 2^N3^N, adding up to n, none dividing the others.

Problem A2

Let $S = \{(a,b) \mid a = 1, 2, \ldots, n, \ b = 1, 2, 3\}$. A rook tour of S is a polygonal path made up of line segments connecting points p_1, p_2, \ldots, p_{3n} in sequence such that (i) $p_i \in S$, (ii) p_i and p_{i+1} are a unit distance apart, for $1 \leq i < 3n$, (iii) for each $p \in S$ there is a
unique i such that $p_i = p$. How many rook tours are there that begin at $(1, 1)$ and end at $(n, 1)$?
(An example of such a rook tour for $n = 5$ is depicted below.)

\[\text{Solution: } \text{The answer is } 0 \text{ for } n = 1 \text{ and } 2^{n-2} \text{ for } n \geq 2. \]

For each $n \geq 1$, define r_n as the number of $n \times 3$ rook tours beginning at $(1, 1)$ and ending at $(n, 1)$, and define s_n as the number of $n \times 3$ rook tours beginning at $(1, 1)$ and ending at $(n, 3)$.

One can obtain an $n \times 3$ rook tour beginning at $(1, 1)$ and ending at $(n, 1)$ as follows. Choose $k \in \{1, 2, \ldots, n-1\}$. Take a $k \times 3$ rook tour beginning at $(1, 1)$ and ending at $(k, 3)$. Step to the right $n-k$ times to $(n, 3)$; then down once to $(n, 2)$; then left $n-k-1$ times to $(k+1, 2)$; then down once to $(k+1, 1)$; then right $n-k-1$ times to $(n, 1)$.

Every $n \times 3$ rook tour beginning at $(1, 1)$ and ending at $(n, 1)$ can be obtained uniquely in this way. Indeed, the final step down on the tour must be from $(k+1, 2)$ to $(k+1, 1)$ for a unique $k \in \{1, 2, \ldots, n-1\}$; it must be followed by $n-k-1$ steps right to $(n, 1)$; it must be preceded by $n-k-1$ steps left from $(n, 2)$, since any earlier step up (or left) would prevent the tour from reaching $(n, 2)$; $(n, 2)$ must be preceded by a step down from $(n, 1)$; and $(n, 1)$ must be preceded by $n-k$ steps right from $(k, 1)$.

Consequently $r_n = s_1 + s_2 + \cdots + s_{n-1}$ for all $n \geq 1$. In particular, $r_1 = 0$.

Similarly, one can obtain an $n \times 3$ rook tour beginning at $(1, 1)$ and ending at $(n, 3)$ by choosing $k \in \{1, 2, \ldots, n-1\}$, taking a $k \times 3$ rook tour beginning at $(1, 1)$ and ending at $(k, 1)$, stepping to the right $n-k$ times, stepping up once, stepping left $n-k-1$ times, stepping up once, and stepping right $n-k-1$ times; or by simply starting from $(1, 1)$, stepping to the right $n-1$ times, stepping up once, stepping left $n-1$ times, stepping up once, and stepping right $n-1$ times. Every $n \times 3$ rook tour beginning at $(1, 1)$ and ending at $(n, 3)$ can be obtained uniquely in this way.

Consequently $s_n = r_1 + r_2 + \cdots + r_{n-1} + 1$ for all $n \geq 1$. In particular, $s_1 = 1$.

Now $r_n = s_n = 2^{n-2}$ for all $n \geq 2$. Indeed, assume inductively that $r_k = s_k = 2^{k-2}$ for $2 \leq k < n$. Then $r_n = s_1 + s_2 + \cdots + s_{n-1} = 1 + 2^0 + \cdots + 2^{n-3} = 2^{n-2}$ and $s_n = r_1 + r_2 + \cdots + r_{n-1} + 1 = 0 + 2^0 + \cdots + 2^{n-3} + 1 = 2^{n-2}$.

Problem A3
Let \(p(z) \) be a polynomial of degree \(n \), all of whose zeros have absolute value 1 in the complex plane. Put \(g(z) = p(z)/z^{n/2} \). Show that all zeros of \(g'(z) = 0 \) have absolute value 1.

Solution: I’m annoyed by this problem, for two reasons.

First, the definition of \(g(z) \) is ambiguous when \(n \) is odd. Does \(z^{n/2} \) mean the principal branch of the \(n/2 \) power, applied to \(z \)? Or does it mean the principal branch of the square root, applied to \(z^n \)? Or is \(z \) not actually a complex number, but an element of a Riemann sheet chosen so that the square root does not need a branch cut? My proof works for any of these choices of \(g \), but I can imagine proofs that work with all the roots of \(g \) and that occasionally break down for the first two choices of \(g \). The problem should have said “Show that all zeros of \(zp'(z) - (n/2)p(z) \) have absolute value 1.”

Second, the statement is false for \(n = 0 \). Consider, for example, \(p(z) = 1 \). This is a polynomial of degree 0, and it has no zeros, so all of its zeros have absolute value 1. The function \(g(z) = p(z)/z^{n/2} \) is then constant, so its derivative is 0, so its derivative has every complex number (in the ambiguous domain) as a root, not just complex numbers of absolute value 1.

Assume from now on that \(n \geq 1 \). Factor \(p(z) \) as \(p_n(z - r_1)(z - r_2)\cdots(z - r_n) \). By hypothesis each \(r_i \) has absolute value 1. If \(|z| > 1 \) then, by Lemma 2, \((z + r_j)/(z - r_j) \) has positive real part for each \(j \), so—since \(n \geq 1 \)—\(\sum_j(z + r_j)/(z - r_j) \) has positive real part. Similarly, if \(|z| < 1 \) then \(\sum_j(z + r_j)/(z - r_j) \) has negative real part. Either way \(\sum_j(z + r_j)/(z - r_j) \) is nonzero; i.e., \(\sum_j 2z/(z - r_j) \neq \sum_j(z - r_j)/(z - r_j) = n \); i.e., \(2zp'(z)/p(z) \neq n \); i.e., \(g'(z) \neq 0 \).

Lemma 1: If \(z \in \mathbb{C} \) then \((z + 1)/(z - 1)\) has positive real part when \(|z| > 1\) and negative real part when \(|z| < 1\).

Proof: Write \(z \) in polar coordinates as \(re^{i\theta} \). Then \((z + 1)/(z - 1) = (re^{i\theta} + 1)/(re^{i\theta} - 1)\) has real part \((r^2 - 1)/((r \cos \theta - 1)^2 + (r \sin \theta)^2)\), which is positive if \(r > 1 \) and negative if \(0 \leq r < 1 \).

Lemma 2: If \(r \in \mathbb{C}, \ |r| = 1, \) and \(|z| \in \mathbb{C}\), then \((z + r)/(z - r)\) has positive real part when \(|z| > 1\) and negative real part when \(|z| < 1\).

Proof: Apply Lemma 1 to \(z/r \).

Problem A4

Let \(H \) be an \(n \times n \) matrix all of whose entries are \(\pm 1 \) and whose rows are mutually orthogonal. Suppose \(H \) has an \(a \times b \) submatrix whose entries are all 1. Show that \(ab \leq n \).

Solution: Write \(v_1, v_2, \ldots, v_b \) for the length-\(n \) row vectors covering \(H \). By assumption
each entry of v_i is ± 1, so v_i has squared length n. By assumption v_1, v_2, \ldots, v_b are pairwise orthogonal, so $v_1 + v_2 + \cdots + v_b$ has squared length nb. On the other hand, by assumption $v_1 + v_2 + \cdots + v_b$ has a entries equal to b, so $v_1 + v_2 + \cdots + v_b$ has squared length at least ab^2. Thus $ab^2 \leq nb$; consequently $ab \leq n$, whether or not $b = 0$.

Problem A5

Evaluate $\int_0^1 \frac{\ln(x + 1)}{x^2 + 1} \, dx$.

Solution: The answer is $(\pi/8) \log 2$. Fast proof by Bhargava, Kedlaya, and Ng: The integral is $\int_0^{\pi/4} \log(\tan \theta + 1) \, d\theta = \int_0^{\pi/4} \left((1/2) \log 2 + \log \cos(\pi/4 - \theta) - \log \cos \theta\right) \, d\theta = \int_0^{\pi/4} ((1/2) \log 2) \, d\theta = (\pi/8) \log 2$ since $\int_0^{\pi/4} \log \cos(\pi/4 - \theta) \, d\theta = \int_0^{\pi/4} \log \cos \theta \, d\theta$.

Problem A6

Let n be given, $n \geq 4$, and suppose that P_1, P_2, \ldots, P_n are n randomly, independently and uniformly, chosen points on a circle. Consider the convex n-gon whose vertices are the P_i. What is the probability that at least one of the vertex angles of this polygon is acute?

Solution: The answer is $(n^2 - 2n)/2^{n-1}$.

Define $\theta(p, q) \in [0, 2\pi)$, where p and q are points on the circle, as the angle from p to q in the clockwise direction.

Define a vertex as “happy” if it is immediately before an acute-angled vertex. In other words, if v, w, x are consecutive vertices in clockwise order, then v is happy if and only if the angle at vertex w is acute. Equivalently: v is happy if and only if $\theta(v, x) > \pi$. Equivalently: v is happy if and only if at most one other vertex P has $\theta(v, P) \leq \pi$.

Critical fact 1: P_1 is happy with probability $n/2^{n-1}$.

Indeed, here is a partition of P_1’s happiness into n disjoint possibilities, each occurring with probability $1/2^{n-1}$:

- $\theta(P_1, P_i) > \pi$ for all $i \neq 1$;
- $\theta(P_1, P_i) > \pi$ for all $i \notin \{1, 2\}$ while $\theta(P_1, P_2) \leq \pi$;
- $\theta(P_1, P_i) > \pi$ for all $i \notin \{1, 3\}$ while $\theta(P_1, P_3) \leq \pi$;
- \ldots;
- $\theta(P_1, P_i) > \pi$ for all $i \notin \{1, n\}$ while $\theta(P_1, P_n) \leq \pi$.

Critical fact 2: P_1 and P_2 are simultaneously happy with probability $1/2^{n-3}(n - 1)$.

This probability is the average, over P_1, P_2, of the conditional probability given P_1, P_2. I
Putting it all together: Permute indices to see that \(P \) are distinct; and that

\[
\frac{1}{\pi} \int_0^\pi \frac{(\pi - \alpha)^{n-2} + (n-2)\alpha(\pi - \alpha)^{n-3}}{(2\pi)^{n-2}} \, d\alpha
\]

Proof of the claim: Assume without loss of generality that \(\theta(P_1, P_2) \leq \pi \), i.e., that \(\alpha = \theta(P_1, P_2) \). Now \(P_1 \) is happy if and only if \(\theta(P_1, P_3), \ldots, \theta(P_1, P_n) \) are all \(> \pi \); and \(P_2 \) is happy if and only if at most one of \(\theta(P_2, P_3), \ldots, \theta(P_2, P_n) \) is \(\leq \pi \). Thus \(P_1 \) and \(P_2 \) are simultaneously happy if and only if one of the following disjoint events occurs:

- \(\pi + \alpha < \theta(P_1, P_i) < 2\pi \) for each \(i \notin \{1, 2\} \)—which, given \(P_1 \) and \(P_2 \), occurs with conditional probability \((\pi - \alpha)^{n-2}/(2\pi)^{n-2} \);
- \(\pi + \alpha < \theta(P_1, P_i) < 2\pi \) for each \(i \notin \{1, 2, 3\} \) while \(\pi < \theta(P_1, P_3) \leq \pi + \alpha \)—which, given \(P_1 \) and \(P_2 \), occurs with conditional probability \(\alpha(\pi - \alpha)^{n-3}/(2\pi)^{n-2} \);
- \(\pi + \alpha < \theta(P_1, P_i) < 2\pi \) for each \(i \notin \{1, 2, 4\} \) while \(\pi < \theta(P_1, P_4) \leq \pi + \alpha \)—which, given \(P_1 \) and \(P_2 \), occurs with conditional probability \(\alpha(\pi - \alpha)^{n-3}/(2\pi)^{n-2} \);
- \(\ldots \);
- \(\pi + \alpha < \theta(P_1, P_i) < 2\pi \) for each \(i \notin \{1, 2, n\} \) while \(\pi < \theta(P_1, P_n) \leq \pi + \alpha \)—which, given \(P_1 \) and \(P_2 \), occurs with conditional probability \(\alpha(\pi - \alpha)^{n-3}/(2\pi)^{n-2} \).

Add to obtain \((\pi - \alpha)^{n-2} + (n-2)\alpha(\pi - \alpha)^{n-3})/(2\pi)^{n-2}\) as claimed.

Critical fact 3: \(P_1, P_2, P_3 \) are all happy with probability 0.

Indeed, in each of the above ways for \(P_1, P_2 \) to be happy, \(P_3 \) is visibly unhappy: either \(\pi + \alpha < \theta(P_1, P_3) \leq 2\pi \), in which case both \(\theta(P_3, P_1) \) and \(\theta(P_3, P_2) \) are below \(\pi \), or \(\pi < \theta(P_1, P_3) \leq \pi + \alpha \) while \(\pi + \alpha < \theta(P_1, P_4) \leq 2\pi \), in which case both \(\theta(P_3, P_1) \) and \(\theta(P_3, P_4) \) are below \(\pi \). This is where the proof uses the hypothesis that \(n \geq 4 \).

Putting it all together: Permute indices to see that \(P_i \) is happy with probability \(n/2^{n-1} \); that \(P_i, P_j \) are simultaneously happy with probability \(1/2^{n-3}(n-1) \); if the indices \(i, j \) are distinct; and that \(P_i, P_j, P_k \) are simultaneously happy with probability 0, if \(i, j, k \) are distinct. By inclusion-exclusion, the probability of at least one happy vertex is

\[
n(n/2^{n-1}) - \binom{n}{2}(1/2^{n-3}(n-1)) = (n^2 - 2n)/2^{n-1}.
\]
Problem B1

Find a nonzero polynomial $P(x, y)$ such that $P([a], [2a]) = 0$ for all real numbers a.
(Not: $[v]$ is the greatest integer less than or equal to v.)

Solution: One answer is the nonzero polynomial $P(x, y) = (y - 2x)(y - 2x - 1)$.

Define $i = [a]$. Then $i \leq a < i + 1$. If $i \leq a < i + 0.5$ then $2i \leq 2a < 2i + 1$ so $[2a] = 2i = 2[i] \Rightarrow [2a] = 2i - 2[i] = 0$. Otherwise $i + 0.5 \leq a < i + 1$ so $2i + 1 \leq 2a < 2i + 2$ so $[2a] = 2i + 1 = 2[i] + 1$ so $[2a] - 2[i] - 1 = 0$. Either way $P([a], [2a]) = 0$.

Problem B2

Find all positive integers n, k_1, \ldots, k_n such that $k_1 + \cdots + k_n = 5n - 4$ and

$$\frac{1}{k_1} + \cdots + \frac{1}{k_n} = 1. $$

Solution: 1, 1; 3, 2, 3, 6; 3, 2, 6, 3; 3, 3, 2, 6; 3, 3, 6, 2; 3, 6, 2, 3; 3, 6, 3, 2; 4, 4, 4, 4.

By inspection each of these possibilities works. Conversely, assume that $k_1 + \cdots + k_n = 5n - 4$ and $1/k_1 + \cdots + 1/k_n = 1$; I will show that n, k_1, \ldots, k_n is one of these possibilities.

If k_1, \ldots, k_n are all equal then $1 = 1/k_1 + \cdots + 1/k_n = n/k_1$ so $k_1 = n$ and $5n - 4 = k_1 + \cdots + k_n = nk_1 = n^2$. Hence $(n - 4)(n - 1) = n^2 - 5n + 4 = 0$. Either $n = 1$, in which case $(n, k_1, \ldots, k_n) = (1, 1)$; or $n = 4$, in which case $(n, k_1, \ldots, k_n) = (4, 4, 4, 4, 4)$.

Assume from now on that k_1, \ldots, k_n are not all equal. The average of k_1, \ldots, k_n is $(5n - 4)/n$ so the geometric average of k_1, \ldots, k_n is below $(5n - 4)/n$. The average of $1/k_1, \ldots, 1/k_n$ is $1/n$ so the geometric average of $1/k_1, \ldots, 1/k_n$ is below $1/n$. Thus the geometric average of $k_1, \ldots, k_n, 1/k_1, \ldots, 1/k_n$ is below $\sqrt{((5n - 4)/n)(1/n)}$; but this geometric average is equal to 1. Therefore $1 < (5n - 4)/n^2$; so $(n - 1)(n - 4) < 0$; so $1 < n < 4$; so $n = 2$ or $n = 3$.

If $n = 2$ then $k_1 + k_2 = 5n - 4 = 6$ so $1/k_1 + 1/k_2$ is one of $1/1 + 1/5, 1/2 + 1/4, 1/3 + 1/3, 1/4 + 1/4$, none of which equal 1.

If $n = 3$ then $k_1 + k_2 + k_3 = 5n - 4 = 11$ so $1/k_1 + 1/k_2 + 1/k_3$ is one of $1/1 + \cdots, 1/2 + 1/2 + \cdots, 1/2 + 1/3 + 1/6, 1/2 + 1/4 + 1/5, 1/3 + 1/3 + 1/5, 1/3 + 1/4 + 1/4$. By inspection none of these are 1 except $1/2 + 1/3 + 1/6$. Thus (k_1, k_2, k_3) is a permutation of $(2, 3, 6)$.

Problem B3

Find all differentiable functions $f : (0, \infty) \to (0, \infty)$ for which there is a positive real number a such that

$$f'(\frac{a}{x}) = \frac{x}{f(x)}.$$
for all $x > 0$.

Solution: Here are two classes of qualifying functions f:

- Define $f(x) = x$. Then $f'(x) = 1$ so $f'(1/x) = 1 = x/f(x)$.

- Choose positive real numbers α, β with $\beta \neq 1$, and define $f(x) = \alpha x^\beta$. Then $f'(a/x) f(x) = \alpha \beta (a/x)^{\beta - 1} \alpha x^\beta = \alpha^2 \beta a^{\beta - 1} x = x$ where $a = (1/\alpha^2 \beta)^{1/(\beta - 1)}$.

I claim that there are no other possibilities: if $f'(a/x) = x/f(x)$ then f is one of the above functions. Indeed, substitute a/x for x: $f'(x) = a/x f(a/x)$. The right side is differentiable, so the left side is too:

$$f''(x) = \frac{-a}{(x f(a/x))^2} \left(x f'(a/x) \frac{-a}{x^2} + f(a/x) \right).$$

Substitute $f(a/x) = a/x f'(x)$ and $f'(a/x) = x/f(x)$:

$$f''(x) = \frac{-a}{(a/f'(x))^2} \left(\frac{x^2}{f(x)} \frac{-a}{x^2} + \frac{a}{xf'(x)} \right)$$

$$= \frac{-f'(x)^2}{a} \left(\frac{-a}{f(x)} + \frac{a}{xf'(x)} \right) = \frac{f'(x)^2}{f(x)} - \frac{f'(x)}{x}.$$

Define $g(x) = \log f(x)$. Then $g'(x) = f'(x)/f(x)$; note that $f'(x) > 0$ so $g'(x) > 0$. Differentiate again:

$$g''(x) = \frac{f(x) f''(x) - f'(x)^2}{f(x)^2} = \frac{-f(x) f'(x)/x}{f(x)^2} = -\frac{f'(x)}{x} = \frac{-g'(x)}{x}.$$

Define $h(x) = \log g'(x)$. Then $h'(x) = g''(x)/g'(x) = -1/x$. Integrate: there is a real number d such that $h(x) = d - \log x$. Exponentiate: $g'(x) = \beta/x$ where $\beta = \exp d$. Integrate again: there is a real number c such that $g(x) = c + \beta \log x$. Exponentiate: $f(x) = \alpha x^\beta$ where $\alpha = \exp c$. If $\beta = 1$ then $f(x) = \alpha x$ so $\alpha = f'(a/x) = x/f(x) = 1/\alpha$ so $\alpha = 1$ so $f(x) = x$ as claimed. Otherwise α, β are positive real numbers, $\beta \neq 1$, and $f(x) = \alpha x^\beta$ as claimed.

Problem B4

For positive integers m and n, let $f(m, n)$ denote the number of n-tuples (x_1, x_2, \ldots, x_n) of integers such that $|x_1| + |x_2| + \cdots + |x_n| \leq m$. Show that $f(m, n) = f(n, m)$.

Solution: Extend the same definition to all nonnegative integers m, n.

If $n = 0$ then there is exactly one n-tuple, and its sum of absolute values is $0 \leq m$. Thus $f(m, 0) = 1$.
If \(m = 0 \) then the only qualifying \(n \)-tuple is \((0, 0, \ldots, 0)\). Thus \(f(0, n) = 1 \).

If \(n \geq 1 \) and \(m \geq 0 \) then one can construct a qualifying \(n \)-tuple as follows: choose \(x_n \) in \([-m, -m + 1, \ldots, m - 1, m]\); choose an \((n-1)\)-tuple \((x_1, x_2, \ldots, x_{n-1})\) satisfying
\[
|x_1| + |x_2| + \cdots + |x_{n-1}| \leq m - |x_n|.
\]
Every qualifying \(n \)-tuple arises uniquely in this way. Thus \(f(m, n) = f(m, n-1) + 2f(m-1, n-1) + 2f(m-2, n-1) + \cdots + 2f(0, n-1) \).

Consequently, \(f(m + 1, n + 1) = f(m, n + 1) + f(m + 1, n) + f(m, n) \) if \(n \geq 0 \) and \(m \geq 0 \). Indeed, \(f(m, n + 1) = f(m, n) + 2f(m-1, n) + 2f(m-2, n) + \cdots + 2f(0, n) \). and \(f(m + 1, n + 1) = f(m + 1, n) + 2f(m, n) + 2f(m - 1, n) + 2f(m - 2, n) + \cdots + 2f(0, n) \); subtract.

Theorem: \(f(m, n) = f(n, m) \) for all nonnegative integers \(m, n \). Proof: If \(m = 0 \) then \(f(m, n) = f(0, n) = 1 = f(n, 0) = f(n, m) \) as claimed. If \(n = 0 \) then \(f(m, n) = f(m, 0) = 1 = f(0, m) = f(n, m) \) as claimed. So assume that \(m \geq 1 \) and \(n \geq 1 \). Then \(f(m, n) = f(m - 1, n) + f(m, n - 1) + f(m - 1, n - 1) \) and \(f(n, m) = f(n - 1, m) + f(n, m - 1) + f(n - 1, m - 1) \). Induct on \(m + n \).

Alternate approaches: One can, with marginally more work, prove the symmetric formula
\(f(m, n) = 1 + 2(m + n - 1)!/(m - 1)!(n - 1)! \). One can use other bijections; partitioning by choices of \(x_n \) is straightforward but might not produce the shortest proof.

Problem B5

Let \(P(x_1, \ldots, x_n) \) denote a polynomial with real coefficients in the variables \(x_1, \ldots, x_n \), and suppose that

\[
(a) \quad \left(\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2} \right) P(x_1, \ldots, x_n) = 0 \quad \text{(identically)}
\]

and that \(x_1^2 + \cdots + x_n^2 \) divides \(P(x_1, \ldots, x_n) \).

Show that \(P = 0 \) identically.

Solution: Assume that \(n \geq 1 \). Define \(X = x_1^2 + \cdots + x_n^2 \) and \(D = \partial^2/\partial x_1^2 + \cdots + \partial^2/\partial x_n^2 \). The problem is to show that if \(X \) divides \(P \) and \(D(P) = 0 \) then \(P = 0 \).

Suppose that \(P \neq 0 \). Find the maximum positive integer \(e \) such that \(X^e \) divides \(P \). Write \(P/X^e \) as \(\sum_{i \geq 0} H_i \) where \(H_i \) is homogeneous of degree \(i \).

Then \(0 = D(P) = D(\sum_i X^e H_i) = \sum_i D(X^e H_i) \). The terms \(D(X^e H_i) \) are homogeneous of different degrees, namely \(2e - 2 + i \), so \(D(X^e H_i) = 0 \) for each \(i \). Thus \(XD(H_i) + e(4(e - 1) + 4 \deg H_i + 2n)H_i = 0 \) by Lemma 2. The coefficient \(e(4(e - 1) + 4 \deg H_i + 2n) \) is positive since \(n \geq 1 \) and \(e \geq 1 \); thus \(H_i \) is a multiple of \(X \). This is true for every \(i \), so \(P/X^e \) is a multiple of \(X \), contradicting the definition of \(e \).
Lemma 1: If H is homogeneous then $D(XH) = XD(H) + (4 \deg H + 2n)H$.

Proof: For $e = 0$: $D(X^eH) = D(H) = X^eD(H) + e(\cdots)$. For $e \geq 1$: $D(X^eH) = XD(X^{e-1}H) + (4 \deg X^{e-1}H + 2n)X^{e-1}H$ by Lemma 1. Assume inductively that $D(X^{e-1}H) = X^{e-1}D(H) + (e-1)(4(e-2) + 4 \deg H + 2n)X^{e-2}H$. Then

$$D(X^eH) = X^eD(H) + (e-1)(4(e-2) + 4 \deg H + 2n)X^{e-1}H + (4 \deg X^{e-1}H + 2n)X^{e-1}H = X^eD(H) + (4(e-1)e-2) + 4 \deg H + 2n)X^{e-1}H$$

since $\deg X = 2$.

Problem B6

Let S_n denote the set of all permutations of the numbers $1, 2, \ldots, n$. For $\pi \in S_n$, let $\sigma(\pi) = 1$ if π is an even permutation and $\sigma(\pi) = -1$ if π is an odd permutation. Also, let $v(\pi)$ denote the number of fixed points of π. Show that

$$\sum_{\pi \in S_n} \frac{\sigma(\pi)}{v(\pi) + 1} = (-1)^{n+1} \frac{n}{n+1}.$$

Solution: Define e_n as the number of even permutations of $\{1, 2, \ldots, n\}$. Recall that $e_n = 1$ if $n = 0$; $e_n = 1$ if $n = 1$; and $e_n = n!/2$ if $n \geq 2$.

Define f_k as the number of even derangements of $\{1, 2, \ldots, k\}$, i.e., the number of even permutations with no fixed points. Define g_k as the number of odd derangements of $\{1, 2, \ldots, k\}$, i.e., the number of odd permutations with no fixed points.

By choosing k elements of $\{1, \ldots, n\}$, choosing an even derangement of those k elements, and fixing the other $n-k$ elements, one obtains an even permutation of $\{1, \ldots, n\}$ with exactly $n-k$ fixed points. Every such permutation arises in this way. Thus there are exactly $\binom{n}{k} f_k$ even permutations of $\{1, \ldots, n\}$ with exactly $n-k$ fixed points. Sum over k to see that $\sum_{0 \leq k \leq n} \binom{n}{k} f_k = e_n$.
Similarly, there are exactly \(\binom{n}{k} g_k \) odd permutations of \(\{1, \ldots, n\} \) with exactly \(n-k \) fixed points, and \(\sum_{0 \leq k \leq n} \binom{n}{k} g_k = n! - e_n \).

I claim that \(f_n - g_n = (-1)^{n-1}(n-1) \) for all \(n \geq 0 \). Proof: The point is that \(f_n - g_n \) is determined recursively by the equation \(\sum_k \binom{n}{k} (f_k - g_k) = 2e_n - n! \); so one simply has to check that \(\sum_k \binom{n}{k} (-1)^{k-1}(k-1) = 2e_n - n! \). For \(n = 0 \) the latter sum is \((-1)^{-1}(-1) = 1 = 2e_0 - 0! \) as desired. For \(n = 1 \) the sum is \((-1)^{-1}(-1) + (-1)^0(0) = 1 = 2e_1 - 1! \) as desired. For \(n \geq 2 \) one has \(\sum_k \binom{n}{k} (-1)^k = (1 - 1)^n = 0 \) and \(\sum_k \binom{n}{k} (-1)^{k-1}k = \sum_k \binom{n-1}{k-1} (-1)^{k-1} = (1 - 1)^{n-1} = 0 \) so \(\sum_k \binom{n}{k} (-1)^{k-1}(k-1) = 0 = 2e_n - n! \) as desired.

Now if \(n \geq 1 \) then \(\sum_{0 \leq k \leq n} \binom{n+1}{k} (f_k - g_k) = (-1)^{n+1}n \). Proof: \(\binom{n+1}{n+1} (f_{n+1} - g_{n+1}) = (-1)^n n \) and \(\sum_{0 \leq k \leq n+1} \binom{n+1}{k} (f_k - g_k) = 2e_{n+1} - (n+1)! = 0 \).

The problem asks for the sum of \(\sigma(\pi)/(1 + v(\pi)) \) over all permutations \(\pi \) of \(\{1, \ldots, n\} \). There are \(\binom{n}{k} f_k \) even permutations \(\pi \) with \(v(\pi) = n-k \), contributing \(\binom{n}{k} f_k / (1 + n-k) = \binom{n+1}{k} f_k / (n+1) \) to the sum. There are also \(\binom{n}{k} g_k \) odd permutations \(\pi \) with \(v(\pi) = n-k \), contributing \(-\binom{n}{k} g_k / (1 + n-k) = -\binom{n+1}{k} g_k / (n+1) \) to the sum. Overall the sum is \(\sum_{0 \leq k \leq n} \binom{n+1}{k} (f_k - g_k) / (n+1) = (-1)^{n+1} n / (n+1) \) if \(n \geq 1 \).

Beware that this formula is wrong for \(n = 0 \). The problem should have said that \(n \) is a positive integer.