Putnam Mathematical Competition, 3 December 2005

Problem A1

Show that every positive integer is a sum of one or more numbers of the form $2^{r} 3^{s}$, where r and s are nonnegative integers and no summand divides another.
(For example, $23=9+8+6$.)

Problem A2

Let $S=\{(a, b) \mid a=1,2, \ldots, n, b=1,2,3\}$. A rook tour of S is a polygonal path made up of line segments connecting points $p_{1}, p_{2}, \ldots, p_{3 n}$ in sequence such that $(i) p_{i} \in S$, (ii) p_{i} and p_{i+1} are a unit distance apart, for $1 \leq i<3 n$, (iii) for each $p \in S$ there is a unique i such that $p_{i}=p$. How many rook tours are there that begin at $(1,1)$ and end at $(n, 1)$?
(An example of such a rook tour for $n=5$ is depicted below.)

Problem A3

Let $p(z)$ be a polynomial of degree n, all of whose zeros have absolute value 1 in the complex plane. Put $g(z)=p(z) / z^{n / 2}$. Show that all zeros of $g^{\prime}(z)=0$ have absolute value 1 .

Problem A4

Let H be an $n \times n$ matrix all of whose entries are ± 1 and whose rows are mutually orthogonal. Suppose H has an $a \times b$ submatrix whose entries are all 1 . Show that $a b \leq n$.

Problem A5
Evaluate $\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x$.

Problem A6

Let n be given, $n \geq 4$, and suppose that $P_{1}, P_{2}, \ldots, P_{n}$ are n randomly, independently and uniformly, chosen points on a circle. Consider the convex n-gon whose vertices are the P_{i}. What is the probability that at least one of the vertex angles of this polygon is acute?

Problem B1

Find a nonzero polynomial $P(x, y)$ such that $P(\lfloor a\rfloor,\lfloor 2 a\rfloor)=0$ for all real numbers a. (Note: $\lfloor v\rfloor$ is the greatest integer less than or equal to v.)

Problem B2

Find all positive integers n, k_{1}, \ldots, k_{n} such that $k_{1}+\cdots+k_{n}=5 n-4$ and

$$
\frac{1}{k_{1}}+\cdots+\frac{1}{k_{n}}=1
$$

Problem B3

Find all differentiable functions $f:(0, \infty) \rightarrow(0, \infty)$ for which there is a positive real number a such that

$$
f^{\prime}\left(\frac{a}{x}\right)=\frac{x}{f(x)}
$$

for all $x>0$.

Problem B4

For positive integers m and n, let $f(m, n)$ denote the number of n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of integers such that $\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| \leq m$. Show that $f(m, n)=f(n, m)$.

Problem B5

Let $P\left(x_{1}, \ldots, x_{n}\right)$ denote a polynomial with real coefficients in the variables x_{1}, \ldots, x_{n}, and suppose that
(a)

$$
\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}\right) P\left(x_{1}, \ldots, x_{n}\right)=0 \quad \text { (identically) }
$$

and that

$$
\begin{equation*}
x_{1}^{2}+\cdots+x_{n}^{2} \text { divides } P\left(x_{1}, \ldots, x_{n}\right) \tag{b}
\end{equation*}
$$

Show that $P=0$ identically.

Problem B6

Let S_{n} denote the set of all permutations of the numbers $1,2, \ldots, n$. For $\pi \in S_{n}$, let $\sigma(\pi)=1$ if π is an even permutation and $\sigma(\pi)=-1$ if π is an odd permutation. Also, let $v(\pi)$ denote the number of fixed points of π. Show that

$$
\sum_{\pi \in S_{n}} \frac{\sigma(\pi)}{v(\pi)+1}=(-1)^{n+1} \frac{n}{n+1}
$$

Solutions

D. J. Bernstein, 4 December 2005

Problem A1

Show that every positive integer is a sum of one or more numbers of the form $2^{r} 3^{s}$, where r and s are nonnegative integers and no summand divides another.
(For example, $23=9+8+6$.)
Solution: For each $n \geq 0$ define a sequence $E(n)$ of elements of $2^{\mathbf{N}} 3^{\mathbf{N}}$ as follows:

- if $n=0$ then $E(n)$ is the empty sequence ();
- if $n>0$ and n is even then $E(n)$ is $2 E(n / 2)$, the sequence obtained by doubling each component of $E(n / 2)$;
- if $n>0$ and n is odd then $E(n)$ is $\left(E\left(n-3^{k}\right), 3^{k}\right)$, the sequence obtained by appending 3^{k} to $E\left(n-3^{k}\right)$, where k is the largest integer such that $3^{k} \leq n$.

I claim that the sum of $E(n)$ is n; that each component of $E(n)$ is even if n is even; and that no component of $E(n)$ divides another component. Proof:

- $n=0: E(n)$ is empty so it has sum 0 .
- $n>0$ and n is even: Assume inductively that $E(n / 2)$ has sum $n / 2$ and that no component of $E(n / 2)$ divides another component. Then $E(n)=2 E(n / 2)$ has sum $2(n / 2)=n$; each component of $E(n)$ is even; and no component divides another component.
- $n>0$ and n is odd: Find the largest integer k such that $3^{k} \leq n$. Note that $n-3^{k}$ is even. Assume inductively that $E\left(n-3^{k}\right)$ has sum $n-3^{k}$; that each component of $E\left(n-3^{k}\right)$ is even; and that no component of $E\left(n-3^{k}\right)$ divides another component. Then $E(n)=\left(E\left(n-3^{k}\right), 3^{k}\right)$ has sum $\left(n-3^{k}\right)+3^{k}=n$; each component of $E\left(n-3^{k}\right)$, being even, does not divide 3^{k}; and each component of $E\left(n-3^{k}\right) / 2$, being at most $\left(n-3^{k}\right) / 2<\left(3^{k+1}-3^{k}\right) / 2=3^{k}$, is not divisible by 3^{k}, so each component of $E\left(n-3^{k}\right)$ is not divisible by 3^{k}.
In particular, for $n \geq 1$, the components of $E(n)$ are one or more elements of $2^{\mathbf{N}} 3^{\mathbf{N}}$, adding up to n, none dividing the others.

Problem A2

Let $S=\{(a, b) \mid a=1,2, \ldots, n, b=1,2,3\}$. A rook tour of S is a polygonal path made up of line segments connecting points $p_{1}, p_{2}, \ldots, p_{3 n}$ in sequence such that (i) $p_{i} \in S$, (ii) p_{i} and p_{i+1} are a unit distance apart, for $1 \leq i<3 n$, (iii) for each $p \in S$ there is a
unique i such that $p_{i}=p$. How many rook tours are there that begin at $(1,1)$ and end at $(n, 1)$?
(An example of such a rook tour for $n=5$ is depicted below.)

Solution: The answer is 0 for $n=1$ and 2^{n-2} for $n \geq 2$.
For each $n \geq 1$, define r_{n} as the number of $n \times 3$ rook tours beginning at $(1,1)$ and ending at $(n, 1)$, and define s_{n} as the number of $n \times 3$ rook tours beginning at $(1,1)$ and ending at ($n, 3$).
One can obtain an $n \times 3$ rook tour beginning at $(1,1)$ and ending at $(n, 1)$ as follows. Choose $k \in\{1,2, \ldots, n-1\}$. Take a $k \times 3$ rook tour beginning at $(1,1)$ and ending at $(k, 3)$. Step to the right $n-k$ times to $(n, 3)$; then down once to $(n, 2)$; then left $n-k-1$ times to $(k+1,2)$; then down once to $(k+1,1)$; then right $n-k-1$ times to $(n, 1)$.

Every $n \times 3$ rook tour beginning at $(1,1)$ and ending at $(n, 1)$ can be obtained uniquely in this way. Indeed, the final step down on the tour must be from $(k+1,2)$ to $(k+1,1)$ for a unique $k \in\{1,2, \ldots, n-1\}$; it must be followed by $n-k-1$ steps right to ($n, 1$); it must be preceded by $n-k-1$ steps left from ($n, 2$), since any earlier step up (or left) would prevent the tour from reaching $(n, 2) ;(n, 2)$ must be preceded by a step down from $(n, 1)$; and ($n, 1$) must be preceded by $n-k$ steps right from $(k, 1)$.
Consequently $r_{n}=s_{1}+s_{2}+\cdots+s_{n-1}$ for all $n \geq 1$. In particular, $r_{1}=0$.
Similarly, one can obtain an $n \times 3$ rook tour beginning at $(1,1)$ and ending at $(n, 3)$ by choosing $k \in\{1,2, \ldots, n-1\}$, taking a $k \times 3$ rook tour beginning at $(1,1)$ and ending at $(k, 1)$, stepping to the right $n-k$ times, stepping up once, stepping left $n-k-1$ times, stepping up once, and stepping right $n-k-1$ times; or by simply starting from $(1,1)$, stepping to the right $n-1$ times, stepping up once, stepping left $n-1$ times, stepping up once, and stepping right $n-1$ times. Every $n \times 3$ rook tour beginning at $(1,1)$ and ending at $(n, 3)$ can be obtained uniquely in this way.
Consequently $s_{n}=r_{1}+r_{2}+\cdots+r_{n-1}+1$ for all $n \geq 1$. In particular, $s_{1}=1$.
Now $r_{n}=s_{n}=2^{n-2}$ for all $n \geq 2$. Indeed, assume inductively that $r_{k}=s_{k}=2^{k-2}$ for $2 \leq k<n$. Then $r_{n}=s_{1}+s_{2}+\cdots+s_{n-1}=1+2^{0}+\cdots+2^{n-3}=2^{n-2}$ and $s_{n}=r_{1}+r_{2}+\cdots+r_{n-1}+1=0+2^{0}+\cdots+2^{n-3}+1=2^{n-2}$.

Problem A3

Let $p(z)$ be a polynomial of degree n, all of whose zeros have absolute value 1 in the complex plane. Put $g(z)=p(z) / z^{n / 2}$. Show that all zeros of $g^{\prime}(z)=0$ have absolute value 1 .

Solution: I'm annoyed by this problem, for two reasons.
First, the definition of $g(z)$ is ambiguous when n is odd. Does $z^{n / 2}$ mean the principal branch of the $n / 2$ power, applied to z ? Or does it mean the principal branch of the square root, applied to z^{n} ? Or is z not actually a complex number, but an element of a Riemann sheet chosen so that the square root does not need a branch cut? My proof works for any of these choices of g, but I can imagine proofs that work with all the roots of g and that occasionally break down for the first two choices of g. The problem should have said "Show that all zeros of $z p^{\prime}(z)-(n / 2) p(z)$ have absolute value 1."

Second, the statement is false for $n=0$. Consider, for example, $p(z)=1$. This is a polynomial of degree 0 , and it has no zeros, so all of its zeros have absolute value 1 . The function $g(z)=p(z) / z^{n / 2}$ is then constant, so its derivative is 0 , so its derivative has every complex number (in the ambiguous domain) as a root, not just complex numbers of absolute value 1 .

Assume from now on that $n \geq 1$. Factor $p(z)$ as $p_{n}\left(z-r_{1}\right)\left(z-r_{2}\right) \cdots\left(z-r_{n}\right)$. By hypothesis each r_{i} has absolute value 1. If $|z|>1$ then, by Lemma 2, $\left(z+r_{j}\right) /\left(z-r_{j}\right)$ has positive real part for each j, so - since $n \geq 1-\sum_{j}\left(z+r_{j}\right) /\left(z-r_{j}\right)$ has positive real part. Similarly, if $|z|<1$ then $\sum_{j}\left(z+r_{j}\right) /\left(z-r_{j}\right)$ has negative real part. Either way $\sum_{j}\left(z+r_{j}\right) /\left(z-r_{j}\right)$ is nonzero; i.e., $\sum_{j} 2 z /\left(z-r_{j}\right) \neq \sum_{j}\left(z-r_{j}\right) /\left(z-r_{j}\right)=n$; i.e., $2 z p^{\prime}(z) / p(z) \neq n$; i.e., $g^{\prime}(z) \neq 0$.

Lemma 1: If $z \in \mathbf{C}$ then $(z+1) /(z-1)$ has positive real part when $|z|>1$ and negative real part when $|z|<1$.
Proof: Write z in polar coordinates as $r e^{i \theta}$. Then $(z+1) /(z-1)=\left(r e^{i \theta}+1\right) /\left(r e^{i \theta}-1\right)$ has real part $\left(r^{2}-1\right) /\left((r \cos \theta-1)^{2}+(r \sin \theta)^{2}\right)$, which is positive if $r>1$ and negative if $0 \leq r<1$.

Lemma 2: If $r \in \mathbf{C},|r|=1$, and $|z| \in \mathbf{C}$, then $(z+r) /(z-r)$ has positive real part when $|z|>1$ and negative real part when $|z|<1$.
Proof: Apply Lemma 1 to z / r.

Problem A4

Let H be an $n \times n$ matrix all of whose entries are ± 1 and whose rows are mutually orthogonal. Suppose H has an $a \times b$ submatrix whose entries are all 1. Show that $a b \leq n$.

Solution: Write $v_{1}, v_{2}, \ldots, v_{b}$ for the length- n row vectors covering H. By assumption
each entry of v_{i} is ± 1, so v_{i} has squared length n. By assumption $v_{1}, v_{2}, \ldots, v_{b}$ are pairwise orthogonal, so $v_{1}+v_{2}+\cdots+v_{b}$ has squared length $n b$. On the other hand, by assumption $v_{1}+v_{2}+\cdots+v_{b}$ has a entries equal to b, so $v_{1}+v_{2}+\cdots+v_{b}$ has squared length at least $a b^{2}$. Thus $a b^{2} \leq n b$; consequently $a b \leq n$, whether or not $b=0$.

Problem A5

Evaluate $\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x$.
Solution: The answer is $(\pi / 8) \log 2$. Fast proof by Bhargava, Kedlaya, and Ng: The integral is $\int_{0}^{\pi / 4} \log (\tan \theta+1) d \theta=\int_{0}^{\pi / 4}((1 / 2) \log 2+\log \cos (\pi / 4-\theta)-\log \cos \theta) d \theta=$ $\int_{0}^{\pi / 4}((1 / 2) \log 2) d \theta=(\pi / 8) \log 2$ since $\int_{0}^{\pi / 4} \log \cos (\pi / 4-\theta) d \theta=\int_{0}^{\pi / 4} \log \cos \theta d \theta$.

Problem A6

Let n be given, $n \geq 4$, and suppose that $P_{1}, P_{2}, \ldots, P_{n}$ are n randomly, independently and uniformly, chosen points on a circle. Consider the convex n-gon whose vertices are the P_{i}. What is the probability that at least one of the vertex angles of this polygon is acute?

Solution: The answer is $\left(n^{2}-2 n\right) / 2^{n-1}$.
Define $\theta(p, q) \in[0,2 \pi)$, where p and q are points on the circle, as the angle from p to q in the clockwise direction.

Define a vertex as "happy" if it is immediately before an acute-angled vertex. In other words, if v, w, x are consecutive vertices in clockwise order, then v is happy if and only if the angle at vertex w is acute. Equivalently: v is happy if and only if $\theta(v, x)>\pi$. Equivalently: v is happy if and only if at most one other vertex P has $\theta(v, P) \leq \pi$.

Critical fact 1: P_{1} is happy with probability $n / 2^{n-1}$.
Indeed, here is a partition of P_{1} 's happiness into n disjoint possibilities, each occurring with probability $1 / 2^{n-1}$:

- $\theta\left(P_{1}, P_{i}\right)>\pi$ for all $i \neq 1$;
- $\theta\left(P_{1}, P_{i}\right)>\pi$ for all $i \notin\{1,2\}$ while $\theta\left(P_{1}, P_{2}\right) \leq \pi$;
- $\theta\left(P_{1}, P_{i}\right)>\pi$ for all $i \notin\{1,3\}$ while $\theta\left(P_{1}, P_{3}\right) \leq \pi$;
-...;
- $\theta\left(P_{1}, P_{i}\right)>\pi$ for all $i \notin\{1, n\}$ while $\theta\left(P_{1}, P_{n}\right) \leq \pi$.

Critical fact 2: P_{1} and P_{2} are simultaneously happy with probability $1 / 2^{n-3}(n-1)$.
This probability is the average, over P_{1}, P_{2}, of the conditional probability given P_{1}, P_{2}. I
claim that the conditional probability is exactly $\left((\pi-\alpha)^{n-2}+(n-2) \alpha(\pi-\alpha)^{n-3}\right) /(2 \pi)^{n-2}$ where $\alpha=\min \left\{\theta\left(P_{1}, P_{2}\right), \theta\left(P_{2}, P_{1}\right)\right\}$. The distribution of α is uniform over $[0, \pi]$, so the average of $\left((\pi-\alpha)^{n-2}+(n-2) \alpha(\pi-\alpha)^{n-3}\right) /(2 \pi)^{n-2}$ is

$$
\begin{aligned}
& \frac{1}{\pi} \int_{0}^{\pi} \frac{(\pi-\alpha)^{n-2}+(n-2) \alpha(\pi-\alpha)^{n-3}}{(2 \pi)^{n-2}} d \alpha \\
& \quad=\frac{1}{\pi} \int_{0}^{\pi} \frac{(3-n)(\pi-\alpha)^{n-2}+(n-2) \pi(\pi-\alpha)^{n-3}}{(2 \pi)^{n-2}} d \alpha \\
& \quad=\frac{1}{2^{n-2} \pi^{n-1}}\left((3-n) \frac{\pi^{n-1}}{n-1}+(n-2) \pi \frac{\pi^{n-2}}{n-2}\right) \\
& \quad=\frac{3-n}{2^{n-2}(n-1)}+\frac{n-1}{2^{n-2}(n-1)}=\frac{1}{2^{n-3}(n-1)} .
\end{aligned}
$$

Proof of the claim: Assume without loss of generality that $\theta\left(P_{1}, P_{2}\right) \leq \pi$, i.e., that $\alpha=\theta\left(P_{1}, P_{2}\right)$. Now P_{1} is happy if and only if $\theta\left(P_{1}, P_{3}\right), \ldots, \theta\left(P_{1}, P_{n}\right)$ are all $>\pi$; and P_{2} is happy if and only if at most one of $\theta\left(P_{2}, P_{3}\right), \ldots, \theta\left(P_{2}, P_{n}\right)$ is $\leq \pi$. Thus P_{1} and P_{2} are simultaneously happy if and only if one of the following disjoint events occurs:

- $\pi+\alpha<\theta\left(P_{1}, P_{i}\right)<2 \pi$ for each $i \notin\{1,2\}$-which, given P_{1} and P_{2}, occurs with conditional probability $(\pi-\alpha)^{n-2} /(2 \pi)^{n-2}$;
- $\pi+\alpha<\theta\left(P_{1}, P_{i}\right)<2 \pi$ for each $i \notin\{1,2,3\}$ while $\pi<\theta\left(P_{1}, P_{3}\right) \leq \pi+\alpha$-which, given P_{1} and P_{2}, occurs with conditional probability $\alpha(\pi-\alpha)^{n-3} /(2 \pi)^{n-2}$;
- $\pi+\alpha<\theta\left(P_{1}, P_{i}\right)<2 \pi$ for each $i \notin\{1,2,4\}$ while $\pi<\theta\left(P_{1}, P_{4}\right) \leq \pi+\alpha$-which, given P_{1} and P_{2}, occurs with conditional probability $\alpha(\pi-\alpha)^{n-3} /(2 \pi)^{n-2}$;
-...;
- $\pi+\alpha<\theta\left(P_{1}, P_{i}\right)<2 \pi$ for each $i \notin\{1,2, n\}$ while $\pi<\theta\left(P_{1}, P_{n}\right) \leq \pi+\alpha$-which, given P_{1} and P_{2}, occurs with conditional probability $\alpha(\pi-\alpha)^{n-3} /(2 \pi)^{n-2}$.

Add to obtain $\left((\pi-\alpha)^{n-2}+(n-2) \alpha(\pi-\alpha)^{n-3}\right) /(2 \pi)^{n-2}$ as claimed.
Critical fact 3: P_{1}, P_{2}, P_{3} are all happy with probability 0 .
Indeed, in each of the above ways for P_{1}, P_{2} to be happy, P_{3} is visibly unhappy: either $\pi+\alpha<\theta\left(P_{1}, P_{3}\right) \leq 2 \pi$, in which case both $\theta\left(P_{3}, P_{1}\right)$ and $\theta\left(P_{3}, P_{2}\right)$ are below π, or $\pi<\theta\left(P_{1}, P_{3}\right) \leq \pi+\alpha$ while $\pi+\alpha<\theta\left(P_{1}, P_{4}\right) \leq 2 \pi$, in which case both $\theta\left(P_{3}, P_{1}\right)$ and $\theta\left(P_{3}, P_{4}\right)$ are below π. This is where the proof uses the hypothesis that $n \geq 4$.
Putting it all together: Permute indices to see that P_{i} is happy with probability $n / 2^{n-1}$; that P_{i}, P_{j} are simultaneously happy with probability $1 / 2^{n-3}(n-1)$, if the indices i, j are distinct; and that P_{i}, P_{j}, P_{k} are simultaneously happy with probability 0 , if i, j, k are distinct. By inclusion-exclusion, the probability of at least one happy vertex is $n\left(n / 2^{n-1}\right)-\binom{n}{2}\left(1 / 2^{n-3}(n-1)\right)=\left(n^{2}-2 n\right) / 2^{n-1}$.

Problem B1

Find a nonzero polynomial $P(x, y)$ such that $P(\lfloor a\rfloor,\lfloor 2 a\rfloor)=0$ for all real numbers a. (Note: $\lfloor v\rfloor$ is the greatest integer less than or equal to v.)

Solution: One answer is the nonzero polynomial $P(x, y)=(y-2 x)(y-2 x-1)$.
Define $i=\lfloor a\rfloor$. Then $i \leq a<i+1$. If $i \leq a<i+0.5$ then $2 i \leq 2 a<2 i+1$ so $\lfloor 2 a\rfloor=2 i=2\lfloor a\rfloor$ so $\lfloor 2 a\rfloor-2\lfloor a\rfloor=0$. Otherwise $i+0.5 \leq a<i+1$ so $2 i+1 \leq 2 a<2 i+2$ so $\lfloor 2 a\rfloor=2 i+1=2\lfloor a\rfloor+1$ so $\lfloor 2 a\rfloor-2\lfloor a\rfloor-1=0$. Either way $P(\lfloor a\rfloor,\lfloor 2 a\rfloor)=0$.

Problem B2

Find all positive integers n, k_{1}, \ldots, k_{n} such that $k_{1}+\cdots+k_{n}=5 n-4$ and

$$
\frac{1}{k_{1}}+\cdots+\frac{1}{k_{n}}=1 .
$$

Solution: 1,$1 ; 3,2,3,6 ; 3,2,6,3 ; 3,3,2,6 ; 3,3,6,2 ; 3,6,2,3 ; 3,6,3,2 ; 4,4,4,4,4$.
By inspection each of these possibilities works. Conversely, assume that $k_{1}+\cdots+k_{n}=$ $5 n-4$ and $1 / k_{1}+\cdots+1 / k_{n}=1$; I will show that n, k_{1}, \ldots, k_{n} is one of these possibilities. If k_{1}, \ldots, k_{n} are all equal then $1=1 / k_{1}+\cdots+1 / k_{n}=n / k_{1}$ so $k_{1}=n$ and $5 n-4=$ $k_{1}+\cdots+k_{n}=n k_{1}=n^{2}$. Hence $(n-4)(n-1)=n^{2}-5 n+4=0$. Either $n=1$, in which case $\left(n, k_{1}, \ldots, k_{n}\right)=(1,1)$; or $n=4$, in which case $\left(n, k_{1}, \ldots, k_{n}\right)=(4,4,4,4,4)$.

Assume from now on that k_{1}, \ldots, k_{n} are not all equal. The average of k_{1}, \ldots, k_{n} is $(5 n-4) / n$ so the geometric average of k_{1}, \ldots, k_{n} is below $(5 n-4) / n$. The average of $1 / k_{1}, \ldots, 1 / k_{n}$ is $1 / n$ so the geometric average of $1 / k_{1}, \ldots, 1 / k_{n}$ is below $1 / n$. Thus the geometric average of $k_{1}, \ldots, k_{n}, 1 / k_{1}, \ldots, 1 / k_{n}$ is below $\sqrt{((5 n-4) / n)(1 / n)}$; but this geometric average is equal to 1 . Therefore $1<(5 n-4) / n^{2}$; so $(n-1)(n-4)<0$; so $1<n<4$; so $n=2$ or $n=3$.

If $n=2$ then $k_{1}+k_{2}=5 n-4=6$ so $1 / k_{1}+1 / k_{2}$ is one of $1 / 1+1 / 5,1 / 2+1 / 4,1 / 3+1 / 3$, none of which equal 1 .

If $n=3$ then $k_{1}+k_{2}+k_{3}=5 n-4=11$ so $1 / k_{1}+1 / k_{2}+1 / k_{3}$ is one of $1 / 1+\cdots, 1 / 2+$ $1 / 2+\cdots, 1 / 2+1 / 3+1 / 6,1 / 2+1 / 4+1 / 5,1 / 3+1 / 3+1 / 5,1 / 3+1 / 4+1 / 4$. By inspection none of these are 1 except $1 / 2+1 / 3+1 / 6$. Thus $\left(k_{1}, k_{2}, k_{3}\right)$ is a permutation of $(2,3,6)$.

Problem B3

Find all differentiable functions $f:(0, \infty) \rightarrow(0, \infty)$ for which there is a positive real number a such that

$$
f^{\prime}\left(\frac{a}{x}\right)=\frac{x}{f(x)}
$$

for all $x>0$.
Solution: Here are two classes of qualifying functions f :

- Define $f(x)=x$. Then $f^{\prime}(x)=1$ so $f^{\prime}(1 / x)=1=x / f(x)$.
- Choose positive real numbers α, β with $\beta \neq 1$, and define $f(x)=\alpha x^{\beta}$. Then $f^{\prime}(a / x) f(x)=\alpha \beta(a / x)^{\beta-1} \alpha x^{\beta}=\alpha^{2} \beta a^{\beta-1} x=x$ where $a=\left(1 / \alpha^{2} \beta\right)^{1 /(\beta-1)}$.

I claim that there are no other possibilities: if $f^{\prime}(a / x)=x / f(x)$ then f is one of the above functions. Indeed, substitute a / x for x : $f^{\prime}(x)=a / x f(a / x)$. The right side is differentiable, so the left side is too:

$$
f^{\prime \prime}(x)=\frac{-a}{(x f(a / x))^{2}}\left(x f^{\prime}(a / x) \frac{-a}{x^{2}}+f(a / x)\right) .
$$

Substitute $f(a / x)=a / x f^{\prime}(x)$ and $f^{\prime}(a / x)=x / f(x)$:

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{-a}{\left(a / f^{\prime}(x)\right)^{2}}\left(\frac{x^{2}}{f(x)} \frac{-a}{x^{2}}+\frac{a}{x f^{\prime}(x)}\right) \\
& =\frac{-f^{\prime}(x)^{2}}{a}\left(\frac{-a}{f(x)}+\frac{a}{x f^{\prime}(x)}\right)=\frac{f^{\prime}(x)^{2}}{f(x)}-\frac{f^{\prime}(x)}{x} .
\end{aligned}
$$

Define $g(x)=\log f(x)$. Then $g^{\prime}(x)=f^{\prime}(x) / f(x)$; note that $f^{\prime}(x)>0$ so $g^{\prime}(x)>0$. Differentiate again:

$$
g^{\prime \prime}(x)=\frac{f(x) f^{\prime \prime}(x)-f^{\prime}(x)^{2}}{f(x)^{2}}=\frac{-f(x) f^{\prime}(x) / x}{f(x)^{2}}=\frac{-f^{\prime}(x)}{x f(x)}=\frac{-g^{\prime}(x)}{x} .
$$

Define $h(x)=\log g^{\prime}(x)$. Then $h^{\prime}(x)=g^{\prime \prime}(x) / g^{\prime}(x)=-1 / x$. Integrate: there is a real number d such that $h(x)=d-\log x$. Exponentiate: $g^{\prime}(x)=\beta / x$ where $\beta=\exp d$. Integrate again: there is a real number c such that $g(x)=c+\beta \log x$. Exponentiate: $f(x)=\alpha x^{\beta}$ where $\alpha=\exp c$. If $\beta=1$ then $f(x)=\alpha x$ so $\alpha=f^{\prime}(a / x)=x / f(x)=1 / \alpha$ so $\alpha=1$ so $f(x)=x$ as claimed. Otherwise α, β are positive real numbers, $\beta \neq 1$, and $f(x)=\alpha x^{\beta}$ as claimed.

Problem B4

For positive integers m and n, let $f(m, n)$ denote the number of n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of integers such that $\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| \leq m$. Show that $f(m, n)=f(n, m)$.

Solution: Extend the same definition to all nonnegative integers m, n.
If $n=0$ then there is exactly one n-tuple, and its sum of absolute values is $0 \leq m$. Thus $f(m, 0)=1$.

If $m=0$ then the only qualifying n-tuple is $(0,0, \ldots, 0)$. Thus $f(0, n)=1$.
If $n \geq 1$ and $m \geq 0$ then one can construct a qualifying n-tuple as follows: choose x_{n} in $\{-m,-m+1, \ldots, m-1, m\}$; choose an $(n-1)$-tuple ($x_{1}, x_{2}, \ldots, x_{n-1}$) satisfying $\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n-1}\right| \leq m-\left|x_{n}\right|$. Every qualifying n-tuple arises uniquely in this way. Thus $f(m, n)=f(m, n-1)+2 f(m-1, n-1)+2 f(m-2, n-1)+\cdots+2 f(0, n-1)$.

Consequently, $f(m+1, n+1)=f(m, n+1)+f(m+1, n)+f(m, n)$ if $n \geq 0$ and $m \geq 0$. Indeed, $f(m, n+1)=f(m, n)+2 f(m-1, n)+2 f(m-2, n)+\cdots+2 f(0, n)$. and $f(m+1, n+1)=f(m+1, n)+2 f(m, n)+2 f(m-1, n)+2 f(m-2, n)+\cdots+2 f(0, n)$; subtract.

Theorem: $f(m, n)=f(n, m)$ for all nonnegative integers m, n. Proof: If $m=0$ then $f(m, n)=f(0, n)=1=f(n, 0)=f(n, m)$ as claimed. If $n=0$ then $f(m, n)=$ $f(m, 0)=1=f(0, m)=f(n, m)$ as claimed. So assume that $m \geq 1$ and $n \geq 1$. Then $f(m, n)=f(m-1, n)+f(m, n-1)+f(m-1, n-1)$ and $f(n, m)=f(n-1, m)+$ $f(n, m-1)+f(n-1, m-1)$. Induct on $m+n$.
Alternate approaches: One can, with marginally more work, prove the symmetric formula $f(m, n)=1+2(m+n-1)!/(m-1)!(n-1)!$. One can use other bijections; partitioning by choices of x_{n} is straightforward but might not produce the shortest proof.

Problem B5

Let $P\left(x_{1}, \ldots, x_{n}\right)$ denote a polynomial with real coefficients in the variables x_{1}, \ldots, x_{n}, and suppose that

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}\right) P\left(x_{1}, \ldots, x_{n}\right)=0 \quad \text { (identically) } \tag{a}
\end{equation*}
$$

and that

$$
\begin{equation*}
x_{1}^{2}+\cdots+x_{n}^{2} \text { divides } P\left(x_{1}, \ldots, x_{n}\right) \tag{b}
\end{equation*}
$$

Show that $P=0$ identically.
Solution: Assume that $n \geq 1$. Define $X=x_{1}^{2}+\cdots+x_{n}^{2}$ and $D=\partial^{2} / \partial x_{1}^{2}+\cdots+\partial^{2} / \partial x_{n}^{2}$. The problem is to show that if X divides P and $D(P)=0$ then $P=0$.

Suppose that $P \neq 0$. Find the maximum positive integer e such that X^{e} divides P. Write P / X^{e} as $\sum_{i \geq 0} H_{i}$ where H_{i} is homogeneous of degree i.
Then $0=D(P)=D\left(\sum_{i} X^{e} H_{i}\right)=\sum_{i} D\left(X^{e} H_{i}\right)$. The terms $D\left(X^{e} H_{i}\right)$ are homogeneous of different degrees, namely $2 e-2+i$, so $D\left(X^{e} H_{i}\right)=0$ for each i. Thus $X D\left(H_{i}\right)+$ $e\left(4(e-1)+4 \operatorname{deg} H_{i}+2 n\right) H_{i}=0$ by Lemma 2. The coefficient $e\left(4(e-1)+4 \operatorname{deg} H_{i}+2 n\right)$ is positive since $n \geq 1$ and $e \geq 1$; thus H_{i} is a multiple of X. This is true for every i, so P / X^{e} is a multiple of X, contradicting the definition of e.

Lemma 1: If H is homogeneous then $D(X H)=X D(H)+(4 \operatorname{deg} H+2 n) H$.
Proof: $\frac{\partial^{2} X H}{\partial x_{i}^{2}}=X \frac{\partial^{2} H}{\partial x_{i}^{2}}+2 \frac{\partial X}{\partial x_{i}} \frac{\partial H}{\partial x_{i}}+H \frac{\partial^{2} X}{\partial x_{i}^{2}}=X \frac{\partial^{2} H}{\partial x_{i}^{2}}+4 x_{i} \frac{\partial H}{\partial x_{i}}+2 H$. By homogeneity $\sum_{i} x_{i}\left(\partial H / \partial x_{i}\right)=(\operatorname{deg} H) H$.
Lemma 2: If H is homogeneous and $e \geq 0$ then

$$
D\left(X^{e} H\right)=X^{e} D(H)+e(4(e-1)+4 \operatorname{deg} H+2 n) X^{e-1} H
$$

Proof: For $e=0$: $D\left(X^{e} H\right)=D(H)=X^{e} D(H)+e(\cdots)$. For $e \geq 1: D\left(X^{e} H\right)=$ $X D\left(X^{e-1} H\right)+\left(4 \operatorname{deg} X^{e-1} H+2 n\right) X^{e-1} H$ by Lemma 1. Assume inductively that $D\left(X^{e-1} H\right)=X^{e-1} D(H)+(e-1)(4(e-2)+4 \operatorname{deg} H+2 n) X^{e-2} H$. Then

$$
\begin{aligned}
D\left(X^{e} H\right)= & X^{e} D(H)+(e-1)(4(e-2)+4 \operatorname{deg} H+2 n) X^{e-1} H \\
& \quad+\left(4 \operatorname{deg} X^{e-1} H+2 n\right) X^{e-1} H \\
= & X^{e} D(H)+(4(e-1)(e-2)+4(e-1) \operatorname{deg} H+2(e-1) n \\
& \quad+4(e-1) \operatorname{deg} X+4 \operatorname{deg} H+2 n) X^{e-1} H \\
= & X^{e} D(H)+(4(e-1)(e)+4 e \operatorname{deg} H+2 e n) X^{e-1} H
\end{aligned}
$$

since $\operatorname{deg} X=2$.

Problem B6

Let S_{n} denote the set of all permutations of the numbers $1,2, \ldots, n$. For $\pi \in S_{n}$, let $\sigma(\pi)=1$ if π is an even permutation and $\sigma(\pi)=-1$ if π is an odd permutation. Also, let $v(\pi)$ denote the number of fixed points of π. Show that

$$
\sum_{\pi \in S_{n}} \frac{\sigma(\pi)}{v(\pi)+1}=(-1)^{n+1} \frac{n}{n+1}
$$

Solution: Define e_{n} as the number of even permutations of $\{1,2, \ldots, n\}$. Recall that $e_{n}=1$ if $n=0 ; e_{n}=1$ if $n=1$; and $e_{n}=n!/ 2$ if $n \geq 2$.

Define f_{k} as the number of even derangements of $\{1,2, \ldots, k\}$, i.e., the number of even permutations with no fixed points. Define g_{k} as the number of odd derangements of $\{1,2, \ldots, k\}$, i.e., the number of odd permutations with no fixed points.

By choosing k elements of $\{1, \ldots, n\}$, choosing an even derangement of those k elements, and fixing the other $n-k$ elements, one obtains an even permutation of $\{1, \ldots, n\}$ with exactly $n-k$ fixed points. Every such permutation arises in this way. Thus there are exactly $\binom{n}{k} f_{k}$ even permutations of $\{1, \ldots, n\}$ with exactly $n-k$ fixed points. Sum over k to see that $\sum_{0 \leq k \leq n}\binom{n}{k} f_{k}=e_{n}$.

Similarly, there are exactly $\binom{n}{k} g_{k}$ odd permutations of $\{1, \ldots, n\}$ with exactly $n-k$ fixed points, and $\sum_{0 \leq k \leq n}\binom{n}{k} g_{k}=n!-e_{n}$.
I claim that $f_{n}-g_{n}=(-1)^{n-1}(n-1)$ for all $n \geq 0$. Proof: The point is that $f_{n}-g_{n}$ is determined recursively by the equation $\sum_{k}\binom{n}{k}\left(f_{k}-g_{k}\right)=2 e_{n}-n!$; so one simply has to check that $\sum_{k}\binom{n}{k}(-1)^{k-1}(k-1)=2 e_{n}-n$!. For $n=0$ the latter sum is $(-1)^{-1}(-1)=$ $1=2 e_{0}-0$! as desired. For $n=1$ the sum is $(-1)^{-1}(-1)+(-1)^{0}(0)=1=2 e_{1}-1$! as desired. For $n \geq 2$ one has $\sum_{k}\binom{n}{k}(-1)^{k}=(1-1)^{n}=0$ and $\sum_{k}\binom{n}{k}(-1)^{k-1} k=$ $\sum_{k}\binom{n-1}{k-1}(-1)^{k-1}=(1-1)^{n-1}=0$ so $\sum_{k}\binom{n}{k}(-1)^{k-1}(k-1)=0=2 e_{n}-n$! as desired.

Now if $n \geq 1$ then $\sum_{0 \leq k \leq n}\binom{n+1}{k}\left(f_{k}-g_{k}\right)=(-1)^{n+1} n$. Proof: $\binom{n+1}{n+1}\left(f_{n+1}-g_{n+1}\right)=$ $(-1)^{n} n$ and $\sum_{0 \leq k \leq n+1}\binom{n+1}{k}\left(f_{k}-g_{k}\right)=2 e_{n+1}-(n+1)!=0$.
The problem asks for the sum of $\sigma(\pi) /(1+v(\pi))$ over all permutations π of $\{1, \ldots, n\}$. There are $\binom{n}{k} f_{k}$ even permutations π with $v(\pi)=n-k$, contributing $\binom{n}{k} f_{k} /(1+n-k)=$ $\binom{n+1}{k} f_{k} /(n+1)$ to the sum. There are also $\binom{n}{k} g_{k}$ odd permutations π with $v(\pi)=n-k$, contributing $-\binom{n}{k} g_{k} /(1+n-k)=-\binom{n+1}{k} g_{k} /(n+1)$ to the sum. Overall the sum is $\sum_{0 \leq k \leq n}\binom{n+1}{k}\left(f_{k}-g_{k}\right) /(n+1)=(-1)^{n+1} n /(n+1)$ if $n \geq 1$.
Beware that this formula is wrong for $n=0$. The problem should have said that n is a positive integer.

