
Putnam Mathematical Competition, 3 December 2005

Problem A1

Show that every positive integer is a sum of one or more numbers of the form 2r3s, where
r and s are nonnegative integers and no summand divides another.
(For example, 23 = 9 + 8 + 6.)

Problem A2

Let S = {(a, b) | a = 1, 2, . . . , n, b = 1, 2, 3}. A rook tour of S is a polygonal path made
up of line segments connecting points p1, p2, . . . , p3n in sequence such that (i) pi ∈ S,
(ii) pi and pi+1 are a unit distance apart, for 1 ≤ i < 3n, (iii) for each p ∈ S there is a
unique i such that pi = p. How many rook tours are there that begin at (1, 1) and end
at (n, 1)?
(An example of such a rook tour for n = 5 is depicted below.)

• • • • •

• • • • •

• • • • •

Problem A3

Let p(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in the
complex plane. Put g(z) = p(z)/zn/2. Show that all zeros of g′(z) = 0 have absolute
value 1.

Problem A4

Let H be an n × n matrix all of whose entries are ±1 and whose rows are mutually
orthogonal. Suppose H has an a × b submatrix whose entries are all 1. Show that
ab ≤ n.

Problem A5

Evaluate

∫ 1

0

ln(x + 1)

x2 + 1
dx.

Problem A6

Let n be given, n ≥ 4, and suppose that P1, P2, . . . , Pn are n randomly, independently
and uniformly, chosen points on a circle. Consider the convex n-gon whose vertices are
the Pi. What is the probability that at least one of the vertex angles of this polygon is
acute?



Problem B1

Find a nonzero polynomial P (x, y) such that P (bac, b2ac) = 0 for all real numbers a.
(Note: bvc is the greatest integer less than or equal to v.)

Problem B2

Find all positive integers n, k1, . . . , kn such that k1 + · · · + kn = 5n − 4 and

1

k1
+ · · · +

1

kn
= 1.

Problem B3

Find all differentiable functions f : (0,∞) → (0,∞) for which there is a positive real
number a such that

f ′
(a

x

)

=
x

f(x)

for all x > 0.

Problem B4

For positive integers m and n, let f(m,n) denote the number of n-tuples (x1, x2, . . . , xn)
of integers such that |x1| + |x2| + · · · + |xn| ≤ m. Show that f(m,n) = f(n,m).

Problem B5

Let P (x1, . . . , xn) denote a polynomial with real coefficients in the variables x1, . . . , xn,
and suppose that

(a)

(

∂2

∂x2
1

+ · · · +
∂2

∂x2
n

)

P (x1, . . . , xn) = 0 (identically)

and that
(b) x2

1 + · · · + x2
n divides P (x1, . . . , xn).

Show that P = 0 identically.

Problem B6

Let Sn denote the set of all permutations of the numbers 1, 2, . . . , n. For π ∈ Sn, let
σ(π) = 1 if π is an even permutation and σ(π) = −1 if π is an odd permutation. Also,
let v(π) denote the number of fixed points of π. Show that

∑

π∈Sn

σ(π)

v(π) + 1
= (−1)n+1 n

n + 1
.



Solutions

D. J. Bernstein, 4 December 2005

Problem A1

Show that every positive integer is a sum of one or more numbers of the form 2r3s, where
r and s are nonnegative integers and no summand divides another.
(For example, 23 = 9 + 8 + 6.)

Solution: For each n ≥ 0 define a sequence E(n) of elements of 2N3N as follows:

• if n = 0 then E(n) is the empty sequence ();

• if n > 0 and n is even then E(n) is 2E(n/2), the sequence obtained by doubling
each component of E(n/2);

• if n > 0 and n is odd then E(n) is (E(n − 3k), 3k), the sequence obtained by
appending 3k to E(n − 3k), where k is the largest integer such that 3k ≤ n.

I claim that the sum of E(n) is n; that each component of E(n) is even if n is even; and
that no component of E(n) divides another component. Proof:

• n = 0: E(n) is empty so it has sum 0.

• n > 0 and n is even: Assume inductively that E(n/2) has sum n/2 and that no
component of E(n/2) divides another component. Then E(n) = 2E(n/2) has sum
2(n/2) = n; each component of E(n) is even; and no component divides another
component.

• n > 0 and n is odd: Find the largest integer k such that 3k ≤ n. Note that
n − 3k is even. Assume inductively that E(n − 3k) has sum n − 3k; that each
component of E(n − 3k) is even; and that no component of E(n − 3k) divides
another component. Then E(n) = (E(n − 3k), 3k) has sum (n − 3k) + 3k = n;
each component of E(n−3k), being even, does not divide 3k; and each component
of E(n − 3k)/2, being at most (n − 3k)/2 < (3k+1 − 3k)/2 = 3k, is not divisible
by 3k, so each component of E(n − 3k) is not divisible by 3k.

In particular, for n ≥ 1, the components of E(n) are one or more elements of 2N3N,
adding up to n, none dividing the others.

Problem A2

Let S = {(a, b) | a = 1, 2, . . . , n, b = 1, 2, 3}. A rook tour of S is a polygonal path made
up of line segments connecting points p1, p2, . . . , p3n in sequence such that (i) pi ∈ S,
(ii) pi and pi+1 are a unit distance apart, for 1 ≤ i < 3n, (iii) for each p ∈ S there is a



unique i such that pi = p. How many rook tours are there that begin at (1, 1) and end
at (n, 1)?
(An example of such a rook tour for n = 5 is depicted below.)

• • • • •

• • • • •

• • • • •

Solution: The answer is 0 for n = 1 and 2n−2 for n ≥ 2.

For each n ≥ 1, define rn as the number of n × 3 rook tours beginning at (1, 1) and
ending at (n, 1), and define sn as the number of n× 3 rook tours beginning at (1, 1) and
ending at (n, 3).

One can obtain an n × 3 rook tour beginning at (1, 1) and ending at (n, 1) as follows.
Choose k ∈ {1, 2, . . . , n − 1}. Take a k × 3 rook tour beginning at (1, 1) and ending at
(k, 3). Step to the right n−k times to (n, 3); then down once to (n, 2); then left n−k−1
times to (k + 1, 2); then down once to (k + 1, 1); then right n − k − 1 times to (n, 1).

Every n× 3 rook tour beginning at (1, 1) and ending at (n, 1) can be obtained uniquely
in this way. Indeed, the final step down on the tour must be from (k + 1, 2) to (k + 1, 1)
for a unique k ∈ {1, 2, . . . , n − 1}; it must be followed by n − k − 1 steps right to (n, 1);
it must be preceded by n− k − 1 steps left from (n, 2), since any earlier step up (or left)
would prevent the tour from reaching (n, 2); (n, 2) must be preceded by a step down
from (n, 1); and (n, 1) must be preceded by n − k steps right from (k, 1).

Consequently rn = s1 + s2 + · · · + sn−1 for all n ≥ 1. In particular, r1 = 0.

Similarly, one can obtain an n × 3 rook tour beginning at (1, 1) and ending at (n, 3) by
choosing k ∈ {1, 2, . . . , n − 1}, taking a k× 3 rook tour beginning at (1, 1) and ending at
(k, 1), stepping to the right n− k times, stepping up once, stepping left n− k − 1 times,
stepping up once, and stepping right n − k − 1 times; or by simply starting from (1, 1),
stepping to the right n − 1 times, stepping up once, stepping left n − 1 times, stepping
up once, and stepping right n − 1 times. Every n × 3 rook tour beginning at (1, 1) and
ending at (n, 3) can be obtained uniquely in this way.

Consequently sn = r1 + r2 + · · · + rn−1 + 1 for all n ≥ 1. In particular, s1 = 1.

Now rn = sn = 2n−2 for all n ≥ 2. Indeed, assume inductively that rk = sk = 2k−2

for 2 ≤ k < n. Then rn = s1 + s2 + · · · + sn−1 = 1 + 20 + · · · + 2n−3 = 2n−2 and
sn = r1 + r2 + · · · + rn−1 + 1 = 0 + 20 + · · · + 2n−3 + 1 = 2n−2.

Problem A3



Let p(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in the
complex plane. Put g(z) = p(z)/zn/2. Show that all zeros of g′(z) = 0 have absolute
value 1.

Solution: I’m annoyed by this problem, for two reasons.

First, the definition of g(z) is ambiguous when n is odd. Does zn/2 mean the principal
branch of the n/2 power, applied to z? Or does it mean the principal branch of the
square root, applied to zn? Or is z not actually a complex number, but an element of
a Riemann sheet chosen so that the square root does not need a branch cut? My proof
works for any of these choices of g, but I can imagine proofs that work with all the roots
of g and that occasionally break down for the first two choices of g. The problem should
have said “Show that all zeros of zp′(z) − (n/2)p(z) have absolute value 1.”

Second, the statement is false for n = 0. Consider, for example, p(z) = 1. This is a
polynomial of degree 0, and it has no zeros, so all of its zeros have absolute value 1. The
function g(z) = p(z)/zn/2 is then constant, so its derivative is 0, so its derivative has
every complex number (in the ambiguous domain) as a root, not just complex numbers
of absolute value 1.

Assume from now on that n ≥ 1. Factor p(z) as pn(z − r1)(z − r2) · · · (z − rn). By
hypothesis each ri has absolute value 1. If |z| > 1 then, by Lemma 2, (z + rj)/(z − rj)
has positive real part for each j, so—since n ≥ 1—

∑

j(z + rj)/(z − rj) has positive real
part. Similarly, if |z| < 1 then

∑

j(z + rj)/(z − rj) has negative real part. Either way
∑

j(z + rj)/(z − rj) is nonzero; i.e.,
∑

j 2z/(z − rj) 6=
∑

j(z − rj)/(z − rj) = n; i.e.,
2zp′(z)/p(z) 6= n; i.e., g′(z) 6= 0.

Lemma 1: If z ∈ C then (z + 1)/(z − 1) has positive real part when |z| > 1 and negative
real part when |z| < 1.

Proof: Write z in polar coordinates as reiθ. Then (z + 1)/(z − 1) = (reiθ + 1)/(reiθ − 1)
has real part (r2 − 1)/((r cos θ − 1)2 + (r sin θ)2), which is positive if r > 1 and negative
if 0 ≤ r < 1.

Lemma 2: If r ∈ C, |r| = 1, and |z| ∈ C, then (z + r)/(z− r) has positive real part when
|z| > 1 and negative real part when |z| < 1.

Proof: Apply Lemma 1 to z/r.

Problem A4

Let H be an n × n matrix all of whose entries are ±1 and whose rows are mutually
orthogonal. Suppose H has an a × b submatrix whose entries are all 1. Show that
ab ≤ n.

Solution: Write v1, v2, . . . , vb for the length-n row vectors covering H. By assumption



each entry of vi is ±1, so vi has squared length n. By assumption v1, v2, . . . , vb are
pairwise orthogonal, so v1 + v2 + · · · + vb has squared length nb. On the other hand, by
assumption v1 + v2 + · · · + vb has a entries equal to b, so v1 + v2 + · · · + vb has squared
length at least ab2. Thus ab2 ≤ nb; consequently ab ≤ n, whether or not b = 0.

Problem A5

Evaluate

∫ 1

0

ln(x + 1)

x2 + 1
dx.

Solution: The answer is (π/8) log 2. Fast proof by Bhargava, Kedlaya, and Ng: The

integral is
∫ π/4

0
log(tan θ + 1) dθ =

∫ π/4

0
((1/2) log 2 + log cos(π/4 − θ) − log cos θ) dθ =

∫ π/4

0
((1/2) log 2) dθ = (π/8) log 2 since

∫ π/4

0
log cos(π/4 − θ) dθ =

∫ π/4

0
log cos θ dθ.

Problem A6

Let n be given, n ≥ 4, and suppose that P1, P2, . . . , Pn are n randomly, independently
and uniformly, chosen points on a circle. Consider the convex n-gon whose vertices are
the Pi. What is the probability that at least one of the vertex angles of this polygon is
acute?

Solution: The answer is (n2 − 2n)/2n−1.

Define θ(p, q) ∈ [0, 2π), where p and q are points on the circle, as the angle from p to q
in the clockwise direction.

Define a vertex as “happy” if it is immediately before an acute-angled vertex. In other
words, if v, w, x are consecutive vertices in clockwise order, then v is happy if and only
if the angle at vertex w is acute. Equivalently: v is happy if and only if θ(v, x) > π.
Equivalently: v is happy if and only if at most one other vertex P has θ(v, P ) ≤ π.

Critical fact 1: P1 is happy with probability n/2n−1.

Indeed, here is a partition of P1’s happiness into n disjoint possibilities, each occurring
with probability 1/2n−1:

• θ(P1, Pi) > π for all i 6= 1;

• θ(P1, Pi) > π for all i /∈ {1, 2} while θ(P1, P2) ≤ π;

• θ(P1, Pi) > π for all i /∈ {1, 3} while θ(P1, P3) ≤ π;

• . . . ;

• θ(P1, Pi) > π for all i /∈ {1, n} while θ(P1, Pn) ≤ π.

Critical fact 2: P1 and P2 are simultaneously happy with probability 1/2n−3(n − 1).

This probability is the average, over P1, P2, of the conditional probability given P1, P2. I



claim that the conditional probability is exactly ((π−α)n−2+(n−2)α(π−α)n−3)/(2π)n−2

where α = min {θ(P1, P2), θ(P2, P1)}. The distribution of α is uniform over [0, π], so the
average of ((π − α)n−2 + (n − 2)α(π − α)n−3)/(2π)n−2 is

1

π

∫ π

0

(π − α)n−2 + (n − 2)α(π − α)n−3

(2π)n−2
dα

=
1

π

∫ π

0

(3 − n)(π − α)n−2 + (n − 2)π(π − α)n−3

(2π)n−2
dα

=
1

2n−2πn−1

(

(3 − n)
πn−1

n − 1
+ (n − 2)π

πn−2

n − 2

)

=
3 − n

2n−2(n − 1)
+

n − 1

2n−2(n − 1)
=

1

2n−3(n − 1)
.

Proof of the claim: Assume without loss of generality that θ(P1, P2) ≤ π, i.e., that
α = θ(P1, P2). Now P1 is happy if and only if θ(P1, P3), . . . , θ(P1, Pn) are all > π; and
P2 is happy if and only if at most one of θ(P2, P3), . . . , θ(P2, Pn) is ≤ π. Thus P1 and
P2 are simultaneously happy if and only if one of the following disjoint events occurs:

• π + α < θ(P1, Pi) < 2π for each i /∈ {1, 2}—which, given P1 and P2, occurs with
conditional probability (π − α)n−2/(2π)n−2;

• π + α < θ(P1, Pi) < 2π for each i /∈ {1, 2, 3} while π < θ(P1, P3) ≤ π + α—which,
given P1 and P2, occurs with conditional probability α(π − α)n−3/(2π)n−2;

• π + α < θ(P1, Pi) < 2π for each i /∈ {1, 2, 4} while π < θ(P1, P4) ≤ π + α—which,
given P1 and P2, occurs with conditional probability α(π − α)n−3/(2π)n−2;

• . . . ;

• π +α < θ(P1, Pi) < 2π for each i /∈ {1, 2, n} while π < θ(P1, Pn) ≤ π +α—which,
given P1 and P2, occurs with conditional probability α(π − α)n−3/(2π)n−2.

Add to obtain ((π − α)n−2 + (n − 2)α(π − α)n−3)/(2π)n−2 as claimed.

Critical fact 3: P1, P2, P3 are all happy with probability 0.

Indeed, in each of the above ways for P1, P2 to be happy, P3 is visibly unhappy: either
π + α < θ(P1, P3) ≤ 2π, in which case both θ(P3, P1) and θ(P3, P2) are below π, or
π < θ(P1, P3) ≤ π + α while π + α < θ(P1, P4) ≤ 2π, in which case both θ(P3, P1) and
θ(P3, P4) are below π. This is where the proof uses the hypothesis that n ≥ 4.

Putting it all together: Permute indices to see that Pi is happy with probability n/2n−1;
that Pi, Pj are simultaneously happy with probability 1/2n−3(n − 1), if the indices i, j
are distinct; and that Pi, Pj , Pk are simultaneously happy with probability 0, if i, j, k
are distinct. By inclusion-exclusion, the probability of at least one happy vertex is
n(n/2n−1) −

(

n
2

)

(1/2n−3(n − 1)) = (n2 − 2n)/2n−1.



Problem B1

Find a nonzero polynomial P (x, y) such that P (bac, b2ac) = 0 for all real numbers a.
(Note: bvc is the greatest integer less than or equal to v.)

Solution: One answer is the nonzero polynomial P (x, y) = (y − 2x)(y − 2x − 1).

Define i = bac. Then i ≤ a < i + 1. If i ≤ a < i + 0.5 then 2i ≤ 2a < 2i + 1 so
b2ac = 2i = 2bac so b2ac−2bac = 0. Otherwise i+0.5 ≤ a < i+1 so 2i+1 ≤ 2a < 2i+2
so b2ac = 2i + 1 = 2bac + 1 so b2ac − 2bac − 1 = 0. Either way P (bac, b2ac) = 0.

Problem B2

Find all positive integers n, k1, . . . , kn such that k1 + · · · + kn = 5n − 4 and

1

k1
+ · · · +

1

kn
= 1.

Solution: 1, 1; 3, 2, 3, 6; 3, 2, 6, 3; 3, 3, 2, 6; 3, 3, 6, 2; 3, 6, 2, 3; 3, 6, 3, 2; 4, 4, 4, 4, 4.

By inspection each of these possibilities works. Conversely, assume that k1 + · · · + kn =
5n−4 and 1/k1+ · · ·+1/kn = 1; I will show that n, k1, . . . , kn is one of these possibilities.

If k1, . . . , kn are all equal then 1 = 1/k1 + · · · + 1/kn = n/k1 so k1 = n and 5n − 4 =
k1 + · · · + kn = nk1 = n2. Hence (n − 4)(n − 1) = n2 − 5n + 4 = 0. Either n = 1, in
which case (n, k1, . . . , kn) = (1, 1); or n = 4, in which case (n, k1, . . . , kn) = (4, 4, 4, 4, 4).

Assume from now on that k1, . . . , kn are not all equal. The average of k1, . . . , kn is
(5n − 4)/n so the geometric average of k1, . . . , kn is below (5n − 4)/n. The average of
1/k1, . . . , 1/kn is 1/n so the geometric average of 1/k1, . . . , 1/kn is below 1/n. Thus the
geometric average of k1, . . . , kn, 1/k1, . . . , 1/kn is below

√

((5n − 4)/n)(1/n); but this
geometric average is equal to 1. Therefore 1 < (5n − 4)/n2; so (n − 1)(n − 4) < 0; so
1 < n < 4; so n = 2 or n = 3.

If n = 2 then k1 +k2 = 5n−4 = 6 so 1/k1 +1/k2 is one of 1/1+1/5, 1/2+1/4, 1/3+1/3,
none of which equal 1.

If n = 3 then k1 + k2 + k3 = 5n− 4 = 11 so 1/k1 + 1/k2 + 1/k3 is one of 1/1 + · · · , 1/2 +
1/2+ · · · , 1/2+1/3+1/6, 1/2+1/4+1/5, 1/3+1/3+1/5, 1/3+1/4+1/4. By inspection
none of these are 1 except 1/2+1/3+1/6. Thus (k1, k2, k3) is a permutation of (2, 3, 6).

Problem B3

Find all differentiable functions f : (0,∞) → (0,∞) for which there is a positive real
number a such that

f ′
(a

x

)

=
x

f(x)



for all x > 0.

Solution: Here are two classes of qualifying functions f :

• Define f(x) = x. Then f ′(x) = 1 so f ′(1/x) = 1 = x/f(x).

• Choose positive real numbers α, β with β 6= 1, and define f(x) = αxβ . Then
f ′(a/x)f(x) = αβ(a/x)β−1αxβ = α2βaβ−1x = x where a = (1/α2β)1/(β−1).

I claim that there are no other possibilities: if f ′(a/x) = x/f(x) then f is one of the
above functions. Indeed, substitute a/x for x: f ′(x) = a/xf(a/x). The right side is
differentiable, so the left side is too:

f ′′(x) =
−a

(xf(a/x))2

(

xf ′(a/x)
−a

x2
+ f(a/x)

)

.

Substitute f(a/x) = a/xf ′(x) and f ′(a/x) = x/f(x):

f ′′(x) =
−a

(a/f ′(x))2

(

x2

f(x)

−a

x2
+

a

xf ′(x)

)

=
−f ′(x)2

a

(

−a

f(x)
+

a

xf ′(x)

)

=
f ′(x)2

f(x)
−

f ′(x)

x
.

Define g(x) = log f(x). Then g′(x) = f ′(x)/f(x); note that f ′(x) > 0 so g′(x) > 0.
Differentiate again:

g′′(x) =
f(x)f ′′(x) − f ′(x)2

f(x)2
=

−f(x)f ′(x)/x

f(x)2
=

−f ′(x)

xf(x)
=

−g′(x)

x
.

Define h(x) = log g′(x). Then h′(x) = g′′(x)/g′(x) = −1/x. Integrate: there is a real
number d such that h(x) = d − log x. Exponentiate: g′(x) = β/x where β = exp d.
Integrate again: there is a real number c such that g(x) = c + β log x. Exponentiate:
f(x) = αxβ where α = exp c. If β = 1 then f(x) = αx so α = f ′(a/x) = x/f(x) = 1/α
so α = 1 so f(x) = x as claimed. Otherwise α, β are positive real numbers, β 6= 1, and
f(x) = αxβ as claimed.

Problem B4

For positive integers m and n, let f(m,n) denote the number of n-tuples (x1, x2, . . . , xn)
of integers such that |x1| + |x2| + · · · + |xn| ≤ m. Show that f(m,n) = f(n,m).

Solution: Extend the same definition to all nonnegative integers m,n.

If n = 0 then there is exactly one n-tuple, and its sum of absolute values is 0 ≤ m. Thus
f(m, 0) = 1.



If m = 0 then the only qualifying n-tuple is (0, 0, . . . , 0). Thus f(0, n) = 1.

If n ≥ 1 and m ≥ 0 then one can construct a qualifying n-tuple as follows: choose
xn in {−m,−m + 1, . . . ,m − 1,m}; choose an (n− 1)-tuple (x1, x2, . . . , xn−1) satisfying
|x1|+ |x2|+ · · ·+ |xn−1| ≤ m−|xn|. Every qualifying n-tuple arises uniquely in this way.
Thus f(m,n) = f(m,n − 1) + 2f(m − 1, n − 1) + 2f(m − 2, n − 1) + · · · + 2f(0, n − 1).

Consequently, f(m + 1, n + 1) = f(m,n + 1) + f(m + 1, n) + f(m,n) if n ≥ 0 and
m ≥ 0. Indeed, f(m,n+1) = f(m,n)+2f(m−1, n)+2f(m−2, n)+ · · ·+2f(0, n). and
f(m + 1, n + 1) = f(m + 1, n) + 2f(m,n) + 2f(m− 1, n) + 2f(m− 2, n) + · · ·+ 2f(0, n);
subtract.

Theorem: f(m,n) = f(n,m) for all nonnegative integers m,n. Proof: If m = 0 then
f(m,n) = f(0, n) = 1 = f(n, 0) = f(n,m) as claimed. If n = 0 then f(m,n) =
f(m, 0) = 1 = f(0,m) = f(n,m) as claimed. So assume that m ≥ 1 and n ≥ 1. Then
f(m,n) = f(m − 1, n) + f(m,n − 1) + f(m − 1, n − 1) and f(n,m) = f(n − 1,m) +
f(n,m − 1) + f(n − 1,m − 1). Induct on m + n.

Alternate approaches: One can, with marginally more work, prove the symmetric formula
f(m,n) = 1 + 2(m + n− 1)!/(m− 1)!(n− 1)!. One can use other bijections; partitioning
by choices of xn is straightforward but might not produce the shortest proof.

Problem B5

Let P (x1, . . . , xn) denote a polynomial with real coefficients in the variables x1, . . . , xn,
and suppose that

(a)

(

∂2

∂x2
1

+ · · · +
∂2

∂x2
n

)

P (x1, . . . , xn) = 0 (identically)

and that
(b) x2

1 + · · · + x2
n divides P (x1, . . . , xn).

Show that P = 0 identically.

Solution: Assume that n ≥ 1. Define X = x2
1+· · ·+x2

n and D = ∂2/∂x2
1+· · ·+∂2/∂x2

n.
The problem is to show that if X divides P and D(P ) = 0 then P = 0.

Suppose that P 6= 0. Find the maximum positive integer e such that Xe divides P .
Write P/Xe as

∑

i≥0 Hi where Hi is homogeneous of degree i.

Then 0 = D(P ) = D(
∑

i XeHi) =
∑

i D(XeHi). The terms D(XeHi) are homogeneous
of different degrees, namely 2e − 2 + i, so D(XeHi) = 0 for each i. Thus XD(Hi) +
e(4(e−1)+4deg Hi +2n)Hi = 0 by Lemma 2. The coefficient e(4(e−1)+4deg Hi +2n)
is positive since n ≥ 1 and e ≥ 1; thus Hi is a multiple of X. This is true for every i, so
P/Xe is a multiple of X, contradicting the definition of e.



Lemma 1: If H is homogeneous then D(XH) = XD(H) + (4 deg H + 2n)H.

Proof:
∂2XH

∂x2
i

= X
∂2H

∂x2
i

+2
∂X

∂xi

∂H

∂xi
+H

∂2X

∂x2
i

= X
∂2H

∂x2
i

+4xi
∂H

∂xi
+2H. By homogeneity

∑

i xi(∂H/∂xi) = (deg H)H.

Lemma 2: If H is homogeneous and e ≥ 0 then

D(XeH) = XeD(H) + e(4(e − 1) + 4deg H + 2n)Xe−1H.

Proof: For e = 0: D(XeH) = D(H) = XeD(H) + e(· · ·). For e ≥ 1: D(XeH) =
XD(Xe−1H) + (4 deg Xe−1H + 2n)Xe−1H by Lemma 1. Assume inductively that
D(Xe−1H) = Xe−1D(H) + (e − 1)(4(e − 2) + 4deg H + 2n)Xe−2H. Then

D(XeH) = XeD(H) + (e − 1)(4(e − 2) + 4deg H + 2n)Xe−1H

+ (4 deg Xe−1H + 2n)Xe−1H

= XeD(H) + (4(e − 1)(e − 2) + 4(e − 1) deg H + 2(e − 1)n

+ 4(e − 1) deg X + 4deg H + 2n)Xe−1H

= XeD(H) + (4(e − 1)(e) + 4edeg H + 2en)Xe−1H

since deg X = 2.

Problem B6

Let Sn denote the set of all permutations of the numbers 1, 2, . . . , n. For π ∈ Sn, let
σ(π) = 1 if π is an even permutation and σ(π) = −1 if π is an odd permutation. Also,
let v(π) denote the number of fixed points of π. Show that

∑

π∈Sn

σ(π)

v(π) + 1
= (−1)n+1 n

n + 1
.

Solution: Define en as the number of even permutations of {1, 2, . . . , n}. Recall that
en = 1 if n = 0; en = 1 if n = 1; and en = n!/2 if n ≥ 2.

Define fk as the number of even derangements of {1, 2, . . . , k}, i.e., the number of even
permutations with no fixed points. Define gk as the number of odd derangements of
{1, 2, . . . , k}, i.e., the number of odd permutations with no fixed points.

By choosing k elements of {1, . . . , n}, choosing an even derangement of those k elements,
and fixing the other n− k elements, one obtains an even permutation of {1, . . . , n} with
exactly n − k fixed points. Every such permutation arises in this way. Thus there are
exactly

(

n
k

)

fk even permutations of {1, . . . , n} with exactly n− k fixed points. Sum over

k to see that
∑

0≤k≤n

(

n
k

)

fk = en.



Similarly, there are exactly
(

n
k

)

gk odd permutations of {1, . . . , n} with exactly n−k fixed

points, and
∑

0≤k≤n

(

n
k

)

gk = n! − en.

I claim that fn − gn = (−1)n−1(n− 1) for all n ≥ 0. Proof: The point is that fn − gn is
determined recursively by the equation

∑

k

(

n
k

)

(fk − gk) = 2en −n!; so one simply has to

check that
∑

k

(

n
k

)

(−1)k−1(k − 1) = 2en − n!. For n = 0 the latter sum is (−1)−1(−1) =
1 = 2e0 − 0! as desired. For n = 1 the sum is (−1)−1(−1) + (−1)0(0) = 1 = 2e1 − 1!
as desired. For n ≥ 2 one has

∑

k

(

n
k

)

(−1)k = (1 − 1)n = 0 and
∑

k

(

n
k

)

(−1)k−1k =
∑

k

(

n−1
k−1

)

(−1)k−1 = (1− 1)n−1 = 0 so
∑

k

(

n
k

)

(−1)k−1(k − 1) = 0 = 2en − n! as desired.

Now if n ≥ 1 then
∑

0≤k≤n

(

n+1
k

)

(fk − gk) = (−1)n+1n. Proof:
(

n+1
n+1

)

(fn+1 − gn+1) =

(−1)nn and
∑

0≤k≤n+1

(

n+1
k

)

(fk − gk) = 2en+1 − (n + 1)! = 0.

The problem asks for the sum of σ(π)/(1 + v(π)) over all permutations π of {1, . . . , n}.
There are

(

n
k

)

fk even permutations π with v(π) = n−k, contributing
(

n
k

)

fk/(1+n−k) =
(

n+1
k

)

fk/(n+1) to the sum. There are also
(

n
k

)

gk odd permutations π with v(π) = n−k,

contributing −
(

n
k

)

gk/(1 + n − k) = −
(

n+1
k

)

gk/(n + 1) to the sum. Overall the sum is
∑

0≤k≤n

(

n+1
k

)

(fk − gk)/(n + 1) = (−1)n+1n/(n + 1) if n ≥ 1.

Beware that this formula is wrong for n = 0. The problem should have said that n is a
positive integer.


