Putnam Mathematical Competition, 4 December 2004

Problem A1

Basketball star Shanille O'Keal's team statistician keeps track of the number, S(N), of successful free throws she has made in her first N attempts of the season. Early in the season, S(N) was less than 80% of N, but by the end of the season, S(N) was more than 80% of N. Was there necessarily a moment in between when S(N) was exactly 80% of N?

Problem A2

For i = 1, 2, let T_i be a triangle with side lengths a_i, b_i, c_i , and area A_i . Suppose that $a_1 \leq a_2, b_1 \leq b_2, c_1 \leq c_2$, and that T_2 is an acute triangle. Does it follow that $A_1 \leq A_2$?

Problem A3

Define a sequence $\{u_n\}_{n=0}^{\infty}$ by $u_0 = u_1 = u_2 = 1$, and thereafter by the condition that

$$\det \begin{pmatrix} u_n & u_{n+1} \\ u_{n+2} & u_{n+3} \end{pmatrix} = n!$$

for all $n \ge 0$. Show that u_n is an integer for all n. (By convention, 0! = 1.)

Problem A4

Show that for any positive integer n there is an integer N such that the product $x_1x_2\cdots x_n$ can be expressed identically in the form

$$x_1 x_2 \cdots x_n = \sum_{i=1}^N c_i (a_{i1} x_1 + a_{i2} x_2 + \dots + a_{in} x_n)^n$$

where the c_i are rational numbers and each a_{ij} is one of the numbers, -1, 0, 1.

Problem A5

An $m \times n$ checkerboard is colored randomly: each square is independently assigned red or black with probability 1/2.We say that two squares, p and q, are in the same connected monochromatic region if there is a sequence of squares, all of the same color, starting at pand ending at q, in which successive squares in the sequence share a common side. Show that the expected number of connected monochromatic regions is greater than mn/8.

Problem A6

Suppose that f(x, y) is a continuous real-valued function on the unit square $0 \le x \le 1$, $0 \le y \le 1$. Show that

$$\int_0^1 \left(\int_0^1 f(x,y) \, dx \right)^2 \, dy + \int_0^1 \left(\int_0^1 f(x,y) \, dy \right)^2 \, dx$$
$$\leq \left(\int_0^1 \int_0^1 f(x,y) \, dx \, dy \right)^2 + \int_0^1 \int_0^1 [f(x,y)]^2 \, dx \, dy.$$

Problem B1

Let $P(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_0$ be a polynomial with integer coefficients. Suppose that r is a rational number such that P(r) = 0. Show that the n numbers

$$c_n r$$
, $c_n r^2 + c_{n-1} r$, $c_n r^3 + c_{n-1} r^2 + c_{n-2} r$, ..., $c_n r^n + c_{n-1} r^{n-1} + \dots + c_1 r^n$

are integers.

Problem B2

Let m and n be positive integers. Show that

$$\frac{(m+n)!}{(m+n)^{m+n}} < \frac{m!}{m^m} \cdot \frac{n!}{n^n}$$

Problem B3

Determine all real numbers a > 0 for which there exists a nonnegative continuous function f(x) defined on [0, a] with the property that the region

$$R = \{(x, y) : 0 \le x \le a, 0 \le y \le f(x)\}$$

has perimeter k units and area k square units for some real number k.

Problem B4

Let *n* be a positive integer, $n \ge 2$, and put $\theta = 2\pi/n$. Define points $P_k = (k, 0)$ in the *xy*-plane, for k = 1, 2, ..., n. Let R_k be the map that rotates the plane counterclockwise by the angle θ about the point P_k . Let *R* denote the map obtained by applying, in order, R_1 , then $R_2, ...,$ then R_n . For an arbitrary point (x, y), find, and simplify, the coordinates of R(x, y).

Problem B5

Evaluate

$$\lim_{x \to 1^{-}} \prod_{n=0}^{\infty} \left(\frac{1+x^{n+1}}{1+x^n} \right)^{x^n}$$

Problem B6

Let \mathcal{A} be a non-empty set of positive integers, and let N(x) denote the number of elements of \mathcal{A} not exceeding x. Let \mathcal{B} denote the set of positive integers b that can be written in the form b = a - a' with $a \in \mathcal{A}$ and $a' \in \mathcal{A}$. Let $b_1 < b_2 < \cdots$ be the members of \mathcal{B} , listed in increasing order. Show that if the sequence $b_{i+1} - b_i$ is unbounded, then $\lim_{x\to\infty} N(x)/x = 0$.

Solutions

D. J. Bernstein, 6 December 2004

Problem A1

Basketball star Shanille O'Keal's team statistician keeps track of the number, S(N), of successful free throws she has made in her first N attempts of the season. Early in the season, S(N) was less than 80% of N, but by the end of the season, S(N) was more than 80% of N. Was there necessarily a moment in between when S(N) was exactly 80% of N?

Solution: Yes.

By hypothesis $S(N_1) < 0.8N_1$ for some N_1 but $S(N_2) > 0.8N_2$ for some $N_2 > N_1$. Find the smallest $N \ge N_1$ such that $S(N) \ge 0.8N$. Then $N \ne N_1$, so S(N-1) < 0.8(N-1). If she does not make her Nth free throw then $S(N) = S(N-1) < 0.8(N-1) < 0.8N \le S(N)$, contradiction. If she makes her Nth free throw then S(N) = S(N-1) + 1 so

$$0 \le 5S(N) - 4N = 5S(N - 1) + 5 - 4N < 4(N - 1) + 5 - 4N = 1.$$

The quantity 5S(N) - 4N is an integer, so it must be 0; i.e., S(N) = 0.8N as claimed.

Problem A2

For i = 1, 2, let T_i be a triangle with side lengths a_i, b_i, c_i , and area A_i . Suppose that $a_1 \leq a_2, b_1 \leq b_2, c_1 \leq c_2$, and that T_2 is an acute triangle. Does it follow that $A_1 \leq A_2$?

Solution: Yes.

Recall Heron's formula $(4A)^2 = 4a^2b^2 - (a^2 + b^2 - c^2)^2$ for the area A of a triangle with side lengths a, b, c. The derivative of $(4A)^2$ with respect to c is $4c(a^2 + b^2 - c^2)$, which is positive if $c^2 < a^2 + b^2$, i.e., if the angle opposite c is acute. By symmetry, the derivative of $(4A)^2$ with respect to a is positive if the angle opposite a is acute, and the derivative of $(4A)^2$ with respect to b is positive if the angle opposite b is acute.

Find (a, b, c) in the compact set $[a_1, a_2] \times [b_1, b_2] \times [c_1, c_2]$ to maximize A. It is not possible to have exactly one of a, b, c smaller than a_2, b_2, c_2 respectively: for example, if $a < a_2$ and $b = b_2$ and $c = c_2$, then $a^2 < a_2^2 < b_2^2 + c_2^2 = b^2 + c^2$ since T_2 is acute, so the angle opposite a is acute, so increasing a increases A, contradiction. Similarly, it is not possible to have two or three of a, b, c smaller than a_2, b_2, c_2 respectively: for example, if $a < a_2$ and $b < b_2$, then at least one angle opposite a or b must be acute, so increasing a or b increases A, contradiction.

Thus $(a, b, c) = (a_2, b_2, c_2)$. In particular, $A_1 \le A_2$.

Problem A3

Define a sequence $\{u_n\}_{n=0}^{\infty}$ by $u_0 = u_1 = u_2 = 1$, and thereafter by the condition that

$$\det \begin{pmatrix} u_n & u_{n+1} \\ u_{n+2} & u_{n+3} \end{pmatrix} = n!$$

for all $n \ge 0$. Show that u_n is an integer for all n. (By convention, 0! = 1.)

Solution: Define $v_0 = 1$, $v_1 = 1$, and $v_n = (n-1)v_{n-2}$ for all $n \ge 2$. Then v_n is an integer.

I claim that $v_n v_{n+1} = n!$ for all $n \ge 0$. Proof: If n = 0 then $v_n v_{n+1} = v_0 v_1 = 1 = 0! = n!$ as claimed. If $n \ge 1$ then assume inductively that $v_{n-1}v_n = (n-1)!$. By definition $v_{n+1} = nv_{n-1}$, so $v_n v_{n+1} = nv_{n-1}v_n = n(n-1)! = n!$ as claimed.

I now claim that $u_n = v_n$ for all $n \ge 0$. Proof: If n = 0, or n = 1, or n = 2, then $u_n = 1 = v_n$ as claimed. For $n \ge 3$, assume inductively that $u_{n-3} = v_{n-3}$, that $u_{n-2} = v_{n-2}$, and that $u_{n-1} = v_{n-1}$. By hypothesis $(n-3)! = u_{n-3}u_n - u_{n-1}u_{n-2}$, so

$$u_n = \frac{(n-3)! + u_{n-1}u_{n-2}}{u_{n-3}}$$
$$= \frac{(n-3)! + v_{n-1}v_{n-2}}{v_{n-3}} = \frac{v_{n-3}v_{n-2} + (n-2)v_{n-3}v_{n-2}}{v_{n-3}} = (n-1)v_{n-2} = v_n$$

as claimed.

Hence u_n is an integer.

Problem A4

Show that for any positive integer n there is an integer N such that the product $x_1x_2\cdots x_n$ can be expressed identically in the form

$$x_1 x_2 \cdots x_n = \sum_{i=1}^N c_i (a_{i1} x_1 + a_{i2} x_2 + \dots + a_{in} x_n)^n$$

where the c_i are rational numbers and each a_{ij} is one of the numbers, -1, 0, 1.

Solution: One can take $N = 2^n$. Specifically, I claim that $x_1 x_2 \cdots x_n$ is the sum of $(a_1 a_2 \cdots a_n/2^n n!)(a_1 x_1 + a_2 x_2 + \cdots + a_n x_n)^n$ over all $(a_1, a_2, \ldots, a_n) \in \{1, -1\}^n$.

Define $P_0(x_1, x_2, \ldots, x_n) = (x_1 + x_2 + \cdots + x_n)^n$. Note for future reference that the coefficient of $x_1 x_2 \cdots x_n$ in P_0 is n!.

Define $P_1(x_1, x_2, \ldots, x_n) = P_0(x_1, x_2, \ldots, x_n) - P_0(-x_1, x_2, \ldots, x_n)$. The coefficient of $x_1^{e_1} x_2^{e_2} \cdots x_n^{e_n}$ in P_1 is $1 - (-1)^{e_1}$ times the corresponding coefficient in P_0 .

Define $P_2(x_1, x_2, \ldots, x_n) = P_1(x_1, x_2, \ldots, x_n) - P_1(x_1, -x_2, \ldots, x_n)$. The coefficient of $x_1^{e_1} x_2^{e_2} \cdots x_n^{e_n}$ in P_2 is $1 - (-1)^{e_2}$ times the corresponding coefficient in P_1 ; in other words, $(1 - (-1)^{e_1})(1 - (-1)^{e_2})$ times the corresponding coefficient in P_0 .

Define P_3, P_4, \ldots, P_n similarly. Then the coefficient of $x_1^{e_1} x_2^{e_2} \cdots x_n^{e_n}$ in P_n is exactly $(1 - (-1)^{e_1})(1 - (-1)^{e_2}) \cdots (1 - (-1)^{e_n})$ times the corresponding coefficient in P_0 . The factor $(1 - (-1)^{e_1})(1 - (-1)^{e_2}) \cdots (1 - (-1)^{e_n})$ is 2^n if e_1, e_2, \ldots, e_n are all odd, otherwise 0. The coefficient in P_0 is 0 unless $e_1 + e_2 + \cdots + e_n = n$. The only way for odd numbers e_1, e_2, \ldots, e_n to have sum n is for all of them to be 1. Hence $P_n(x_1, x_2, \ldots, x_n) = 2^n n! x_1 x_2 \cdots x_n$.

Problem A5

An $m \times n$ checkerboard is colored randomly: each square is independently assigned red or black with probability 1/2.We say that two squares, p and q, are in the same connected monochromatic region if there is a sequence of squares, all of the same color, starting at pand ending at q, in which successive squares in the sequence share a common side. Show that the expected number of connected monochromatic regions is greater than mn/8.

Solution: Sorry, I haven't solved this one yet.

Problem A6

Suppose that f(x, y) is a continuous real-valued function on the unit square $0 \le x \le 1$, $0 \le y \le 1$. Show that

$$\int_0^1 \left(\int_0^1 f(x,y) \, dx \right)^2 \, dy + \int_0^1 \left(\int_0^1 f(x,y) \, dy \right)^2 \, dx$$
$$\leq \left(\int_0^1 \int_0^1 f(x,y) \, dx \, dy \right)^2 + \int_0^1 \int_0^1 [f(x,y)]^2 \, dx \, dy$$

Solution: Dave Rusin writes: "Let F(x, y, z, w) = f(x, y) + f(z, w) - f(x, w) - f(z, y); then integrate F^2 over the box $[0, 1]^4$. Done!"

Problem B1

Let $P(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_0$ be a polynomial with integer coefficients. Suppose that r is a rational number such that P(r) = 0. Show that the n numbers

$$c_n r$$
, $c_n r^2 + c_{n-1} r$, $c_n r^3 + c_{n-1} r^2 + c_{n-2} r$, ..., $c_n r^n + c_{n-1} r^{n-1} + \dots + c_1 r^n$

are integers.

Solution: Fix $i \in \{0, 1, ..., n-1\}$. Write r as u/v where u and v are coprime. Then $c_n(u/v)^n + c_{n-1}(u/v)^{n-1} + \cdots + c_0 = 0$, so $c_nu^n + c_{n-1}u^{n-1}v + \cdots + c_0v^n = 0$, so $c_nu^n + c_{n-1}u^{n-1}v + \cdots + c_{i+1}u^{i+1}v^{n-i-1} = -c_iu^iv^{n-i} - c_{i-1}u^{i-1}v^{n-i+1} - \cdots - c_0v^n$ is a multiple of v^{n-i} ; so $c_nu^{n-i} + c_{n-1}u^{n-i-1}v + \cdots + c_{i+1}uv^{n-i-1}$ is a multiple of v^{n-i} are coprime; so $c_n(u/v)^{n-i} + c_{n-1}(u/v)^{n-1-i} + \cdots + c_{i+1}(u/v)$ is an integer as claimed.

Problem B2

Let m and n be positive integers. Show that

$$\frac{(m+n)!}{(m+n)^{m+n}} < \frac{m!}{m^m} \cdot \frac{n!}{n^n}.$$

Solution: Define $g(x) = x \log(1 + 1/x)$ for x > 0. Then $g'(x) = \log(1 + 1/x) - (1/x^2)x/(1+1/x) = \log(1+1/x) - 1/(x+1)$, so $g''(x) = (-1/x^2)/(1+1/x) + 1/(x+1)^2 = (1 - (x+1)/x)/(x+1)^2 < 0$. The limit of g'(x) as $x \to \infty$ is 0, so g'(x) > 0 for all x > 0, so g is strictly increasing.

Fix $m \ge 1$. Define $f(n) = (m+n)!m^m n^n/(m+n)^{m+n}m!n!$ for $n \ge 1$. Then $f(1) = m^m/(m+1)^m < 1$, and $f(n+1)/f(n) = (m+n)^{m+n}(n+1)^n/(m+n+1)^{m+n}n^n = g(n)/g(m+n) < 1$, so f(n) < 1 for all n.

Alternate proof: Use Stirling's bounds $1 < n!(\exp n)/n^n\sqrt{2\pi n} < \exp(1/12n)$ for $n \ge 1$ to see that f(n) is in $[\exp(-1/12m - 1/12n), \exp(1/12(m + n))]\sqrt{(m + n)/2\pi m n}$ and hence is below $\exp(1/24)\sqrt{1/\pi}$, which is smaller than 1 since $\exp(1/12) < \exp(1 < \pi$.

Alternate proof: The binomial expansion of $(m+n)^{m+n}$ includes at least two terms since the exponent is positive; all the terms are positive, and one of them is $\binom{m+n}{m}m^mn^n$.

Problem B3

Determine all real numbers a > 0 for which there exists a nonnegative continuous function f(x) defined on [0, a] with the property that the region

$$R = \{(x, y) : 0 \le x \le a, 0 \le y \le f(x)\}$$

has perimeter k units and area k square units for some real number k.

Solution: The answer is $\{a : a > 2\}$.

For a > 2: Define f(x) = 2a/(a-2) and $k = 2a^2/(a-2)$. Then f is nonnegative; f is continuous; the region R is a rectangle of width a and height 2a/(a-2); the area of R is $2a^2/(a-2) = k$; and the perimeter of R is 2a + 4a/(a-2) = (2a(a-2)+4a)/(a-2) = k.

For $a \leq 2$: Suppose that there exists such a function f. Because f is continuous, it has a maximum value on the compact interval [0, a]; say f(m) is the maximum. The area under f is at most af(m). The perimeter of the region is at least f(m), to get from (0, 0)to (m, f(m)); plus at least another f(m), to get from (m, f(m)) to (a, 0); plus a, to get from (a, 0) to (0, 0); for a total of $a + 2f(m) \geq a + af(m) > af(m)$. Contradiction.

Problem B4

Let *n* be a positive integer, $n \ge 2$, and put $\theta = 2\pi/n$. Define points $P_k = (k, 0)$ in the *xy*-plane, for k = 1, 2, ..., n. Let R_k be the map that rotates the plane counterclockwise by the angle θ about the point P_k . Let *R* denote the map obtained by applying, in order, R_1 , then $R_2, ...,$ then R_n . For an arbitrary point (x, y), find, and simplify, the coordinates of R(x, y).

Solution: R(x, y) = (x + n, y).

Put (x, y) into the complex plane as z = x + iy, and put P_1, P_2, \ldots, P_n into the complex plane as $1, 2, \ldots, n$. Define $z_0 = z$, and define z_k for $k \ge 1$ as the result of rotating z_{k-1} by θ around k. Then $z_k = \zeta(z_{k-1} - k) + k$ where $\zeta = \cos \theta + i \sin \theta$, so, by induction, $z_k = \zeta^k z - \zeta^k - \zeta^{k-1} - \ldots - \zeta + k$. In particular, $z_n = \zeta^n z - (\zeta^n + \zeta^{n-1} + \ldots + \zeta) + n = z + n$.

Problem B5

Evaluate

$$\lim_{x \to 1^{-}} \prod_{n=0}^{\infty} \left(\frac{1+x^{n+1}}{1+x^n} \right)^{x^n}$$

Solution: The answer is $2/\exp 1$.

The logarithm of $((1+x^{n+1})/(1+x^n))^{x^n} = (1+x^n(x-1)/(1+x^n))^{x^n}$ is approximately $x^{2n}(x-1)/(1+x^n)$. There are approximately $\delta/u(1-x)$ nonnegative integers n for which $u \leq x^n < u + \delta$. The sum of $x^{2n}(x-1)/(1+x^n)$ over those n's is approximately $-(\delta/u)u^2/(1+u) = -(u/(1+u))\delta$. Hence the sum of $x^{2n}(x-1)/(1+x^n)$ over all n's is approximately $-\int_0^1 (u/(1+u)) du = \log(1+u) - u|_0^1 = \log 2 - 1$.

To turn this into a complete proof, write down explicit error bounds (using explicit log bounds as in B2) instead of just saying "approximately"; then observe that the error converges to 0 as x approaches 1.

Problem B6

Let \mathcal{A} be a non-empty set of positive integers, and let N(x) denote the number of elements of \mathcal{A} not exceeding x. Let \mathcal{B} denote the set of positive integers b that can be written in the form b = a - a' with $a \in \mathcal{A}$ and $a' \in \mathcal{A}$. Let $b_1 < b_2 < \cdots$ be the members of \mathcal{B} , listed in increasing order. Show that if the sequence $b_{i+1} - b_i$ is unbounded, then $\lim_{x\to\infty} N(x)/x = 0$.

Solution: Find the smallest positive integer g_1 such that $g_1 \notin \mathcal{B}$.

Find the smallest positive integer h_2 such that $h_2, h_2 + 1, h_2 + 2, \ldots, h_2 + 6g_1 \notin \mathcal{B}$. Define $g_2 = 2g_1(1 + \lceil h_2/2g_1 \rceil)$. Then $g_2 - 2g_1, g_2 - 2g_1 + 1, g_2 - 2g_1 + 2, \ldots, g_2 + 2g_1 \notin \mathcal{B}$, and g_2 is a multiple of $2g_1$.

Find the smallest positive integer h_3 such that $h_3, h_3 + 1, h_3 + 2, \ldots, h_3 + 6g_2 \notin \mathcal{B}$. Define $g_3 = 2g_2(1 + \lceil h_3/2g_2 \rceil)$. Then $g_3 - 2g_2, g_3 - 2g_2 + 1, g_3 - 2g_2 + 2, \ldots, g_3 + 2g_2 \notin \mathcal{B}$, and g_3 is a multiple of $2g_2$.

Similarly define g_4, g_5, \ldots

If k and m are positive integers then, by Lemma 1 below, $\mathcal{A} \cap \{1, 2, \ldots, 2mg_k\}$ has at most $2mg_k/2^k$ elements. Hence $\mathcal{A} \cap [1, x]$ has at most $2g_k + 2\lfloor x/2g_k \rfloor g_k/2^k$ elements; i.e., $N(x) \leq 2g_k + x/2^k$. Thus $\limsup_{x\to\infty} N(x)/x \leq 1/2^k$. This is true for every k, so $\lim_{x\to\infty} N(x)/x = 0$.

Lemma 1: For all integers $k \ge 1$ and $n \ge 0$, the set $\mathcal{A} \cap \{n+1, n+2, \ldots, n+2g_k\}$ has at most $2g_k/2^k$ elements.

Proof for k = 1: If \mathcal{A} has both n + 1 and $n + g_1 + 1$ then $g_1 \in \mathcal{B}$, contradiction; thus \mathcal{A} has at most one of $n + 1, n + g_1 + 1$. Similar comments apply to $n + 2, n + g_1 + 2$; $n + 3, n + g_1 + 3; \ldots; n + g_1, n + 2g_1$. Hence $\mathcal{A} \cap \{n + 1, n + 2, \ldots, n + 2g_1\}$ has at most $g_1 = 2g_k/2^k$ elements as claimed.

Proof for $k \geq 2$: Assume inductively that, for all n, the set $\mathcal{A} \cap \{n+1, \ldots, n+2g_{k-1}\}$ has at most $2g_{k-1}/2^{k-1}$ elements.

Consider the sets $S = \{n + 1, \ldots, n + 2g_{k-1}\}$ and $S' = \{n + g_k + 1, \ldots, n + g_k + 2g_{k-1}\}$. If $a \in S$ and $a' \in S'$ then $a' - a \in \{g_k - 2g_{k-1} + 1, \ldots, g_k + 2g_{k-1} - 1\}$, so $a' - a \notin \mathcal{B}$ by construction of g_k . Hence \mathcal{A} cannot have elements in common with both S and S'. Furthermore, $\mathcal{A} \cap S$ has at most $2g_{k-1}/2^{k-1}$ elements, and $\mathcal{A} \cap S'$ has at most $2g_{k-1}/2^{k-1}$ elements, so $\mathcal{A} \cap (S \cup S')$ has at most $2g_{k-1}/2^{k-1}$ elements.

Similar comments apply with n shifted by $2g_{k-1}, 4g_{k-1}, \ldots, g_k - 2g_{k-1}$; recall here that g_k is a multiple of $2g_{k-1}$. Hence $\mathcal{A} \cap \{n+1, n+2, \ldots, n+2g_k\}$ has at most $(g_k/2g_{k-1})(2g_{k-1}/2^{k-1}) = 2g_k/2^k$ elements as claimed.