Putnam Mathematical Competition, 4 December 2004

Problem A1

Basketball star Shanille O'Keal's team statistician keeps track of the number, $S(N)$, of successful free throws she has made in her first N attempts of the season. Early in the season, $S(N)$ was less than 80% of N, but by the end of the season, $S(N)$ was more than 80% of N. Was there necessarily a moment in between when $S(N)$ was exactly 80% of N ?

Problem A2

For $i=1,2$, let T_{i} be a triangle with side lengths a_{i}, b_{i}, c_{i}, and area A_{i}. Suppose that $a_{1} \leq a_{2}, b_{1} \leq b_{2}, c_{1} \leq c_{2}$, and that T_{2} is an acute triangle. Does it follow that $A_{1} \leq A_{2}$?

Problem A3

Define a sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ by $u_{0}=u_{1}=u_{2}=1$, and thereafter by the condition that

$$
\operatorname{det}\left(\begin{array}{cc}
u_{n} & u_{n+1} \\
u_{n+2} & u_{n+3}
\end{array}\right)=n!
$$

for all $n \geq 0$. Show that u_{n} is an integer for all n. (By convention, $0!=1$.)

Problem A4

Show that for any positive integer n there is an integer N such that the product $x_{1} x_{2} \cdots x_{n}$ can be expressed identically in the form

$$
x_{1} x_{2} \cdots x_{n}=\sum_{i=1}^{N} c_{i}\left(a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}\right)^{n}
$$

where the c_{i} are rational numbers and each $a_{i j}$ is one of the numbers, $-1,0,1$.

Problem A5

An $m \times n$ checkerboard is colored randomly: each square is independently assigned red or black with probability $1 / 2$. We say that two squares, p and q, are in the same connected monochromatic region if there is a sequence of squares, all of the same color, starting at p and ending at q, in which successive squares in the sequence share a common side. Show that the expected number of connected monochromatic regions is greater than $m n / 8$.

Problem A6

Suppose that $f(x, y)$ is a continuous real-valued function on the unit square $0 \leq x \leq 1$, $0 \leq y \leq 1$. Show that

$$
\begin{aligned}
& \int_{0}^{1}\left(\int_{0}^{1} f(x, y) d x\right)^{2} d y+\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right)^{2} d x \\
& \quad \leq\left(\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y\right)^{2}+\int_{0}^{1} \int_{0}^{1}[f(x, y)]^{2} d x d y
\end{aligned}
$$

Problem B1

Let $P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}$ be a polynomial with integer coefficients. Suppose that r is a rational number such that $P(r)=0$. Show that the n numbers

$$
c_{n} r, \quad c_{n} r^{2}+c_{n-1} r, \quad c_{n} r^{3}+c_{n-1} r^{2}+c_{n-2} r, \quad \ldots, \quad c_{n} r^{n}+c_{n-1} r^{n-1}+\cdots+c_{1} r
$$

are integers.

Problem B2

Let m and n be positive integers. Show that

$$
\frac{(m+n)!}{(m+n)^{m+n}}<\frac{m!}{m^{m}} \cdot \frac{n!}{n^{n}}
$$

Problem B3

Determine all real numbers $a>0$ for which there exists a nonnegative continuous function $f(x)$ defined on $[0, a]$ with the property that the region

$$
R=\{(x, y): 0 \leq x \leq a, 0 \leq y \leq f(x)\}
$$

has perimeter k units and area k square units for some real number k.

Problem B4

Let n be a positive integer, $n \geq 2$, and put $\theta=2 \pi / n$. Define points $P_{k}=(k, 0)$ in the $x y$-plane, for $k=1,2, \ldots, n$. Let R_{k} be the map that rotates the plane counterclockwise by the angle θ about the point P_{k}. Let R denote the map obtained by applying, in order, R_{1}, then R_{2}, \ldots, then R_{n}. For an arbitrary point (x, y), find, and simplify, the coordinates of $R(x, y)$.

Problem B5

Evaluate

$$
\lim _{x \rightarrow 1^{-}} \prod_{n=0}^{\infty}\left(\frac{1+x^{n+1}}{1+x^{n}}\right)^{x^{n}}
$$

Problem B6

Let \mathcal{A} be a non-empty set of positive integers, and let $N(x)$ denote the number of elements of \mathcal{A} not exceeding x. Let \mathcal{B} denote the set of positive integers b that can be written in the form $b=a-a^{\prime}$ with $a \in \mathcal{A}$ and $a^{\prime} \in \mathcal{A}$. Let $b_{1}<b_{2}<\cdots$ be the members of \mathcal{B}, listed in increasing order. Show that if the sequence $b_{i+1}-b_{i}$ is unbounded, then $\lim _{x \rightarrow \infty} N(x) / x=0$.

Solutions

D. J. Bernstein, 6 December 2004

Problem A1

Basketball star Shanille O'Keal's team statistician keeps track of the number, $S(N)$, of successful free throws she has made in her first N attempts of the season. Early in the season, $S(N)$ was less than 80% of N, but by the end of the season, $S(N)$ was more than 80% of N. Was there necessarily a moment in between when $S(N)$ was exactly 80% of N ?

Solution: Yes.
By hypothesis $S\left(N_{1}\right)<0.8 N_{1}$ for some N_{1} but $S\left(N_{2}\right)>0.8 N_{2}$ for some $N_{2}>N_{1}$. Find the smallest $N \geq N_{1}$ such that $S(N) \geq 0.8 N$. Then $N \neq N_{1}$, so $S(N-1)<0.8(N-1)$. If she does not make her N th free throw then $S(N)=S(N-1)<0.8(N-1)<0.8 N \leq$ $S(N)$, contradiction. If she makes her N th free throw then $S(N)=S(N-1)+1$ so

$$
0 \leq 5 S(N)-4 N=5 S(N-1)+5-4 N<4(N-1)+5-4 N=1
$$

The quantity $5 S(N)-4 N$ is an integer, so it must be 0 ; i.e., $S(N)=0.8 N$ as claimed.

Problem A2

For $i=1,2$, let T_{i} be a triangle with side lengths a_{i}, b_{i}, c_{i}, and area A_{i}. Suppose that $a_{1} \leq a_{2}, b_{1} \leq b_{2}, c_{1} \leq c_{2}$, and that T_{2} is an acute triangle. Does it follow that $A_{1} \leq A_{2}$? Solution: Yes.

Recall Heron's formula $(4 A)^{2}=4 a^{2} b^{2}-\left(a^{2}+b^{2}-c^{2}\right)^{2}$ for the area A of a triangle with side lengths a, b, c. The derivative of $(4 A)^{2}$ with respect to c is $4 c\left(a^{2}+b^{2}-c^{2}\right)$, which is positive if $c^{2}<a^{2}+b^{2}$, i.e., if the angle opposite c is acute. By symmetry, the derivative of $(4 A)^{2}$ with respect to a is positive if the angle opposite a is acute, and the derivative of $(4 A)^{2}$ with respect to b is positive if the angle opposite b is acute.

Find (a, b, c) in the compact set $\left[a_{1}, a_{2}\right] \times\left[b_{1}, b_{2}\right] \times\left[c_{1}, c_{2}\right]$ to maximize A. It is not possible to have exactly one of a, b, c smaller than a_{2}, b_{2}, c_{2} respectively: for example, if $a<a_{2}$ and $b=b_{2}$ and $c=c_{2}$, then $a^{2}<a_{2}^{2}<b_{2}^{2}+c_{2}^{2}=b^{2}+c^{2}$ since T_{2} is acute, so the angle opposite a is acute, so increasing a increases A, contradiction. Similarly, it is not possible to have two or three of a, b, c smaller than a_{2}, b_{2}, c_{2} respectively: for example, if $a<a_{2}$ and $b<b_{2}$, then at least one angle opposite a or b must be acute, so increasing a or b increases A, contradiction.

Thus $(a, b, c)=\left(a_{2}, b_{2}, c_{2}\right)$. In particular, $A_{1} \leq A_{2}$.

Problem A3

Define a sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ by $u_{0}=u_{1}=u_{2}=1$, and thereafter by the condition that

$$
\operatorname{det}\left(\begin{array}{cc}
u_{n} & u_{n+1} \\
u_{n+2} & u_{n+3}
\end{array}\right)=n!
$$

for all $n \geq 0$. Show that u_{n} is an integer for all n. (By convention, $0!=1$.)
Solution: Define $v_{0}=1, v_{1}=1$, and $v_{n}=(n-1) v_{n-2}$ for all $n \geq 2$. Then v_{n} is an integer.

I claim that $v_{n} v_{n+1}=n$! for all $n \geq 0$. Proof: If $n=0$ then $v_{n} v_{n+1}=v_{0} v_{1}=1=0!=n$! as claimed. If $n \geq 1$ then assume inductively that $v_{n-1} v_{n}=(n-1)$!. By definition $v_{n+1}=n v_{n-1}$, so $v_{n} v_{n+1}=n v_{n-1} v_{n}=n(n-1)!=n!$ as claimed.

I now claim that $u_{n}=v_{n}$ for all $n \geq 0$. Proof: If $n=0$, or $n=1$, or $n=2$, then $u_{n}=1=v_{n}$ as claimed. For $n \geq 3$, assume inductively that $u_{n-3}=v_{n-3}$, that $u_{n-2}=v_{n-2}$, and that $u_{n-1}=v_{n-1}$. By hypothesis $(n-3)!=u_{n-3} u_{n}-u_{n-1} u_{n-2}$, so

$$
\begin{aligned}
u_{n} & =\frac{(n-3)!+u_{n-1} u_{n-2}}{u_{n-3}} \\
& =\frac{(n-3)!+v_{n-1} v_{n-2}}{v_{n-3}}=\frac{v_{n-3} v_{n-2}+(n-2) v_{n-3} v_{n-2}}{v_{n-3}}=(n-1) v_{n-2}=v_{n}
\end{aligned}
$$

as claimed.
Hence u_{n} is an integer.

Problem A4

Show that for any positive integer n there is an integer N such that the product $x_{1} x_{2} \cdots x_{n}$ can be expressed identically in the form

$$
x_{1} x_{2} \cdots x_{n}=\sum_{i=1}^{N} c_{i}\left(a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}\right)^{n}
$$

where the c_{i} are rational numbers and each $a_{i j}$ is one of the numbers, $-1,0,1$.
Solution: One can take $N=2^{n}$. Specifically, I claim that $x_{1} x_{2} \cdots x_{n}$ is the sum of $\left(a_{1} a_{2} \cdots a_{n} / 2^{n} n!\right)\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right)^{n}$ over all $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in\{1,-1\}^{n}$.

Define $P_{0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{n}$. Note for future reference that the coefficient of $x_{1} x_{2} \cdots x_{n}$ in P_{0} is n !.

Define $P_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P_{0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)-P_{0}\left(-x_{1}, x_{2}, \ldots, x_{n}\right)$. The coefficient of $x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}$ in P_{1} is $1-(-1)^{e_{1}}$ times the corresponding coefficient in P_{0}.

Define $P_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)-P_{1}\left(x_{1},-x_{2}, \ldots, x_{n}\right)$. The coefficient of $x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}$ in P_{2} is $1-(-1)^{e_{2}}$ times the corresponding coefficient in P_{1}; in other words, $\left(1-(-1)^{e_{1}}\right)\left(1-(-1)^{e_{2}}\right)$ times the corresponding coefficient in P_{0}.

Define $P_{3}, P_{4}, \ldots, P_{n}$ similarly. Then the coefficient of $x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}$ in P_{n} is exactly $\left(1-(-1)^{e_{1}}\right)\left(1-(-1)^{e_{2}}\right) \cdots\left(1-(-1)^{e_{n}}\right)$ times the corresponding coefficient in P_{0}. The factor $\left(1-(-1)^{e_{1}}\right)\left(1-(-1)^{e_{2}}\right) \cdots\left(1-(-1)^{e_{n}}\right)$ is 2^{n} if $e_{1}, e_{2}, \ldots, e_{n}$ are all odd, otherwise 0 . The coefficient in P_{0} is 0 unless $e_{1}+e_{2}+\cdots+e_{n}=n$. The only way for odd numbers $e_{1}, e_{2}, \ldots, e_{n}$ to have sum n is for all of them to be 1. Hence $P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $2^{n} n!x_{1} x_{2} \cdots x_{n}$.

Problem A5

An $m \times n$ checkerboard is colored randomly: each square is independently assigned red or black with probability $1 / 2$. We say that two squares, p and q, are in the same connected monochromatic region if there is a sequence of squares, all of the same color, starting at p and ending at q, in which successive squares in the sequence share a common side. Show that the expected number of connected monochromatic regions is greater than $\mathrm{mn} / 8$.

Solution: Sorry, I haven't solved this one yet.

Problem A6

Suppose that $f(x, y)$ is a continuous real-valued function on the unit square $0 \leq x \leq 1$, $0 \leq y \leq 1$. Show that

$$
\begin{aligned}
\int_{0}^{1} & \left(\int_{0}^{1} f(x, y) d x\right)^{2} d y+\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right)^{2} d x \\
& \leq\left(\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y\right)^{2}+\int_{0}^{1} \int_{0}^{1}[f(x, y)]^{2} d x d y
\end{aligned}
$$

Solution: Dave Rusin writes: "Let $F(x, y, z, w)=f(x, y)+f(z, w)-f(x, w)-f(z, y)$; then integrate F^{2} over the box $[0,1]^{4}$. Done!"

Problem B1

Let $P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}$ be a polynomial with integer coefficients. Suppose that r is a rational number such that $P(r)=0$. Show that the n numbers

$$
c_{n} r, \quad c_{n} r^{2}+c_{n-1} r, \quad c_{n} r^{3}+c_{n-1} r^{2}+c_{n-2} r, \quad \ldots, \quad c_{n} r^{n}+c_{n-1} r^{n-1}+\cdots+c_{1} r
$$

are integers.
Solution: Fix $i \in\{0,1, \ldots, n-1\}$. Write r as u / v where u and v are coprime. Then $c_{n}(u / v)^{n}+c_{n-1}(u / v)^{n-1}+\cdots+c_{0}=0$, so $c_{n} u^{n}+c_{n-1} u^{n-1} v+\cdots+c_{0} v^{n}=0$, so $c_{n} u^{n}+c_{n-1} u^{n-1} v+\cdots+c_{i+1} u^{i+1} v^{n-i-1}=-c_{i} u^{i} v^{n-i}-c_{i-1} u^{i-1} v^{n-i+1}-\cdots-c_{0} v^{n}$ is a multiple of v^{n-i}; so $c_{n} u^{n-i}+c_{n-1} u^{n-i-1} v+\cdots+c_{i+1} u v^{n-i-1}$ is a multiple of v^{n-i} since u^{i} and v^{n-i} are coprime; so $c_{n}(u / v)^{n-i}+c_{n-1}(u / v)^{n-1-i}+\cdots+c_{i+1}(u / v)$ is an integer as claimed.

Problem B2

Let m and n be positive integers. Show that

$$
\frac{(m+n)!}{(m+n)^{m+n}}<\frac{m!}{m^{m}} \cdot \frac{n!}{n^{n}}
$$

Solution: Define $g(x)=x \log (1+1 / x)$ for $x>0$. Then $g^{\prime}(x)=\log (1+1 / x)-$ $\left(1 / x^{2}\right) x /(1+1 / x)=\log (1+1 / x)-1 /(x+1)$, so $g^{\prime \prime}(x)=\left(-1 / x^{2}\right) /(1+1 / x)+1 /(x+1)^{2}=$ $(1-(x+1) / x) /(x+1)^{2}<0$. The limit of $g^{\prime}(x)$ as $x \rightarrow \infty$ is 0 , so $g^{\prime}(x)>0$ for all $x>0$, so g is strictly increasing.

Fix $m \geq 1$. Define $f(n)=(m+n)!m^{m} n^{n} /(m+n)^{m+n} m!n$! for $n \geq 1$. Then $f(1)=$ $m^{m} /(m+1)^{m}<1$, and $f(n+1) / f(n)=(m+n)^{m+n}(n+1)^{n} /(m+n+1)^{m+n} n^{n}=$ $g(n) / g(m+n)<1$, so $f(n)<1$ for all n.

Alternate proof: Use Stirling's bounds $1<n!(\exp n) / n^{n} \sqrt{2 \pi n}<\exp (1 / 12 n)$ for $n \geq 1$ to see that $f(n)$ is in $[\exp (-1 / 12 m-1 / 12 n), \exp (1 / 12(m+n))] \sqrt{(m+n) / 2 \pi m n}$ and hence is below $\exp (1 / 24) \sqrt{1 / \pi}$, which is smaller than 1 since $\exp (1 / 12)<\exp 1<\pi$.
Alternate proof: The binomial expansion of $(m+n)^{m+n}$ includes at least two terms since the exponent is positive; all the terms are positive, and one of them is $\binom{m+n}{m} m^{m} n^{n}$.

Problem B3

Determine all real numbers $a>0$ for which there exists a nonnegative continuous function $f(x)$ defined on $[0, a]$ with the property that the region

$$
R=\{(x, y): 0 \leq x \leq a, 0 \leq y \leq f(x)\}
$$

has perimeter k units and area k square units for some real number k.
Solution: The answer is $\{a: a>2\}$.
For $a>2$: Define $f(x)=2 a /(a-2)$ and $k=2 a^{2} /(a-2)$. Then f is nonnegative; f is continuous; the region R is a rectangle of width a and height $2 a /(a-2)$; the area of R is $2 a^{2} /(a-2)=k$; and the perimeter of R is $2 a+4 a /(a-2)=(2 a(a-2)+4 a) /(a-2)=k$.
For $a \leq 2$: Suppose that there exists such a function f. Because f is continuous, it has a maximum value on the compact interval $[0, a]$; say $f(m)$ is the maximum. The area under f is at most $a f(m)$. The perimeter of the region is at least $f(m)$, to get from $(0,0)$ to $(m, f(m))$; plus at least another $f(m)$, to get from $(m, f(m))$ to $(a, 0)$; plus a, to get from $(a, 0)$ to $(0,0)$; for a total of $a+2 f(m) \geq a+a f(m)>a f(m)$. Contradiction.

Problem B4

Let n be a positive integer, $n \geq 2$, and put $\theta=2 \pi / n$. Define points $P_{k}=(k, 0)$ in the $x y$-plane, for $k=1,2, \ldots, n$. Let R_{k} be the map that rotates the plane counterclockwise by the angle θ about the point P_{k}. Let R denote the map obtained by applying, in order, R_{1}, then R_{2}, \ldots, then R_{n}. For an arbitrary point (x, y), find, and simplify, the coordinates of $R(x, y)$.

Solution: $R(x, y)=(x+n, y)$.
Put (x, y) into the complex plane as $z=x+i y$, and put $P_{1}, P_{2}, \ldots, P_{n}$ into the complex plane as $1,2, \ldots, n$. Define $z_{0}=z$, and define z_{k} for $k \geq 1$ as the result of rotating z_{k-1} by θ around k. Then $z_{k}=\zeta\left(z_{k-1}-k\right)+k$ where $\zeta=\cos \theta+i \sin \theta$, so, by induction, $z_{k}=\zeta^{k} z-\zeta^{k}-\zeta^{k-1}-\ldots-\zeta+k$. In particular, $z_{n}=\zeta^{n} z-\left(\zeta^{n}+\zeta^{n-1}+\ldots+\zeta\right)+n=z+n$.

Problem B5

Evaluate

$$
\lim _{x \rightarrow 1^{-}} \prod_{n=0}^{\infty}\left(\frac{1+x^{n+1}}{1+x^{n}}\right)^{x^{n}}
$$

Solution: The answer is $2 / \exp 1$.
The logarithm of $\left(\left(1+x^{n+1}\right) /\left(1+x^{n}\right)\right)^{x^{n}}=\left(1+x^{n}(x-1) /\left(1+x^{n}\right)\right)^{x^{n}}$ is approximately $x^{2 n}(x-1) /\left(1+x^{n}\right)$. There are approximately $\delta / u(1-x)$ nonnegative integers n for which $u \leq x^{n}<u+\delta$. The sum of $x^{2 n}(x-1) /\left(1+x^{n}\right)$ over those n 's is approximately $-(\delta / u) u^{2} /(1+u)=-(u /(1+u)) \delta$. Hence the sum of $x^{2 n}(x-1) /\left(1+x^{n}\right)$ over all n 's is approximately $-\int_{0}^{1}(u /(1+u)) d u=\log (1+u)-\left.u\right|_{0} ^{1}=\log 2-1$.

To turn this into a complete proof, write down explicit error bounds (using explicit log bounds as in B2) instead of just saying "approximately"; then observe that the error converges to 0 as x approaches 1 .

Problem B6

Let \mathcal{A} be a non-empty set of positive integers, and let $N(x)$ denote the number of elements of \mathcal{A} not exceeding x. Let \mathcal{B} denote the set of positive integers b that can be written in the form $b=a-a^{\prime}$ with $a \in \mathcal{A}$ and $a^{\prime} \in \mathcal{A}$. Let $b_{1}<b_{2}<\cdots$ be the members of \mathcal{B}, listed in increasing order. Show that if the sequence $b_{i+1}-b_{i}$ is unbounded, then $\lim _{x \rightarrow \infty} N(x) / x=0$.

Solution: Find the smallest positive integer g_{1} such that $g_{1} \notin \mathcal{B}$.
Find the smallest positive integer h_{2} such that $h_{2}, h_{2}+1, h_{2}+2, \ldots, h_{2}+6 g_{1} \notin \mathcal{B}$. Define $g_{2}=2 g_{1}\left(1+\left\lceil h_{2} / 2 g_{1}\right\rceil\right)$. Then $g_{2}-2 g_{1}, g_{2}-2 g_{1}+1, g_{2}-2 g_{1}+2, \ldots, g_{2}+2 g_{1} \notin \mathcal{B}$, and g_{2} is a multiple of $2 g_{1}$.

Find the smallest positive integer h_{3} such that $h_{3}, h_{3}+1, h_{3}+2, \ldots, h_{3}+6 g_{2} \notin \mathcal{B}$. Define $g_{3}=2 g_{2}\left(1+\left\lceil h_{3} / 2 g_{2}\right\rceil\right)$. Then $g_{3}-2 g_{2}, g_{3}-2 g_{2}+1, g_{3}-2 g_{2}+2, \ldots, g_{3}+2 g_{2} \notin \mathcal{B}$, and g_{3} is a multiple of $2 g_{2}$.
Similarly define g_{4}, g_{5}, \ldots
If k and m are positive integers then, by Lemma 1 below, $\mathcal{A} \cap\left\{1,2, \ldots, 2 m g_{k}\right\}$ has at most $2 m g_{k} / 2^{k}$ elements. Hence $\mathcal{A} \cap[1, x]$ has at most $2 g_{k}+2\left\lfloor x / 2 g_{k}\right\rfloor g_{k} / 2^{k}$ elements; i.e., $N(x) \leq 2 g_{k}+x / 2^{k}$. Thus $\lim \sup _{x \rightarrow \infty} N(x) / x \leq 1 / 2^{k}$. This is true for every k, so $\lim _{x \rightarrow \infty} N(x) / x=0$.

Lemma 1: For all integers $k \geq 1$ and $n \geq 0$, the set $\mathcal{A} \cap\left\{n+1, n+2, \ldots, n+2 g_{k}\right\}$ has at most $2 g_{k} / 2^{k}$ elements.

Proof for $k=1$: If \mathcal{A} has both $n+1$ and $n+g_{1}+1$ then $g_{1} \in \mathcal{B}$, contradiction; thus \mathcal{A} has at most one of $n+1, n+g_{1}+1$. Similar comments apply to $n+2, n+g_{1}+2$; $n+3, n+g_{1}+3 ; \ldots ; n+g_{1}, n+2 g_{1}$. Hence $\mathcal{A} \cap\left\{n+1, n+2, \ldots, n+2 g_{1}\right\}$ has at most $g_{1}=2 g_{k} / 2^{k}$ elements as claimed.

Proof for $k \geq 2$: Assume inductively that, for all n, the set $\mathcal{A} \cap\left\{n+1, \ldots, n+2 g_{k-1}\right\}$ has at most $2 g_{k-1} / 2^{k-1}$ elements.

Consider the sets $S=\left\{n+1, \ldots, n+2 g_{k-1}\right\}$ and $S^{\prime}=\left\{n+g_{k}+1, \ldots, n+g_{k}+2 g_{k-1}\right\}$. If $a \in S$ and $a^{\prime} \in S^{\prime}$ then $a^{\prime}-a \in\left\{g_{k}-2 g_{k-1}+1, \ldots, g_{k}+2 g_{k-1}-1\right\}$, so $a^{\prime}-a \notin \mathcal{B}$ by construction of g_{k}. Hence \mathcal{A} cannot have elements in common with both S and S^{\prime}. Furthermore, $\mathcal{A} \cap S$ has at most $2 g_{k-1} / 2^{k-1}$ elements, and $\mathcal{A} \cap S^{\prime}$ has at most $2 g_{k-1} / 2^{k-1}$ elements, so $\mathcal{A} \cap\left(S \cup S^{\prime}\right)$ has at most $2 g_{k-1} / 2^{k-1}$ elements.

Similar comments apply with n shifted by $2 g_{k-1}, 4 g_{k-1}, \ldots, g_{k}-2 g_{k-1}$; recall here that g_{k} is a multiple of $2 g_{k-1}$. Hence $\mathcal{A} \cap\left\{n+1, n+2, \ldots, n+2 g_{k}\right\}$ has at most $\left(g_{k} / 2 g_{k-1}\right)\left(2 g_{k-1} / 2^{k-1}\right)=2 g_{k} / 2^{k}$ elements as claimed.

