
Putnam Mathematical Competition, 4 December 2004

Problem A1

Basketball star Shanille O’Keal’s team statistician keeps track of the number, S(N), of
successful free throws she has made in her first N attempts of the season. Early in the
season, S(N) was less than 80% of N , but by the end of the season, S(N) was more than
80% of N . Was there necessarily a moment in between when S(N) was exactly 80% of
N?

Problem A2

For i = 1, 2, let Ti be a triangle with side lengths ai, bi, ci, and area Ai. Suppose that
a1 ≤ a2, b1 ≤ b2, c1 ≤ c2, and that T2 is an acute triangle. Does it follow that A1 ≤ A2?

Problem A3

Define a sequence {un}∞n=0
by u0 = u1 = u2 = 1, and thereafter by the condition that

det

(

un un+1

un+2 un+3

)

= n!

for all n ≥ 0. Show that un is an integer for all n. (By convention, 0! = 1.)

Problem A4

Show that for any positive integer n there is an integer N such that the product
x1x2 · · ·xn can be expressed identically in the form

x1x2 · · · xn =
N

∑

i=1

ci(ai1x1 + ai2x2 + · · · + ainxn)n

where the ci are rational numbers and each aij is one of the numbers, −1, 0, 1.

Problem A5

An m×n checkerboard is colored randomly: each square is independently assigned red or
black with probability 1/2.We say that two squares, p and q, are in the same connected
monochromatic region if there is a sequence of squares, all of the same color, starting at p
and ending at q, in which successive squares in the sequence share a common side. Show
that the expected number of connected monochromatic regions is greater than mn/8.



Problem A6

Suppose that f(x, y) is a continuous real-valued function on the unit square 0 ≤ x ≤ 1,
0 ≤ y ≤ 1. Show that

∫ 1

0

(
∫ 1

0

f(x, y) dx

)2

dy +

∫ 1

0

(
∫ 1

0

f(x, y) dy

)2

dx

≤
(

∫ 1

0

∫ 1

0

f(x, y) dx dy

)2

+

∫ 1

0

∫ 1

0

[f(x, y)]2 dx dy.



Problem B1

Let P (x) = cnxn +cn−1x
n−1 + · · ·+c0 be a polynomial with integer coefficients. Suppose

that r is a rational number such that P (r) = 0. Show that the n numbers

cnr, cnr2 + cn−1r, cnr3 + cn−1r
2 + cn−2r, . . . , cnrn + cn−1r

n−1 + · · · + c1r

are integers.

Problem B2

Let m and n be positive integers. Show that

(m + n)!

(m + n)m+n
<

m!

mm
· n!

nn
.

Problem B3

Determine all real numbers a > 0 for which there exists a nonnegative continuous function
f(x) defined on [0, a] with the property that the region

R = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ f(x)}

has perimeter k units and area k square units for some real number k.

Problem B4

Let n be a positive integer, n ≥ 2, and put θ = 2π/n. Define points Pk = (k, 0) in the
xy-plane, for k = 1, 2, . . . , n. Let Rk be the map that rotates the plane counterclockwise
by the angle θ about the point Pk. Let R denote the map obtained by applying, in
order, R1, then R2, . . . , then Rn. For an arbitrary point (x, y), find, and simplify, the
coordinates of R(x, y).

Problem B5

Evaluate

lim
x→1−

∞
∏

n=0

(

1 + xn+1

1 + xn

)xn

.

Problem B6

Let A be a non-empty set of positive integers, and let N(x) denote the number of
elements of A not exceeding x. Let B denote the set of positive integers b that can be
written in the form b = a− a′ with a ∈ A and a′ ∈ A. Let b1 < b2 < · · · be the members
of B, listed in increasing order. Show that if the sequence bi+1 − bi is unbounded, then
limx→∞ N(x)/x = 0.



Solutions

D. J. Bernstein, 6 December 2004

Problem A1

Basketball star Shanille O’Keal’s team statistician keeps track of the number, S(N), of
successful free throws she has made in her first N attempts of the season. Early in the
season, S(N) was less than 80% of N , but by the end of the season, S(N) was more than
80% of N . Was there necessarily a moment in between when S(N) was exactly 80% of
N?

Solution: Yes.

By hypothesis S(N1) < 0.8N1 for some N1 but S(N2) > 0.8N2 for some N2 > N1. Find
the smallest N ≥ N1 such that S(N) ≥ 0.8N . Then N 6= N1, so S(N − 1) < 0.8(N − 1).
If she does not make her Nth free throw then S(N) = S(N − 1) < 0.8(N − 1) < 0.8N ≤
S(N), contradiction. If she makes her Nth free throw then S(N) = S(N − 1) + 1 so

0 ≤ 5S(N) − 4N = 5S(N − 1) + 5 − 4N < 4(N − 1) + 5 − 4N = 1.

The quantity 5S(N) − 4N is an integer, so it must be 0; i.e., S(N) = 0.8N as claimed.

Problem A2

For i = 1, 2, let Ti be a triangle with side lengths ai, bi, ci, and area Ai. Suppose that
a1 ≤ a2, b1 ≤ b2, c1 ≤ c2, and that T2 is an acute triangle. Does it follow that A1 ≤ A2?

Solution: Yes.

Recall Heron’s formula (4A)2 = 4a2b2 − (a2 + b2 − c2)2 for the area A of a triangle with
side lengths a, b, c. The derivative of (4A)2 with respect to c is 4c(a2 + b2 − c2), which is
positive if c2 < a2 + b2, i.e., if the angle opposite c is acute. By symmetry, the derivative
of (4A)2 with respect to a is positive if the angle opposite a is acute, and the derivative
of (4A)2 with respect to b is positive if the angle opposite b is acute.

Find (a, b, c) in the compact set [a1, a2] × [b1, b2] × [c1, c2] to maximize A. It is not
possible to have exactly one of a, b, c smaller than a2, b2, c2 respectively: for example, if
a < a2 and b = b2 and c = c2, then a2 < a2

2 < b2
2 + c2

2 = b2 + c2 since T2 is acute, so the
angle opposite a is acute, so increasing a increases A, contradiction. Similarly, it is not
possible to have two or three of a, b, c smaller than a2, b2, c2 respectively: for example, if
a < a2 and b < b2, then at least one angle opposite a or b must be acute, so increasing
a or b increases A, contradiction.

Thus (a, b, c) = (a2, b2, c2). In particular, A1 ≤ A2.



Problem A3

Define a sequence {un}∞n=0
by u0 = u1 = u2 = 1, and thereafter by the condition that

det

(

un un+1

un+2 un+3

)

= n!

for all n ≥ 0. Show that un is an integer for all n. (By convention, 0! = 1.)

Solution: Define v0 = 1, v1 = 1, and vn = (n − 1)vn−2 for all n ≥ 2. Then vn is an
integer.

I claim that vnvn+1 = n! for all n ≥ 0. Proof: If n = 0 then vnvn+1 = v0v1 = 1 = 0! = n!
as claimed. If n ≥ 1 then assume inductively that vn−1vn = (n − 1)!. By definition
vn+1 = nvn−1, so vnvn+1 = nvn−1vn = n(n − 1)! = n! as claimed.

I now claim that un = vn for all n ≥ 0. Proof: If n = 0, or n = 1, or n = 2, then
un = 1 = vn as claimed. For n ≥ 3, assume inductively that un−3 = vn−3, that
un−2 = vn−2, and that un−1 = vn−1. By hypothesis (n − 3)! = un−3un − un−1un−2, so

un =
(n − 3)! + un−1un−2

un−3

=
(n − 3)! + vn−1vn−2

vn−3

=
vn−3vn−2 + (n − 2)vn−3vn−2

vn−3

= (n − 1)vn−2 = vn

as claimed.

Hence un is an integer.

Problem A4

Show that for any positive integer n there is an integer N such that the product
x1x2 · · ·xn can be expressed identically in the form

x1x2 · · · xn =
N

∑

i=1

ci(ai1x1 + ai2x2 + · · · + ainxn)n

where the ci are rational numbers and each aij is one of the numbers, −1, 0, 1.

Solution: One can take N = 2n. Specifically, I claim that x1x2 · · ·xn is the sum of
(a1a2 · · · an/2nn!)(a1x1 + a2x2 + · · · + anxn)n over all (a1, a2, . . . , an) ∈ {1,−1}n

.

Define P0(x1, x2, . . . , xn) = (x1 + x2 + · · · + xn)n. Note for future reference that the
coefficient of x1x2 · · ·xn in P0 is n!.

Define P1(x1, x2, . . . , xn) = P0(x1, x2, . . . , xn) − P0(−x1, x2, . . . , xn). The coefficient of
xe1

1 xe2

2 · · ·xen

n in P1 is 1 − (−1)e1 times the corresponding coefficient in P0.



Define P2(x1, x2, . . . , xn) = P1(x1, x2, . . . , xn) − P1(x1,−x2, . . . , xn). The coefficient of
xe1

1 xe2

2 · · ·xen

n in P2 is 1−(−1)e2 times the corresponding coefficient in P1; in other words,
(1 − (−1)e1)(1 − (−1)e2) times the corresponding coefficient in P0.

Define P3, P4, . . . , Pn similarly. Then the coefficient of xe1

1 xe2

2 · · · xen

n in Pn is exactly
(1 − (−1)e1)(1 − (−1)e2) · · · (1 − (−1)en) times the corresponding coefficient in P0. The
factor (1−(−1)e1)(1−(−1)e2) · · · (1−(−1)en) is 2n if e1, e2, . . . , en are all odd, otherwise
0. The coefficient in P0 is 0 unless e1 + e2 + · · ·+ en = n. The only way for odd numbers
e1, e2, . . . , en to have sum n is for all of them to be 1. Hence Pn(x1, x2, . . . , xn) =
2nn!x1x2 · · ·xn.

Problem A5

An m×n checkerboard is colored randomly: each square is independently assigned red or
black with probability 1/2.We say that two squares, p and q, are in the same connected
monochromatic region if there is a sequence of squares, all of the same color, starting at p
and ending at q, in which successive squares in the sequence share a common side. Show
that the expected number of connected monochromatic regions is greater than mn/8.

Solution: Sorry, I haven’t solved this one yet.

Problem A6

Suppose that f(x, y) is a continuous real-valued function on the unit square 0 ≤ x ≤ 1,
0 ≤ y ≤ 1. Show that

∫ 1

0

(
∫ 1

0

f(x, y) dx

)2

dy +

∫ 1

0

(
∫ 1

0

f(x, y) dy

)2

dx

≤
(

∫ 1

0

∫ 1

0

f(x, y) dx dy

)2

+

∫ 1

0

∫ 1

0

[f(x, y)]2 dx dy.

Solution: Dave Rusin writes: “Let F (x, y, z, w) = f(x, y) + f(z, w)− f(x,w)− f(z, y);
then integrate F 2 over the box [0, 1]4. Done!”



Problem B1

Let P (x) = cnxn +cn−1x
n−1 + · · ·+c0 be a polynomial with integer coefficients. Suppose

that r is a rational number such that P (r) = 0. Show that the n numbers

cnr, cnr2 + cn−1r, cnr3 + cn−1r
2 + cn−2r, . . . , cnrn + cn−1r

n−1 + · · · + c1r

are integers.

Solution: Fix i ∈ {0, 1, . . . , n − 1}. Write r as u/v where u and v are coprime. Then
cn(u/v)n + cn−1(u/v)n−1 + · · · + c0 = 0, so cnun + cn−1u

n−1v + · · · + c0v
n = 0, so

cnun + cn−1u
n−1v + · · · + ci+1u

i+1vn−i−1 = −ciu
ivn−i − ci−1u

i−1vn−i+1 − · · · − c0v
n is

a multiple of vn−i; so cnun−i + cn−1u
n−i−1v + · · · + ci+1uvn−i−1 is a multiple of vn−i

since ui and vn−i are coprime; so cn(u/v)n−i + cn−1(u/v)n−1−i + · · · + ci+1(u/v) is an
integer as claimed.

Problem B2

Let m and n be positive integers. Show that

(m + n)!

(m + n)m+n
<

m!

mm
· n!

nn
.

Solution: Define g(x) = x log(1 + 1/x) for x > 0. Then g′(x) = log(1 + 1/x) −
(1/x2)x/(1+1/x) = log(1+1/x)−1/(x+1), so g′′(x) = (−1/x2)/(1+1/x)+1/(x+1)2 =
(1− (x+1)/x)/(x+1)2 < 0. The limit of g′(x) as x → ∞ is 0, so g′(x) > 0 for all x > 0,
so g is strictly increasing.

Fix m ≥ 1. Define f(n) = (m + n)!mmnn/(m + n)m+nm!n! for n ≥ 1. Then f(1) =
mm/(m + 1)m < 1, and f(n + 1)/f(n) = (m + n)m+n(n + 1)n/(m + n + 1)m+nnn =
g(n)/g(m + n) < 1, so f(n) < 1 for all n.

Alternate proof: Use Stirling’s bounds 1 < n!(expn)/nn
√

2πn < exp(1/12n) for n ≥ 1
to see that f(n) is in [exp(−1/12m − 1/12n), exp(1/12(m + n))]

√

(m + n)/2πmn and

hence is below exp(1/24)
√

1/π, which is smaller than 1 since exp(1/12) < exp 1 < π.

Alternate proof: The binomial expansion of (m+n)m+n includes at least two terms since
the exponent is positive; all the terms are positive, and one of them is

(

m+n

m

)

mmnn.

Problem B3

Determine all real numbers a > 0 for which there exists a nonnegative continuous function
f(x) defined on [0, a] with the property that the region

R = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ f(x)}



has perimeter k units and area k square units for some real number k.

Solution: The answer is {a : a > 2}.
For a > 2: Define f(x) = 2a/(a − 2) and k = 2a2/(a − 2). Then f is nonnegative; f is
continuous; the region R is a rectangle of width a and height 2a/(a− 2); the area of R is
2a2/(a−2) = k; and the perimeter of R is 2a+4a/(a−2) = (2a(a−2)+4a)/(a−2) = k.

For a ≤ 2: Suppose that there exists such a function f . Because f is continuous, it has
a maximum value on the compact interval [0, a]; say f(m) is the maximum. The area
under f is at most af(m). The perimeter of the region is at least f(m), to get from (0, 0)
to (m, f(m)); plus at least another f(m), to get from (m, f(m)) to (a, 0); plus a, to get
from (a, 0) to (0, 0); for a total of a + 2f(m) ≥ a + af(m) > af(m). Contradiction.

Problem B4

Let n be a positive integer, n ≥ 2, and put θ = 2π/n. Define points Pk = (k, 0) in the
xy-plane, for k = 1, 2, . . . , n. Let Rk be the map that rotates the plane counterclockwise
by the angle θ about the point Pk. Let R denote the map obtained by applying, in
order, R1, then R2, . . . , then Rn. For an arbitrary point (x, y), find, and simplify, the
coordinates of R(x, y).

Solution: R(x, y) = (x + n, y).

Put (x, y) into the complex plane as z = x+ iy, and put P1, P2, . . . , Pn into the complex
plane as 1, 2, . . . , n. Define z0 = z, and define zk for k ≥ 1 as the result of rotating zk−1

by θ around k. Then zk = ζ(zk−1 − k) + k where ζ = cos θ + i sin θ, so, by induction,
zk = ζkz−ζk−ζk−1−. . .−ζ+k. In particular, zn = ζnz−(ζn+ζn−1+. . .+ζ)+n = z+n.

Problem B5

Evaluate

lim
x→1−

∞
∏

n=0

(

1 + xn+1

1 + xn

)xn

.

Solution: The answer is 2/exp 1.

The logarithm of ((1 + xn+1)/(1+xn))xn

= (1 +xn(x− 1)/(1 +xn))xn

is approximately
x2n(x − 1)/(1 + xn). There are approximately δ/u(1 − x) nonnegative integers n for
which u ≤ xn < u + δ. The sum of x2n(x − 1)/(1 + xn) over those n’s is approximately
−(δ/u)u2/(1 + u) = −(u/(1 + u))δ. Hence the sum of x2n(x− 1)/(1 + xn) over all n’s is

approximately −
∫ 1

0
(u/(1 + u)) du = log(1 + u) − u|1

0
= log 2 − 1.

To turn this into a complete proof, write down explicit error bounds (using explicit log
bounds as in B2) instead of just saying “approximately”; then observe that the error
converges to 0 as x approaches 1.



Problem B6

Let A be a non-empty set of positive integers, and let N(x) denote the number of
elements of A not exceeding x. Let B denote the set of positive integers b that can be
written in the form b = a− a′ with a ∈ A and a′ ∈ A. Let b1 < b2 < · · · be the members
of B, listed in increasing order. Show that if the sequence bi+1 − bi is unbounded, then
limx→∞ N(x)/x = 0.

Solution: Find the smallest positive integer g1 such that g1 /∈ B.

Find the smallest positive integer h2 such that h2, h2 +1, h2 +2, . . . , h2 +6g1 /∈ B. Define
g2 = 2g1(1 + dh2/2g1e). Then g2 − 2g1, g2 − 2g1 + 1, g2 − 2g1 + 2, . . . , g2 + 2g1 /∈ B, and
g2 is a multiple of 2g1.

Find the smallest positive integer h3 such that h3, h3 +1, h3 +2, . . . , h3 +6g2 /∈ B. Define
g3 = 2g2(1 + dh3/2g2e). Then g3 − 2g2, g3 − 2g2 + 1, g3 − 2g2 + 2, . . . , g3 + 2g2 /∈ B, and
g3 is a multiple of 2g2.

Similarly define g4, g5, . . ..

If k and m are positive integers then, by Lemma 1 below, A ∩ {1, 2, . . . , 2mgk} has at
most 2mgk/2k elements. Hence A ∩ [1, x] has at most 2gk + 2bx/2gkcgk/2k elements;
i.e., N(x) ≤ 2gk + x/2k. Thus lim supx→∞

N(x)/x ≤ 1/2k. This is true for every k, so
limx→∞ N(x)/x = 0.

Lemma 1: For all integers k ≥ 1 and n ≥ 0, the set A ∩ {n + 1, n + 2, . . . , n + 2gk} has
at most 2gk/2k elements.

Proof for k = 1: If A has both n + 1 and n + g1 + 1 then g1 ∈ B, contradiction; thus
A has at most one of n + 1, n + g1 + 1. Similar comments apply to n + 2, n + g1 + 2;
n + 3, n + g1 + 3; . . . ; n + g1, n + 2g1. Hence A∩ {n + 1, n + 2, . . . , n + 2g1} has at most
g1 = 2gk/2k elements as claimed.

Proof for k ≥ 2: Assume inductively that, for all n, the set A ∩ {n + 1, . . . , n + 2gk−1}
has at most 2gk−1/2k−1 elements.

Consider the sets S = {n + 1, . . . , n + 2gk−1} and S′ = {n + gk + 1, . . . , n + gk + 2gk−1}.
If a ∈ S and a′ ∈ S′ then a′ − a ∈ {gk − 2gk−1 + 1, . . . , gk + 2gk−1 − 1}, so a′ − a /∈ B
by construction of gk. Hence A cannot have elements in common with both S and S ′.
Furthermore, A∩S has at most 2gk−1/2k−1 elements, and A∩S′ has at most 2gk−1/2k−1

elements, so A ∩ (S ∪ S′) has at most 2gk−1/2k−1 elements.

Similar comments apply with n shifted by 2gk−1, 4gk−1, . . . , gk − 2gk−1; recall here
that gk is a multiple of 2gk−1. Hence A ∩ {n + 1, n + 2, . . . , n + 2gk} has at most
(gk/2gk−1)(2gk−1/2k−1) = 2gk/2k elements as claimed.


