
MATHEMATICS OF COMPUTATION
Volume 76, Number 257, January 2007, Pages 389–403
S 0025-5718(06)01786-8
Article electronically published on September 14, 2006

PROVING PRIMALITY
IN ESSENTIALLY QUARTIC RANDOM TIME

DANIEL J. BERNSTEIN

Abstract. This paper presents an algorithm that, given a prime n, finds and
verifies a proof of the primality of n in random time (lg n)4+o(1). Several
practical speedups are incorporated into the algorithm and discussed in detail.

1. Introduction

This paper presents an algorithm that proves the primality of any prime n in
random time (lg n)4+o(1):

• Section 3 defines certificates and proves that n is a prime power if it has a
certificate.

• Section 4 presents an algorithm that, given a prime n, finds a reasonably
small certificate for n in random time (lg n)2+o(1).

• Section 6 presents an algorithm to verify a reasonably small certificate in
time (lg n)4+o(1).

One can prove that n is not a perfect power in time (lg n)1+o(1), as explained in [6]
and [10], so prime-power proving is tantamount to prime proving.

Section 7 discusses verification speed in more detail. Some of the complications
in the certificate definition are irrelevant to the 4+o(1) result but produce speedups
visible at the level of detail of Section 7. A simplified proof that n is a prime power
under stronger assumptions, without these complications, appears in Section 2.

Genealogy. This algorithm uses an idea that one might call “proving primality
with combinatorics.” This idea was introduced by Agrawal, Kayal, and Saxena in
[4]. (Primitive forms of the idea were used by Fellows and Koblitz in [15], and by
Konyagin and Pomerance in [20].) The Agrawal-Kayal-Saxena algorithm proves
primality in polynomial time, using combinatorics in cyclotomic extensions of Z/n.

The algorithm in this paper replaces cyclotomic extensions with random Kummer
extensions, so that it can twist x − 1 into ζx − 1, ζ2x − 1, etc.; see the proof of
Theorem 2.1. This idea was introduced by Berrizbeitia in [11], in the special case of
Kummer extensions whose degrees are powers of 2. Berrizbeitia’s algorithm proves
primality in random time (lg n)4+o(1) for a sparse set of primes n, namely those for
which n2 − 1 is divisible by some power of 2 near (lg n)2.

Received by the editor February 13, 2004 and, in revised form, December 9, 2004.
2000 Mathematics Subject Classification. Primary 11Y11.
The author was supported by the National Science Foundation under grant DMS–0140542, and

by the Alfred P. Sloan Foundation. He used the libraries at the Mathematical Sciences Research
Institute, the University of California at Berkeley, and the American Institute of Mathematics.

c©2006 by the author

389

390 DANIEL J. BERNSTEIN

Cheng in [12] adapted Berrizbeitia’s idea to prime degrees. Cheng’s algorithm
proves primality in random time (lg n)4+o(1) for a larger set of primes n, namely
those for which n − 1 is divisible by a prime e ≈ (lg n)2.

This paper generalizes to arbitrary positive integers e ≈ (lg n)2 dividing nd − 1
for any d ∈ no(1). A standard result from analytic number theory implies that
every prime n has a suitable pair (d, e); see Theorems 5.1 and 5.2. For practical
purposes, the only interesting case is d = 1, as discussed in Section 7.

My generalization was independent of Cheng’s adaptation. I read Berrizbeitia’s
paper on 26 January 2003 and promptly sent email to a few people saying how I
expected it to generalize to any n. I was then told about Cheng’s paper, which
had been published on 16 January 2003. I posted a draft of this paper, with a
detailed proof of Theorem 3.2, on 28 January 2003, and announced the result on
the NMBRTHRY mailing list on 29 January 2003.

Mihăilescu and Avanzi realized, independently of my work, that Berrizbeitia’s
idea could be generalized to arbitrary positive integers e. They eventually posted
their generalization; see [24]. See Section 8 for a simplified proof of a similar
generalization, and a discussion of how this generalization differs from mine.

Most papers in this field have been written with a casual disregard for constant
factors in run time: crude binomial-coefficient bounds and suboptimal parameter
choices are typically embedded into statements of theorems. Starting a few days
after [4] and continuing through this paper, I have attempted to state each theorem
in its natural level of generality, to incorporate any modifications that would reduce
run time, and to optimize parameters. See Sections 3 and 7 of this paper.

Competition. Another way to prove the primality of n is to exhibit a factor of
the Jacobian group of a hyperelliptic curve over Z/n. Adleman and Huang in [2]
proved that every prime n has a certificate of this type that can be found in random
time (lg n)O(1) and verified in time at most (lg n)3+o(1). The O(1) here is large.

A previous algorithm of Atkin, using small-discriminant complex-multiplication
elliptic curves, is conjectured to find a certificate of the same type in time at most
(lg n)5+o(1). An improved algorithm, pointed out by Shallit and reported in [21,
page 711], is conjectured to find a certificate of the same type in time at most
(lg n)4+o(1). As above, the certificates can be verified in time (lg n)3+o(1).

The algorithm in this paper is proven to find and verify certificates in random
time at most (lg n)4+o(1).

For readers who want to actually prove the primality of various numbers n, rather
than prove theorems about how quickly one can prove primality, the impact of the
new algorithm is less clear. Is the (lg n)4+o(1) time for the new algorithm smaller
than the (lg n)4+o(1) time to find elliptic-curve certificates? My current impression
is that the answer is no, but that further results along the lines of [7] or [13] could
change the answer. See the end of Section 7 for further discussion of [7] and [13].

The literature contains many more methods to distinguish prime numbers from
composite numbers. See my survey paper [9] for a comparison of the speed and
effectiveness of these methods. For example, there are randomized compositeness-
proving algorithms that reliably detect (but do not prove) primality and that take
time only (lg n)2+o(1).

PROVING PRIMALITY IN ESSENTIALLY QUARTIC RANDOM TIME 391

2. The idea in a nutshell

Theorem 2.1. Let n, d, and e be positive integers such that 2e − 1 ≥ n2d�√e�
and e divides nd − 1. Let f be a monic polynomial in (Z/n)[y] of degree d. Define
R as the ring (Z/n)[y]/f . Let r be an element of R such that rnd−1 = 1 in R,
r(nd−1)/q − 1 is a unit in R for each prime q dividing e, and r− 1 is a unit in R. If
(x − 1)nd

= r(nd−1)/ex − 1 in the ring R[x]/(xe − r) then n is a power of a prime.

Theorem 2.1 improves in two ways upon the theorems of Berrizbeitia in [11] and
Cheng in [12]:

• d is allowed to be any positive integer. Berrizbeitia considered only d ∈
{1, 2}, and Cheng considered only d = 1. Larger d’s are important for the
(lg n)4+o(1) result in this paper. On the other hand, as discussed in Section
7, the case d = 1 is the only important case in practice.

• e is allowed to be any positive divisor of nd − 1. Berrizbeitia considered
only powers of 2 (although with slightly more general moduli x2ie − r),
and Cheng considered only primes e; the proofs relied on e having only one
prime divisor. Arbitrary e’s are important for the (lg n)4+o(1) result in this
paper. Arbitrary e’s also save time in practice, because they allow many
more n’s to be handled with d = 1.

Theorem 3.2 saves more time by allowing somewhat smaller e’s.

Proof. If n = 1 then n is a power of a prime, so assume that n > 1.
Step 1: Move to a field. R is a nonzero ring, so it maps onto a field k.

Explicitly: find a prime p dividing n; find an irreducible polynomial g in Fp[y]
dividing the image of f ; then k = Fp[y]/g is a field.

Write N = #R = nd and P = #k = pdeg g. Define ζ as the image of r(N−1)/e

in k. Then ζ has order e in k. (Indeed, rN−1 = 1 in R by hypothesis, so ζe = 1
in k. Furthermore, if q is a prime dividing e, then r(N−1)/q − 1 is a unit in R by
hypothesis, so its image ζe/q − 1 in k is a unit; hence ζe/q �= 1 in k.) Consequently,
e divides P − 1.

Step 2: Combinatorially enumerate many powers of x − 1. Define A as
the ring k[x]/(xe − r). By hypothesis (x − 1)N = r(N−1)/ex − 1 in R[x]/(xe − r),
so (x− 1)N = ζx− 1 in A. Substitute ζix for x: (ζix− 1)N = ζi+1x− 1 in the ring
k[x]/((ζix)e − r) = A. Thus (x − 1)Ni

= ζix − 1 in A for any integer i ≥ 0.
There are 2e−1 vectors (a0, a1, . . . , ae−1) ∈ {0, 1}e such that

∑
i ai ≤ e−1. Any

product
∏

i(ζ
ix− 1)ai = (x− 1)

∑
i Niai is a power of x− 1 in A. I claim that these

products are distinct, so there are at least 2e − 1 powers of x − 1 in A.
Indeed, say a, b are two such vectors with

∏
i(ζ

ix − 1)ai =
∏

i(ζ
ix − 1)bi in

A. Then
∏

i(ζ
ix − 1)ai =

∏
i(ζ

ix − 1)bi in k[x]: distinct polynomials of degree
at most e − 1 remain distinct when reduced modulo xe − r. The polynomials
x− 1, ζx− 1, . . . , ζe−1x− 1 are coprime in k[x], so ai = bi by unique factorization.

Step 3: Find colliding powers of x − 1. The nonzero element r(P−1)/e of k
has eth power rP−1 = 1; but the eth roots of 1 in k are exactly the powers of ζ.
Thus r(P−1)/e = ζ� in k for some integer �. Now xP = xP−1x = r(P−1)/ex = ζ�x in
A, so xP j

= ζj�x in A for any integer j ≥ 0. Thus (x − 1)NiP j

= ζi+j�x − 1 in A.
Consider the pairs (i, j) with 0 ≤ i ≤ �

√
e� and 0 ≤ j ≤ �

√
e�. There are

(�
√

e� + 1)2 > e pairs (i, j), and only e possible powers ζi+j�, so there are distinct

392 DANIEL J. BERNSTEIN

pairs (i, j), (i′, j′) with ζi+j� = ζi′+j′�. Define u = N iP j and v = N i′P j′
; then u

and v are positive integers bounded by N2�√e�, and (x − 1)u = (x − 1)v.
The remainder (xe − r) mod (x−1) = 1− r is a unit in k, so x−1 is a unit in A.

Thus (x − 1)u−v = 1 in the unit group A∗. If u �= v then there are at most |u − v|
powers of x − 1, but |u − v| < N2�√e� ≤ 2e − 1; contradiction.

Hence u = v; i.e., N i−i′ = P j′−j . If i = i′ then j′ = j; contradiction. Thus a
nontrivial power of n is a power of p; so n is a power of p. �

3. Certificates

Definition 3.1. Let n, d, and e be positive integers. Let c and c− be integers. Let
f be a monic polynomial in (Z/n)[y] of degree d. Define R as the ring (Z/n)[y]/f .
Let r be an element of R. Let S be a subset of R. Assume that

• e divides nd − 1;
• e > c ≥ c− ≥ 0;
• rnd−1 = 1 in R;
• r(nd−1)/q − 1 is a unit in R for each prime q dividing e;
• s is a unit in R for all s ∈ S;
• se − (s′)e is a unit in R for all distinct s, s′ ∈ S;
• se − r is a unit in R for all s ∈ S;
•

(
e#S
c−

)(
c

c−

)(
e#S−c−+e−1−c

e−1−c

)
≥ nd	

√
e/3
; and

• (x − s)nd

= r(nd−1)/ex − s in the ring R[x]/(xe − r) for all s ∈ S.
Then (d, e, c, c−, f, r, S) is a certificate for n.

For example, (1, 840, 419, 246, y, 17, {1}) is a certificate for

31415926535897932384626433832795028841;

(1, 2430, 1214, 928, y, 2, {1, 2}) is a certificate for

2718281828459045235360287471352662497757247093699959574966967627724076630353547594571;

and (1, 57449, 28724, 16826, y, 2, {1}) is a certificate for 21024 + 643.

Theorem 3.2. Let n, d, and e be positive integers. Let c and c− be integers. Let
f be a monic polynomial in (Z/n)[y] of degree d. Define R as the ring (Z/n)[y]/f .
Let r be an element of R. Let S be a subset of R. Assume that (d, e, c, c−, f, r, S)
is a certificate for n. Then n is a power of a prime.

Readers who warmed up by reading the proof of Theorem 2.1 will recognize the
overall structure, and many components, of the proof of Theorem 3.2. However,
through the definition of a certificate, Theorem 3.2 includes three features not
present in Theorem 2.1:

• It uses
√

e/3 as suggested by Lenstra, instead of 2
√

e. This reduces the
lower bound on e by a factor of about 12. (Intermediate results by various
people are not discussed here.)

• It allows c > 0 as suggested by Voloch, with an optimization suggested by
Vaaler; see the proof to understand the role of c. This reduces the lower
bound on e by an extra factor of about 6.4673912111.

• It allows #S to vary. (Berrizbeitia and Cheng considered only #S = 1, or
#S = 2i for modulus x2ie − r.) This allows e to be chosen even smaller, at
some cost; see Section 7.

PROVING PRIMALITY IN ESSENTIALLY QUARTIC RANDOM TIME 393

Smaller e’s allow faster verification of the hypotheses, i.e., faster primality proofs;
on the other hand, they make the “human part” of the proof more complicated.

Additional comments on the proof appear at the end of this section.

Proof. If n = 1 then n is a power of a prime, so assume that n > 1.
Step 1: Move to a field. R is a nonzero ring, so it maps onto a field k.

Explicitly: find a prime p dividing n; find an irreducible polynomial g in Fp[y]
dividing the image of f ; then k = Fp[y]/g is a field.

Write N = #R = nd and P = #k = pdeg g. Note that P divides N . If N = P
then n is a power of p, so assume that N > P . (Similarly, one can assume that
N �= P 2; this allows a variation in the Minkowski argument below.)

Define ζ as the image of r(N−1)/e in k. Then ζ has order e in k. (Indeed,
rN−1 = 1 in R by hypothesis, so ζe = 1 in k. Furthermore, if q is a prime dividing
e, then r(N−1)/q − 1 is a unit in R by hypothesis, so its image ζe/q − 1 in k is a
unit; hence ζe/q �= 1 in k.) Consequently, e divides P − 1.

Step 2: Combinatorially enumerate many group elements. Find an
irreducible polynomial h in k[x] dividing the image of xe−r. Then k[x]/h is a field.

k[x]/h

R[x]/(xe − r) �� �� k[x]/(xe − r)

����

R = (Z/n)[y]/f

��

�� �� k = Fp[y]/g

��

If s ∈ S then (x − s)N = r(N−1)/ex − s in R[x]/(xe − r) by hypothesis, so
(x− s)N = ζx− s in k[x]/(xe − r). Substitute ζix for x: (ζix− s)N = ζi+1x− s in
k[x]/((ζix)e − r) = k[x]/(xe − r). Thus (x− s)Ni

= ζix− s in k[x]/(xe − r) for any
integer i ≥ 0.

Note that ζix−s is a unit in k[x]/h. (The remainder (xe−r) mod (ζix−s) = se−r
is a unit in k, so ζix− s is a unit in k[x]/(xe − r), hence in k[x]/h.) Note also that
ζix − s and ζi′x − s′ are coprime in k[x] unless (ζi, s) = (ζi′ , s′). (If they are not
coprime, then sζi′ = s′ζi in k, so se = (s′)e in k. If s �= s′ then se − (s′)e is a unit
in R by hypothesis, so it is a unit in k; contradiction. Thus s = s′; so sζi′ = sζi;
also s is a unit in R by hypothesis, so ζi′ = ζi.)

Consider functions a : {0, 1, . . . , e − 1} × S → Z such that

• #{(i, s) : a(i, s) < 0} = c−;
•

∑
i,s −a(i, s)[a(i, s) < 0] ≤ c; and

•
∑

i,s a(i, s)[a(i, s) ≥ 0] ≤ e − 1 − c.

There are
(
e#S
c−

)(
c

c−

)(
e#S−c−+e−1−c

e−1−c

)
≥ N	

√
e/3
 ≥ N

√
e/3 such functions. I claim

that the products
∏

i,s(ζ
ix − s)a(i,s) are distinct in (k[x]/h)∗; so there are at least

N
√

e/3 such products.

394 DANIEL J. BERNSTEIN

Indeed, assume that a, b are two such functions, and that
∏

i,s(ζ
ix − s)a(i,s) =∏

i,s(ζ
ix − s)b(i,s) in (k[x]/h)∗. Clear denominators to obtain polynomials

A =
∏

i,s

(ζix − s)a(i,s)[a(i,s)≥0]−b(i,s)[b(i,s)<0] ∈ k[x],

B =
∏

i,s

(ζix − s)b(i,s)[b(i,s)≥0]−a(i,s)[a(i,s)<0] ∈ k[x]

with A = B in k[x]/h. Now A(ζjx) = ANj

= BNj

= B(ζjx) in k[x]/h, since
ζi+jx−s = (ζix−s)Nj

in k[x]/(xe−r). Thus A−B has roots x, ζx, ζ2x, . . . , ζe−1x in
k[x]/h; these roots are distinct, since x is invertible in k[x]/h; but A−B has degree
at most c+ e− 1− c < e, so it cannot have e roots unless it is zero. Thus A = B in
k[x]; so a(i, s)[a(i, s) ≥ 0]−b(i, s)[b(i, s) < 0] = b(i, s)[b(i, s) ≥ 0]−a(i, s)[a(i, s) < 0]
by unique factorization into coprimes; so a(i, s) = b(i, s).

Step 3: Find colliding powers. The nonzero element r(P−1)/e of k has eth
power rP−1 = 1; but the eth roots of 1 in k are exactly the powers of ζ. Thus
r(P−1)/e = ζ� in k for some integer �. Now xP = xP−1x = r(P−1)/ex = ζ�x

in k[x]/(xe − r), so xP j

= ζj�x in k[x]/(xe − r) for any integer j ≥ 0. Thus
(x − s)NiP j

= ζi+j�x − s in k[x]/(xe − r).
Define L as the set of (α, β) ∈ Z × Z such that e divides α + (β − α)�; then

L is a lattice of determinant e. Define C as the set of (α, β) ∈ R × R such that
max {|α| lg(N/P), |β| lg P, |α lg(N/P) + β lg P |} ≤

√
e/3 lg N ; then C is a closed

convex symmetric set of area 3(e/3)(lg N)2/(lg P) lg(N/P) ≥ 4e. By Minkowski’s
theorem there is a nonzero point (α, β) ∈ L∩C. Assume without loss of generality
that α ≥ 0.

(Variation: N �= P 2 so the area of C is larger than 4e. Thus one can use a
simpler form of Minkowski’s theorem, ignoring the fact that C is closed.)

If β ≥ 0 define u = (N/P)αP β and v = 1; then u and v are positive integers
bounded by N

√
e/3, and (x − s)uP α

= (x − s)NαP β

= ζα+β�x − s = ζα�x − s =
(x− s)P α

= (x− s)vP α

in k[x]/(xe − r). If β < 0 define u = (N/P)α and v = P−β;
then u and v are positive integers bounded by N

√
e/3, and (x−s)uP α

= (x−s)Nα

=
ζαx − s = ζ(α−β)�x − s = (x − s)P α−β

= (x − s)vP α

in k[x]/(xe − r).
P th powering is invertible on the powers of x − s, since (x − s)P e

= x − s; so
(x − s)u = (x − s)v in k[x]/(xe − r). Consequently (x − s)u−v = 1 in (k[x]/h)∗.
Take N ith powers: (ζix− s)u−v = 1 in (k[x]/h)∗. Thus each of the aforementioned
products π =

∏
i,s(ζ

ix − s)a(i,s) in (k[x]/h)∗ satisfies πu−v = 1.
On the other hand, if u �= v then the number of |u − v|th roots of 1 in the

field k[x]/h is at most |u − v| < N
√

e/3; contradiction. Thus u = v; i.e., Nα =
Pα−β . If α = 0 then P−β = 0 so β = 0, but (α, β) was nonzero by construction;
contradiction. Hence n is a power of p. �

Notes on the proof. Consider the subgroup G of (k[x]/(xe − r))∗ generated by
{x − s : s ∈ S}. The proof may be summarized as follows: G is large; G is cyclic;
if n is not a power of p, then G has small exponent; contradiction.

There are three different ways to prove that G is cyclic:

PROVING PRIMALITY IN ESSENTIALLY QUARTIC RANDOM TIME 395

• Choose e and r so that k[x]/(xe − r) is forced to be a field. This is the
approach used by Berrizbeitia and Cheng; it is also the reason for their
restrictions on e.

• Used in Theorem 2.1: Choose S = {1}, so that G is cyclic by definition.
This is the simplest approach.

• Used in Theorem 3.2: The available equations for x − s imply that G is
always isomorphic to its image in (k[x]/h)∗. This idea was first published
by Macaj in [23]; it was discovered independently by Agrawal.

The original approach of Agrawal, Kayal, and Saxena in [4] was to work instead
with the cyclic image of G in (k[x]/h)∗ and to force the degree of h to be fairly large.
A subsequent improvement by Lenstra was to work with an isomorphic image of G
in a product of copies of (k[x]/h)∗. Both approaches are quantitatively worse than
proving that G is cyclic.

Except in the simple cyclic-by-definition case, all of these approaches rely on the
fact that a finite multiplicative subgroup of a field is cyclic. The proof of that fact
starts from the observation that a large subgroup cannot have small exponent, and
then does some extra work to construct a generator. The extra work is unnecessary
for this application: the only reason to prove that G is cyclic is to prove that it
does not have small exponent. This simplification was pointed out to me by Kiran
Kedlaya (who was preparing to explain [4] to high-school students); it is used in
the proof of Theorem 3.2.

The proof of Theorem 3.2 would still work if nd	
√

e/3
 were replaced by nd
√

e/3

in the definition of a certificate. However, this change would complicate certificate
testing and would have very little benefit.

4. Finding a certificate: algorithm

Every prime n has a certificate of the form (d, e, 0, 0, f, r, {1}) with d ∈ (lg n)o(1)

and e ∈ (lg n)2+o(1). Furthermore, this certificate can be found in random time
(lg n)2+o(1). This section discusses the construction of d and e, then the construction
of f , and finally the construction of r.

As discussed in Section 6, one can then verify that this is a certificate for n in
time (lg n)4+o(1). As discussed in Section 7, one can reduce the o(1) by choosing
certificates more carefully.

Finding d and e. Theorem 5.1 states that there is a positive integer d such that
nd − 1 has a divisor e ≥ 6 between d2 	lg n
2 and (d + 1)d2 	lg n
2. Theorem 5.2
states that the smallest such d is in exp(O(lg lg lg n lg lg lg lg n)), hence in (lg n)o(1).

To compute the smallest d, one can try d = 1, then d = 2, etc.; success will occur
within (lg n)o(1) tries. For each d there are (lg n)2+o(1) possible divisors e between
d2 	lg n
2 and (d + 1)d2 	lg n
2, each e having (lg n)o(1) bits. One can compute
nd − 1 modulo all these e’s simultaneously in time (lg n)2+o(1); see, e.g., [8, Section
18].

Finding f . For every prime number n and positive integer d, there is a monic
irreducible polynomial f ∈ (Z/n)[y] of degree d.

One standard way to find f is to generate a uniform random monic polynomial
f of degree d, see if it is irreducible, and try again if not. There are many choices
of f that work: the expected number of trials is approximately d. If d is chosen as
above, then the expected number of trials is in (lg n)o(1).

396 DANIEL J. BERNSTEIN

One standard way to check the irreducibility of a single f is to see whether f

has factors in common with xn − x, xn2 − x, . . . , xnd−1 − x. Each nth powering
in (Z/n)[y]/f takes time (lg n)2+o(1) if d ∈ (lg n)o(1), so the total time for an
irreducibility test is (lg n)2+o(1).

I do not mean to suggest that this is the state of the art in constructing irreducible
polynomials.

Finding r. For every prime number n, positive integer d, positive integer e dividing
nd − 1, and monic irreducible polynomial f ∈ (Z/n)[y] of degree d, there is an
element r of the field R = (Z/n)[y]/f such that r(nd−1)/e has order e; for example,
any generator r of R∗. Furthermore, if e ≥ 6 and e ≥ d2 	lg n
2, as in Theorems
5.1 and 5.2, then (d, e, 0, 0, f, r, {1}) is a certificate for n by Theorem 5.3.

One standard way to find r is to generate a uniform random element r of R−{0},
to see if r(nd−1)/e has order e, and to try again if not. There are many choices of
r that work: the expected number of trials is the product of q/(q − 1) for primes q
dividing e, which is in (lg n)o(1) if e ∈ (lg n)2+o(1).

One standard way to check whether r(nd−1)/e has order e is to check that rnd−1 =
1 and that r(nd−1)/q �= 1 for each prime q dividing e. There are only (lg n)o(1) such
primes q if e ∈ (lg n)2+o(1), and all of them are easy to find since e is small; the
main work is to compute r(nd−1)/e in the first place, which takes time (lg n)2+o(1).

As above, I do not mean to suggest that this is the state of the art in finding
elements of specified order.

5. Finding a certificate: theorems

Theorem 5.1. Let n be an integer with n ≥ 2. Then there exists a positive integer
d such that nd − 1 has a divisor e ≥ 6 with d2 	lg n
2 ≤ e < (d + 1)d2 	lg n
2.

Proof. Observe that n2−1 ≥ 	lg n
2 and n6 +n4 +n2 +1 ≥ 64. Thus e ≥ 64 	lg n
2

where e = n8 − 1. Define d as the largest multiple of 8 with d2 ≤ e/ 	lg n
2. Then
d ≥ 8, and e divides nd − 1. Finally, (d2 − 16)d ≥ 64, so d3 + d2 ≥ d2 + 16d + 64 =
(d + 8)2 > e/ 	lg n
2. �

Theorem 5.2. There are constants n0 and α such that, for every prime number
n ≥ n0, there is a positive integer d ≤ exp(α log(3 log lg n) log log(3 log lg n)) such
that nd − 1 has a divisor e ≥ 6 with d2 	lg n
2 ≤ e < (d + 1)d2 	lg n
2.

This is a typical application of a well-known theorem of Odlyzko and Pomerance;
see [3, Theorem 3]. The point is that the product of the small primes dividing nd−1
grows, at a minimum, almost exponentially with d. Older theorems suffice for the
bound d ∈ (lg n)o(1).

It is overkill to assume that n is prime; what matters is that n has no tiny prime
divisors.

Proof. Choose α such that d below always exists, and choose n0 > 8 such that H
below always exists.

Given n ≥ n0, select a real number H > 16 such that H ≤ (lg n)3, D + 1 < n,
and H/D2 ≥ 	lg n
2, where D = exp(α log log H log log log H). Asymptotically one
can take H in (lg n)2+o(1), and thus D in (lg n)o(1), satisfying H/D2 ≥ 	lg n
2, so

PROVING PRIMALITY IN ESSENTIALLY QUARTIC RANDOM TIME 397

the extra constraints H ≤ (lg n)3 and D + 1 < n are automatically satisfied for n
large enough. Note that D ≤ exp(α log(3 log lg n) log log(3 log lg n)).

By [3, Theorem 3], there is a positive integer d ≤ D such that H ≤ π, where π
is the product of the primes q with q − 1 dividing d.

Now d2 	lg n
2 ≤ D2 	lg n
2 ≤ H ≤ π. Find the smallest positive integer e ≥
d2 	lg n
2 dividing π; note that e ≥ 6 since n > 8. Each prime q is at most d + 1,
so e must be smaller than (d + 1)d2 	lg n
2.

Finally, e divides nd − 1. Indeed, each prime q is at most d + 1 ≤ D + 1 < n, so
q does not divide n, so q divides nq−1 − 1, hence nd − 1. �

Theorem 5.3. Let n be a prime number. Let d be a positive integer. Let e ≥ 6 be a
divisor of nd−1 such that d2 	lg n
2 ≤ e. Let f be a monic irreducible polynomial in
(Z/n)[y] of degree d. Let r be an element of the ring (Z/n)[y]/f such that r(nd−1)/e

has order e. Then (d, e, 0, 0, f, r, {1}) is a certificate for n.

Proof. Write R = (Z/n)[y]/f . Observe that R is a field.
By hypothesis, n, d, and e are positive integers; e divides nd − 1; rnd−1 =

(r(nd−1)/e)e = 1; if q is a prime dividing e, then r(nd−1)/q−1 = (r(nd−1)/e)e/q−1 �= 0,
so r(nd−1)/q − 1 is a unit; and e > 1, so r(nd−1)/e �= 1, so r �= 1, so 1e − r = 1− r is
a unit.

Furthermore, e ≥ 6, so
(
2e−1
e−1

)
≥ 2e and e ≥ (

√
e/3 + 1)2. Thus (lg

(
2e−1
e−1

)
)2 ≥

e2 ≥ (
√

e/3 + 1)2e ≥ (
√

e/3 + 1)2d2 	lg n
2 ≥ 	
√

e/3
2 d2(lg n)2; i.e.,
(
2e−1
e−1

)
≥

nd	
√

e/3
.
Finally, (x− 1)nd

= xnd − 1 = xnd−1x− 1 = r(nd−1)/ex− 1 in R[x]/(xe − r). �

6. Checking a certificate

This section presents an algorithm that decides whether (d, e, c, c−, f, r, S) is a
certificate for n, given positive integers n, d, e, integers c and c−, a monic degree-d
polynomial f ∈ (Z/n)[y], an element r of R = (Z/n)[y]/f , and a subset S of R.

This algorithm takes time (lg n)4+o(1) for reasonably small inputs. “Reasonably
small” means that d is in (lg n)o(1), #S is in (lg n)o(1), e is at most (lg n)2+o(1),
and e > c ≥ c− ≥ 0. Note that the certificates (d, e, 0, 0, f, r, {1}) constructed in
Section 4, with d ∈ (lg n)o(1) and e ∈ (lg n)2+o(1), are reasonably small.

The reader is assumed to be familiar with fast multiplication. See, e.g., [8].

The basic conditions. Computing nd − 1, and checking that it is divisible by e,
takes time (lg n)1+o(1). Checking that e > c ≥ c− ≥ 0 takes time (lg n)o(1).

Multiplying in Z/n takes time (lg n)1+o(1). Thus multiplying in R takes time
(lg n)1+o(1). Computing the nd−1 power of r in R takes (lg n)1+o(1) multiplications
in R, hence time (lg n)2+o(1).

The units. There are (lg n)o(1) primes q dividing e; finding them by trial division
takes time (lg n)1+o(1). Computing the (nd − 1)/q power of r in R takes time
(lg n)2+o(1). Checking whether r(nd−1)/q − 1 is a unit in R takes time (lg n)1+o(1).

Computing se in R for each s ∈ S takes time (lg n)1+o(1). Checking all the
remaining units takes time (lg n)1+o(1).

398 DANIEL J. BERNSTEIN

The binomial coefficients. Computing (e#S)! takes time at most (lg n)2+o(1),
since e#S is at most (lg n)2+o(1). Similarly, computing c−! and (e#S − c−)! takes
time at most (lg n)2+o(1). Thus computing the binomial coefficient

(
e#S
c−

)
takes time

at most (lg n)2+o(1). Similar comments apply to the other binomial coefficients.
Computing nd	

√
e/3
 takes time (lg n)2+o(1). Checking whether nd	

√
e/3
 ≤(

e#S
c−

)(
c

c−

)(
e#S−c−+e−1−c

e−1−c

)
takes time (lg n)2+o(1).

The big exponentiation. Multiplying in R[x]/(xe − r) takes time (lg n)3+o(1).
Computing each (x − s)nd

in R[x]/(xe − r) takes (lg n)1+o(1) multiplications in
R[x]/(xe − r), hence time (lg n)4+o(1).

7. Optimizations and practical performance

This section looks at verification speed more closely in the important case d = 1.

Why d = 1 in practice. A substantial fraction of primes n have suitable divisors
e of n − 1: divisors slightly above the lower bound in Theorem 3.2. What about
the other primes n?

A single elliptic-curve-primality-proving step conjecturally takes time (lg n)3+o(1)

to reduce the problem of proving the primality of n to the problem of proving the
primality of an auxiliary prime n′. Here n′ is slightly shorter than n and “looks
random.” One can find several choices for n′ at similar speed.

Consequently one can—conjecturally—parlay a fast algorithm for a substantial
fraction of primes n into a fast algorithm for all primes n. This was suggested by
Cheng in [12].

Consider, for example, a prime n that does not have any suitable divisors of
n − 1, but that does have suitable divisors of n2 − 1. Here are two ways to prove
that n is prime:

• Apply Theorem 3.2 to n with d = 2.
• Use an elliptic-curve-primality-proving step to locate an auxiliary n′ that

has suitable divisors of n′ − 1. Apply Theorem 3.2 to n′ with d = 1.
Experiments support the conjecture that the savings in moving from d = 2 to d = 1
is far above the cost of locating a suitable n′.

Of course, the same argument might mean that even the d = 1 case is of no
practical interest: perhaps Theorem 3.2 will never be faster than a series of elliptic-
curve-primality-proving steps. On the other hand, perhaps future improvements to
Theorem 3.2 will make certificate verification so fast that the d = 2 case is worth
considering again.

Choosing c and c−. The choice c = c− = 0 in Section 4 is far from optimal. If
c ≈ αe and c− ≈ βe then the product

(
e#S
c−

)(
c

c−

)(
e#S−c−+e−1−c

e−1−c

)
is approximately

exp(eγ) where γ = (#S − β + 1− α) log(#S − β + 1− α) + #S log #S + α log α −
2(#S − β) log(#S − β) − 2β log β − (α − β) log(α − β) − (1 − α) log(1 − α).

One can, either with a computer program or by hand, easily find α and β that
maximize γ for any given #S. Any choice of c ≈ αe and c− ≈ βe is reasonable; a
small amount of additional searching will locate the optimal c and c−.

It turns out that the optimal α and β have simple expressions: α = 1/2 and
β = (#S + 1 −

√
#S2 + 1)/2. For example, say #S = 1. The product of binomial

PROVING PRIMALITY IN ESSENTIALLY QUARTIC RANDOM TIME 399

coefficients is about 5.828427 . . .e if one takes c ≈ e/2 and c− ≈ (2 −
√

2)e/2 =
(0.2928932 . . .)e. For comparison: The product of binomial coefficients is about 4e

if one takes c = 0 and c− = 0.

Choosing e and #S. Say there are many possibilities for (e, #S)—or, in the
elliptic-curve context, many possibilities for an auxiliary (n, e, #S)—such that the
maximized product of binomial coefficients exceeds n	

√
e/3
. One should choose

the possibility that minimizes verification time.
As a first approximation, this means minimizing e#S: verification time can be

crudely modeled as (lg n)2e#S. The following table shows e#S/(lg n)2 as a function
of e/(lg n)2, when #S is chosen as small as possible:

works for e/(lg n)2 so e#S/(lg n)2

#S between about and about is between about and about

1 0.051540 . . . ∞ 0.051540 . . . ∞
2 0.027664 . . . 0.051540 . . . 0.055328 . . . 0.103081 . . .
3 0.020415 . . . 0.027664 . . . 0.061247 . . . 0.082992 . . .
4 0.016832 . . . 0.020415 . . . 0.067328 . . . 0.081663 . . .
5 0.014653 . . . 0.016832 . . . 0.073269 . . . 0.084160 . . .
6 0.013169 . . . 0.014653 . . . 0.079017 . . . 0.087923 . . .
7 0.012082 . . . 0.013169 . . . 0.084575 . . . 0.092187 . . .
8 0.011244 . . . 0.012082 . . . 0.089958 . . . 0.096658 . . .

If e drops substantially below 0.01(lg n)2, then e#S explodes: #S = 100 works
for e/(lg n)2 down to about 0.004037 . . .; #S = 1000 works for e/(lg n)2 down to
about 0.002164 . . .; #S = 10000 works for e/(lg n)2 down to about 0.001347 . . .;
and so on.

A more precise model of verification time includes logarithmic factors that grow
with e but not with #S. Reducing e at the expense of #S often saves time even if
it increases e#S.

Multiplying quickly. One can square an element of (Z/n)[x]/(xe − r) as follows:
• Lift to Z[x], obtaining polynomials of degree at most e−1 with coefficients

in {0, 1, . . . , n − 1}.
• Choose p so that 2p > en2, and map to Z[x]/(x − 2p) ∼= Z, obtaining an

integer with approximately 2e lg n bits. If integers are represented in the
usual form, then this operation—polynomial evaluation at 2p—is a simple
matter of copying bytes.

• Square in Z.
• Recover the square in Z[x]. This is a simple matter of copying bytes.
• Reduce modulo xe − r. This is particularly easy if r is small.
• Reduce each coefficient modulo n.

In the C programming language, for example, one can represent an element of
(Z/n)[x]/(xe − r) as an array of e integers in {0, 1, . . . , n − 1}, each integer being
represented in turn as an mpz_t variable using Granlund’s GMP 4.1.3 library in
[19]. Specifically, the mpz_t variables poly[0], poly[1], . . . , poly[e−1] represent
the polynomial poly[0]+ poly[1]x + · · ·+ poly[e − 1]xe−1 in (Z/n)[x]/(xe − r).
The following function then replaces poly with its square in (Z/n)[x]/(xe − r),
using GMP’s mpz_import and mpz_export functions to copy bytes:

400 DANIEL J. BERNSTEIN

void square(mpz_t *poly,int e,mpz_t n,int r)
{
char *s;
size_t unused;
mpz_t t;
int p8;
int j;

mpz_init(t);
mpz_mul(t,n,n);
mpz_mul_ui(t,t,e); /* t = en^2 */
p8 = mpz_sizeinbase(t,256); /* en^2 fits into p8 bytes */

s = calloc(e,p8); if (!s) exit(111);
/* GMP convention: if no memory, exit */
for (j = 0;j < e;++j)
mpz_export(s + j * p8,&unused,-1,1,0,0,poly[j]);
/* warning: overflows buffer if poly[j] is too big */

mpz_import(t,e * p8,-1,1,0,0,s); /* t = poly(256^p8) */
free(s);

mpz_mul(t,t,t); /* t = poly^2(256^p8) */

s = calloc(2 * e,p8); if (!s) exit(111);
mpz_export(s,&unused,-1,1,0,0,t);
for (j = 0;j < e;++j) {
mpz_import(poly[j],p8,-1,1,0,0,s + (j + e) * p8);
mpz_mul_si(poly[j],poly[j],r);
mpz_import(t,p8,-1,1,0,0,s + j * p8);
mpz_add(poly[j],t,poly[j]);
mpz_mod(poly[j],poly[j],n);

}
free(s);

mpz_clear(t);
}

A straightforward certificate-verification program, using this square function, takes
1.18 · 1011 clock cycles on a 1300MHz Pentium M to verify the aforementioned
certificate (1, 2430, 1214, 928, y, 2, {1, 2}) for the prime

⌊
1084 exp 1

⌋
. About 88% of

that time is spent in GMP’s mpz_mul function for integer squaring, so there is little
benefit in attempting to streamline any other operations.

Future improvements. It would be surprising for the group discussed in Section
3 to have size much smaller than pe. Theorem 2.1 uses a lower bound near 2e.
Theorem 3.2 uses a lower bound near 5.828427 . . .e. Can one do better?

An improvement from 2e to 2γe means that the lower bound on e drops by
a factor of about γ2. A lower bound close to pe, with #S small, would reduce
the lower bound on e to about (4 lg(n/p))/3 lg p < (4/3) lg n, saving a factor of
(lg n)1+o(1). Mihăilescu has pointed out that in this case one can further reduce the

PROVING PRIMALITY IN ESSENTIALLY QUARTIC RANDOM TIME 401

lower bound on e by using unit-group factors to quickly increase the lower bound
on primes p dividing n.

Voloch in [27] suggested considering products in Fp[x] of degree somewhat larger
than e, and applying the ABC theorem. I showed in [7] that, if #S = 1 and
n does not have any tiny factors, then four distinct products of degree at most
1.1e cannot be congruent modulo xe − r, so the group size is at least 1

3

(�2.1e�
e

)
≈

4.2768947738 . . .e. Perhaps there are better results along these lines. (I suspect that
any such results will work with multiple derivatives directly, rather than applying
the ABC theorem.) If 1000 distinct products of degree at most 2e cannot be
congruent modulo xe − r, then the group size is at least 1

999

(
3e
e

)
≈ 6.75e.

Cheng and Wan in [14, Section 4] pointed out a connection between the group
size and list decoding of Reed-Solomon codes. Cheng in [13, Theorem 3] used this
connection to prove that the group size is at least about 5.17736e. Perhaps there
are better results along these lines.

8. Smaller powers

Theorem 8.1. Let n, d, and e be positive integers such that 2e − 1 ≥ n2�√de�
and e divides nd − 1. Let f be a monic polynomial in (Z/n)[y] of degree d. Define
R as the ring (Z/n)[y]/f . Assume that ynd−1 = 1 in R, that y(nd−1)/q − 1 is a
unit in R for each prime q dividing e, that y − 1 is a unit in R, and that f(z) =
(z − y)(z − yn)(z − yn2

) · · · (z − ynd−1
) in the ring R[z]. If (x− 1)n = xn − 1 in the

ring R[x]/(xe − y) then n is a power of a prime.

The big difference between Theorem 2.1 and Theorem 8.1 is that Theorem 2.1
uses ndth powers in R[x]/(xe−y) while Theorem 8.1 uses nth powers. This requires
extra effort in the proof, and requires some extra (easily tested) hypotheses on f ,
but it has two advantages: first, checking nth powers is about d times faster than
checking ndth powers; second, e can be chosen about d times smaller, because
n2d�√e� has been replaced with n2�√de�.

The impact of this change depends on the reader’s perspective:

• For readers who care about proven performance and—stepping beyond the
scope of this paper—want a more precise bound than (lg n)4+o(1): Theorem
8.1 provides better speed than Theorem 2.1. An analogous modification in
Theorem 3.2 would save even more time.

• For readers who care about proven performance at the level of detail of
(lg n)4+o(1): The speedup is not visible; there is no improvement in the
limiting exponent 4.

• For readers who care about practical performance: There is no speedup; d
is always 1 in practice, as discussed in Section 7.

Berrizbeitia’s theorem in [11] is the case d ∈ {1, 2} and e ∈ {1, 2, 4, 8, . . . } of
Theorem 8.1 rather than Theorem 2.1. Mihăilescu and Avanzi in [24, Theorem 6]
pointed out that nth powers could be used for arbitrary values of e.

Proof. If n = 1 then n is a power of a prime, so assume that n > 1.
Step 1: Move to a field. Find a prime p dividing n. Find an irreducible

polynomial g in Fp[y] dividing the image of f . Then k = Fp[y]/g is a field. Define
ζ as the image of y(nd−1)/e in k.

402 DANIEL J. BERNSTEIN

Step 2: Combinatorially enumerate many powers of x− 1. Consider the
ring morphism h �→ h(yn) from (Z/n)[y] to R. This morphism takes f to f(yn) = 0,
so it induces a ring morphism σ : R → R. Note that σ(y) = yn.

By hypothesis (x− 1)n − (xn − 1) is a multiple of xe − y in R[x]. Apply σ to all
coefficients: (x− 1)n − (xn − 1) is a multiple of xe − σ(y) = xe − yn. Repeat to see
that (x− 1)n − (xn − 1) is a multiple of xe − yni

for each i ≥ 0. Substitute xni

for
x: (xni − 1)n − (xni+1 − 1) is a multiple of xnie − yni

, hence a multiple of xe − y.
Consequently, (x − 1)ni

= xni − 1 in R[x]/(xe − y), hence in the ring A =
k[x]/(xe − y). In particular, (x − 1)nd

= xnd − 1 = y(nd−1)/ex − 1 = ζx − 1 in
A. Substitute ζix for x: (ζix − 1)nd

= ζi+1x − 1 in k[x]/((ζix)e − y) = A. Thus
(x − 1)nid

= ζix − 1 in A.
There are 2e−1 vectors (a0, a1, . . . , ae−1) ∈ {0, 1}e such that

∑
i ai ≤ e−1. Any

product
∏

i(ζ
ix − 1)ai = (x − 1)

∑
i nidai is a power of x − 1 in A. These products

are distinct, so there are at least 2e − 1 powers of x − 1 in A.
Step 3: Find colliding powers of x − 1. By hypothesis, in k, the product

(yp−y)(yp−yn) · · · (yp−ynd−1
) equals f(yp), so it is a multiple of g(yp) = g(y)p = 0,

so it is equal to 0. Hence yp = yn�

in k for some � ∈ {0, 1, . . . , d − 1}. By induction,
ypj

= ynj�

in k for any integer j ≥ 0.
I claim that, over all integers i ≥ 0 and j ≥ 0, there are at most de possibilities

for xnipj

in A. Indeed, xnipj

has eth power ynipj

= yni+j�

in A. By hypothesis
ynd

= y, so yni+j� ∈ {y, yn, yn2
, . . . , ynd−1}. There are at most e powers of x whose

eth power is y, at most e powers of x whose eth power is yn, etc.
Hence there are at most de possibilities for xnipj − 1 = (xni − 1)pj

= (x− 1)nipj

in A.
Consider the pairs (i, j) with 0 ≤ i ≤ �

√
de� and 0 ≤ j ≤ �

√
de�. There

are (�
√

de� + 1)2 > de pairs (i, j), so there are distinct pairs (i, j), (i′, j′) with
(x− 1)u = (x− 1)v, where u = nipj and v = ni′pj′

. Note that u and v are positive
integers bounded by n2�√de�.

The remainder (xe −y) mod (x−1) = 1−y is a unit in k, so x−1 is a unit in A.
Thus (x − 1)u−v = 1 in the unit group A∗. If u �= v then there are at most |u − v|
powers of x − 1, but |u − v| < n2�√de� ≤ 2e − 1; contradiction.

Hence u = v; i.e., ni−i′ = pj′−j . If i = i′ then j′ = j; contradiction. Thus a
nontrivial power of n is a power of p; so n is a power of p. �

References

[1] Leonard M. Adleman, Ming-Deh A. Huang, Proceedings of the 18th annual ACM symposium
on theory of computing, Association for Computing Machinery, New York, 1986. ISBN 0-
89791-193-8. MR0990047 (89j:69001)

[2] , Primality testing and abelian varieties over finite fields, Lecture Notes in Mathe-
matics, 1512, Springer-Verlag, Berlin, 1992. ISBN 3-540-55308-8. MR1176511 (93g:11128)

[3] Leonard M. Adleman, Carl Pomerance, Robert S. Rumely On distinguishing prime numbers
from composite numbers, Annals of Mathematics 117 (1983), 173–206. ISSN 0003-486X.
MR0683806 (84e:10008)

[4] Manindra Agrawal, Neeraj Kayal, Nitin Saxena, PRIMES is in P (2002). URL:
http://www.cse.iitk.ac.in/news/primality.html.

[5] A. O. L. Atkin, Francois Morain, Finding suitable curves for the elliptic curve method of
factorization, Mathematics of Computation 60 (1993), 399–405. ISSN 0025-5718. MR1140645
(93k:11115)

http://www.ams.org/mathscinet-getitem?mr=0990047
http://www.ams.org/mathscinet-getitem?mr=0990047
http://www.ams.org/mathscinet-getitem?mr=1176511
http://www.ams.org/mathscinet-getitem?mr=1176511
http://www.ams.org/mathscinet-getitem?mr=0683806
http://www.ams.org/mathscinet-getitem?mr=0683806
http://www.cse.iitk.ac.in/news/primality.html
http://www.ams.org/mathscinet-getitem?mr=1140645
http://www.ams.org/mathscinet-getitem?mr=1140645

PROVING PRIMALITY IN ESSENTIALLY QUARTIC RANDOM TIME 403

[6] Daniel J. Bernstein, Detecting perfect powers in essentially linear time, Mathematics of
Computation 67 (1998), 1253–1283. ISSN 0025-5718. URL: http://cr.yp.to/papers.html.
MR1464141 (98j:11121)

[7] Daniel J. Bernstein, Sharper ABC-based bounds for congruent polynomials, to ap-
pear, Journal de Théorie des Nombres de Bordeaux. ISSN 1246-7405. URL:
http://cr.yp.to/papers.html#abccong. ID 1d9e079cee20138de8e119a99044baa3.

[8] Daniel J. Bernstein, Fast multiplication and its applications, to appear in Buhler-Stevenhagen

Algorithmic number theory book. URL: http://cr.yp.to/papers.html#multapps. ID

8758803e61822d485d54251b27b1a20d.
[9] Daniel J. Bernstein, Distinguishing prime numbers from composite numbers: the

state of the art in 2004, submitted. URL: http://cr.yp.to/papers.html#prime2004. ID

d72f09ae5b05f41a53e2237c53f5f276.
[10] Daniel J. Bernstein, Hendrik W. Lenstra, Jr., Jonathan Pila, Detecting perfect

powers by factoring into coprimes. URL: http://cr.yp.to/papers.html#powers2. ID

bbd41ce71e527d3c06295aadccf60979.
[11] Pedro Berrizbeitia, Sharpening PRIMES is in P for a large family of numbers, (2002). URL:

http://arxiv.org/abs/math.NT/0211334.
[12] Qi Cheng, Primality proving via one round in ECPP and one iteration in AKS, (2003). URL:

http://www.cs.ou.edu/~qcheng/pub.html.
[13] Qi Cheng, On the bounded sum-of-digits discrete logarithm problem in finite fields, (2004).

URL: http://www.cs.ou.edu/~qcheng/pub.html.
[14] Qi Cheng, Daqing Wan, On the list and bounded distance decodibility of Reed-Solomon codes,

(extended abstract), (2004). URL: http://www.cs.ou.edu/~qcheng/pub.html.
[15] Michael R. Fellows, Neal Koblitz Self-witnessing polynomial-time complexity and prime fac-

torization, Designs, Codes and Cryptography 2 (1992), 231–235. ISSN 0925–1022. URL:
http://cr.yp.to/bib/entries.html#1992/fellows. MR1181730 (93e:68032)

[16] Shafi Goldwasser, Joe Kilian, Almost all primes can be quickly certified, in [1], (1986), 316–
329; see also newer version [17].

[17] Shafi Goldwasser, Joe Kilian, Primality testing using elliptic curves, Journal of the ACM 46
(1999), 450–472; see also older version [16]. ISSN 0004-5411. MR1812127 (2002e:11182)

[18] Ronald L. Graham, Jaroslav Nešetřil, The mathematics of Paul Erdős. I, Algorithms
and Combinatorics, 13, Springer-Verlag, Berlin, 1997. ISBN 3-540-61032-4. MR1425172
(97f:00032)

[19] Torbjorn Granlund, GMP 4.1.3 : GNU multiple precision arithmetic library, (2004). URL:
http://www.swox.com/gmp/.

[20] Sergei Konyagin, Carl Pomerance, On primes recognizable in deterministic polynomial
time, in [18] (1997), 176–198. URL: http://cr.yp.to/bib/entries.html#1997/konyagin.
MR1425185 (98a:11184)

[21] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., Algorithms in number theory, in [26] (1990),
673–715. URL: http://cr.yp.to/bib/entries.html#1990/lenstra-survey. MR1127178

[22] Hendrik W. Lenstra, Jr., Galois theory and primality testing, in [25] (1985), 169–189.
MR0812498 (87g:11171)

[23] Martin Macaj, Some remarks and questions about the AKS algorithm and related conjecture,
(2002). URL: http://thales.doa.fmph.uniba.sk/macaj/aksremarks.pdf.

[24] Preda Mihăilescu, Roberto M. Avanzi, Efficient “quasi”-deterministic primality test improv-
ing AKS, URL: http://www-math.uni-paderborn.de/~preda/.

[25] I. Reiner, K. W. Roggenkamp (editors), Orders and their applications: proceedings of the con-
ference held in Oberwolfach, June 3–9, 1984, Lecture Notes in Mathematics, 1142, Springer-
Verlag, Berlin, 1985. ISBN 3-540-15674-7. MR0812486 (86g:16003)

[26] Jan van Leeuwen (editor), Handbook of theoretical computer science, volume A: algorithms
and complexity, Elsevier, Amsterdam, 1990. ISBN 0-444-88071-2. MR1127166 (92d:68001)

[27] José Felipe Voloch, On some subgroups of the multiplicative group of finite ring,
to appear, Journal de Théorie des Nombres de Bordeaux. ISSN 1246-7405. URL:

http://www.ma.utexas.edu/users/voloch/preprint.html.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-

versity of Illinois at Chicago, Chicago, Illinois 60607–7045

E-mail address: djb@cr.yp.to

http://cr.yp.to/papers.html
http://www.ams.org/mathscinet-getitem?mr=1464141
http://www.ams.org/mathscinet-getitem?mr=1464141
http://cr.yp.to/papers.html#abccong
http://cr.yp.to/papers.html#multapps
http://cr.yp.to/papers.html#prime2004
http://cr.yp.to/papers.html#powers2
http://arxiv.org/abs/math.NT/0211334
http://www.cs.ou.edu/~qcheng/pub.html
http://www.cs.ou.edu/~qcheng/pub.html
http://www.cs.ou.edu/~qcheng/pub.html
http://cr.yp.to/bib/entries.html#1992/fellows
http://www.ams.org/mathscinet-getitem?mr=1181730
http://www.ams.org/mathscinet-getitem?mr=1181730
http://www.ams.org/mathscinet-getitem?mr=1812127
http://www.ams.org/mathscinet-getitem?mr=1812127
http://www.ams.org/mathscinet-getitem?mr=1425172
http://www.ams.org/mathscinet-getitem?mr=1425172
http://www.swox.com/gmp/
http://cr.yp.to/bib/entries.html#1997/konyagin
http://www.ams.org/mathscinet-getitem?mr=1425185
http://www.ams.org/mathscinet-getitem?mr=1425185
http://cr.yp.to/bib/entries.html#1990/lenstra-survey
http://www.ams.org/mathscinet-getitem?mr=1127178
http://www.ams.org/mathscinet-getitem?mr=0812498
http://www.ams.org/mathscinet-getitem?mr=0812498
http://thales.doa.fmph.uniba.sk/macaj/aksremarks.pdf
http://www-math.uni-paderborn.de/~preda/
http://www.ams.org/mathscinet-getitem?mr=0812486
http://www.ams.org/mathscinet-getitem?mr=0812486
http://www.ams.org/mathscinet-getitem?mr=1127166
http://www.ams.org/mathscinet-getitem?mr=1127166
http://www.ma.utexas.edu/users/voloch/preprint.html

	1. Introduction
	Genealogy
	Competition

	2. The idea in a nutshell
	3. Certificates
	Notes on the proof

	4. Finding a certificate: algorithm
	Finding d and e
	Finding f
	Finding r

	5. Finding a certificate: theorems
	6. Checking a certificate
	The basic conditions
	The units
	The binomial coefficients
	The big exponentiation

	7. Optimizations and practical performance
	Why d=1 in practice
	Choosing c and c-
	Choosing e and #S
	Multiplying quickly
	Future improvements

	8. Smaller powers
	References

