Aimed at Math. Comp.

DISTINGUISHING PRIME NUMBERS FROM COMPOSITE NUMBERS: THE STATE OF THE ART IN 2004

DANIEL J. BERNSTEIN

ABSTRACT. This paper compares 21 methods to distinguish prime numbers from composite numbers. It answers the following questions for each method: Does the method certify primality? Conjecturally certify primality? Certify compositeness? Are certificates conjectured to exist for all inputs? Proven to exist for all inputs? Found deterministically for all inputs? Is a certificate verified in essentially linear time? Essentially quadratic time? Et cetera. Is a certificate found immediately? In essentially linear time? Essentially quadratic time? Et cetera. In brief, how does the method work? When and where was the method published?

1. INTRODUCTION

This paper summarizes fourteen methods to prove that an integer is prime, three additional methods to prove that an integer is prime if certain conjectures are true, and four methods to prove that an integer is composite. The summary is presented in a compressed chart and in a comprehensive table.

The table has five columns for each method:

- "Method": a brief summary of a theorem encapsulating the method. For example, one method is "if n is not a b-prp, i.e., does not divide $b^n b$, then n is composite." The target integer is always n. An auxiliary input, such as b in this example, is called a **certificate**.
- "Effect of certificate": what the method tells you about the target integer *n*. Either "proves primality" or "conjecturally certifies primality" or "proves compositeness."
- "Certificate exists for": which integers can be handled by the method. Either "every prime" or "conjecturally every prime" or "every composite" or "nearly every composite."
- "Time to verify certificate": how quickly one can check whether an auxiliary input is, in fact, a certificate for n. For example, $(\lg n)^{1+o(1)}$ or $(\lg n)^{2+o(1)}$ or $(\lg n)^{O(\lg \lg \lg n)}$. **Time** in this paper is measured on conventional von Neumann computers, such as 2-tape Turing machines; space is ignored.
- "Time to find certificate," at the same level of detail. Some certificatefinding methods use randomness, as indicated by "random" in this column.

Date: 2004.02.12. Permanent ID of this document: d72f09ae5b05f41a53e2237c53f5f276. 2000 Mathematics Subject Classification. Primary 11Y16.

The author was supported by the National Science Foundation under grant DMS-0140542, and by the Alfred P. Sloan Foundation. He used the libraries at the Mathematical Sciences Research Institute, the University of California at Berkeley, and the American Institute of Mathematics.

The table includes various credits. For example, the original elliptic-curve primalityproving method was published in 1986 by Goldwasser and Kilian in [38]; its proofs of primality rely on a 1936 theorem of Hasse in [44]; it finds certificates using a 1985 algorithm of Schoof in [83]. These credits are listed under "Method," "Effect of certificate," and "Time to find certificate" respectively.

The chart includes the following information for each method:

- Proven upper bounds for exponents in times to (provably deterministically) verify certificates. These upper bounds are listed down the side of the chart.
- Proven upper bounds for exponents in times to (provably deterministically, or provably randomly, or conjecturally) find certificates. These upper bounds are listed across the top of the chart.
- How reliably the method finds certificates: "d" if certificates are provably deterministically found for every n (every prime n for primality-proving methods, or every composite n for compositeness-proving methods); "r" if certificates are provably found for every n but the algorithm uses randomness; or "?" if certificates are merely conjectured to be found for every n. Certificates not believed to exist for every n are not included in the chart.
- What the method does: "p" for certificates that prove primality or "c" for certificates that prove compositeness. (Empty certificates that prove either primality or compositeness, depending on the input, are listed as "dpc" in column 0 + o(1).) Certificates that are merely conjectured to imply primality are not included in the chart.
- The year that the method was first published.

For example, the entry "?p 1990" in row 3 + o(1) and column 4 + o(1) refers to a primality-proving method with the following features: certificates are conjectured to be found for every prime n in time $(\lg n)^{4+o(1)}$; certificates are deterministically verified in time $(\lg n)^{3+o(1)}$; verification of a certificate proves that n is prime. This method is Shallit's variant, published by Lenstra and Lenstra in [53], of the elliptic-curve primality-proving method.

Thanks to Eric Bach for suggesting a 2-dimensional chart. A 3-dimensional chart (with the third dimension labelled ?p, rp, dp, dpc, dc, rc, ?c) would be even better, but would be difficult to compress comprehensibly onto a printed page.

Lower-level subroutines. Implementors should be aware of the state of the art in algorithms to carry out various lower-level operations:

- Integer multiplication, division, and gcd can be done in essentially linear time, as shown by Toom in [87], Cook in [32], and Knuth in [48] respectively. Similar comments apply to various other arithmetic operations; see my survey [16]. Additional constant-factor speedups in arithmetic are an active research area.
- One can quickly find all divisors of n congruent to r modulo m, when m is larger than roughly $n^{1/4}$. This was proven by Coppersmith, Howgrave-Graham, and Nagaraj in 1998, after earlier results by Lenstra, Konyagin, and Pomerance; see [54], [49], [45, Section 5.5], and my survey [18].

Beware that slower subroutines for arithmetic, and larger bounds on m, appear throughout the primality/compositeness literature—usually because the authors were writing before the better results were known, but sometimes because the authors inexplicably refused to take advantage of the best known results.

2. The chart

	0 + o(1)	1 + o(1)	2 + o(1)	3 + o(1)	4 + o(1)	5 + o(1)	O(1)	very big
1 + o(1)								dc
2 + o(1)			rc 1966					dp 1987
3 + o(1)					?p 1990	?p 1988	rp 1992	dp 1914
							?p 1986	
4 + o(1)			rp 2003				dc unp	
5 + o(1)								
6 + o(1)	dpc unp							
	2002?pc 2002							
O(1)	dpc 2002							
. ,								
$O(\lg \lg \lg n)$	dpc 1979							
	-							

Here are the methods listed—see the table for more information:

- 1 + o(1), very big, dc: proving compositeness with factorization.
- 2+o(1), 2+o(1), rc 1966: Artjuhov [9], proving compositeness with Fermat.
 2+o(1), very big, dp 1987: Pomerance [77], proving primality with elliptic-
- curve factors.
 3+o(1), 4+o(1), ?p 1990: Shallit [53], proving primality with elliptic-curve
- 5+o(1), 4+o(1), 9 1990. Shallt [55], proving primartly with emptic-curve factors.
- 3 + o(1), 5 + o(1), ?p 1988: Atkin [66], proving primality with elliptic-curve factors.
- 3 + o(1), O(1), rp 1992: Adleman Huang [4], proving primality with genus-2-hyperelliptic-curve factors.
- 3 + o(1), O(1), ?p 1986: Goldwasser Kilian [38], proving primality with elliptic-curve factors.
- 3 + o(1), very big, dp 1914: Pocklington [75], proving primality with unitgroup factors.
- 4 + o(1), 2 + o(1), rp 2003: Bernstein [17], proving primality with combinatorics.
- 4 + o(1), 6 + o(1) (shown as O(1)), dc unp: Lenstra Pomerance, to appear, proving compositeness by not proving primality with combinatorics.
- 6+o(1), 0+o(1), dpc unp: Lenstra Pomerance, to appear, proving primality with combinatorics.
- 6 + o(1), 0 + o(1), ?pc 2002: Agrawal Kayal Saxena [6], proving primality with combinatorics.
- O(1), 0 + o(1), dpc 2002: Agrawal Kayal Saxena [6], proving primality with combinatorics.
- $O(\lg \lg \lg n)$, 0 + o(1), dpc 1979: Adleman Pomerance Rumely [5], proving primality with unit-group factors.

3. The table

Method	Effect of	Certificate	Time to	Time to find
	certificate	exists for	verify	certificate
			certificate	
proving	proves	every	$(\lg n)^{1+o(1)}$	very slow; but
compositeness	compositeness	composite n	()	$(\lg n)^{O(1)}$ for most
with	-	-		n
factorization: if				
b divides n and				
1 < b < n then n				
is composite				
proving	proves	nearly every	$(\lg n)^{2+o(1)}$	random
compositeness	compositeness	composite n ;		$(\lg n)^{2+o(1)}$
with Fermat: if		however, there		
n is not a b -prp,		are infinitely		
i.e., does not		many		
divide $b^n - b$,		composites n		
then n is		that are		
composite		all- <i>b</i> -prp (1994		
		Alford		
		Granville		
		Pomerance $[7]$)		
if n is not a	proves	every	$(\lg n)^{2+o(1)}$	random
b-sprp, i.e., does	$\operatorname{compositeness}$	composite n		$(\lg n)^{2+o(1)}$ (1976)
not divide any of				Rabin [81],
the most obvious				independently
factors of $b^n - b$,				1980 Monier [64],
then n is				independently
composite (1966)				1982 Atkin Larson
Artjuhov [9])				[11]; inferior
				variant: 1976
				Lehmer [52],
				independently
				1977 Solovay
				Strassen [86];
				other variants:
				1998 Grantham
				[41], 2001
				Grantham [42],
				2000 Müller [70],
				2001 Müller [71],
				2003 Damgard
				Frandsen [33])

Method	Effect of certificate	Certificate	Time to	Time to
		exists for	verify	find
			certificate	certificate
conjecturally	conjecturally	every prime n	$(\lg n)^{4+o(1)}$	instant
testing primality: if	certifies primality;	~ 1		
n is a b -sprp for every	conjecture follows			
prime number b	from GRH (1985			
between 1 and $[\lg n]^2$,	Bach [13];			
then n seems to be	$35 \left[\lg n \right]^2$			
prime (basic idea:	announced but not			
1975 Miller [62])	proven 1979			
	Oesterlé;			
	$O(\lceil \lg n \rceil^2),$			
	without explicit O			
	constant: 1952			
	Ankeny [8], 1971			
	Montgomery [65],			
	1978 Vélu [90])			
if n is a b -sprp for the	conjecturally	every prime n	$(\lg n)^{3+o(1)}$	instant
first $2 \lceil \lg n \rceil$ prime	certifies primality	-	,	
numbers b , then n				
seems to be prime				
(folklore; simpler				
variant giving prime				
power: 1995 Lukes				
Patterson Williams				
[58])				
if n is a 2-sprp and	conjecturally	every prime n	$(\lg n)^{2+o(1)}$	instant
passes a similar	certifies primality;			
quadratic test, then n	conjecture is			
seems to be prime	implausible for			
(1980 Baillie Wagstaff	very large n (1984			
[14], 1980 Pomerance	Pomerance [76]),			
Selfridge Wagstaff	but no			
[78]; variant also	counterexamples			
including a cubic test:	are known			
1998 Atkin [10])				

Method	Effect of	Certificate	Time to	Time to find
	certificate	exists for	verify	certificate
			certificate	
proving primality	proves	every prime n	at most	very slow; but
with unit-group	primality		$(\lg n)^{3+o(1)};$	conjectured to be
factors: if $b^{n-1} = 1$			usually	$(\lg n)^{O(1)}$ for
in \mathbf{Z}/n , and			$(\lg n)^{2+o(1)}$	infinitely many n
$b^{(n-1)/q} - 1$ is				· ·
nonzero in \mathbf{Z}/n for				
every prime divisor q				
of $n-1$, then n is				
prime (1876 Lucas				
[56], [57], except that				
the switch from				
"divisor $q > 1$ " to				
"prime divisor q " is				
from 1927 Lehmer				
[50] by analogy to				
1914 Pocklington				
[75])				
$\text{if } b^{n-1} = 1 \text{ in } \mathbf{Z}/n, F$	proves	every prime n	at most	very slow; but fast
is a divisor of $n-1$,	primality		$(\lg n)^{3+o(1)};$	for more n 's than
and $b^{(n-1)/q} - 1$ is a			usually	above; $(\lg n)^{O(1)}$
unit in \mathbf{Z}/n for every			$(\lg n)^{2+o(1)}$	for infinitely many
prime divisor q of F ,				n (1989 Pintz)
then every divisor of				Steiger Szemeredi
$n \text{ is in } \{1, F+1, \dots\},\$				[74]; variant: 1992
so if $(F+1)^2 > n$				Fellows Koblitz
then n is prime (1914)				[34]; another
Pocklington $[75]$;				variant: 1997
similar test for F				Konyagin
down to roughly $n^{1/4}$				Pomerance [49])
Pocklington-type test	proves	every prime n	at most	very slow; but fast
with quadratic	primality		$(\lg n)^{3+o(1)};$	for more n 's than
extensions of \mathbf{Z}/n			usually	above
(1876 Lucas [56],			$(\lg n)^{2+o(1)}$	
1930 Lehmer [51],				
1975 Morrison [69],				
1975 Selfridge				
Wunderlich [85], 1975				
Brillhart Lehmer				
Selfridge [24])				

Method	Effect of	Certificate	Time to verify	Time to find
	certificate	exists for	certificate	certificate
Pocklington-	proves	every prime n	$(\lg n)^{O(\lg \lg \lg n)}$.	instant
type test with	primality	J J F J J	using	
higher-degree	F		distribution of	
extensions of			divisors of	
\mathbf{Z}/n (degrees 4			$n^d - 1$ (1983)	
and 6.1976			Odlyzko	
Williams Judd			Pomerance [5].	
[93]· general			weaker bound	
degrees: 1983			1955 Prachar	
Adleman			[79]· best known	
Pomerance			bound: 2000	
Rumely [5])			Pelikan Pintz	
realities [0])			Szemeredi [73]).	
			many speedups	
			available (1978	
			Williams Holte	
			[92] 1984 Cohen	
			Lenstra $[31]$	
			1985 Cohen	
			Lenstra [29]	
			1990 Bosma van	
			der Hulst [22]	
			1998 Mihăilescu	
			[60])	
proving	proves	nearly every	$(\log n)^{3+o(1)}$	$(\log n)^{O(1)}$ using
proving	primality	nearly every n	(18 11)	(19 <i>11)</i> , using
with	using	conjecturally		elliptic-curve point
elliptic-curve	hounds on	every prime n		counting (1985
factors.	elliptic-	every prime n		Schoof [83]): many
similar test	curve sizes			speedups available
using elliptic	(1936 Hasse			(1995 Atkin Elkies
curves (1986	[44])			[84] · 1995 Lercier
Goldwasser	[==])			Morain $[55]$
Kilian [38])				Woram [00])
similar tost	provos	ovory primo n	$(l_{\alpha} n)^{2+o(1)}$	vory slow
with alliptic	proves	every prime n	(1811)	very slow
curves having	using			
order divisible	hounds on			
by a large	olliptic			
by a large	curvo sizos			
(1087	(1036 Hages			
Pomoranco	[44])			
[77]	[==]/			
[[[]]				

Method	Effect of	Certificate	Time to verify	Time to find
	certificate	exists for	certificate	certificate
similar test	proves	every prime n	at most	random $(\lg n)^{O(1)}$,
with Jacobians	primality,		$(\lg n)^{3+o(1)}$	using distribution
of genus-2	using			of primes in
hyperelliptic	bounds on			interval of width
curves (1992	Jacobian			$x^{3/4}$ around x
Adleman Huang	sizes (1948			(1979 Iwaniec
[4])	Weil [91])			Jutila $[46]$), and
				distribution of
				Jacobian sizes
				(1992 Adleman
				Huang [4])
similar test	proves	conjecturally,	at most	at most
with small-	primality,	every prime n	$(\lg n)^{3+o(1)}$	$(\lg n)^{5+o(1)}$
discriminant	using			
complex-	bounds on			
multiplication	elliptic-			
elliptic curves	curve sizes			
(1988 Atkin	(1936 Hasse)			
[66]; special	[44])			
cases: 1985				
Bosma $[20],$				
1986				
Chudnovsky				
Chudnovsky				
[28])				
similar test	proves	conjecturally,	at most	at most
with small-	primality,	every prime n	$(\lg n)^{3+o(1)}$	$(\lg n)^{4+o(1)};$ many
discriminant	using			speedups available
complex-	bounds on			(1988 Morain [66],
multiplication	elliptic-			1989 Kaltofen
elliptic curves,	curve sizes			Valente Yui [47],
merging	(1936 Hasse)			1990 Morain [67],
square-root	[44])			1993 Atkin Morain
computations				[12], 1998 Morain
tor many				[68], 2003 Franke
discriminants				Kleinjung Morain
(1990 Shallit				Wirth [36])
[53])				

Method	Effect of	Certificate	Time to verify	Time to
	certificate	exists for	certificate	find
				certificate
proving	proves	every prime n	$(\lg n)^{O(1)}$, using	instant
primality with	primality	• -	analytic fact that, for	
combinatorics: if	- •		some $c > 1/2$, many	
we can write down			primes r have prime	
many elements of a			divisor of $r-1$ above	
particular			r^c (1969 Goldfeld	
subgroup of a			[37]; at most	
prime cyclotomic			$(\lg n)^{12+o(1)}$, using	
extension of \mathbf{Z}/n			analytic fact that	
then n is a power			many primes r have	
of a prime (2002.08			prime divisor of $r-1$	
Agrawal Kayal			above $r^{2/3}$ (1985	
Saxena [6])			Fouvry [35]);	
			conjecturally	
			$(\lg n)^{6+o(1)}$	
variant using	proves	every prime n	at most $(\lg n)^{12+o(1)}$.	instant
arbitrary	primality	J J I	using crude bound on	
cvclotomic	P 0,		distribution of primes	
extensions (2003.01			(1850 Chebyshev): at	
Lenstra [15.			most $(\lg n)^{8+o(1)}$.	
Theorem 2.3])			using analytic facts as	
1/			above: conjecturally	
			$(\lg n)^{6+o(1)}$	
variant using	proves	every prime n	at most	instant
cyclotomic	primality	• -	$(\lg n)^{10.5+o(1)}, \text{ using}$	
extensions with	- ·		crude bound on	
better bound on			distribution of primes	
group structure			(1850 Chebyshev); at	
(2002.12 Macaj			most $(\lg n)^{7.5+o(1)}$,	
[59], independently			using analytic facts as	
2003 Agrawal)			above; conjecturally	
, , , , , , , , , , , , , , , , , , ,			$(\lg n)^{6+o(1)}$	
variant using	proves	every prime n	$(\lg n)^{4+o(1)}, \text{ using}$	random
random Kummer	primality	• -	distribution of	$(\lg n)^{2+o(1)}$
extensions (2003.01			divisors of $n^d - 1$	(-)
Bernstein [17];			(overkill: 1983	
independently			Odlyzko Pomerance	
2003.03 Mihăilescu			[5])	
Avanzi [61]; idea				
and 2-power-degree				
case: 2002.12				
Berrizbeitia [19];				
prime-degree case:				
2003.01 Cheng [27])				

Method	Effect of	Certificate	Time to verify	Time to find
	certificate	exists for	certificate	certificate
variant using	proves	every prime n	$(\lg n)^{6+o(1)}$, using	instant
Gaussian	primality		various analytic	
periods (Lenstra			facts	
Pomerance, not				
yet published)				
if n fails any of	proves	every	at most	at most
the Fermat-type	compositeness	composite n	$(\lg n)^{4+o(1)}, \text{ using }$	$(\lg n)^{6+o(1)},$
tests in these			analytic facts as	using analytic
methods then n			above	facts as above
is composite				

References

- [1] —, Actes du congrès international des mathématiciens, tome 3, Gauthier-Villars Éditeur, Paris, 1971. MR 54:5.
- [2] —, Proceedings of the 18th annual ACM symposium on theory of computing, Association for Computing Machinery, New York, 1986. ISBN 0-89791-193-8.
- [3] —, International symposium on symbolic and algebraic computation, ISSAC '89, Portland, Oregon, USA, July 17–19, 1989, Association for Computing Machinery, New York, 1989.
- [4] Leonard M. Adleman, Ming-Deh A. Huang, Primality testing and abelian varieties over finite fields, Lecture Notes in Mathematics, 1512, Springer-Verlag, Berlin, 1992. ISBN 3– 540-55308-8. MR 93g:11128.
- [5] Leonard M. Adleman, Carl Pomerance, Robert S. Rumely, On distinguishing prime numbers from composite numbers, Annals of Mathematics 117 (1983), 173–206. ISSN 0003–486X. MR 84e:10008.
- [6] Manindra Agrawal, Neeraj Kayal, Nitin Saxena, PRIMES is in P (2002). Available from http://www.cse.iitk.ac.in/news/primality.html.
- [7] W. R. Alford, Andrew Granville, Carl Pomerance, There are infinitely many Carmichael numbers, Annals of Mathematics 139 (1994), 703–722. ISSN 0003–486X. MR 95k:11114.
- [8] N. C. Ankeny, The least quadratic non residue, Annals of Mathematics 55 (1952), 65–72. ISSN 0003–486X. MR 13,538c.
- [9] M. M. Artjuhov, Certain criteria for primality of numbers connected with the little Fermat theorem, Acta Arithmetica 12 (1966), 355–364. ISSN 0065–1036. MR 35:4153.
- [10] A. O. L. Atkin, Intelligent primality test offer, in [25] (1998), 1–11. MR 98k:11183.
- [11] A. O. L. Atkin, Richard G. Larson, On a primality test of Solovay and Strassen, SIAM Journal on Computing 11 (1982), 789–791. ISSN 0097–5397. MR 84d:10013.
- [12] A. O. L. Atkin, Francois Morain, *Elliptic curves and primality proving*, Mathematics of Computation 61 (1993), 29-68. ISSN 0025-5718. MR 93m:11136. Available from http://www. lix.polytechnique.fr/~morain/Articles/articles.english.html.
- [13] Eric Bach, Analytic methods in the analysis and design of number-theoretic algorithms, Ph.D. thesis, MIT Press, 1985.
- [14] Robert Baillie, Samuel S. Wagstaff, Jr., Lucas pseudoprimes, Mathematics of Computation 35 (1980), 1391–1417. ISSN 0025–5718. MR 81j:10005.
- [15] Daniel J. Bernstein, Proving primality after Agrawal-Kayal-Saxena. Available from http:// cr.yp.to/papers.html.
- [16] Daniel J. Bernstein, Fast multiplication and its applications. Available from http://cr.yp. to/papers.html.
- [17] Daniel J. Bernstein, *Proving primality in essentially quartic random time*. Available from http://cr.yp.to/papers.html.
- [18] Daniel J. Bernstein, Reducing lattice bases to find small-height values of univariate polynomials. Available from http://cr.yp.to/papers.html.
- [19] Pedro Berrizbeitia, Sharpening PRIMES is in P for a large family of numbers (2002). Available from http://arxiv.org/abs/math.NT/0211334.

- [20] Wieb Bosma, Primality testing using elliptic curves, Technical Report 85–12 (1985).
- [21] Wieb Bosma (editor), Algorithmic number theory: ANTS-IV, Lecture Notes in Computer Science, 1838, Springer-Verlag, Berlin, 2000. ISBN 3-540-67695-3. MR 2002d:11002.
- [22] Wieb Bosma, Marc-Paul van der Hulst, Primality proving with cyclotomy, Ph.D. thesis, Universiteit van Amsterdam, 1990.
- [23] Colin Boyd (editor), Advances in cryptology—ASIACRYPT 2001: proceedings of the 7th international conference on the theory and application of cryptology and information security held on the Gold Coast, December 9–13, 2001, Lecture Notes in Computer Science, 2248, Springer-Verlag, Berlin, 2001. ISBN 3–540–42987–5. MR 2003d:94001.
- [24] John Brillhart, Derrick H. Lehmer, John L. Selfridge, New primality criteria and factorizations of $2^m \pm 1$., Mathematics of computation **29** (1975), 620–647. ISSN 0025–5718. MR 52:5546.
- [25] Duncan A. Buell, Jeremy T. Teitelbaum (editors), Computational perspectives on number theory, American Mathematical Society, Providence, 1998. MR 98g:11001.
- [26] Joe P. Buhler (editor), Algorithmic number theory: ANTS-III, Lecture Notes in Computer Science, 1423, Springer-Verlag, Berlin, 1998. ISBN 3-540-64657-4. MR 2000g:11002.
- [27] Qi Cheng, Primality proving via one round in ECPP and one iteration in AKS (2003). Available from http://www.cs.ou.edu/~qcheng/.
- [28] David V. Chudnovsky, Gregory V. Chudnovsky, Sequences of numbers generated by addition in formal groups and new primality and factorization tests, Advances in Applied Mathematics 7 (1986), 385–434. MR 88h:11094.
- [29] Henri Cohen, Arjen K. Lenstra, Implementation of a new primality test, CWI Reports CS R8505, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1985; see also newer version [30]. MR 87a:11133.
- [30] Henri Cohen, Arjen K. Lenstra, Implementation of a new primality test, Mathematics of Computation 48 (1987), 103–121; see also older version [29]. ISSN 0025–5718. MR 88c:11080.
- [31] Henri Cohen, Hendrik W. Lenstra, Jr., Primality testing and Jacobi sums, Mathematics of Computation 42 (1984), 297–330. ISSN 0025–5718. MR 86g:11078.
- [32] Stephen A. Cook, On the minimum computation time of functions, Ph.D. thesis, Department of Mathematics, Harvard University, 1966. Available from http://cr.yp.to/bib/entries. html#1966/cook.
- [33] Ivan B. Damgård, Gudmund Skovbjerg Frandsen, An extended quadratic Frobenius primality test with average and worst case error estimates (2003). Available from http://www.brics. dk/RS/03/9/index.html.
- [34] Michael R. Fellows, Neal Koblitz, Self-witnessing polynomial-time complexity and prime factorization, Designs, Codes and Cryptography 2 (1992), 231-235. ISSN 0925-1022. MR 93e:68032. Available from http://cr.yp.to/bib/entries.html#1992/fellows.
- [35] Étienne Fouvry, Théorème de Brun-Titchmarsh: application au théorème de Fermat, Inventiones Mathematicae 79 (1985), 383–407. ISSN 0020–9910. MR 86g:11052.
- [36] Jens Franke, T. Kleinjung, François Morain, T. Wirth, Proving the primality of very large numbers with fastECPP. Available from ftp://lix.polytechnique.fr/pub/submissions/ morain/Preprints/large.ps.gz.
- [37] Morris Goldfeld, On the number of primes p for which p + a has a large prime factor, Mathematika 16 (1969), 23–27. ISSN 0025–5793. MR 39:5493.
- [38] Shafi Goldwasser, Joe Kilian, Almost all primes can be quickly certified, in [2] (1986), 316–329; see also newer version [39].
- [39] Shafi Goldwasser, Joe Kilian, Primality testing using elliptic curves, Journal of the ACM 46 (1999), 450–472; see also older version [38]. ISSN 0004–5411. MR 2002e:11182.
- [40] Ronald L. Graham, Jaroslav Nešetřil (editors), The mathematics of Paul Erdős. I, Algorithms and Combinatorics, 13, Springer-Verlag, Berlin, 1997. ISBN 3–540–61032–4. MR 97f:00032.
- [41] Jon Grantham, A probable prime test with high confidence, Journal of Number Theory 72 (1998), 32-47. ISSN 0022-314X. Available from http://www.pseudoprime.com/jgpapers. html.
- [42] Jon Grantham, Frobenius pseudoprimes, Mathematics of Computation 70 (2001), 873-891.
 ISSN 0025-5718. Available from http://www.pseudoprime.com/pseudo.html.
- [43] Louis C. Guillou, Jean-Jacques Quisquater (editors), Advances in cryptology—EUROCRYPT '95 (Saint-Malo, 1995), Lecture Notes in Computer Science, 921, Springer-Verlag, Berlin, 1995. ISBN 3-540-59409-4. MR 96f:94001.

- [44] Helmut Hasse, Zur Theorie der abstrakten elliptischen Funktionenkörper I, II, III, Journal für die Reine und Angewandte Mathematik (1936), 55–62, 69–88, 193–208. ISSN 0075–4102.
- [45] Nicholas Howgrave-Graham, Computational mathematics inspired by RSA, Ph.D. thesis, 1998. Available from http://dimacs.rutgers.edu/~dieter/Seminar/Papers/nick-thesis. ps.
- [46] Henryk Iwaniec, Matti Jutila, Primes in short intervals, Arkiv för Matematik 17 (1979), 167–176. MR 80j:10047.
- [47] Erich Kaltofen, Thomas Valente, Noriko Yui, An improved Las Vegas primality test, in [3] (1989), 26-33. Available from http://portal.acm.org/citation.cfm?doid=74540.74545.
- [48] Donald E. Knuth, The analysis of algorithms, in [1] (1971), 269-274. MR 54:11839. Available from http://cr.yp.to/bib/entries.html#1971/knuth-gcd.
- [49] Sergei Konyagin, Carl Pomerance, On primes recognizable in deterministic polynomial time, in [40] (1997), 176-198. MR 98a:11184. Available from http://cr.yp.to/bib/entries.html# 1997/konyagin.
- [50] Derrick H. Lehmer, Tests for primality by the converse of Fermat's theorem, Bulletin of the American Mathematical Society 33 (1927), 327–340. ISSN 0273–0979.
- [51] Derrick H. Lehmer, An extended theory of Lucas' functions, Annals of Mathematics 31 (1930), 419–448. ISSN 0003–486X.
- [52] Derrick H. Lehmer, Strong Carmichael numbers, Journal of the Australian Mathematical Society Series A 21 (1976), 508–510. MR 54:5093.
- [53] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., Algorithms in number theory, in [89] (1990), 673–715.
- [54] Hendrik W. Lenstra, Jr., Divisors in residue classes, Mathematics of Computation 42 (1984), 331-340. ISSN 0025-5718. MR 85b:11118. Available from http://www.jstor. org/sici?sici=0025-5718(198401)42:165<331:DIRC>2.0.C0;2-6.
- [55] Reynald Lercier, François Morain, Counting the number of points on elliptic curves over finite fields: strategies and performances, in [43] (1995), 79–94. MR 96h:11060.
- [56] Edouard Lucas, Sur la recherche des grands nombres premiers, Association Française pour l'Avacement des Sciences. Comptes Rendus 5 (1876), 61–68.
- [57] Edouard Lucas, Considérations nouvelles sur la théorie des nombres premiers et sur la division géométrique de la circonférence en parties égales, Association Française pour l'Avacement des Sciences. Comptes Rendus 6 (1877), 159–167.
- [58] Richard F. Lukes, C. D. Patterson, Hugh C. Williams, Numerical sieving devices: their history and some applications, Nieuw Archief voor Wiskunde Series 4 13 (1995), 113–139. ISSN 0028-9825. MR 96m:11082. Available from http://cr.yp.to/bib/entries.html#1995/lukes.
- [59] Martin Macaj, Some remarks and questions about the AKS algorithm and related conjecture (2002). Available from http://thales.doa.fmph.uniba.sk/macaj/aksremarks.pdf.
- [60] Preda Mihăilescu, Cyclotomy primality proving—recent developments, in [26] (1998), 95–110. MR 2000j:11195.
- [61] Preda Mihailescu, Roberto M. Avanzi, Efficient "quasi"-deterministic primality test improving AKS. Available from http://www-math.uni-paderborn.de/~preda/.
- [62] Gary L. Miller, Riemann's hypothesis and tests for primality, in [82] (1975), 234-239; see also newer version [63]. Available from http://cr.yp.to/bib/entries.html#1975/miller.
- [63] Gary L. Miller, Riemann's hypothesis and tests for primality, Journal of Computer and System Sciences 13 (1976), 300–317; see also older version [62]. ISSN 0022–0000.
- [64] Louis Monier, Evaluation and comparison of two efficient probabilistic primality testing algorithms, Theoretical Computer Science 12 (1980), 97–108. ISSN 0304–3975. MR 82a:68078.
- [65] Hugh L. Montgomery, *Topics in multiplicative number theory*, Lecture Notes in Mathematics, 227, Springer-Verlag, Berlin, 1971. MR 49:2616.
- [66] François Morain, Implementation of the Atkin-Goldwasser-Kilian primality testing algorithm, Research Report 911 (1988). Available from http://www.lix.polytechnique.fr/ ~morain/Articles/articles.english.html.
- [67] François Morain, Atkin's test: news from the front, in [80] (1990), 626–635.
- [68] François Morain, Primality proving using elliptic curves: an update, in [26] (1998), 111-127. MR 2000i:11190. Available from http://www.lix.polytechnique.fr/~morain/Articles/ articles.english.html.
- [69] Michael A. Morrison, John Brillhart, A method of factoring and the factorization of F₇, Mathematics of Computation 29 (1975), 183–205. ISSN 0025–5718. MR 51:8017.

12

- [70] Siguna Müller, On probable prime testing and the computation of square roots mod n, in [21] (2000), 423–437; see also newer version [72]. MR 2002h:11140.
- [71] Siguna Müller, A probable prime test with very high confidence for $n \equiv 1 \mod 4$, in [23] (2001), 87–106. MR 2003j:11148.
- [72] Siguna Müller, A probable prime test with very high confidence for $n \equiv 3 \mod 4$, Journal of Cryptology 16 (2003), 117–139; see also older version [70]. ISSN 0933–2790. MR 1982973.
- [73] Jozsef Pelikán, János Pintz, Endre Szemerédi, On the running time of the Adleman-Pomerance-Rumely primality test, Publicationes Mathematicae Debrecen 56 (2000), 523– 534. MR 2001g:11147.
- [74] János Pintz, William L. Steiger, Endre Szemerédi, Infinite sets of primes with fast primality tests and quick generation of large primes, Mathematics of Computation 53 (1989), 399–406. ISSN 0025–5718. MR 90b:11141.
- [75] Henry C. Pocklington, The determination of the prime or composite nature of large numbers by Fermat's theorem, Proceedings of the Cambridge Philosophical Society 18 (1914), 29–30. ISSN 0305–0041.
- [76] Carl Pomerance, Are there counter-examples to the Baillie PSW primality test? (1984). Available from http://www.pseudoprime.com/pseudo.html.
- [77] Carl Pomerance, Very short primality proofs, Mathematics of Computation 48 (1987), 315–322. ISSN 0025–5718. MR 88b:11088.
- [78] Carl Pomerance, John L. Selfridge, Samuel S. Wagstaff, Jr., The pseudoprimes to 25 · 10⁹, Mathematics of Computation 35 (1980), 1003–1026. ISSN 0025–5718. MR 82g:10030.
- [79] Karl Prachar, Über die Anzahl der Teiler einer natürlichen Zahl, welche die Form p 1 haben, Monatshefte für Mathematik 59 (1955), 91–97. ISSN 0026–9255. MR 16:904h.
- [80] Jean-Jacques Quisquater, J. Vandewalle (editors), Advances in cryptology—EUROCRYPT '89: workshop on the theory and application of cryptographic techniques, Houthalen, Belgium, April 10–13, 1989, proceedings, Lecture Notes in Computer Science, 434, Springer-Verlag, Berlin, 1990. ISBN 3–540–53433–4. MR 91h:94003.
- [81] Michael O. Rabin, Probabilistic algorithms, in [88] (1976), 21–39. MR 57:4603.
- [82] William C. Rounds (chairman), Proceedings of seventh annual ACM symposium on theory of computing: Albuquerque, New Mexico, May 5-7, 1975, Association for Computing Machinery, New York, 1975.
- [83] René Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Mathematics of Computation 44 (1985), 483–494. ISSN 0025–5718. MR 86e:11122.
- [84] René Schoof, Counting points on elliptic curves over finite fields, Journal de Théorie des Nombres de Bordeaux 7 (1995), 219-254. ISSN 1246-7405. Available from http://almira. math.u-bordeaux.fr/jtnb/1995-1/schoof.ps.
- [85] John L. Selfridge, Marvin C. Wunderlich, An efficient algorithm for testing large numbers for primality, Congressus Numerantium 12 (1975), 109–120. ISSN 0384–9864. MR 51:5461.
- [86] Robert M. Solovay, Volker Strassen, A fast Monte-Carlo test for primality, SIAM Journal on Computing 6 (1977), 84–85. ISSN 0097–5397. MR 55:2732.
- [87] Andrei L. Toom, The complexity of a scheme of functional elements realizing the multiplication of integers, Soviet Mathematics Doklady 3 (1963), 714–716. ISSN 0197–6788.
- [88] Joseph F. Traub (editor), Algorithms and complexity: new directions and recent results, Academic Press, New York, 1976. MR 54:14417.
- [89] Jan van Leeuwen (editor), Handbook of theoretical computer science, volume A, Elsevier, Amsterdam, 1990. ISBN 0-444-88071-2. MR 92d:68001.
- [90] Jacques Vélu, Tests for primality under the Riemann hypothesis, SIGACT 10 (1978), 58-59.
- [91] André Weil, Sur les courbes algébriques et les variétés qui s'en déduisent, Hermann et Cie., Paris, 1948. MR 10:262c.
- [92] Hugh C. Williams, R. Holte, Some observations on primality testing, Mathematics of Computation 32 (1978), 905–917. ISSN 0025–5718.
- [93] Hugh C. Williams, J. S. Judd, Some algorithms for prime testing using generalized Lehmer functions, Mathematics of Computation 30 (1976), 867–886. ISSN 0025–5718. MR 54:2574.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The University of Illinois at Chicago, Chicago, IL 60607–7045

E-mail address: djb@cr.yp.to