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Abstract. Spherical models of lattices are standard tools in the study
of lattice-based cryptography, except for variations in terminology and
minor details. Spherical models are used to predict the lengths of short
vectors in lattices and the effectiveness of reduction modulo those short
vectors. These predictions are consistent with an asymptotic theorem by
Gauss, theorems on short vectors in almost all lattices from the invariant
distribution, and a variety of experiments in the literature.

S-unit attacks are a rapidly developing line of attacks against structured
lattice problems. These include the quantum polynomial-time attacks
that broke the cyclotomic case of Gentry’s original STOC 2009 FHE
system under minor assumptions, and newer attacks that have broken
through various barriers previously claimed for this line of work.

S-unit attacks take advantage of auxiliary lattices, standard number-
theoretic lattices called S-unit lattices. Spherical models have recently
been applied to these auxiliary lattices to deduce core limits on the power
of S-unit attacks.

This paper shows that these models underestimate the power of S-unit
attacks: S-unit lattices, like the lattice Zd, have much shorter vectors
and reduce much more effectively than predicted by these models. The
attacker can freely choose S to make the gap as large as desired, breaking
through the core limits previously asserted for S-unit attacks.
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1 Introduction

Power-of-2-cyclotomic Ideal-SVP is the following problem. There is a parameter,
an integer n ∈ {1, 2, 4, 8, 16, . . .}. The input is a nonzero ideal I of the ring
R = Z[x]/(xn+1), given as (v1, v2, . . . , vn) ∈ Rn with I = Zv1 +Zv2 + · · ·+Zvn.
The problem is to find a short nonzero element of I. Readers not familiar with the
foundational importance of this problem in the security analysis of lattice-based
cryptography should see Appendix A.

Fully defining this problem requires giving a quantitative definition of “short”.
It is important to realize that the definitions of “short” relevant to cryptography
are not asking specifically for a shortest nonzero vector in I. For each Ideal-
SVP attack algorithm, one asks how short the output is—and, obviously, how
long the algorithm takes. Sometimes Ideal-SVP is called “Approx-Ideal-SVP” to
emphasize that “short” is only an approximation to “shortest”.

The standard framework for solving this problem considers only the additive
structure of I. One extends the list of known lattice vectors by taking linear
combinations of those vectors (e.g., v1 − v2), using various strategies designed
to move as efficiently as possible towards shorter nonzero vectors. Well-known
examples of algorithms within this framework include enumeration, sieving, LLL,
and BKZ. Parameters in lattice-based cryptosystems are typically chosen so that
estimates of the cost of the latest variants of BKZ, using the latest variants of
enumeration or sieving as subroutines, are slightly above the target security level.
See, e.g., [1, Section 4.2] and [3, Section 5].

1.1. S-unit attacks. “Unit attacks”, together with their generalization to
“S-unit attacks”, use multiplicative techniques to shorten the vectors found by
additive attacks. See Section 5 for a review of these techniques. The history is
complicated; see Appendix D for full credits.

This line of work efficiently solves many cases of cyclotomic Ideal-SVP that
are not believed to be efficiently solvable by additive attacks. An early success
of unit attacks was quantum polynomial-time key recovery (assuming “h+ = 1”;
see Appendix C) for the cyclotomic case of well-known cryptosystems introduced
by Gentry [48], Smart–Vercauteren [86], Gentry–Halevi [49], and Garg–Gentry–
Halevi [45], although for [45] various other security problems are known. The
subsequent literature on S-unit attacks is a fascinating story of

• dividing lines between the broken and unbroken cases of Ideal-SVP being
claimed to be important (e.g., “barriers”—see Appendix A); and

• these dividing lines being crossed by more advanced S-unit attacks.

The obvious technical question is whether there is a real limit to the power of S-
unit attacks—a principled, well-studied barrier making clear that these attacks
will not break worst-case Ideal-SVP.

1.2. Spherical models of lattices. Gauss [47] studied the number of points
in Z2 inside the circle of radius r. Gauss showed a Θ(r) bound on the gap
between this number and the area πr2 of the circle, and concluded that the
ratio converges to 1 as the circle radius increases; he noted how obvious this
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conclusion was, while at the same time noting the value of proof.1 Gauss’s proof
readily generalizes to prove the well-known fact, repeated as Theorem 3.2 below,
that limr→∞#(L∩ rB)/Vol rB = 1/detL for any d-dimensional lattice L in Rd,
where rB is the ball of radius r around 0 in Rd.

This theorem inspired an analysis methodology used systematically within the
literature on lattice-based cryptography to predict the lengths of short vectors in
lattices and the effectiveness of reduction modulo those short vectors. The most
common name for this methodology is the “Gaussian heuristic”, but this paper
uses the terminology “spherical models” for reasons explained in Section 1.6.

Write λ1(L) for the minimum length of nonzero vectors in a lattice L. Spherical
models make a prediction r for λ1(L) where Vol rB is on the same scale as
detL. As motivation, notice that if r is slightly larger than this, and the lattice
dimension d is large, then Vol rB becomes much larger than detL (since Vol rB
increases as the dth power of r), so if #(L∩ rB)/Vol rB is close to 1/detL then
#(L ∩ rB) also has to be large. Similarly, if r is slightly smaller then the same
calculation predicts that #(L ∩ rB) will be close to 0; one can quibble that in
fact #(L ∩ rB) ≥ 1 since 0 ∈ L ∩ rB, but a modified version of Theorem 3.2
using #(L ∩ rB)− 1 eliminates this quibble.

This motivation is not a proof. Perhaps #(L ∩ rB)/Vol rB is not so close to
1/detL, even if it converges to 1/detL as r → ∞. However, the mathematical
theory of random lattices—specifically, d-dimensional fixed-determinant lattices
chosen from the “invariant distribution”—includes a theorem stating that, as
d → ∞, with probability 1 − o(1), such lattices L have λ1(L) within a factor
1+o(1) of what spherical models predict; see Section 2. This still does not prove
that it is safe to apply the prediction to every lattice that appears, but one
can see the accuracy of spherical-model predictions for many lattices directly
demonstrated by experiments from Chen–Nguyen [25, Figure 1].

Spherical models predict more than λ1(L). For example, Micciancio–Walter
[70, Section 2.4] described the “Gaussian Heuristic” as saying “that for a given
set S and a lattice Λ, we have |S ∩ Λ| ≈ vol(S)/ det(Λ)” assuming S is “nice”;
and Ducas–Laarhoven–van Woerden [38, Heuristic 2] stated as a “consequence
of GH” that (1) there are αd+o(d) lattice points in a ball of radius αλ1(L) and (2)
these lattice points are treated “as being uniformly distributed over the ball”.

This distribution is important when one considers not just the lengths of short
vectors but also simple reduction using a list of short vectors: replace the input
t with a shorter vector t− u for some u in the list, if possible, and then repeat.
For example, Laarhoven [57] considered the close-vector problem for any lattice
L, and used spherical models to analyze the effect of precomputing all short
vectors in L and then repeatedly subtracting off one of those short vectors from
the target vector. Doulgerakis–Laarhoven–de Weger [36] reported experiments
with randomly generated lattices supporting Laarhoven’s analysis.

1.3. Using spherical models to limit S-unit attacks. Internally, an S-
unit attack constructs a target point and searches for vectors close to that point

1 “Quod quamquam iam per se evidens esse videatur, tamen demonstratione rigorosa
munire non aspernabimur.” See [47, pages 277–278].
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in an auxiliary lattice. This auxiliary lattice is a standard number-theoretic
lattice called the “S-unit lattice”. Given how well established spherical models
are in the literature, it is natural to apply these models to S-unit lattices.

This was done in 2019 by Pellet-Mary–Hanrot–Stehlé [78], who presented and
analyzed an S-unit attack by applying Laarhoven’s algorithm [57] and analysis
to S-unit lattices. The analysis of [78] says that S-unit attacks can reach much
shorter vectors than various earlier papers had reached, but also says that this
has an inherent cost: to reach approximation factor exp(no(1)), one needs to
spend time exp(n1+o(1)) building and using a database of exp(n1+o(1)) short
lattice vectors. This relies on a spherical-model calculation in [57] concluding that
each short lattice vector has probability exp(−n1+o(1)) of successful reduction.

Evidently this is, finally, the desired barrier to S-unit attacks: the result of
taking a central, well-studied analysis technique in lattice-based cryptography
and applying it to S-unit lattices.

Very recent events have illustrated the power of this barrier. In late August
2021, a talk given by Bernstein [14] reported experiments with, and conjectured
subexponential scalability for, an Ideal-SVP attack. This attack is an S-unit
attack, like [78], although with some differences such as a larger choice of S and
a new method of precomputing short S-units. Four days later, Ducas and Pellet-
Mary [40] responded “Extraordinary claims require extraordinary evidence” and
concisely explained why the spherical-model analysis used in [78] already implied
that the probability of success of such a large S “would be *ridiculously* small”,
certainly no better than [78].

1.4. Contributions of this paper. This paper shows that spherical models
underestimate the power of S-unit attacks: S-unit lattices have much shorter
vectors and reduce much more effectively than predicted by these models. The
attacker can freely choose S to make the gap as large as desired. This resolves
the dispute between [14] and [40], and shows that S-unit attacks are not subject
to the limits deduced in [78].

There are many choices of the pair (n, S), and this paper does not cover them
all, but this paper covers every direction in (n, S) space (see Table 1.5):

• Section 6 covers the minimal n, namely n = 1. This paper presents (easy)
calculations regarding short S-units and reduction effectiveness, and (with
more work) quantifies how inaccurate the spherical-model predictions are.

• Section 7 covers what happens for each n as S increases. It is easy to see from
the structure of S-units that, as S becomes larger and larger, the shortest
S-units do not grow. Furthermore, the effectiveness of reduction does not
degrade—on the contrary, whatever the target vector is, it will be found by
a sufficiently large S-unit attack. Spherical models instead make the absurd
predictions that the shortest S-units become longer and longer and that
reduction modulo short S-units becomes less and less likely to succeed. This
is also noted in Section 6 for n = 1, but it is a much broader phenomenon.

• Section 8 covers what happens when S is minimal. This paper proves bounds
on the length of a short S-unit; presents the results of reduction experiments
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§ lattice spherical model reality

4 Zd (warmup, already known) (1 + o(1))(d/2πe)1/2 1

6 S-units for n = 1, any S (1 + o(1))(d/2πe)1/2 log d O(1)

7 S-units for each n as S increases (1 + o(1))(d/2πe)1/2 log d O(1)

8 S-units for minimal S, any n d1+o(1) d1/2+o(1)

Table 1.5. Asymptotic overview (as d→∞) of this paper’s analyses of the inaccuracy
of spherical models in predicting vector lengths in various d-dimensional lattices. The
set S is assumed to be ∞∪{P : #(R/P ) ≤ y}. In the last row, y = 1 and d = n/2− 1;
in the previous two rows, d ∈ (1 + o(1))y/log y. The last row assumes small h+. In
the previous row, o and O are as d→∞ for fixed n; constants can depend on n. This
paper also analyzes reduction effectiveness for each lattice.

for various n; and (under the aforementioned assumption “h+ = 1”; see
Appendix C) quantifies the inaccuracy of the spherical-model predictions.

This does not rule out the possibility of the predictions being accurate for some
intermediate pairs (n, S). However, even if this were to occur, it would do nothing
to stop attacks: S is chosen by the attacker and in particular can be taken
arbitrarily large, as reflected by the large choice of S in the talk [14].

The fact that the “Gaussian heuristic” is very wrong for some lattices L,
including important lattices such as L = Zd, is not a new observation. The
Zd example contradicts not just the λ1(L) predictions but also the reduction
predictions; see Section 4. Structurally, these counterexamples show that merely
looking at the lattice dimension and lattice determinant, as in spherical models,
does not provide enough information to predict the distribution of short vectors
and the effectiveness of reduction modulo those vectors. The fact that there are
some counterexamples does not say that S-unit lattices are also counterexamples,
but the evidence amassed in this paper says that S-unit lattices look much more
like Zd than like random lattices from the invariant distribution.

Each failure that this paper describes in the shortest-nonzero-vector-length
predictions is accompanied by failure of the reduction-effectiveness predictions.
An open question is how general this association is: how reliably one can predict
higher reduction effectiveness simply from seeing shorter nonzero vectors. In
any event, given the previously known Zd counterexample, the use of spherical
models to analyze specific types of lattices should have been treated with much
more caution; given the results of this paper, the use of spherical models of
S-unit lattices is indefensible.

So how should one quantify the shortness of vectors found by S-unit attacks?
Available theorems do not quantify this for most pairs (n, S) of interest. The
standard scientific answer is to carry out experiments, formulate hypotheses
allowing extrapolation beyond the experiments, carry out further experiments
challenging the hypotheses, etc. Interestingly, some experiments were reported
in [78]; however, those experiments were designed to double-check that the slow
attacks in [78] worked, rather than to challenge the accuracy of spherical models.
If S-unit attacks had somehow reduced less effectively than spherical models
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predict, then this might have been detected by the experiments, but this is only
one-sided evidence. The notion that S-unit attacks reduce no more effectively
than predicted was never justified; this paper shows that the notion is incorrect.

1.6. Clarity and falsifiability. [70, Heuristic 1] states that if L is a lattice

of dimension d then λ1(L) = ((d/2)!(detL))1/d/
√
π. Try 100 random lattices,

and notice that the statement is false for all of them. Surely the intention was
instead to say that this is a model of the length, and that the actual length is
close to the model—but how close? How far away would an example have to
be to qualify as a counterexample? The same question arises when the word
“approximately” is made explicit, as in [38, Heuristic 1].

Another clarity problem appears when statements are first made for random
lattices (see, e.g., [53, page 273])—presumably meaning random lattices from the
invariant distribution, presumably allowing some percentage of these lattices
to be counterexamples—but are then applied to whatever lattices appear. It
seems that the actual analysis methodology is assuming a statement regarding
all lattices, not just random lattices, but this is not made explicit.

There are more of these definitional difficulties in the literature. This poses
a problem for a paper whose goal is to show that the same methodology does
not work for S-unit lattices. To address this issue, this paper gives a precise
mathematical definition of a spherical model of a lattice, factoring the analysis
of S-unit counterexamples into

• an analysis of what this definition says regarding the examples and
• a comparison of this definition to the literature (see Appendix E).

Claims that the literature meant something else do not affect the validity of the
first analysis. It seems unlikely that such claims could close the large gap between
the predictions and the facts; this paper includes some analysis of robustness to
variations in the definitions. If someday another model is defined that accurately
captures what is happening for Zd and for S-unit lattices, then that model has
been separated from the model in this paper; subsequent analyses can specify
which of the two models they are using.

The “spherical model” terminology appears to be new in this context. There
are five reasons for this paper’s use of this terminology. First, there are enough
variations in what the literature says regarding the “Gaussian heuristic” that
new terminology will help avoid confusion. Second, the details of the definition
here are handled differently; the ideas are standard, and this paper checks that
the results are consistent with the literature, but the change in terminology
serves as a warning that, at least formally, there is a change in details. Third, a
“model” is conventionally required to be mathematically defined, capturing one
of the advantages of the work here, whereas a “heuristic” can have undefined
words such as “approximately”. Fourth, “spherical” is more descriptive of the
content than “Gaussian”. Fifth, the “Gaussian heuristic” does not appear to
have been introduced—or endorsed—by Gauss. One is forced to wonder whether
the presence of Gauss’s name here has contributed to this heuristic having been
given less skepticism than it deserves.
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1.7. Priority dates. The talk mentioned above included our announcement
of the results of this paper: the talk [14, video, minute 20] described the S-unit
lattice as an “amazingly special lattice”, in particular regarding its “algebraic
and analytic features”. These features are a prerequisite for the success of the
experiments presented in that talk. This paper provides full details of the analytic
features, quantifying how far S-unit lattices are from most lattices.

1.8. Organization of this paper. Section 2 reviews theorems regarding the
lengths of vectors in most lattices. Section 3 defines spherical models, and proves
theorems regarding short vectors in spherical models and the effectiveness of
reduction modulo those vectors. Section 4 quantifies how badly spherical models
fail for the lattice Zd; this is a warmup for the subsequent analysis of S-unit
lattices. Section 5 reviews S-units, the S-unit lattice, and S-unit attacks. Finally,
Sections 6, 7, and 8 quantify how badly spherical models fail for S-unit lattices
with, respectively, n = 1; each n as S increases; and each n when S is minimal.

1.9. Acknowledgments. This work began at the Simons Institute for the
Theory of Computing at the University of California at Berkeley, USA, which
held concurrent research programs in 2020 on “Lattices: algorithms, complexity,
and cryptography” and “The quantum wave in computing”; continued during a
visit to the Research Center for Information Technology Innovation at Academia
Sinica, Taiwan; and performed computations on the Fast Crypto Lab cluster at
the Institute of Information Science at Academia Sinica. The authors are grateful
to the Simons Institute, CITI, and IIS for their hospitality.

2 Random lattices

There is a standard mathematical definition of what it means to pick a fixed-
dimension fixed-determinant lattice at random. This section briefly reviews (1)
the theory of random lattices and (2) theorems regarding the distribution of
vector lengths in random lattices.

2.1. Invariant measure. By definition SLd(R) is the group of determinant-1

matrices in Rd×d. One can measure subsets of SLd(R) using (d2−1)-dimensional
Hausdorff measure, but it is more useful to work with an “invariant measure” for
this group, meaning that

∫
M
f(M) dM =

∫
M
f(MN) dM for each N ∈ SLd(R).

Siegel [85] gave an explicit construction of an invariant measure on SLd(R),
analogous to explicit constructions by Hurwitz [54] of invariant measures for
some other groups.

Siegel also defined “a fundamental region F with respect to Γ1”, where Γ1

is SLd(Z), the group of determinant-1 matrices in Zd×d. Siegel proved “as an
immediate consequence of Minkowski’s reduction theory” that “the volume of
F is finite”, where “volume” refers to the invariant measure. One can thus scale
the measure so that the volume of F is 1, obtaining a probability measure on F .

If M ∈ F then the lattice L generated by the rows of M is a determinant-1
dimension-d lattice. This map M 7→ L is a bijection between F and the set of
determinant-1 dimension-d lattices in Rd: any determinant-1 dimension-d lattice
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has a basis matrix in SLd(R), and modulo Γ1 this basis matrix has a unique
representative in F , the unique matrix in F whose rows generate L.

The probability measure on F mentioned above, invariant measure scaled
so that F has total measure 1, now induces a probability measure on the set
of determinant-1 dimension-d lattices, again called the “invariant measure” on
this set. Here “invariant” means that

∫
L
f(L) dL =

∫
L
f(LN) dL for each N ∈

SLd(R), where now the integrals are over lattices L. The theory of random
lattices considers lattices distributed according to the invariant measure.

2.2. Short vectors. Rogers [82] showed that “the number of pairs of points
±x of a lattice Λ in S has a distribution, which is asymptotic, as n becomes
large, to the Poisson distribution with mean 1

2V ”. The “n” in [82] is this paper’s
d; V is a fixed real number as d → ∞; S is a set spherically symmetric around
0 with Borel measure V ; Λ is a random determinant-1 dimension-d lattice with
the invariant distribution; and 0 ∈ Λ is not counted (as a pair ±0, or as a single
entry), so the number of pairs of points counted can be 0.

In particular, consider a d-dimensional ball S, centered at the origin, of volume
V , where V is one of the following:

• V = 200: A sample from a Poisson distribution with mean 100 has proba-
bility exp(−100) ≈ 0 of being 0.

• V = 2: A sample from a Poisson distribution with mean 1 has probability
exp(−1) ≈ 0.36 of being 0.

• V = 0.02: A sample from a Poisson distribution with mean 0.01 has proba-
bility exp(−0.01) ≈ 0.99 of being 0.

One thus expects the shortest nonzero vectors in Λ to be inside the ball of volume
200, perhaps inside the ball of volume 2, and very likely not inside the ball of
volume 0.02, once d is large enough for Rogers’s asymptotic to apply. Ball volume
grows proportionally to the dth power of radius, so these three balls have almost
the same radii for large d. This forces the shortest nonzero vectors in most Λ,
but not all, to have length almost exactly matching these radii.

Strömbergsson and Södergren [88, Remark 1.8] state a precise theorem along
these lines. As an example of this theorem, the 106 shortest nonzero vectors in
a random determinant-1 dimension-d lattice with the invariant distribution all
have length (1 +O((log d)/d))(d/2πe)1/2 with probability 1− o(1) as d→∞.

3 Spherical model of a lattice

This section formally defines a spherical model M of a given lattice; analyzes
the minimum length of nonzero vectors in M ; and analyzes the effectiveness of
reduction modulo short vectors in M .

As a starting point, consider the following two well-known theorems.

Theorem 3.1. Let d be a positive integer. Define B = {x ∈ Rd : ||x||2 ≤ 1}.
Then Vold rB = rdπd/2/(d/2)! for each nonnegative real number r.
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Here Vold means d-dimensional volume, and (d/2)! means Γ (d/2 + 1). Two
examples of the theorem: Vol2 rB = r2π/(2/2)! = πr2 for d = 2; and Vol3 rB =
r3π3/2/(3/2)! = (4π/3)r3 for d = 3, since (3/2)! = (3/2)(1/2)π1/2. Often volume
subscripts are clear from context and are omitted, but (d− 1)-volume Vold−1 on
Rd, meaning (d− 1)-dimensional normalized Hausdorff measure, is used below.

Proof. This is a standard integration exercise. For one proof see [60]; further
proofs are cited in [60]. ut

Theorem 3.2. Let d be a positive integer. Define B = {x ∈ Rd : ||x||2 ≤ 1}. Let
L be a d-dimensional lattice in Rd. Then limr→∞#(L∩rB)/Vold rB = 1/detL.

Proof. Choose a basis b1, b2, . . . , bd for L. Define a bijection ϕ : Rd → Rd by
ϕ(c1, c2, . . . , cd) = c1b1+c2b2+· · ·+cdbd. WriteX = ϕ−1(B). Then ϕ−1(L) = Zd;
#(Zd ∩ rX) = #(L ∩ rB); and Vol rX = Volϕ−1(rB) = (Vol rB)/detL.

The conditions of Davenport’s theorem [35, Section 2, Theorem] are satisfied
with h = 1, n = d, R = rX: any line parallel to a coordinate axis intersects
rX in at most one interval, since rX is convex; the same is true for any region
obtained from rX by projecting onto any selection of m coordinates, for any
m ∈ {1, . . . , d− 1}; and rX is closed and bounded.

Now |#(Zd ∩ rX)−Vol rX| ≤
∑

0≤m≤d−1 Vm by Davenport’s theorem, where

Vm is the sum of m-dimensional volumes of all
(
d
m

)
regions obtained by projecting

rX onto m coordinates. Each of these regions is, like rX, obtained by scaling
an r-independent region by r, so Vm is proportional to rm, so

∑
0≤m≤d−1 Vm ∈

O(rd−1). Finally∣∣∣∣#(L ∩ rB)

Vol rB
− 1

detL

∣∣∣∣ =

∣∣#(Zd ∩ rX)−Vol rX
∣∣

Vol rB
≤
∑

0≤m≤d−1 Vm

Vol rB
.

The numerator is O(rd−1), and the denominator Vol rB is proportional to rd,
so |#(L ∩ rB)/Vol rB − 1/detL| ∈ O(1/r). Hence the limit as r →∞ is 0. ut

For example, for d = 1 and L = Z1, one has #(L ∩ rB) = 1 if r < 1;
#(L ∩ rB) = 3 if 1 ≤ r < 2; #(L ∩ rB) = 5 if 2 ≤ r < 3; etc. The general
pattern for d = 1 is that #(L ∩ rB) = 1 + 2b(Vol rB)/(2 detL)c, which implies
limr→∞#(L ∩ rB)/Vol rB = 1/detL.

A spherical model imagines that one can extrapolate the rule #(L ∩ rB) =
1 + 2b(Vol rB)/(2 detL)c from d = 1 to any value of d, and that lattice points
are independently and uniformly distributed except for what this rule says about
their lengths. This model disregards the additive structure of L, and all other
information about L aside from the dimension and determinant of L. For a
picture with d = 2 see Figure 3.4.

Definition 3.3 (spherical model of a lattice). Let d be a positive integer.
Let L be a d-dimensional lattice. Let LR be the R-vector space generated by L. Let
µj be a uniform random element of {x ∈ LR : ||x||d2 = 2jπ−d/2(d/2)! detL} for
each integer j ≥ 1. Assume that µ1, µ2, . . . are statistically independent. Then
{0, µ1,−µ1, µ2,−µ2, . . .} is a spherical model of L.
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The word “random” here has its measure-theoretic definition: there is a fixed
measure space Pr of total measure 1, and a random element of a measurable
space X means a measurable function from Pr to X.

The definition of a spherical model does not require L to be specifically in Rd.
Formally, the extra generality is useful for S-unit lattices: the usual definitions
of a d-dimensional S-unit lattice either define the lattice embedded in Rd+1, or
define it embedded in a larger-dimensional vector space (the extra coordinates of
lattice vectors being 0), or define it abstractly without reference to an embedding
(see, e.g., [62, Section 3]). However, one can always map LR isometrically to Rd;
then L maps to a d-dimensional lattice in Rd with the same determinant, and
the set of elements of LR of length at most r maps to rB = {x ∈ Rd : ||x||2 ≤ r}.
This paper thus focuses on the case LR = Rd in, e.g., Theorem 3.6 below.

3.5. Using a spherical model to predict vector lengths. The number
of limited-length points in a spherical model of L follows from the definition of
a spherical model; see Theorem 3.6 below. In particular, the minimum nonzero
length is (2π−d/2(d/2)! detL)1/d.

Theorem 3.6. Let d be a positive integer. Define B = {x ∈ Rd : ||x||2 ≤ 1}. Let
L be a d-dimensional lattice in Rd. Let M be a spherical model of L. Then

• min{||x||2 : x ∈M − {0}} = (2π−d/2(d/2)! detL)1/d;
• each r ∈ R with r ≥ 0 has #(M ∩ rB) = 1 + 2b(Vold rB)/(2 detL)c; and
• limr→∞#(M ∩ rB)/Vold rB = 1/detL.

Proof. By definition M has the form {0, µ1,−µ1, µ2,−µ2, . . .}, with ||µj ||d2 =

2jπ−d/2(d/2)! detL. The shortest nonzero elements of M are thus ±µ1, with
length (2π−d/2(d/2)! detL)1/d.

The elements of M ∩ rB are 0 and ±µj for each positive integer j with
||µj ||2 ≤ r, i.e., with 2jπ−d/2(d/2)! detL ≤ rd. The largest positive integer

J with 2Jπ−d/2(d/2)! detL ≤ rd is the largest positive integer J with J ≤
rdπd/2/(2(d/2)! detL). By Theorem 3.1, this is the largest positive integer J
with J ≤ (Vol rB)/(2 detL); i.e., J = b(Vol rB)/(2 detL)c. The elements of
M ∩ rB are then 0 and ±µj for each positive integer j ≤ J . These elements are
distinct, so #(M ∩ rB) = 1 + 2J = 1 + 2b(Vol rB)/(2 detL)c.

Now #(M ∩ rB) is between −1 + (Vol rB)/detL and 1 + (Vol rB)/detL, so
#(M ∩ rB)/Vol rB is between −1/Vol rB + 1/detL and 1/Vol rB + 1/detL.
Finally, Vol rB →∞ as r →∞ by Theorem 3.1, so 1/Vol rB → 0. ut

3.7. Asymptotic interlude. Theorem 3.1, Definition 3.3, and Theorem 3.6
involve the quantity (d/2)! = Γ (d/2+1). Theorem 3.8 pins down the asymptotics
of (d/2)! as d→∞.

Theorem 3.8. Let d be a positive integer. Write e = exp 1. Then (d/2)! =
(πd)1/2(d/2e)d/2eθ/6d for some θ ∈ R with 0 < θ < 2.

Proof. Robbins [81, formulas (1) and (2)] showed, for each integer n ≥ 1, that
n! = (2πn)1/2(n/e)nern for some rn ∈ R with 1/(12n+ 1) < rn < 1/12n.
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Fig. 3.4. Dots in top picture: a lattice L in dimension d = 2. Shortest nonzero vectors
are highlighted. Dots in bottom picture: sample from a spherical model M of L. Circles
in bottom picture: distribution of M , independent uniform random circle points and
their negatives. Circle j has radius proportional to j1/2, with constant of proportionality
set so that limr→∞ #(M ∩ rB)/#(L ∩ rB) = 1.
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The easy case of the theorem is that d is even, say d = 2n. Write θ = 6drd/2;

then 0 < θ < 1, and (d/2)! = (πd)1/2(d/2e)d/2eθ/6d as claimed.
The rest of the proof assumes that d is odd, say d = 2n − 1. Then (d/2)! =

(n − 1/2)(n − 3/2) · · · (1/2)π1/2 = (2n − 1)(2n − 3) · · · (1)π1/2/2n. Multiply by
n! = (2n)(2n− 2) · · · (2)/2n to see that (d/2)!n! = (2n)!π1/2/4n and thus

(d/2)!(2πn)1/2(n/e)nern = (4πn)1/2(2n/e)2ner2nπ1/2/4n.

Cancel factors and rearrange to obtain

(d/2)! = (2π)1/2(n/e)ner2n−rn = (πd)1/2(d/2e)d/2(1 + 1/d)(d+1)/2e−1/2er2n−rn .

In other words, (d/2)! = (πd)1/2(d/2e)d/2eθ/6d where

θ = 3d((d+ 1) log(1 + 1/d)− 1) + 6d(r2n − rn).

All that remains is to show 0 < θ < 2.
The power series (1 + x) log(1 + x)− x is

∑
j≥2(−1)jxj/j(j − 1), which is an

alternating decreasing series for 0 < x ≤ 1, so it is between x2/2 − x3/6 and
x2/2. Substitute x = 1/d to see that

1/2d2 − 1/6d3 ≤ (1 + 1/d) log(1 + 1/d)− 1/d ≤ 1/2d2,

i.e., 1/2d−1/6d2 ≤ (d+1) log(1+1/d)−1 ≤ 1/2d. Hence 3d((d+1) log(1+1/d)−1)
is between 3/2− 1/2d and 3/2.

Meanwhile 1/(24n + 1) < r2n < 1/24n, and 1/(12n + 1) < rn < 1/12n,
so 1/(24n + 1) − 1/12n < r2n − rn < 1/24n − 1/(12n + 1). Hence θ is between
3/2−1/2d+6d(1/(24n+1)−1/12n) = 1−(d2+12d+13)/(24d3+50d2+26d) > 0
and 3/2 + 6d(1/24n− 1/(12n+ 1)) = 1 + (8d+ 7)/(12d2 + 26d+ 14) < 2. ut

Theorem 3.9. Let d be a positive integer. Let L be a d-dimensional lattice. Let
M be a spherical model of L. Write e = exp 1. Then min{||x||2 : x ∈M − {0}} ∈
(1 + o(1))(d/2πe)1/2(detL)1/d as d→∞.

For comparison, the minimum nonzero length in a random determinant-1
dimension-d lattice with the invariant distribution is (1+O((log d)/d))(d/2πe)1/2

with probability 1 − o(1) as d → ∞; see Section 2. Figure 3.10 compares many
identical-determinant lattices for d = 2 to many samples from a spherical model.

Proof. Define LR as the R-vector space generated by L. Map LR isometrically
to Rd; this maps L to a d-dimensional lattice in Rd with determinant detL, and
maps M to a spherical model of that lattice. It thus suffices to consider the case
L ⊆ Rd.

Abbreviate min{||x||2 : x ∈M − {0}} as λ1(M). By Theorem 3.6, λ1(M) =
(2π−d/2(d/2)! detL)1/d. By Theorem 3.8, (d/2)! = (πd)1/2(d/2e)d/2eθ/6d for

some θ ∈ R with 0 < θ < 2. Hence λ1(M) = eθ/6d
2

(4πd)1/2d(d/2πe)1/2(detL)1/d.

The first factor eθ/6d
2

converges to 1 as d→∞ since 0 < θ < 2; the second factor
(4πd)1/2d also converges to 1; so λ1(M) ∈ (1 + o(1))(d/2πe)1/2(detL)1/d. ut
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Fig. 3.10. Dots in top picture: 50 lattices L in dimension d = 2. Shortest nonzero
vectors are highlighted. Dots in bottom picture: samples from a spherical model M
of each L. Circles in bottom picture: distribution of M , independent uniform random
circle points and their negatives. Circle j has radius proportional to j1/2, with constant
of proportionality set so that limr→∞ #(M ∩ rB)/#(L ∩ rB) = 1.
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3.11. Using a spherical model to predict the effectiveness of reduction.

Consider any nonzero vector ν ∈ Rd. Theorem 3.13 describes, for α > 0, the
probability that a uniform random vector µ of length 2α||ν||2 reduces ν, i.e.,
that ||ν − µ||2 < ||ν||2. The probability is the ratio between the (d− 1)-volume
of a spherical cap (see Definition 3.12) and the volume of the sphere. This ratio
is easy to analyze by standard techniques; see Section 3.14.

In particular, say ±µ are the shortest nonzero vectors in a spherical model of
L. Theorem 3.6 says what the length r of µ is, and then comparing r to ||ν||2 says
what α is, and then Theorem 3.13 expresses the reduction probabilities for ±µ
in terms of spherical-cap volumes. Similar comments apply to all short nonzero
vectors in a spherical model, not just the shortest.

Definition 3.12. Let d be a positive integer. Let α be a real number. The α-cap
of the unit (d − 1)-sphere, denoted Capd−1α , is {x ∈ Rd : ||x||2 = 1, x1 > α}
where x1 is the first coordinate of x.

For example, the cap is empty for α ≥ 1; the entire unit sphere for α < −1;
the “right half” of the sphere for α = 0; and the set of (x1, . . . , xd) ∈ Rd such
that x21 + · · · + x2d = 1 and x1 > 1/2 for α = 1/2. (Evidently the cap-wearer is
lying flat on the sofa.)

Theorem 3.13. Let d be a positive integer. Let r be a positive real number. Let
µ be a uniform random element of {x ∈ Rd : ||x||2 = r}. Let α be a positive real
number. Let ν be an element of Rd with ||ν||2 = r/2α. Then the probability that

||ν − µ||2 < ||ν||2 is (Vold−1 Capd−1α )/(2 Vold−1 Capd−10 ).

Proof. Define x = µ/r. Then x is a uniform random point on the unit (d − 1)-
sphere.

Define y = ν/r. Then ||y||2 = 1/2α. Also ||ν − µ||2 < ||ν||2 exactly when
||y − x||2 < ||y||2.

We have ||y||22 = y · y and ||y − x||22 = (y − x) · (y − x) = y · y − 2y · x+ 1, so

||y − x||22 < ||y||
2
2 exactly when 2y · x > 1.

Define z = 2αy. Then ||z||2 = 1, and 2y · x > 1 exactly when z · x > α.
The desired probability is thus the probability that a uniform random point x

on the unit (d−1)-sphere satisfies z·x > α, where z is another point on the sphere.
This probability is invariant under rotations of z, so assume without loss of
generality that z = (1, 0, . . . , 0). Then z ·x is the first coordinate of x, so z ·x > α
exactly when x ∈ Capd−1α . The probability that this occurs is the volume ratio
between Capd−1α and the (d−1)-sphere: i.e., (Vold−1 Capd−1α )/(2 Vold−1 Capd−10 ).

ut

3.14. Spherical-cap ratios: computations and asymptotics. In general,
spherical-cap volumes do not have formulas as simple as the ball volume in
Theorem 3.1, but they are nevertheless easy to compute to any desired precision
for any specified α and d. One approach is to compute the volumes using standard
integration software, as suggested in the lattice context in [20, Section 3.2] and
[92, page 66], but it is simpler and faster to use a standard equation relating the
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volume ratio to the “beta distribution”, as suggested in the lattice context in [15,
page 50]. Theorem 3.17(2) reviews this equation. The same equation makes it
easy to see, within a Θ(d) factor, asymptotics of the ratio for fixed α as d→∞;
see Theorem 3.18.

Definition 3.15. Let x, a, b be real numbers with a > 0, b > 0, and 0 ≤ x ≤ 1.
Then the incomplete beta function at x with parameters a, b, denoted
B(x; a, b), is

∫ x
0
ta−1(1− t)b−1 dt.

Theorem 3.16. Let x, a, b be real numbers with a > 0, 0 < b ≤ 1, and 0 ≤ x ≤
1. Then xa/a ≤ B(x; a, b) ≤ xaB(1; a, b).

Proof. If x = 0 then xa = 0 and B(x; a, b) = 0. For x > 0, substitute t = xu into
B(x; a, b) =

∫ x
0
ta−1(1− t)b−1 dt to see that

B(x; a, b) =

∫ 1

0

(xu)a−1(1− xu)b−1x du = xa
∫ 1

0

ua−1(1− xu)b−1 du.

If 0 < u < 1 then 1 > 1− xu ≥ 1− u > 0 so 1 ≤ (1− xu)b−1 ≤ (1− u)b−1 since

b− 1 ≤ 0. This gives the lower bound B(x; a, b) ≥ xa
∫ 1

0
ua−1 du = xa/a and the

upper bound B(x; a, b) ≤ xa
∫ 1

0
ua−1(1− u)b−1 du = xaB(1; a, b). ut

Theorem 3.17. Let d be an integer with d ≥ 2. Let α be a real number with
0 ≤ α ≤ 1. Then

Vold−1 Capd−1α =
π(d−1)/2

Γ ((d− 1)/2)
B(1− α2; (d− 1)/2, 1/2) (1)

and
Vold−1 Capd−1α

Vold−1 Capd−10

=
B(1− α2; (d− 1)/2, 1/2)

B(1; (d− 1)/2, 1/2)
. (2)

Proof. See, e.g., [18, “application to integration”]: the integral of g(ν1) over
points ν on the unit (d − 1)-sphere, where ν1 is the first coordinate of ν, is
C
∫ π
0

(sinϕ)d−2g(cosϕ) dϕ, where C = 2π(d−1)/2/Γ ((d − 1)/2). In particular,
take g(c) as 1 for c > α and 0 otherwise, and then substitute t = (sinϕ)2:

Vold−1 Capd−1α = C

∫ arccosα

0

(sinϕ)d−2 dϕ

=
C

2

∫ 1−α2

0

t(d−3)/2(1− t)−1/2 dt

=
C

2
B(1− α2; (d− 1)/2, 1/2).

This is the first equation; the second equation follows immediately. ut

Alternative proof. [64, formula (1)] immediately gives the second equation, and
in combination with Vold−1 Capd−10 = πd/2/Γ (d/2) from [64, p. 1], B(1; a, b) =
Γ (a)Γ (b)/Γ (a+ b), and Γ (1/2) = π1/2 also gives the first equation. ut
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Theorem 3.18. Let d be an integer with d ≥ 2. Let α be a real number with
0 ≤ α ≤ 1. Then

2

π(d− 1)
(1− α2)(d−1)/2 ≤ Vold−1 Capd−1α

Vold−1 Capd−10

≤ (1− α2)(d−1)/2.

Standard techniques give better bounds for large d, but Theorem 3.18 suffices
for this paper. For comparison, [8, Lemma 2.1] states that for “arbitrary” α with
0 < α < 1 the sphere-cap volume ratio is “poly(n) · (

√
1− α2)n” (where “n” is

d) and cites [69, Lemma 4.1] for this; but [69, publisher version, Lemma 4.1; full
version, Lemma A.3] states only a lower bound (with an α-dependent (1−α)/d
where Theorem 3.18 has 2/π(d− 1)), not an upper bound.

Proof. Write a = (d−1)/2. The volume ratio is B(1−α2; a, 1/2)/B(1; a, 1/2) by
Theorem 3.17. This ratio is between (1− α2)a/(aB(1; a, 1/2)) and (1− α2)a by
Theorem 3.16.

Substitute t = (sinϕ)2 to see that B(1; a, 1/2) =
∫ 1

0
ta−1(1 − t)−1/2 dt =

2
∫ π/2
0

(sinϕ)2a−1 dϕ. The integrand (sinϕ)2a−1 is at most 1 since 2a − 1 =
d − 2 ≥ 0, so B(1; a, 1/2) ≤ 2(π/2) = π. Hence the volume ratio is between
(1− α2)a/πa and (1− α2)a as claimed. ut

3.19. Varying the model. One could instead define, e.g., a “probabilistic
spherical model” as follows. Define Dj as the distribution of the length of the
jth shortest vector modulo negation in a random dimension-d determinant-1
lattice from the invariant distribution. Take the length of µj/(detL)1/d to have
distribution Dj .

Extrapolating from random dimension-d lattices is obviously not the same as
extrapolating from dimension-1 lattices; Figure 3.10 shows some variation across
lattices for d = 2. However, the theorems reviewed in Section 2 show that each
Dj has probability 1−o(1) of being within a factor 1+o(1) of the spherical-model
prediction as d→∞.

One could argue that a probabilistic spherical model is conceptually superior
to a deterministic spherical model. On the other hand, one could object that a
probabilistic spherical model would not stop µ2 from sometimes being shorter
than µ1, so it would underestimate the length of the shortest nonzero vectors.
A similar difficulty appears if one tries to formalize a ball model.2 One could
define a further model that accounts for the joint distributions: e.g., take the µ1

length distributed as in a random lattice, then take the µ2 length distributed as
in a random lattice conditioned on the length of µ1, etc. Perhaps calculations in
such a model would be feasible.

All of these models, including the model from Definition 3.3, have the same
basic data flow:

• The model is given the dimension and determinant of a lattice.

2 If µj is uniformly distributed in a ball Bj around 0 of volume proportional to j, then
it has probability 1/j of landing in B1. The sum

∑
j 1/j diverges, so one expects

infinitely many points in B1, including points arbitrarily close to 0.
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• Based on this information, the model predicts vector lengths in a way that
matches the behavior of most lattices from the invariant distribution, at least
within 1 + o(1).

• Each vector µj is modeled as pointing in a uniform random direction. These
directions are modeled as being statistically independent across j.

Models can vary in the exact choices of lengths, and in the difficulty of precisely
computing those lengths. This paper uses Definition 3.3 as a concrete example
because that definition makes the exact computations easy, but any model of
this type will produce the same results for an analysis that disregards 1 + o(1)
factors in lengths. This applies, in particular, to the asymptotic length gaps
between spherical models and reality for the lattices covered in Table 1.5: for
each lattice, the spherical-model prediction is d1/2+o(1) times the actual length,
and d1/2+o(1) is the same as (1 + o(1))d1/2+o(1), so predictions in other models
of this type are also d1/2+o(1) times the actual length.

4 Spherical model of the integer lattice

As a warmup for S-unit lattices, this section considers the determinant-1 lattice
L = Zd, quantifies the inaccuracy of spherical-model predictions of the lengths of
short vectors in L, and quantifies the inaccuracy of spherical-model predictions
of the effectiveness of reduction modulo those vectors.

By Theorem 3.9, a shortest nonzero vector µ1 in a spherical model of L has
length (1 + o(1))(d/2πe)1/2 as d → ∞. As for reduction, if α ∈ R and ν ∈ Rd
satisfy 0 < α < 1 and ||ν||2 = ||µ1||2/2α, then the probability that µ1 reduces
ν is the α-cap volume ratio from Theorem 3.13, which, by Theorem 3.18, is
(1 − α2)(1/2+o(1))d as d → ∞ with fixed α. The shortest nonzero vector in a
spherical model has, for example, exp(−Θ(d)) chance of reducing a vector of
length (10 + o(1))d1/2 as d→∞. To have a high chance of reduction one would
need to try exp(Θ(d)) short vectors of similar length.

Do these conclusions regarding a spherical model translate into conclusions
regarding L? No, not even close:

• The lattice has 2d vectors of length 1. This is not length (1+o(1))(d/2πe)1/2

as d→∞.
• This list of 2d vectors achieves perfect reduction modulo L: iterating the

reduction process reduces any lattice point to 0, and reduces a general vector
to the box [−1/2, 1/2]d, with length at most d1/2/2.

See also [68], where Mazo and Odlyzko show that the number of elements of Zd
in a ball of radius (e.g.) 0.51 · d1/2 varies by a factor exponential in d as the
ball’s center varies, contradicting the idea that the volume predicts the number
of lattice points.

The contradictions highlighted in this section are not specific to this paper’s
definition of a spherical model. If a model

• sees only the determinant and dimension of a lattice,
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d actual spherical “random”

1 1.000000 1.000000 1.000000± 0.000000
2 1.000000 0.797885 0.704990± 0.230396
4 1.000000 0.797885 0.694549± 0.177018
8 1.000000 0.915335 0.865216± 0.137234

16 1.000000 1.143101 1.099844± 0.076381
32 1.000000 1.503494 1.474600± 0.059322
64 1.000000 2.039712

128 1.000000 2.817717
256 1.000000 3.933095
512 1.000000 5.522266

1024 1.000000 7.778923

Table 4.2. Numerical examples of how inaccurate spherical models are for Zd. All
entries after the first column are rounded to 6 digits after the decimal point. Second
column, “actual”: minimum length λ1(Zd) of nonzero vectors in Zd. Third column,
“spherical”: minimum length of nonzero vectors in a spherical model of Zd. Fourth
column, “random”, only for d ≤ 32: average and standard deviation of λ1(L) for 128
“random” dimension-d determinant-1 lattices L; see text for details.

• predicts vector lengths in a way compatible with most lattices from the
invariant distribution, and

• predicts the effectiveness of reduction in a way compatible with conjectures
and experiments from the literature regarding “random” lattices,

then the model will necessarily produce incorrect predictions for Zd. Most lattices
L with the same dimension and determinant have, compared to Zd, much larger
λ1(L), and (conjecturally) much worse reduction effectiveness.

4.1. Numerical examples. Table 4.2 tabulates, for d ∈ {1, 2, 4, . . . , 1024},
the exact length (2π−d/2(d/2)!)1/d of each shortest nonzero vector in a spherical
model of Zd. This length is below λ1(Zd) = 1 for d ∈ {2, 4, 8}, but then rapidly
increases.

For comparison, the “random” column in the table shows, for d ≤ 32, statistics
on λ1(L) for 128 lattices L generated as follows: in the Sage mathematics system,
ask sage.crypto.gen_lattice for a pseudorandom dimension-d determinant-
264d integer lattice, and then divide by 264 to obtain a determinant-1 lattice.

The lattice Zd is 8 standard deviations away from “random” experiments for
d = 32. It is not surprising that spherical models are much closer to “random”:
Clozel–Oh–Ullmo [26, Corollary 1.8] and independently Goldstein–Mayer [50]
showed that the distribution of a uniform random dimension-d determinant-D
integer lattice, scaled by D1/d, converges (in the sense of equidistribution) to
the invariant distribution as D → ∞; and the theorems reviewed in Section 2
say that λ1(L) for L from the invariant distribution is usually within 1 + o(1) of
what a spherical model predicts as d→∞.
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5 S-units and S-unit attacks

This section reviews S-units, the S-unit lattice, and S-unit attacks, specifically
for power-of-2 cyclotomic fields. This section starts by reviewing unit attacks for
these fields; unit attacks are a special case of S-unit attacks. See also Section 6.4
for an illustrative example, the case n = 1.

5.1. Notation. Throughout this section, n is an element of {1, 2, 4, 8, 16, . . .};
R is the ring Z[x]/(xn + 1); and K is the ring Q[x]/(xn + 1). The ring K is a
field, since xn+1 is irreducible (in Z[x], hence in Q[x]) for these values of n. This
section views R as a subring of K, automatically applying the natural injection
R → K, whether or not the definitions of quotient rings are set up to ensure
that R ⊆ K. This paper reserves the letter P for nonzero prime ideals of R.

Define ζm = exp(2πi/m) for each positive integer m. For each odd integer j,
there is a unique ring morphism σj : K → C that maps x to ζj2n. The usual
absolute-value function from C to R is written z 7→ |z|. The set of “places” of K
(defined below) is written V , and RV means the set of V -indexed vectors with
entries in R.

5.2. Unit attacks. Say one is trying to find short nonzero elements of an ideal
I of R, and has (perhaps via a fast additive attack) found a nonzero element
v ∈ I, but v is not as short as desired. A unit attack outputs v/u for some unit
u. The point is that v/u is an element of I and is often much shorter than v.

This paper analyzes unit attacks only in the case that I is the principal ideal
generated by v; this is the usual assumption in the literature. Given a principal
ideal I, one can find a generator v using the Biasse–Song [17] adaptation of the
quantum polynomial-time algorithm of Eisenträger–Hallgren–Kitaev–Song [41];
a unit attack then outputs a generator v/u for some unit u. One can think of
the generalization in the previous paragraph as applying the principal case to
the principal ideal vR.

The remaining question is how exactly to reduce a given v to a shorter v/u.
Here one uses a standard number-theoretic logarithm map Log : K∗ → RV . If
n ≥ 4 then the set LogR∗ is a lattice of rank n/2 − 1 ≥ 1 in RV . Short v/u
corresponds to short Log(v/u) = Log v−Log u when shortness of logs is defined
appropriately, so the objective is to find a vector Log u in the unit lattice LogR∗

close to the given Log v.
This might seem circular—the starting problem was to find short nonzero

vectors in a lattice, namely I; the objective now is to find close vectors in a
lattice, namely LogR∗. What makes this work is that LogR∗ is a special lattice.
One can, for example, simply write down n/2 − 1 linearly independent short
vectors in LogR∗, namely

Log(1 + x+ x−1),Log(1 + x3 + x−3), . . . ,Log(1 + xn−3 + x3−n).

See Section 8 for quantification of how short Log(1 + x+ x−1) is, much shorter
than predicted by a spherical model of the unit lattice.

Various close-vector algorithms appear in the literature at this point. For this
paper, it suffices to consider simple reduction (mentioned in Section 1), where
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one tries each Log u in a list of short lattice vectors; if Log v − Log u for some
Log u in the list is shorter than Log v, one replaces v with v/u and repeats. One
can take, for example, the list of ±Log(1 + xj + x−j) for j ∈ {1, 3, . . . , n− 3},
although experiments from Ducas–Plançon–Wesolowski [39] show that taking
more vectors produces noticeably better results; see also Section 8.12.

5.3. S-unit attacks. More generally, an S-unit attack begins with a nonzero
v ∈ I and outputs v/u, but now u is allowed to range over a larger subset of K∗,
specifically the group of S-units.

Here S is a finite set of places, a subset of the set V mentioned above. There
are two types of places:

• The “infinite places” are labeled 1, 3, 5, . . . , n−1, except that for n = 1 there
is one infinite place labeled 1. The entry at place j in Logα is defined as
2 log |σj(α)|, except that the 2 is omitted for n = 1. The set of all infinite
places is denoted ∞, and is required to be a subset of S.

• For each nonzero prime ideal P of R, there is a “finite place” labeled P . The
entry at place P in Logα is defined as −(ordP α) log #(R/P ), where ordP α
is the exponent of P in the factorization of α as a product of powers of prime
ideals. There are many choices of S here. This paper focuses on the following
form of S: choose a parameter y, and take P ∈ S if and only if #(R/P ) ≤ y.

The group US of S-units of K is, by definition, the set of elements u ∈ K∗ such
that the vector Log u is supported on S, i.e., is 0 at every place outside S. The
S-unit lattice is the lattice LogUS , which has rank #S − 1.

This paper analyzes S-unit attacks only in the case that v is an S-generator
of I, meaning that ordP v = ordP I for every P outside S. Again an S-generator
can be found by the [17] adaptation of [41], assuming that I is S-principal, i.e.,
that an S-generator exists. The output v/u is then also an S-generator of I.

Short v/u again corresponds to short Log v − Log u, but care is required to
ensure that v/u ∈ I, i.e., that ordP (v/u) ≥ ordP I for each finite place P ; this
was automatic for unit attacks but is not automatic for general S-unit attacks.
One thus wants to find a vector Log u in the S-unit lattice LogUS that is close
to Log v in the following sense: Log u is close to Log v at the infinite places, and
ordP u is close to but no greater than ordP v − ordP I.

A standard number-theoretic conjecture reviewed in Appendix C provides an
easy way to handle this extra requirement, since it guarantees for each P that
PP is principal; here P is the prime ideal that one obtains from P by applying
the automorphism of R that maps x to x−1. If ordP (v/u) happens to be below
ordP I then one can simply multiply by a generator of PP , increasing by 1 the
exponents of P and P , and repeat as necessary. Sometimes P by itself is principal
and one can skip P .

As for closeness, for this paper it again suffices to consider simple reduction,
where one tries each Log u in a list of short lattice vectors. As a preliminary
step, if ordP v < ordP I for some P , update v by multiplying by a generator of
PP (or, if possible, of P ) as explained above, and repeat this step. Then v ∈ I.
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Next, if some u in the list has v/u shorter than v and v/u ∈ I, replace v with
v/u, and repeat this step. Output the final v.

A full algorithm specification requires considering the possibility that multiple
u in the list have v/u shorter than v. For definiteness, check all v/u and take the
shortest; if there are ties, take the one that came first in the list of u. Similar
comments apply to the order of P for checking ordP v < ordP I.

There is much more to say regarding efficient construction of short S-units,
but for this paper it suffices to consider a brute-force precomputation that finds
all of the short S-units by enumerating all short elements of K (e.g., elements
with bounded numerator and denominator) and checking which elements are
S-units. The point of this paper is to show how inaccurate spherical models
are in predicting (1) the lengths of short S-units and (2) the effectiveness of
reduction modulo short S-units; neither of these analyses depends on the speed
of computing the short S-units.

As an extreme case, if S =∞ (the smallest possible choice, not including any
P ), then US = R∗: the S-units of K are the units of R, the S-unit lattice is the
unit lattice, and S-unit attacks are the same as unit attacks. Extending S to
include more and more prime ideals P gives S-unit attacks the ability to modify
more and more places in Log v.

6 Spherical model of S-units for Q

This section assumes n = 1, takes any number of finite places in S, and quantifies
the inaccuracy of spherical-model predictions of (1) the shortness of vectors in
the S-unit lattice and (2) the effectiveness of reduction modulo those vectors.

The ring R = Z[x]/(x + 1) and field K = Q[x]/(x + 1) are isomorphic to Z
and Q respectively; this section automatically applies these isomorphisms. This
section assumes that S has the form ∞∪ {pZ : prime p ≤ y}, where y ≥ 2.

For example, if y is chosen as 7, then S =∞∪{2Z, 3Z, 5Z, 7Z}, and the set of
S-units is ±2Z3Z5Z7Z. More and more primes appear in S as y increases. S-units
in Z are also known as “y-smooth integers”: e.g., 7-smooth integers are elements
of ±2N3N5N7N, where N = {0, 1, 2, . . .}.

6.1. The importance of considering n = 1. If a nonzero ideal I is provided
as an element v ∈ I such that I = vZ, then one can simply output v as a short
nonzero element, in fact a shortest nonzero element, of I. Why bother studying
S-unit attacks for Z?

There are three answers. First, the question addressed in this paper is the
comparison between spherical models and reality, not the comparison between
S-unit attacks and other attacks. Seeing that spherical models underestimate
the power of S-unit attacks for n = 1 directly answers the n = 1 case of this
question. The availability of simpler attacks for n = 1 has no relevance to this
analysis.

Second, focusing on n = 1 simplifies the analysis, making it as easy as possible
to see that there is a problem with applying spherical models to S-unit lattices.
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Given how well established spherical models are, it is important to begin with
the simplest possible counterexamples.

Third, various failures of spherical models for n = 1 reappear for larger values
of n, as subsequent sections demonstrate. This analysis of n = 1 thus serves as
a stepping-stone towards the analyses for larger n.

6.2. Dimension and determinant of the S-unit lattice. Define L as the
S-unit lattice. Define d as the dimension of L; then d is #S − 1, the number of
primes p ≤ y. By the prime-number theorem, d ∈ (1 + o(1))y/log y as y →∞.

One basis for L is the sequence of d rows in the matrix

log 2 −log 2 0 0 0 · · · 0 0 · · ·
log 3 0 −log 3 0 0 · · · 0 0 · · ·
log 5 0 0 −log 5 0 · · · 0 0 · · ·
log 7 0 0 0 −log 7 · · · 0 0 · · ·

...
...

...
...

...
. . . 0 0 · · ·

log pd 0 0 0 0 · · · −log pd 0 · · ·


where pd is the largest prime ≤y; the first column is for the infinite place, and the
remaining columns are for places 2Z, 3Z, 5Z, 7Z, . . . . Suppressing zero columns
and rescaling produces the following d× (d+ 1) matrix:

1 −1 0 0 0 · · · 0
1 0 −1 0 0 · · · 0
1 0 0 −1 0 · · · 0
1 0 0 0 −1 · · · 0
...

...
...

...
...

. . . 0
1 0 0 0 0 · · · −1


The latter matrix times its transpose is the d × d matrix with 2 along the
diagonal and 1 elsewhere, which has determinant d + 1 = #S, so detL =
#S1/2

∏
p≤y log p; i.e., (detL)1/d is #S1/2d times the geometric average of log p

for the primes p ≤ y. In particular, (detL)1/d ∈ (1 + o(1)) log y as y →∞.

6.3. Length of shortest nonzero vectors. The minimum nonzero length in

a spherical model of the S-unit lattice is (1/2πe+ o(1))1/2(y log y)1/2 as y →∞
by Theorem 3.9. Here are two ways to see that this is an artifact of the model:

• Qualitative: If it were true that λ1(L) ∈ (1/2πe+ o(1))1/2(y log y)1/2 for the
S-unit lattice L then a sufficient increase in y would be forced to make the
shortest S-unit larger. This makes no sense: increasing y does not remove
preexisting S-units.

• Quantitative: ±(log 2,−log 2, 0, 0, 0, . . . ) are the shortest nonzero vectors in
the S-unit lattice. These have constant length as y → ∞, far below length
(1/2πe+ o(1))1/2(y log y)1/2.

Note that there are many further S-units in Z (never mind Q) having lengths
far below (1/2πe + o(1))1/2(y log y)1/2 as y → ∞: one can take further primes
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beyond 2 and further products of primes, appearing with a density guaranteed
by, e.g., the Canfield–Erdős–Pomerance theorem [23, Theorem 3.1].

6.4. Specializing S-unit attacks to n = 1. All ideals of Z are principal.
Define g as the unique positive generator of I. Here are the steps of an S-unit
attack from Section 5, with simple reduction, along with the specialization of
these steps to n = 1 and S =∞∪ {pZ : prime p ≤ y}:

• Begin with an S-generator v of I. Specialization: Begin with a nonzero integer
v such that ordp v = ordp I for all primes p > y. Subsequent adjustments of
v will preserve this property; the factorization of v/g ∈ Q always involves
only primes p ≤ y.

• If v /∈ I, then find some P with ordP v < ordP I, multiply by some generator
of P or PP , and repeat this step. Specialization: If v/g has a denominator,
then find a prime number p in the denominator, replace v with vp, and repeat
this step.

• Now v ∈ I. If v/u is shorter than v and v/u ∈ I for some u in a list of short
S-units, replace v with v/u, and repeat this step.

• Output v.

Regarding the list of short S-units, a brute-force computation of all elements
of the S-unit lattice having (say) 1-norm at most 2 log y will find, in particular,
the d basis vectors listed above, Log p for each prime number p ≤ y. These d
vectors are all that matters for the analysis of effectiveness below. Note that one
can view the handling of denominators as using the negatives of these vectors.

If y ≥ 3 then the same brute-force computation finds more S-units. Any
u =

∏
p≤y p

ep where ||Log u||1 ≤ 2 log y must have
∑
p≤y |ep log p| ≤ 2 log y,

limiting the numerator and denominator of u to y2 and thus limiting u to yO(1)

possibilities. One can optimize the attack to take only the basis vectors and
eliminate further S-units, but the comparison to a spherical model will simply
use the fact that the list size is yO(1).

Regarding effectiveness, it is easy to see that the attack is perfectly effective:
the output must be ±g, a shortest nonzero element of I. Indeed, (1) an algorithm
invariant is that no primes p > y appear in the factorization of v/g; (2) no prime
p ≤ y can appear in the final denominator of v/g, since if it did then v would
have been replaced with vp; and (3) no prime p ≤ y can appear in the final
numerator of v/g, since if it did then v would have been replaced with v/p.
Hence v/g is a unit, either 1 or −1.

6.5. Spherical model of reduction effectiveness. The spherical model
necessarily draws the same conclusions for the S-unit lattice that it drew for
Zd in Section 4, with lengths scaled according to detL. For example, a shortest
nonzero vector in a spherical model has chance exp(−Θ(d)) = exp(−Θ(y/log y))
of reducing a vector of length (10 + o(1))(y log y)1/2 as y →∞.

Again this has the astonishing qualitative feature of claiming that increasing
y, using more S-units, makes S-unit attacks less effective. The claim is wrong.
Quantitatively, the analysis of reduction effectiveness in Section 6.4 shows that
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taking yO(1) = exp(O(log y)) short vectors suffices for perfect reduction of all
lattice points to 0. The effectiveness of these vectors at reducing non-lattice
points does not arise in the algorithm analysis for n = 1: all ideals are principal.

Note that the spherical-model calculations in this paper, as in the literature,
are calculations regarding 2-norms in log space. Shortness is measured differently
inside S-unit attacks. Write v/g as±

∏
p p

ep , and assume all ep ≥ 0; closeness of v
to I is measured by |v/g|, or equivalently by

∑
p ep log p, which is a 1-norm in log

space rather than a 2-norm. However, an attack modified to reduce ||Log(v/g)||2
would still be perfectly effective: if ep > 0 then ||Log(v/gp)||2 < ||Log(v/g)||2. In
the opposite direction, perhaps a spherical-model calculation regarding 1-norm
reduction would produce noticeably different results from 2-norm reduction, but
the point of this paper is to study the application to the S-unit lattice of the
spherical-model methodology from the literature. This methodology consistently
uses 2-norms.

7 An S-reversal phenomenon for every field

The analysis of S-unit attacks for n = 1 in Section 6 explicitly relies on the fact
that all ideals are principal. The comparison to a spherical model of reduction
effectiveness also relies on this fact.

Large cyclotomic fields (and, more generally, large “CM fields”) have large
class numbers: ideals are rarely principal. (Readers not familiar with class groups
should begin with Appendix B.) For example, standard calculations show that
the class number of Q[x]/(xn + 1) is a multiple of 359057 for n = 64, a multiple
of 10449592865393414737 for n = 128, and a multiple of

6262503984490932358745721482528922841978219389975605329

for n = 256. More difficult calculations surveyed in Appendix C have proven,
assuming the generalized Riemann hypothesis (GRH) in the case n = 256, that
these are the exact class numbers, but in any case it is clear that one cannot
expect ideals to be principal when n is large.

It is natural to wonder whether this increase in class numbers could rescue
the applicability of a spherical model to S-unit attacks. What this section shows
is that the answer is no.

Fix n ∈ {1, 2, 4, 8, 16, . . .}. Define R = Z[x]/(xn + 1) and K = Q[x]/(xn + 1).
Take S = ∞ ∪ {P : #(R/P ) ≤ y}. This section shows that a spherical model
produces two absurd conclusions regarding S-unit attacks:

• The shortest nonzero S-unit becomes longer and longer as y →∞.
• The success probability of reduction modulo short S-units converges to 0 as
y →∞.

These statements already appeared in Section 6 for n = 1; this section generalizes
to every n, in particular showing that the statements are not limited to small
class groups.

This section is not specific to power-of-2 cyclotomics. Number-theorist readers
should feel free to select any number field K for this section, with R = OK .
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7.1. Length of the shortest nonzero vectors. Consider a spherical model
M of the S-unit lattice L. By Landau’s prime-ideal theorem [58, §5], the number
of prime ideals P with #(R/P ) ≤ y is (1 + o(1))y/log y as y → ∞, so the
dimension d of L is (1 + o(1))y/log y. The geometric average of log #(R/P ) is
(1 + o(1)) log y, so (detL)1/d ∈ (1 + o(1)) log y.

The shortest nonzero vectors in M have length (1+o(1))(d/2πe)1/2(detL)1/d

by Theorem 3.9, i.e., (1/2πe + o(1))1/2(y log y)1/2, generalizing what Section 6
said for K = Q. In particular, this length converges to ∞ as y →∞.

The calculation here is exactly as in Section 6. Aside from 1+o(1) factors, the
dimension and root determinant are the same functions of y for every number
field; a spherical model sees no other information regarding the lattice; so it is
unsurprising that these conclusions are identical across number fields K.

For comparison, as S increases, the S-unit lattice expands to include logs of
more and more elements of K∗. Pick any u ∈ K∗ with Log u 6= 0; e.g., u = 2.
Take any y large enough to have S include all P with ordP u 6= 0. Then u is an
S-unit, so the shortest nonzero vectors in the S-unit lattice have length at most
the length of Log u. It is therefore not true that the minimum nonzero length of
vectors in the S-unit lattice converges to ∞ as y →∞.

7.2. Effectiveness of reduction. Take T as ∞ and a finite set of nonzero
prime ideals generating the class group. One can bound #T and the ideal norms
as functions of n using, e.g., Bach’s theorem [4, Theorem 4] under GRH, or
Zimmert’s theorem [93] without GRH, but the exact size of T does not matter
for this section.

Find a T -generator v of the input ideal I. Take y ≥ max{#(R/P ) : P ∈ T}.
Consider an S-unit attack that starts from v, takes S =∞∪{P : #(R/P ) ≤ y},
and reduces v modulo the y shortest vectors in the S-unit lattice. Shortness here
can be defined as, e.g., 1-norm or 2-norm; the choice is irrelevant to the following
analysis. It also does not matter how one breaks ties in deciding which y vectors
are shortest.

Consider the shortest nonzero elements of I. Does the S-unit attack find one
of these elements, say α? For small y, perhaps not, but for all sufficiently large y
the answer is yes, even if the number of reduction steps is limited to 1: the ratio
v/α is an S-unit once y is sufficiently large, and is one of the y shortest S-units
once y is sufficiently large, so the reduction tries dividing v by this S-unit v/α
and sees α as desired.

Now consider a spherical model of the S-unit lattice.3 A shortest nonzero
vector in a spherical model has, exactly as in Section 6, chance exp(−Θ(d)) =
exp(−Θ(y/log y)) of reducing a vector of length, e.g., (10 + o(1))(y log y)1/2.
Trying y short vectors improves the chance by a factor at most y, producing
overall success probability exp(−Θ(y/log y)) of reducing a vector of this length.
A longer starting vector would have higher probability of being reduced, but

3 The calculation in this paragraph is consistent with the very recent calculation
in [40]. The big difference is that [40] assumes that the calculation says something
about S-unit attacks, whereas this section—as the result of analyzing how S-unit
attacks actually behave—shows the opposite.
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there is no hope of reducing it to length o((y log y)1/2), or, more extreme, to the
length of α, which is constant as y →∞.

The spherical model thus predicts that increasing y—allowing more and more
places in S, and allowing reduction modulo more and more S-units—somehow
makes S-unit attacks less and less effective: the output length grows with y, and
the chance of finding a shortest nonzero vector in the ideal converges to 0 as
y →∞. In fact, the success probability is 1 for all sufficiently large y.

The same comments apply if one expands the range of targets α ∈ I to allow
any short nonzero vector, rather than considering the extreme case of shortest
nonzero vectors. A short nonzero vector—with any quantification of “short” for
which such a vector exists—will be found by S-unit attacks for all sufficiently
large y. If “short” is not very large then a spherical model incorrectly predicts
that the success probability converges to 0 as y →∞.

7.3. A reason for the reversal. Say one takes a random point in a large
box inside the R-vector space LR generated by the S-unit lattice L, and asks
how effectively this point can be reduced modulo all S-units, i.e., how close this
point is to the S-unit lattice, without regard to the cost of finding a closest
lattice vector. Here are two different interpretations of this question, using two
different probability spaces for the random point:

• The coordinate at each place is a uniform random real number in the specified
interval. Coordinates are statistically independent across places.

• The coordinate at each infinite place is a uniform random real number in
the specified interval, and the coordinate at each finite place P is a uniform
random multiple of log #(R/P ) within the specified interval. Coordinates
are statistically independent across places.

It is easy to see that these interpretations of the question have very different
answers:

• With the first interpretation, reducing this point modulo the S-unit lattice at
best reduces place P to the range [−0.5, 0.5] log #(R/P ). This is on average
(0.25 + o(1)) log #(R/P ) in absolute value, assuming log #(R/P ) ∈ o(W )
where W is the box width. As y increases, there are more and more—and
larger and larger—contributions to the length of the reduced vector.

• With the second interpretation, take T to generate the class group as in
Section 7.2, and assume that T ⊆ S. One can always reduce modulo S-units
to clear all places outside T . One thus obtains a y-independent bound on
the output length—never mind the possibility of reducing even more as y
increases.

This difference is important for the analysis of S-unit attacks. One starts with
an S-generator v of the input ideal. The entry at place P in Log v is a multiple of
log #(R/P ), as in the second interpretation. If one disregards this information
and instead models Log v as a point somewhere in log space, as in the first
interpretation, then the point will almost always be much farther from the S-
unit lattice. This gap is already visible for small S, and was noted for one choice
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of small S by Ducas–Plançon–Wesolowski [39, Section 6.1, “adjusting”], but
merely looking at one choice of S does not make clear how broken the model is;
it is important to understand that the gap grows without bound as S increases.

For comparison, a spherical model is invariant under rotation, so the point
being reduced is equivalent to a uniformly distributed point ν on a sphere. The
distribution of ν is not exactly the box distribution from the first interpretation
above, but it is close enough to produce similar conclusions. Indeed, write ν as
(ν1, . . . , νd) with ν21 + · · · + ν2d = r2. Aside from scaling, the set of ν having
ν1 > α is the spherical cap from Definition 3.12, and the cumulative distribution
function of ν1 is the B ratio in Theorem 3.17(2). What matters here is simply
that ν1 has a smooth enough distribution that, as r →∞, the distribution of ν1
modulo 1 converges to the uniform distribution. Similar comments apply to a
coordinate at place P modulo log #(R/P ). This leads to the incorrect conclusion
that almost all reduced points are farther and farther from the S-unit lattice as
y → ∞. This conclusion relies critically on the inaccurate model of Log v as
having essentially arbitrary real coordinates, a model that fails to account for
the number-theoretic structure of LogK∗.

8 Spherical model of units for power-of-2 cyclotomics

The fact that spherical models of S-unit lattices become less and less accurate
as y increases is sufficient reason to discard spherical models in the context of S-
unit attacks that take y as large as necessary to optimize performance. However,
the literature also considers S-unit attacks with small y. It is thus natural to ask
whether spherical models are accurate for small y.

This section takes the smallest possible y: namely, y = 1. Then S = ∞,
and the S-unit lattice is just the unit lattice. This section computes—assuming
a standard number-theoretic conjecture; see below—what a spherical model of
the unit lattice says regarding (1) short vectors and (2) reduction effectiveness.
This section shows that these conclusions are disproven for various n by (1)
calculations of the log of a cyclotomic unit and (2) statistical experiments with
reduction.

The vector-length calculations in this section, unlike Section 7, are specific
to power-of-2 cyclotomics. Many standard results regarding cyclotomic fields
are used below. To help the reader check the material here against the cited
references, this section expresses results in terms of Q(ζm) and Z[ζm] for m = 2n:

• Start with m ∈ {8, 16, 32, . . .}. (The unit lattice has rank 0 for smaller m.)
• Consider the number field K = Q(ζm). This is isomorphic to Q[x]/(xn + 1)

where n = m/2.
• The ring OK is R = Z[ζm]. This is isomorphic to Z[x]/(xn + 1).

Presumably one would be able to cover more general cyclotomics with some
extra work, but many numbers would change depending on the choice of field.
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m n Reg+
K/(n/4)n/4 spherical model actual length ratio

8 4 0.881374 2.492901 2.492901 1.000000
16 8 0.610449 2.652102 3.766835 0.704066
32 16 0.480772 4.081293 5.673348 0.719380
64 32 0.384226 6.967780 8.189221 0.850848

128 64 0.393293 12.735518 11.719983 1.086650
256 128 0.286233 23.862591 16.663464 1.432031
512 256 0.200698 45.953088 23.631207 1.944593

1024 512 0.202244 90.089629 33.464774 2.692073
2048 1024 0.192272 178.014429 47.358628 3.758860
4096 2048 0.199056 353.577209 66.997907 5.277437

Table 8.3. Numerical examples of how inaccurate spherical models are for unit lattices
for power-of-2 cyclotomic fields, assuming h+ = 1. All entries after the first two columns
are rounded to 6 digits after the decimal point. First column: conductor m of field
K = Q(ζm). Second column: n = m/2, the degree of K. Third column: the regulator
Reg+

K of K+ divided by (n/4)n/4. Fourth column, “spherical model”: minimum nonzero
length in spherical model of the unit lattice of K. Fifth column, “actual length”: length
of a nonzero vector in the unit lattice of K, namely Log(1 + ζm + 1/ζm). Sixth column,
“ratio”: fourth column divided by fifth column. Compare Table 4.2.

8.1. A short nonzero vector in the unit lattice. Let m ≥ 8 be a power
of 2. Write u = 1 + ζm + ζ−1m . To see that u ∈ Z[ζm]∗, multiply by 1 + ζ3m + ζ6m +

· · · + ζ
2(m2−1)
m and use ζ

m/2
m = −1. Now Log u is a nonzero vector in the unit

lattice; Theorem 8.2 calculates the length of this vector.

Theorem 8.2. Let m ≥ 8 be a power of 2. Define K = Q(ζm) and u = 1 +
ζm + ζ−1m . Then

||Log u||2 =

( ∑
j∈{1,3,...,m/2−1}

(2 log |1 + 2 cos(2πj/m)|)2
)1/2

.

Proof. Write n = m/2. Then Log u is 0 at the finite places of K, and(
2 log

∣∣1 + ζm + ζ−1m
∣∣, 2 log

∣∣1 + ζ3m + ζ−3m
∣∣, . . . , 2 log

∣∣1 + ζn−1m + ζ1−nm

∣∣)
at the infinite places of K. By definition ζm = exp(2πi/m) so ζjm + ζ−jm =
exp(2πij/m) + exp(−2πij/m) = 2 cos(2πj/m). ut

The “actual length” column in Table 8.3 tabulates ||Log u||2 for m ≤ 4096,
using Theorem 8.2. As a spot-check, for m = 16, Log(1 + x + x−1) is, at the
infinite places,

(2 log
∣∣1+ζm+ζ−1m

∣∣, 2 log
∣∣1+ζ3m+ζ−3m

∣∣, 2 log
∣∣1+ζ5m+ζ−5m

∣∣, 2 log
∣∣1+ζ7m+ζ−7m

∣∣),
around (2.093065, 1.136717,−2.899464,−0.330318). The sum of the squares of
these entries is ≈3.7668352, matching the m = 16 row in the table.
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The table entries are approximately

0.881, 0.942, 1.003, 1.024, 1.036, 1.041, 1.044, 1.046, 1.046, 1.047

times m1/2. For comparison,
∫ 1/2

0
(2 log |1 + 2 cos 2πt|)2 dt ≈ 2(1.047)2. To see

the connection, approximate the integral by the centered Riemann sum

2

m

∑
t∈{1/m,3/m,...,(m/2−1)/m}

(2 log |1 + 2 cos 2πt|)2

=
2

m

∑
j∈{1,3,...,m/2−1}

(2 log |1 + 2 cos(2πj/m)|)2 .

The following theorems formalize this connection precisely enough to show that
||Log u||2 ∈ m1/2+o(1). The easy part is the lower bound, Theorem 8.4. The
upper bound, Theorem 8.5, requires some care, since the integrand is ∞ at
t = 1/3. Splitting the range of summation in each theorem into more pieces
would produce tighter bounds.

Theorem 8.4. Let m ≥ 16 be a power of 2. Define K = Q(ζm) and u =
1 + ζm + ζ−1m . Then ||Log u||2 ≥ m1/2/3.

Proof. The quantity cos 2πt decreases from 1 to cos(π/4) = 1/21/2 as t increases
from 0 to 1/8, so 1+2 cos 2πt decreases from 3 to 1+21/2, so 2 log |1 + 2 cos 2πt|
decreases from 2 log 3 to 2 log(1 + 21/2).

There are m/16 choices of j ∈ {1, 3, . . . ,m/8− 1}. Write t = j/m; then 0 <
t < 1/8, so 2 log |1 + 2 cos(2πj/m)| = 2 log |1 + 2 cos 2πt| > 2 log(1+21/2) > 4/3.
Hence ∑

j∈{1,3,...,m/8−1}

(2 log |1 + 2 cos(2πj/m)|)2 ≥ m

16

(
4

3

)2

=
m

9
.

Use Theorem 8.2: ||Log u||22 =
∑
j∈{1,3,...,m/2−1}(2 log |1 + 2 cos(2πj/m)|)2 ≥∑

j∈{1,3,...,m/8−1}(2 log |1 + 2 cos(2πj/m)|)2 ≥ m/9. ut

Theorem 8.5. Let m ≥ 16 be a power of 2. Define K = Q(ζm) and u =
1 + ζm + ζ−1m . Then ||Log u||2 ≤ m1/2 logm.

Proof. Abbreviate j/m as t. This proof partitions the range of j in the sum in
Theorem 8.2, namely the set {1, 3, 5, . . . ,m/2− 1}, into three parts, and shows
for each part that log |1 + 2 cos(2πj/m)| = log |1 + 2 cos 2πt| is between −logm
and logm. The sum of (2 log |1 + 2 cos 2πt|)2 over all m/4 values of j is thus at
most m(logm)2 as claimed.

The parts are defined as follows. Write X for the largest odd integer ≤m/3,
and Y for the smallest odd integer >m/3. If m is a power of 4 then m ∈ 4 + 6Z,
X = (m−1)/3, and Y = X+2 = (m+5)/3; otherwise m ∈ 2+6Z, X = (m−5)/3,
and Y = X + 2 = (m+ 1)/3. In both cases X ≤ (m− 1)/3 and Y ≥ (m+ 1)/3.



30 Daniel J. Bernstein and Tanja Lange

The first part is {1, 3, 5, . . . ,m/4− 1}; the second part is {m/4 + 1, . . . , X}; the
third part is {Y, . . . ,m/2− 1}.

Part 1: j ∈ {1, 3, 5, . . . ,m/4− 1}. Here 0 < 2πt < π/2, so 0 < cos 2πt < 1, so
1 < 1 + 2 cos 2πt < 3, so 0 < log |1 + 2 cos 2πt| < log 3 < logm as desired.

Part 2: j ∈ {m/4 + 1,m/4 + 3, . . . , X}. Then 1/4 < t ≤ X/m ≤ (1− 1/m)/3
so π/2 < 2πt ≤ 2π(1− 1/m)/3 < 2π/3.

The derivative of cosx is − sinx, which increases from −1 to −31/2/2 as x
increases from π/2 to 2π/3. This implies that cosx is decreasing for x between
π/2 and 2π/3, so 0 > cos 2πt ≥ cos(2π(1 − 1/m)/3). This also implies that
cos(2π(1 − 1/m)/3) ≥ cos(2π/3) + (31/2/2)2π/3m = −1/2 + π/31/2m. Hence
1 > 1 + 2 cos 2πt ≥ 2π/31/2m, so 0 > log |1 + 2 cos 2πt| ≥ log(2π/31/2m). This
implies

∣∣log |1 + 2 cos 2πt|
∣∣ ≤ log(31/2m/2π) < logm as desired.

Part 3: j ∈ {Y, . . . ,m/2− 1}. Then (1 + 1/m)/3 ≤ Y/m ≤ t < 1/2 so 2π/3 <
2π(1 + 1/m)/3 ≤ 2πt < π. Again cos is decreasing, so cos(2π(1 + 1/m)/3) ≥
cos 2πt > −1.

We have 2π/3 < 2π(1+1/m)/3 ≤ 2π(17/16)/3 since m ≥ 16. On this interval,
− sinx increases up to − sin(2π(17/16)/3) < −3/4, so cos(2π(1 + 1/m)/3) ≤
cos(2π/3) − (3/4)(2π/3m) = −1/2 − π/2m, so −1/2 − π/2m ≥ cos 2πt > −1,
so π/m ≤ |1 + 2 cos 2πt| < 1, so log(π/m) ≤ log |1 + 2 cos 2πt| < 0. Hence∣∣log |1 + 2 cos 2πt|

∣∣ ≤ log(m/π) < logm as desired. ut

8.6. A basis for the unit lattice. Again assume that m ≥ 8 is a power
of 2, and write n = m/2. The standard number-theoretic conjecture mentioned
above says that h+m = 1. Here h+m is by definition the class number of the field
K+ = Q(ζm + ζ−1m ) = R∩Q(ζm). Appendix C summarizes the existing evidence
for this conjecture—including proofs for all m ≤ 256, a proof under GRH for
m = 512, constraints on any primes dividing h+m, and class-group heuristics
suggesting that h+m should be small.

The unit lattice L = LogR∗ has rank d = n/2 − 1. Theorem 8.7 reviews a
textbook basis for the logs of the “cyclotomic units”; if h+m = 1 then this is a
basis for L.

Theorem 8.7. Let m ≥ 8 be a power of 2. Define K = Q(ζm); R = Z[ζm]; and
L = LogR∗. Then

Log(1 + ζm + ζ−1m ),Log(1 + ζ3m + ζ−3m ), . . . ,Log(1 + ζm/2−3m + ζ3−m/2m )

are linearly independent vectors in L, and are a basis for L if h+m = 1.

Proof. Write n = m/2, K+ = R ∩ K, and U+ = O∗K+ . In this proof, Log is
always the K logarithm map, not the K+ logarithm map.

Define C+
m = U+ ∩ (−1)ZζZm(1 − ζm)Z(1 − ζ2m)Z · · · (1 − ζm−1m )Z. This is the

group of “cyclotomic units” of K+. See, e.g., [89, Section 8.1].
Since m is a power of 2, the group C+

m is generated by −1 and the conjugates
of 1 + ζm + ζ−1m . To see this, take g = −3 in [89, Remark after Proposition 8.11].

These conjugates are 1 + ζjm + ζ−jm for j ∈ {1, 3, 5, . . . , n− 1}. Hence LogC+
m

is generated by b1, b3, b5, . . . , bn−1, where bj = Log(1 + ζjm + ζ−jm ). The sum
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b1 + b3 + b5 + · · ·+ bn−1 is 0 (since the product of conjugates is ±1), so LogC+
m

is generated by b1, b3, b5, . . . , bn−3, omitting bn−1.
Since m is a prime power, C+

m has index h+m inside U+ by a theorem of
Kummer. See, e.g., [89, Theorem 8.2]. The lattice LogC+

m thus has finite index
inside LogU+, and the index is 1 if h+m = 1.

Since m is a prime power, R∗ = (−1)ZζZmU
+. See, e.g., [89, Corollary 4.13],

with the notation of [89, Theorem 4.12]. Consequently L = LogR∗ = LogU+.
By Dirichlet’s unit theorem, L is a lattice of rank n/2−1. Hence LogC+

m, as a
sublattice of finite index, also has rank n/2−1. This sublattice is generated by bj
for the n/2− 1 values j ∈ {1, 3, 5, . . . , n− 3}, so these bj are a basis for LogC+

m.
In particular, these bj are linearly independent as claimed; and if h+m = 1 then
LogC+

m = L so these bj are a basis for L as claimed. ut

8.8. Computing the determinant of the unit lattice. Assume h+m = 1.
From the above description of a basis, one can easily calculate detL to any
desired precision for any given m.

Write d = n/2−1. Note that L is not a full-rank lattice, even if one suppresses
all the zeros at finite places: there are d+1 = n/2 infinite places, and L has rank
only d, so one cannot simply compute a determinant of the basis matrix B. One
can, however, compute detL as the square root of the determinant of the d× d
product of B and its transpose.

More traditional is to compute the “regulator” RegK—by definition this is
the absolute determinant of a d× d matrix obtained from B by removing some
coordinate of Rd+1—at which point detL = (n/2)1/2 RegK .

A faster formula for prime-power cyclotomics says that the regulator Reg+
K of

the group C+
m in the proof of Theorem 8.7 is ±

∏
χ

∑
a χ(a) log |1− ζam|, where

χ runs through nontrivial characters of (Z/m)∗ and a runs through integers
between 1 and m/2 coprime to m. See, e.g., [89, page 145]. One then has RegK =
2n/2−1 Reg+

K by [89, Lemma 4.16] and [89, Corollary 4.13] since m is a power of
2, and again detL = (n/2)1/2 RegK . The regulator examples in Table 8.3 were
computed in this way. The examples for m ≤ 128 were double-checked in another
way using bounds [51, Corollary 2.4] from Grenié–Molteni, assuming GRH.

8.9. Minimum length of nonzero vectors in a spherical model of the
unit lattice. Again assume h+m = 1. The following calculations quantify the
minimum length of nonzero vectors in a spherical model M of the unit lattice
L = LogR∗. The calculations begin with exact calculations for various small
values of m, and conclude with Theorem 8.10, which shows that the minimum
length of nonzero vectors in M grows as m1+o(1), much larger than the m1/2+o(1)

length of Log u ∈ L calculated in Section 8.1.
The shortest nonzero elements of M have length (2π−d/2(d/2)! detL)1/d by

Theorem 3.6. The “spherical model” column in Table 8.3 tabulates these lengths.
The whole table took just a few minutes of computation on one laptop core,
including high-precision interval arithmetic to protect against rounding errors.
Appendix F presents some spot-checks.

Within the table, the spherical-model predictions are below ||Log u||2 for m ∈
{16, 32, 64}, but above ||Log u||2 for m ≥ 128, with a ratio growing with m.
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Beyond the table, the following back-of-the-envelope calculations suggest that
the spherical-model length grows as Θ(m): if Reg+

K ≈ (n/4)n/4 then RegK ≈
nn/4, so detL ≈ nn/4, so (detL)1/d ≈ n1/2, so the length is approximately
(n/4πe)1/2n1/2 = n/(4πe)1/2.

The following theorem makes the same calculations sufficiently precise to show
that the spherical-model length grows as m1+o(1), and thus that the ratio grows
as m1/2+o(1), under the assumption h+m ∈ mo(m), which of course follows from
the assumption h+m = 1. One can use standard techniques (see generally [89,
Chapter 11]) to prove tighter bounds than m1+o(1), but this theorem suffices
for demonstrating the asymptotic inaccuracy of spherical models of the unit
lattice, on top of Table 8.3 demonstrating (with higher precision) the inaccuracy
of spherical models for concrete sizes.

Theorem 8.10. Let m ≥ 8 be a power of 2. Define K = Q(ζm); R = Z[ζm];
and L = LogR∗. Let M be a spherical model of L. Assume that h+m ∈ mo(m) as
m→∞. Then min{||x||2 : x ∈M − {0}} ∈ m1+o(1).

Proof. Define K+ = R∩K. Write RegK as the regulator of K, and Reg+
K as the

regulator of K+. Also write n = m/2 and d = n/2− 1.
Write ∆ for the absolute value of the discriminant of K. Then ∆ = (m/2)m/2

by [89, Proposition 2.1].
Write ∆+ for the absolute value of the discriminant of K+. Then ∆+ =

(m/2)m/4/2 by [61, Theorem 3.8].
By the Brauer–Siegel theorem, log h+m Reg+

K ∈ (1/2 + o(1)) log∆+. See, e.g.,
[89, page 44, bottom paragraph]. The notation for ∆+ in [89] is “d+n ” where
“n” in context is m; also, [89] says o(log∆) instead of o(log∆+), but this is
equivalent.

Note that log∆+ = (m/4) log(m/2) − log 2 ∈ (1/4 + o(1))m logm, and by
assumption log h+m ∈ o(m logm), so log Reg+

K ∈ (1/8 + o(1))m logm.
Next RegK = 2n/2−1 Reg+

K (by [89, Lemma 4.16] and [89, Corollary 4.13], as
mentioned above), so log RegK = (n/2−1) log 2+log Reg+

K ∈ (1/8+o(1))m logm.
Similarly, detL = (n/2)1/2 RegK , so log detL ∈ (1/8 + o(1))m logm. Also d ∈
(1/4 + o(1))m, so (1/d) log detL ∈ (1/2 + o(1)) logm. Note that log(d/2πe) ∈
(1 + o(1)) logm.

The shortest nonzero vectors in M have length (1+o(1))(d/2πe)1/2(detL)1/d

by Theorem 3.9. The log of the length is log(1 + o(1)) + (1/2) log(d/2πe) +
(1/d) log detL ∈ (1 + o(1)) logm as claimed. ut

8.11. Effectiveness of reduction modulo short units: context. There is
one remaining task: quantifying how inaccurately spherical models predict the
effectiveness of reduction inside unit attacks. This paper’s quantification consists
of the statistical experiments for various m presented in Section 8.12.

Unit-attack experiments are not new. See, e.g., the software from Schanck [83];
for more context see Appendix D. However, the existing experiments were not
designed to support comparisons to spherical models, and trying to base such
comparisons upon the previous literature seems harder than carrying out new
experiments directly on point.
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Qualitatively questioning heuristics for the effectiveness of reduction modulo
the unit lattice is also not new: Ducas–Plançon–Wesolowski [39, Section 4.1]
wrote “those heuristics are most likely invalid for the lattices at hand which
are somewhat close to orthogonal”. However, this was not quantified in [39],
and did not stop [40] (which shares an author with [39]) from applying such
heuristics to S-unit attacks. The word “somewhat” in [39] suggests a perception
of a medium-sized issue, large enough that measuring it would have been visible
in the concrete numbers presented in [39], but not large enough to influence the
“exp(−subexp(n))” statement in [40] when #S is “subexp(n)”.

Recall from Section 7 that the notion of reduction effectiveness converging to
0 as S increases cannot be correct—raising the question of what went wrong in
the steps that led to this notion. The “most likely . . . somewhat” guess from [39]
was certainly not a clear, quantified statement of how wrong spherical models
are for the case of unit lattices. This gap in the literature is addressed by the
experiments in Section 8.12.

8.12. Effectiveness of reduction modulo short units: analysis. Let ν
be a nonzero vector in LR, the R-vector space generated by L = LogR∗. Let α
be a real number with 0 < α < 1. Let µ be a uniform random vector of length
2α||ν||2 in LR. By Theorem 3.13, the probability that µ reduces ν is the volume
of the α-cap of the (d − 1)-sphere divided by the volume of the (d − 1)-sphere.
The probability that one of ±µ reduces ν is twice as large, since µ and −µ
cannot both reduce ν. (One could refer to ±S for a spherical cap S as a pair of
“earmuffs”.)

By definition the nonzero vectors in a spherical model of L are ±µ1,±µ2, . . .
where ||µj ||d2 = 2jπ−d/2(d/2)! detL. Above detL was computed for concrete m,
assuming h+m = 1, and asymptotically as m → ∞, under a weaker assumption.
Given ||ν||2 one can then calculate, for each j, the probability that both µj
and −µj fail to reduce ν. Multiplying over all small j then gives, by statistical
independence of µ1, µ2, . . . , the probability that all short vectors in the model
fail to reduce ν.

It does not seem to be as straightforward to compute the analogous probability
for the vectors ±u1,±u2, . . . in L, even assuming h+m = 1. One can enumerate
all short vectors in L (and state formulas for the vector lengths, generalizing
Theorem 8.2), but these are not statistically independent vectors, and one would
not expect the reduction probabilities to be statistically independent. As an
analogy, if u is one of the standard basis vectors of the lattice Zd, then ±u have
a nonzero chance of failing to reduce an input vector of length 2d1/2, but taking
all d standard basis vectors decreases the failure chance to 0.

The obvious fallback is to carry out experiments. Begin with a nonempty
sequence U of short nonzero vectors in the unit lattice. Statistically sample
points ν on a sphere, and check how often those points are successfully reduced
by ±U . There are many sphere radii of interest here, but it is easy to perform
these statistical calculations for all radii simultaneously:

• Choose N independent uniform random points on the unit sphere.
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• For each point ν, output min{u · u/(2|u · ν|) : u ∈ U}. The denominator can
be 0, and then the quotient is defined as ∞; this occurs with probability 0.

For each λ ≥ 0, a vector λν is reduced by ±u for some u ∈ U if and only if
λ > min{u · u/(2|ν · u|) : u ∈ U}; this is the same calculation as in Theorem 3.13.
Consequently, out of the N points λν on the sphere of radius λ, the number of
points reduced is the number of outputs below λ. Dividing by N gives the desired
statistical estimate for the chance that a uniform random vector of length λ will
be reduced.

The points that are not reduced by ±U are, by definition, the “approximate
Voronoi cell” defined by ±U . One can view the above computation as tracing,
for each ν, the ray {λν : λ ≥ 0} outwards from 0 and seeing when it reaches
the boundary of the approximate Voronoi cell. The corresponding face of the
cell is defined by the (unique with probability 1) vector u ∈ U that minimizes
u · u/(2|u · ν|). It would be interesting to demonstrate an association between
how short u is and how often the u face appears, but collecting overall length
statistics is more efficient and simplifies comparisons to a spherical model.

Figure 8.13 shows, for each m ∈ {16, 32, 64, 128, 256, 512} and for three choices
of sequences U , the distribution of outputs observed in N = 1000 experiments.
These sets U are defined as follows. The blue curve for each m takes

U =

{
Log

ζjm − 1

ζkm − 1
: j ∈ {3, 5, . . . , n− 1}, k ∈ {1, 3, 5, . . . , j − 2}

}
;

then ±U is the same set selected in [39, Section 4.1]. The green curve takes
the same #U but uses fpylll.Enumeration to systematically enumerate short
lattice vectors,4 which almost means that the experiment is defined purely by the
lattice and the specified number of vectors (not by the initial choice of generating
set), except that there might be a dependence on how ties in vector length are
broken; one could eliminate this dependence by considering only #U for which
tie-breaking is not required. The red curve again has the same #U but takes
U as all short vectors in a sample from a spherical model of L. Appendix G
presents some spot-checks of the figure.

A closer look at the vectors found by enumeration shows that the set U used
by the blue curve missed, e.g., Log(1 + ζ2m + ζ−2m ) and other short vectors easily
calculated from subfields, so it is not surprising that the green curve indicates
noticeably better reduction than the blue curve. Compared to the red curve, the
green and blue curves both show more and more advantage in reduction as m
increases from 128 to 256 and then to 512. For m = 512, a vector of length 50 was
reduced in 0/1000 experiments for the red curve, and was reduced in 999/1000
experiments for the green curve; this is overwhelming statistical evidence that
this lattice reduces such vectors much more effectively than a spherical model of
the same lattice.
4 Enumeration is generally perceived as scaling poorly, but was not a problem here.

Perhaps the speed of enumeration—or, to remove dependence on the input basis,
the speed of verifying enumeration output—could serve as another useful metric for
lattice non-randomness.
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0.000
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2.621
3.146
3.670
4.194
4.718
5.243

0% 25% 50% 75% 100%
0.000
2.981
5.963
8.944

11.925
14.907
17.888
20.870
23.851
26.832
29.814

0% 25% 50% 75% 100%
0.000
0.921
1.843
2.764
3.685
4.607
5.528
6.450
7.371
8.292
9.214

0% 25% 50% 75% 100%
0.000
5.519

11.037
16.556
22.074
27.593
33.112
38.630
44.149
49.667
55.186

0% 25% 50% 75% 100%
0.000
1.651
3.301
4.952
6.603
8.253
9.904

11.555
13.205
14.856
16.507

0% 25% 50% 75% 100%
0.000

10.276
20.553
30.829
41.106
51.382
61.659
71.935
82.212
92.488

102.765

Fig. 8.13. For each m ∈ {16, 32, 64} (left, top to bottom) and each m ∈ {128, 256, 512}
(right, top to bottom): Distribution, across 1000 samples of points ν on the unit sphere,
of the maximum λ for which λν is not reduced by ±U . Vertical axis is λ. The sequence
U always has (m/8)(m/4− 1) elements. Blue curve uses Log((ζjm − 1)/(ζkm − 1)) with
odd j, k. Green curve uses U obtained by enumerating all short vectors in the unit
lattice. Red curve uses U obtained by enumerating all short vectors in a sample from
a spherical model of the unit lattice. Vertical axis is scaled to 2.5 times green average.
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54. Adolf Hurwitz. Über die Erzeugung der Invarianten durch Integration. Nachrichten
von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische
Klasse, 1897:71–90, 1897. 7

55. Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque. Fast reduction of al-
gebraic lattices over cyclotomic fields. In Daniele Micciancio and Thomas Risten-
part, editors, Advances in Cryptology—CRYPTO 2020—40th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 17–21, 2020, Proceed-
ings, Part II, volume 12171 of Lecture Notes in Computer Science, pages 155–185.
Springer, 2020. 51

56. Robert Krauthgamer, editor. Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, Jan-
uary 10–12, 2016. SIAM, 2016. 36, 37

57. Thijs Laarhoven. Sieving for closest lattice vectors (with preprocessing). In Roberto
Avanzi and Howard M. Heys, editors, Selected Areas in Cryptography—SAC 2016—
23rd International Conference, St. John’s, NL, Canada, August 10–12, 2016, Re-
vised Selected Papers, volume 10532 of Lecture Notes in Computer Science, pages
523–542. Springer, 2016. https://arxiv.org/abs/1607.04789v1. 3, 4, 4, 50, 50,
50, 50, 50, 51, 53, 53, 54, 54

58. Edmund Landau. Neuer Beweis des Primzahlsatzes und Beweis des Primideal-
satzes. Mathematische Annalen, 56:645–670, 1903. 25
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it is hard for polynomial-time quantum algorithms to approximate the
search version of the shortest vector problem (SVP) in the worst case on
ideal lattices in R to within a fixed poly(n) factor

and concluded from this that any polynomial number of Ring-LWE samples “are
pseudorandom to any polynomial-time (possibly quantum) attacker”.

A.1. Impact of the Ideal-SVP guarantee. The conference and journal
versions of [66] have together been cited 2000 times, according to Google Scholar.
There is a clear path from that paper’s “very strong hardness guarantees” to
proposals of cryptosystems for standardization and deployment:

• Peikert’s 2014 “Lattice cryptography for the Internet” [73, introduction, first
paragraph] stated that “both ring-SIS and ring-LWE enjoy strong provable
hardness guarantees: they are hard on the average as long as the Shortest
Vector Problem is hard to approximate (by quantum computers, in the case
of ring-LWE) on so-called ideal lattices in the corresponding ring, in the
worst case” and characterized this as “good theoretical evidence that ring-
SIS and ring-LWE are a solid foundation on which to design cryptosystems”.

• Bos–Costello–Naehrig–Stebila’s “Post-quantum key exchange for the TLS
protocol from the ring learning with errors problem” [19, introduction, first
paragraph] stated that the paper presents key exchange based on “the ring
learning with errors (R-LWE) problem [LPR13a], which is related to hard
lattice problems”. The paper later clarified “hard lattice problems” by saying
that “the R-LWE problem is related to the SVP on ideal lattices”, and said
that it was presenting “a reformulation of Peikert’s KEM” from [73].

• Within the NIST Post-Quantum Cryptography Standardization Project,
the submission of NewHope by Alkim–Avanzi–Bos–Ducas–de la Piedra–
Pöppelmann–Schwabe–Stebila stated [1, “Justification of security strength”,
“Provable security reductions”] that the decision Ring-LWE problem “is hard
under the assumption that the search version of the approximate shortest
vector problem is hard (in the worst case) on ideal lattices in R, for appro-
priate parameters” and listed this as a reduction “underlying the security of
NewHope-CCA-KEM”. NewHope was developed as an improvement of [19].

A polynomial-time break of polynomial-approximation-factor Ideal-SVP would
render [66, Main Theorem] vacuous, eliminating a core argument for the security
of various cryptosystems. Usually these cryptosystems select cyclotomic fields,
typically power-of-2 cyclotomics, as in the case of NewHope.

It is important to realize that there is a quantification issue rendering [66,
Main Theorem] logically insufficient to guarantee the security of, e.g., NewHope.
The NewHope parameter selection was designed starting with the assumption
that lattice problems are exponentially hard with a particular exponent—see,
e.g., [1, Table 12, “lower bound of 2.292b”]—while [66, Main Theorem] takes only
polynomial-time attacks into account. A theorem guaranteeing a specified level
of exponential security would need to hypothesize exponential security for Ideal-
SVP. (It would also need to quantify various polynomial losses that were not
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quantified in [66]; see [24] and [46].) A subexponential-time break of polynomial-
approximation-factor Ideal-SVP would not render [66, Main Theorem] vacuous,
but it would contradict the stronger “hard lattice problems” claim in [19] and
the “approximate shortest vector problem is hard” hypothesis in [1].

A.2. Paths through the space of cryptanalytic targets. The quantum
polynomial-time break of the cyclotomic case of the Gentry [48] cryptosystem
was the culmination of several steps:

• Shor’s algorithm [84] to compute discrete logarithms.
• Hallgren’s algorithm [52] to find unit groups for constant-degree number

fields.
• The Eisenträger–Hallgren–Kitaev–Song [41] algorithm to find unit groups

for variable-degree number fields.
• The Biasse–Song [17] adaptation to find generators.
• The Campbell–Groves–Shepherd [22] algorithm reducing a generator to a

short generator, using the textbook basis for the cyclotomic units.

If Ring-LWE is breakable, it would not be surprising for the public development
of the break to follow even more steps, one of those steps being a break of
worst-case Ideal-SVP (after all, according to [66], there cannot be a Ring-LWE
attack without a worst-case Ideal-SVP attack) and earlier steps being breaks of
some cases of Ideal-SVP (the same way that the Eisenträger–Hallgren–Kitaev–
Song algorithm was preceded by Hallgren’s algorithm handling some cases). The
public record is consistent with being on this path: what has been happening
recently is S-unit attacks breaking more and more cases of Ideal-SVP.

The same advances have prompted a contrary narrative saying that attacks
against Ideal-SVP are nothing to worry about: there is no known reduction
stating that an Ideal-SVP attack implies a Ring-LWE attack, and what we really
care about is the security of Ring-LWE. The dividing line between Ideal-SVP
and Ring-LWE was described in [75, minutes 61–62] and [2] as a “barrier” to
this line of work. For comparison, the fact that pure unit attacks cannot beat
approximation factor exp(n1/2+o(1)) for worst-case inputs was described in [76,
PDF page 84] and [75, minutes 61–62] and [74, PDF page 75] and [77, minute
45] as a “barrier” (and a “natural barrier” and an “inherent barrier”) to this line
of work, and then this “barrier” was broken. Earlier [32, Section 1] had stated
that “the above-described algorithms . . . apply only to principal ideals” and
characterized this as a “barrier”; this “barrier” was broken too. One has to ask
what procedures are being used to declare these “barriers”, and whether these
procedures are properly controlling cryptographic risks.

From a cryptanalyst’s perspective, it makes sense to begin with Ideal-SVP,
and, within Ideal-SVP, to begin by breaking whichever cases can be broken.
Each advance against Ideal-SVP is important to the vast literature relying on
Ring-LWE not because the advance shows that Ring-LWE is broken but rather
because the advance shows that Ring-LWE is not sufficiently studied. Further
study is essential.

Similar comments apply to Module-SVP and Module-LWE, which, just like
Ideal-SVP and Ring-LWE, are lattice problems for various types of R-modules.
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Langlois–Stehlé [59, Section 1] stated that “M-LWE and M-SIS are obviously no
easier than R-LWE and R-SIS” and “Mod-SIVP can trivially be shown to be no
easier than Id-SIVP”. There is again a quantification issue here—for efficiency,
proposed cryptosystems using higher-rank modules generally use smaller rings,
breaking the logic of [59]—but in any case it is natural for the cryptanalyst to
begin with Ideal-SVP.

B Number fields

Some parts of this paper rely on the following definitions and facts from algebraic
number theory.

B.1. Algebraic numbers. An element α ∈ C is called an “algebraic number”
if f(α) = 0 for some monic polynomial f ∈ Q[x], and is called an “algebraic
integer” if f(α) = 0 for some monic polynomial f ∈ Z[x]. The set of algebraic
numbers in C is denoted Q; the set of algebraic integers in C is denoted Z. One
can show that Q is a subfield of C and that Z is a subring of Q.

For example, i, the usual square root of −1 in C, is in Z since f(i) = 0 for
f = x2 + 1; and (1 + i)/2 is in Q since f((1 + i)/2) = 0 for f = x2 − x+ 1/2.

Beware that most “algebraic integers” are not integers, i.e., not in Z; the
terminology “algebraic integer” violates the rule that adjectives are restrictive.
Number theorists typically replace the terms “integer” and “algebraic integer”
with “rational integer” and “integer” respectively, restoring restrictive adjectives
but not staying consistent with use of the term “integer” outside number theory.

B.2. Number fields. Each subfield K of C is a vector space over Q. One
calls K a “number field” if the dimension of K as a Q-vector space is finite. This
dimension is called the “degree” of K.

One can show that all elements of a number field K are algebraic numbers: i.e.,
K ⊆ Q. Conversely, for every α ∈ Q, the field Q(α) is a number field. Here Q(α)
is, by definition, the smallest subfield of C containing α, i.e., the intersection of
all subfields of C containing α.

In particular, define ζm = exp(2πi/m) for each positive integer m. Then
ζmm = 1, so ζm is an algebraic number, so Q(ζm) is a number field, called the
“mth cyclotomic field”. One can show that the degree of K is #(Z/m)∗, the
number of units in the ring Z/m.

Often the literature defines a “number field” as a field containing Q and having
finite dimension as a Q-vector space. Any such field is isomorphic to a subfield
of C, as a consequence of the fundamental theorem of algebra, so it suffices to
study number fields in C. This appendix defines number fields to be in C.

B.3. Rings of integers. Let K be a number field. Define OK = K ∩Z. This
is the “ring of algebraic integers in K”, or the “ring of integers of K”, or the
“maximal order of K”.

For example, one can show that if K = Q(ζm) then OK = Z[ζm]. Here Z[ζm]
is, by definition, the smallest subring of C containing ζm. If m is a power of 2
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then there is a unique ring isomorphism Z[x]/(xm/2 + 1)→ Z[ζm] mapping x to
ζm, and a unique ring isomorphism Q[x]/(xm/2 + 1)→ Q(ζm) mapping x to ζm.

B.4. Unique factorization of ideals. Define a binary operation I, J 7→
IJ on the set of ideals of OK as follows: IJ is the smallest ideal containing
{αβ : α ∈ I, β ∈ J}. For example, the product of two principal ideals αOK and
βOK is simply αβOK . This operation is commutative and associative, and has
an identity element, namely OK .

One of the fundamental facts about this multiplication operation on ideals of
OK is that each nonzero ideal of OK factors uniquely as a product of powers
of prime ideals of OK . The exponent of P in the factorization of I is denoted
ordP I. One has ordP I = 0 when P does not occur in the factorization. Unique
factorization implies ordP IJ = ordP I + ordP J .

B.5. Unique factorization of elements into ideals. If α ∈ OK−{0} then
ordP α is defined as ordP αOK , the exponent of P in the factorization of the
nonzero principal ideal αOK . Then ordP αβ = ordP α+ ordP β.

There is a unique extension of ordP to a function on all elements of K∗

satisfying ordP αβ = ordP α + ordP β. The point is that each nonzero element
of K can be written as a ratio α/β for some nonzero α, β ∈ OK .

B.6. Ideal classes. Define two nonzero ideals I, J of OK as “equivalent” if
αI = βJ for some nonzero α, β ∈ OK . For example, the ideals 15Z and 17Z of
Z are equivalent, since 17(15Z) = 15(17Z). This is, as the name suggests, an
equivalence relation.

Define ClK as the set of equivalence classes of nonzero ideals of OK . It is easy
to show that multiplication of ideals induces a multiplication operation on ClK ,
and that ClK is a group under this operation, the “class group of K”.

A fundamental fact is that ClK is finite. The cardinality #ClK is the “class
number of K”. For example, the class number of Q is 1, since all nonzero ideals
of Z are equivalent.

B.7. Class numbers of cyclotomic fields. The class number of K = Q(ζm)
is called hm. The class number of R ∩ Q(ζm) = Q(ζm + ζ−1m ) is called h+m. One
can show that h+m divides hm; the quotient is called h−m. See, e.g., [89, Theorem
4.10].

For m ∈ {1, 2} one has K = Q and OK = Z, so h1 = h2 = 1. For m = 4
one has K = Q(ζ4) = Q(i) = {a0 + a1i : a0, a1 ∈ Q} and OK = Z[ζ4] = Z[i] =
{a0 + a1i : a0, a1 ∈ Z}, and with some study of the ideals of OK one can show
that h4 = 1. With more work one can show that h8 = h16 = h32 = 1. However,
h64 = h−64 = 17, and h−m increases rapidly after that, forcing hm = h−mh

+
m to

increase rapidly. See [89, pages 412–420] for a table of h−m values, including m
between powers of 2, and see [89, Theorem 4.20] for asymptotics.
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C Evidence that h+
m = 1 when m is a power of 2

Recall from Appendix B that h+m is the class number of R ∩Q(ζm) where ζm =
exp(2πi/m). A standard conjecture in number theory is that h+m = 1 when m is
a power of 2. What follows is a review of the evidence for this conjecture.

C.1. Prime constraints. A theorem of Weber [90, page 244, third paragraph]
states that hm is odd, i.e., that h−m is odd and that h+m is odd. More recent work
has proven much more here: for example, Fukuda–Komatsu [44] showed that any
prime divisor of h+m must be above 109 and must be in ±1 + 32Z.

C.2. Computations for m ≤ 512. A traditional class-group computation
(via S-units) is feasible for the number field R ∩ Q(ζm) for surprisingly large
values of m. The main result of such a computation is a generator for each small
prime ideal of Z ∩ R ∩ Q(ζm), at which point one is convinced that the class
number is 1, although proving that the class number is 1 is more difficult.

Weber showed that h+m = 1 for m ≤ 16; Cohn [30] proved further constraints
on h+m, and noted that computations published in 1875 by Reuschle [80] already
sufficed to show that h+32 = 1; Bauer [7] briefly reported computations proving,
among other things, that h+64 = 1; Masley [67] verified—with some corrections—
Bauer’s computations; van der Linden [65, page 705] proved that h+128 = 1, and
proved that h+256 = 1 assuming GRH; Miller [71] proved unconditionally that
h+256 = 1, and proved that h+512 = 1 assuming GRH.

C.3. Class-group heuristics. There are well-known conjectures regarding
the distributions of class groups across various families of number fields, notably
the Cohen–Lenstra [29] heuristics, followed by various extensions and corrections
(see, e.g., [5]).

Buhler–Pomerance–Robertson [21] wrote “Long ago, Weber conjectured that
h+(2n) = 1 for all n”; modeled Q(ζm)+ as a random number field satisfying
all known constraints on h+m; and concluded in this model that “the probability
that Weber’s conjecture is true is at least 99.3%”.

Miller [72] built a more sophisticated model, accounting for the h+m restrictions
from [44] and the m = 512 computations from [71], and concluded in this model
that “the probability that the Weber conjecture is true is at least 99.999998%”.

C.4. Is “Weber’s conjecture” due to Weber? Comments are required
regarding the terminology “Weber’s conjecture” used in, e.g., [21].

It is unclear that “Weber’s conjecture” was made by Weber. If the conjecture
actually began with a more recent paper from someone else, then miscrediting
the conjecture to Weber would be overstating another form of evidence, namely
the sheer amount of time since the conjecture was formulated.

Concretely, Weber [91, page 808] labeled the idea h32 = 1 as “zweifelhaft
[dubious]”. Weber knew that h−32 = 1 (see [91, page 802]), so Weber was doubting
that h+32 = 1. This suggests that if Weber ever conjectured that h+m = 1 for all
powers m of 2 then this conjecture would have been after [91].

Some sources—e.g., [30, page 348, fifth paragraph] and [43, page 359, bottom
paragraph]—go further, claiming that Weber actually conjectured that h+64 > 1.
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However, this claim appears to be based on a misreading. A quote analysis
follows, for purposes of (1) ensuring appropriate credit and (2) understanding
what weight, if any, should be assigned to the history.

What [30] claims is that “Weber casually conjectured [7; p. 808] on the basis
of k6 = 17 that h6 > 1”: i.e., conjectured on the basis of h−64 = 17 that h+64 > 1.
The claim in [43] is given without citation, and is immediately followed by a
statement that [30] instead showed h+64 = 1.

What Weber actually wrote in [91, page 808, footnote] was the following:

Da, wie wir gesehen haben, auch der erste Classenzahlfactor = 1 ist, so
ist der Kreistheilungskörper Ω16 einclassig. Es gelten in ihm dieselben
Gesetze der Primzahlen, wie im Körper der rationalen Zahlen. Zweifel-
haft ist dies für den Körper Ω32 und sicher nicht mehr zutreffend im
Körper Ω64, in dem die Classenzahl ein Vielfaches von 17 ist.

[Because, as we have seen, also the first class-number factor is equal to
1, the cyclotomic field Ω16 has a single class. The same laws of prime
numbers apply in it as in the field of rational numbers. This is dubious
for the field Ω32 and certainly no longer applicable to the field Ω64, in
which the class number is a multiple of 17.]

A straightforward reading says that “dies [this]” refers to the property hm = 1
in the immediately preceding statement. Weber correctly says that the property
hm = 1 holds for m = 16; expresses doubt for m = 32 (as noted above, Weber
had calculated h−32 = 1; Weber did not know that h+32 = 1); and correctly says
that the property does not hold for m = 64, since hm is then a multiple of 17
(which Weber knew, since Weber had calculated h−64 = 17).

Now consider the claim in [30] that Weber, on this page, conjectured on the
basis of h−64 = 17 that h+64 > 1. There are no other mentions of 17 in [91, page
808], so the claim must be referring to the quote above. The only mention of 64
is in the statement that “dies” is “sicher nicht mehr zutreffend im Körper Ω64”,
so the claim must be interpreting “dies” not as the property that hm = 1 but
rather as the property that a factor of hm, namely h+m, is 1.

The Weber quote does mention a property of a factor of hm: “der erste
Classenzahlfactor = 1 ist”. Cohn [30, page 347] writes (in another notation)
h+m as the first factor of hm; could have understood Weber’s text “der erste
Classenzahlfactor = 1 ist” as referring to the property h+m = 1; and could have
thought that “dies” was similarly referring to the property h+m = 1. However,
this property is farther back in Weber’s text, and less emphasized, than the
property hm = 1, making it more difficult to explain as the referent of “dies”.
Also, Weber’s “erste Classenzahlfactor” is actually h−m; see [91, page 802].

Another reason that it is implausible to interpret “dies” as the property h+m =
1 is that “sicher nicht” is not a conjecture but a statement of certainty. This
would be an overstatement of Weber’s knowledge with the h+m = 1 interpretation,
whereas the straightforward hm = 1 reading instead says that this is something
that Weber had proven.

Beyond the question of what Weber wrote, Cohn wrote [30, page 361] that
“We still have obtained no evidence to doubt that every” h+m = 1, but also
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wrote [30, page 349] that “we might believe that ultimately” h+m > 1 since there
is a “chain of fields”. Neither of these is labeled as a conjecture.

D Attack credits

This appendix reviews the history of various aspects of unit attacks and, more
generally, S-unit attacks, with the objective of ensuring appropriate credit. Many
sources quoted here predate sources credited in the literature on lattice-based
cryptography for the same ideas. Tracing the history of simple ideas can be very
difficult, and it is likely that there are earlier sources for some of the ideas below.

D.1. Finding a generator. As mentioned in Appendix A, there is a quantum
polynomial-time algorithm by Biasse–Song [17] to find a generator, if one exists,
of an ideal I provided as input. This is an adaptation of a unit-group algorithm by
Eisenträger, Hallgren, Kitaev, and Song [41], which was preceded by a constant-
degree algorithm from Hallgren [52]. More generally, the same techniques find
an S-generator, if one exists.

There are also surprisingly fast non-quantum algorithms for finding unit
groups, generators, etc.—see generally [27, Section 6.5] and [28, Section 7.4]—
with a much longer history (see, e.g., [80]). For purposes of this paper, it suffices
to consider the quantum case.

D.2. Unit attacks: finding a short generator. The idea of a unit attack is
to shorten generators by reducing modulo the unit lattice. The first description
of unit attacks as a threat to lattice cryptosystems was by Bernstein [10] in 2014,
but this does not mean unit attacks were introduced in [10]. On the contrary, [10]
described “this approach to finding generators”—namely, trying to find a short
generator “g” of a given ideal “gR” by first finding some generator “gu” and then
searching for “elements of the lattice LogR∗ close to Log gu”—as “reasonably
well known among computational algebraic number theorists”.

Here is a quote confirming the “reasonably well known” statement from [10].
Cohen’s 2000 textbook “Advanced topics in computational number theory”[28,
pages 375–376] notes that “reducing the size of generators” of the S-unit group
“can be done using variants of the LLL algorithm”, and continues by mentioning
the following method to obtain even shorter generators:

We can reduce even more the size of the γi by replacing γi by γi/ε for
a suitable unit ε, which still gives generators of US(K). To do this, we
multiply γi recursively by very small powers of a generating set of the
unit group as long as the size of γi (measured in any reasonable way)
decreases.

The context in the above quote, taking γi as one of the generators of an S-unit
group for some S, obviously does not matter for this reduction algorithm. The
algorithm takes any g ∈ K∗, and repeatedly replaces g by gu for some u in a
specified list as long as this makes g smaller.
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The history is not correctly reported in [78, Section 1], which cites [10] and [22]
(in the opposite order) for the “algorithmic blueprint” of “first using class group
computations to find a generator” and then using the “log-unit lattice to shorten
the latter generator”, and adds a “note” that this was “already suggested in” [79].
The paper [79] was four years after the textbook quote above.

D.3. Simple reduction. The idea of simple reduction is to reduce a vector
v by repeatedly replacing v with some smaller v − u, where u comes from a
database of short vectors. For example, simple reduction modulo the unit lattice
reduces a vector Log v in log space by repeatedly replacing Log v with some
smaller Log(v/u), where u comes from a database of short units.

Aside from notational quibbles about dividing by u versus multiplying by
1/u, this is exactly what was quoted above from Cohen’s 2000 textbook [28]:
“multiply γi recursively by very small powers of a generating set of the unit
group as long as the size of γi (measured in any reasonable way) decreases”. A
small special case would take the generating set U of the unit group to have
LogU = {0,±b1,±b2, . . . ,±bd} where b1, b2, . . . , bd is a basis for the unit lattice,
but “generating set” allows many more possibilities.

For comparison, [39, Section 4.1] says, in different terminology, that simple
reduction was “proposed and analyzed” in much more recent papers: [57], [36],
etc. Formally, the algorithm statement in [57] is more general than in [28] in that
it covers arbitrary lattices, but is less general than in [28] in that it is restricted
to 2-norm while [28] said “measured in any reasonable way”; in any event, the
idea is the same. The unit attacks proposed in [39] (“we propose to use an
approximate Voronoi-cell-based algorithm . . . adapted to our specific setting,
where we wish to minimize some carefully determined meaningful quantities
rather than the Euclidean distance”) are, aside from terminology, examples of
the reduction modulo units that had already appeared in [28].

D.4. Analysis of simple reduction. Sommer–Feder–Shalvi [87] showed in
2007 that “iterative slicing” using a list of “Voronoi relevant vectors”, at most
2d+1 − 2 vectors for a d-dimensional lattice, ensures perfect reduction in the
2-norm. Laarhoven [57] in 2016 gave an analysis concluding, heuristically, that
taking roughly 2d/2 short vectors is necessary and sufficient for the same idea to
find closest vectors in the 2-norm with high probability for a random lattice.

The analyses in [87] and [57] (and [36]) are obviously much more detailed than
the brief “reduce even more” comment in [28]. On the other hand, these analyses
were only for the 2-norm, rather than “measured in any reasonable way”; the
analysis in [87] provides only an upper bound on the list size, not a lower bound;
and the important counterexample Zd shows that some lattices reduce much
more effectively than the heuristic analysis in [57] indicates.

In 2019, Pellet-Mary–Hanrot–Stehlé [78] applied Laarhoven’s analysis to S-
unit lattices (although with non-traditional place weighting; see below), and
in [78, Section 4.2] stated reasons to believe that shortness of the output in
one norm predicts shortness in another norm. It was claimed in [78, Section 1,
“Impact”] that the preprocessing time is “exponential” so the “concrete impact
is limited”. If this claim is understood as referring specifically to the choice in [78]



Non-randomness of S-unit lattices 51

to enumerate an exponential number of short vectors, then the claim is justified,
except for questions regarding exp(Θ(n)) vs. exp(n1+o(1)). However, if the claim
is understood as referring to S-unit attacks more broadly, then the claim relies
implicitly on the unjustified idea that the heuristic lower bounds in [57] for most
lattices are applicable to S-unit lattices.

D.5. Using subfields and automorphisms inside unit attacks. There is
a long history, not reviewed here, of number theorists exploiting subfields and
automorphisms of number fields. For the problem of finding a short generator,
Bernstein [10] in 2014 proposed a “subfield-logarithm attack” that, given I, first
finds short generators of relative norms of I in “proper subfields of the original
number field” and then uses these generators to eliminate some dimensions from
the unit lattice. Subsequent developments of subfield-logarithm attacks include
Bauch–Bernstein–de Valence–Lange–van Vredendaal [6], Lesavourey–Plantard–
Susilo [63], and Biasse–Fieker–Hofmann–Page [16].

D.6. Using cyclotomic structure inside unit attacks. Campbell–Groves–
Shepherd [22] in 2014 wrote the following:

Firstly, we assume that the cyclotomic units have index 1 in the en-
tire group of units O×, which is almost certainly true for the specific
instance of Soliloquy that had been proposed. A simple generating set
for the cyclotomic units is of course known. The image of O× under the
logarithm map forms a lattice. The determinant of this lattice turns out
to be much bigger than the typical log-length of a private key α, so it
is easy to recover the causally short private key given any generator of
αO e.g. via the LLL lattice reduction algorithm.

The analysis in [22], referring merely to the determinant of the lattice and the
shortness of the target, is inadequate. What makes the algorithm work well is
the fact that the simple generating set that one finds in textbooks (e.g., [89,
Proposition 8.11]) consists of short units.

As mentioned in Section 1, there are, under minor assumptions, fast key-
recovery attacks against the cyclotomic case of cryptosystems from Gentry [48],
Smart–Vercauteren [86], Gentry–Halevi [49], and Garg–Gentry–Halevi [45]. The
attacks combine the Campbell–Groves–Shepherd generator-reduction algorithm
with the fast algorithms mentioned above to find a generator in the first place.

Campbell–Groves–Shepherd reportedly carried out experiments to confirm
that their algorithm works well for a wide range of m. These experiments were
double-checked by Schanck, who published his software [83]. Cramer–Ducas–
Peikert–Regev [32] worked out asymptotics for prime-power m.

The Campbell–Groves–Shepherd algorithm is frequently miscredited to [32].
See, e.g., [55, Section 1] (“it is known that by using Cramer et al. result in
cyclotomic fields [9], one can solve it efficiently”).

D.7. Close principal multiples. Bernstein [11] in 2015 proposed handling a
not-necessarily-principal ideal I by finding a principal multiple IJ , with J small,
and then applying a unit attack to IJ :



52 Daniel J. Bernstein and Tanja Lange

This almost demonstrates a perfect match [to [10] searching for “a secret
short nonzero element g” given “the principal ideal gR”] . . . We also
know that the ideal I contains [the target short element]. . . . This means
that there can’t be much gap between [the target short element] and I:
the ratio is some small ideal J , and replacing I by IJ will give us exactly
the desired ideal . . . the condition “IJ is principal” linearly constrains
the exponents in J ’s factorization.

In [12], Bernstein considered specifically Q(ζ512), and evaluated the situation
that “we know the classes of (say) ideals I, P1, P2, . . . , P10, and we want to
search through a range of 2182 possibilities for a principal ideal of the form
IP e11 P e22 · · ·P

e10
10 with small (e1, e2, . . . , e10)”.

Subsequent developments of the close-principal-multiple idea for cyclotomic
fields Q(ζm), by Cramer–Ducas–Wesolowski [33] in 2017 and by Ducas–Plançon–
Wesolowski [39] in 2019, focused on the case that {P1, P2, . . .} is the set of prime
ideals having norm p, where p ∈ 1 + mZ is prime, and used multiplication
by PP to clear denominators. Each vector (e1, e2, . . . ) in a standard number-
theoretic lattice (the Stickelberger ideal) then has the property that P e11 P e22 · · ·
is principal; this lattice is reused in [33] and [39].

The extension of unit attacks to close-principal-multiple attacks is described
in [33, eprint version, page 7, Section 2.2] as a “folklore approach” without
reference to [11] or [12]. The full version [34] of [33] no longer says “folklore”; on
the contrary, it states “To reduce the problem from arbitrary ideals to principal
ideals, we introduce the close principal multiple problem (or CPM): given an
arbitrary ideal a, find an integral ideal b such that ab is principal, and N(b) is
small”. This problem is also described in [39, eprint version, page 9] as having
been “introduced” in [33].

D.8. S-unit attacks. Bernstein [13] in 2016 proposed S-unit attacks as a
generalization of unit attacks:

The idea of
• solving a close-vector problem in the unit lattice, to recover a short
g from any unit multiple ug

generalizes straightforwardly to
• solving a close-vector problem in the S-unit lattice, to recover a short
g from any S-unit multiple ug.

Pellet-Mary–Hanrot–Stehlé [78] in 2019 analyzed the performance of S-unit
attacks, as noted above, and did not cite [13].

D.9. Logarithmic weights in S-unit attacks. Bernstein’s proposal of S-
unit attacks in [13] used the traditional number-theoretic weights for the entries
of Logα, where finite place P has entry −(ordP α) log #(R/P ):

One simply extends the logarithm map in a standard way, taking not
just the logarithms of absolute values at “infinite places” but also the
logarithms of absolute values at all of the “finite places” in S. For ex-
ample, when the field is Q, the absolute value |a/b|∞ is the usual |a/b|;
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the absolute value |(a/b)2e|2 is 1/2e for any odd a, b; the absolute value
|(a/b)3e|3 is 1/3e for any a, b coprime to 3; etc. This generalization of
the logarithm map is concisely reviewed in, e.g., . . .

Pellet-Mary–Hanrot–Stehlé [78] instead took entry −(ordP α)c at place P .
Here c is a constant chosen independently of P .

Bernard–Roux-Langlois [9] presented experiments and rationales indicating
that S-unit attacks with the traditional number-theoretic log #(R/P ) weight
are better than S-unit attacks with a constant weight as in [78]. Modifying [78]
to include the traditional log #(R/P ) is the “main contribution” claimed in [9,
abstract], but the traditional log #(R/P ) was already in the proposal of S-unit
attacks in [13].

E Comparison to existing heuristics

This paper’s definition of a spherical model is intended to formalize existing
heuristics saying how long lattice vectors are and saying that the vectors are
pointing in statistically independent directions. This appendix cites illustrative
examples of these heuristics, compares the heuristics to a spherical model, and
notes various examples of how the heuristics are used.

[53, page 273] says that, by the “gaussian heuristic”, the “expected size of
the smallest vector in a random lattice of dimension n and determinant D lies
between D1/n

√
n/2πe and D1/n

√
n/πe”. The smaller value stated here matches

the spherical-model length, except for a factor 1 + o(1); see Theorem 3.9. The
statement in [53] is for a “random lattice” without specification of the lattice
distribution; the formulas are then applied specifically to various lattices that
appear in attacking NTRU.

As noted in Section 1, [70, Section 2.4] describes the “Gaussian Heuristic” as
saying “that for a given set S and a lattice Λ, we have |S ∩ Λ| ≈ vol(S)/det(Λ)”
assuming S is “nice”; [70, Heuristic 1] then more narrowly defines the “Gaussian
Heuristic” as saying λ1(L) = ((d/2)!(detL))1/d/

√
π. This matches Theorem 3.6,

except for a factor 21/d ∈ 1 + o(1). This is then used in [70] to analyze the
performance of BKZ.

Similarly, [38, Section 2.3] states “expected value
√
d/(2πe) · (detL)1/d” for

λ1(L), describing this as a consequence of “the Gaussian heuristic”. Another
“consequence of GH” in [38, Heuristic 2], as mentioned in Section 1, states that
(1) there are αd+o(d) lattice points in a ball of radius αλ1(L) and (2) these
lattice points are treated “as being uniformly distributed over the ball”. Note
that almost all points in the unit ball have length 1−o(1) as d→∞, so selecting a
uniform random point in the unit ball is equivalent to selecting a uniform random
point on the sphere for any analysis that sees lengths only up to 1+o(1) factors,
although taking minima across many points requires care; see Section 3.19.

Asymptotics for the probability that u reduces v, in terms of the lengths of u
and v, are stated in [57, Lemma 2] for uniform random points on a sphere. The
conclusions that [57] draws from this regarding the effectiveness of reduction for
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proof.all(False)

m = 128

n = m/2

d = n/2-1

K.<zeta> = CyclotomicField(m)

R = K.regulator()

Rplus = K.subfield(zeta+1/zeta)[0].regulator()

print(Rplus/(n/4)^(n/4))

detL = R*sqrt(n/2)

print((2*pi^(-d/2)*gamma(d/2+1)*detL).n()^(1/d))

Fig. F.1. Sage script to double-check the regulator and spherical-model columns in the
m = 128 row in Table 8.3.

a lattice L (see also [37]) rely on the heuristic stated in [57, Section 2.1] that,
“when normalized, vectors in L follow the same distribution as vectors sampled
uniformly at random from the unit sphere”, along with a “Gaussian heuristic”
for the vector lengths. Regarding terminology, the uniform-random-directions
heuristic in [57] is not described as “Gaussian”, whereas “uniformly distributed
over the ball” in the subsequent paper [38] is presented as part of a “consequence
of GH”.

F Spot-checks of Table 8.3

This appendix presents two spot-checks of Table 8.3. Real numbers displayed
here are rounded to limited precision without further comment.

First, for m = 16 and n = 8, the determinant of the matrix 2.093065 1.136717 −2.899464
1.136717 −0.330318 2.093065
−2.899464 2.093065 −0.330318


is −19.534359, so the regulator RegK of Q(ζm) is 19.534359. The determinant
of the unit lattice is (n/2)1/2 RegK ≈ 39.068729. A 3-dimensional ball of radius
r = 2.652102, the length shown in Table 8.3 for m = 16, has volume (4/3)πr3 ≈
78.137458, which is twice the lattice determinant, exactly where a spherical
model expects to see the shortest nonzero vectors.

Second, as a larger spot-check—assuming the accuracy of Sage’s number-field
computations, notably its regulator function—the script in Figure F.1 takes a
minute on one laptop core specifically for m = 128 and prints results matching
the m = 128 row in Table 8.3. If m is changed to 16 then the same script outputs
2.652102. Beware that the script becomes much slower if m is increased beyond
128 or if proof.all(False) is removed; Sage performs many computations to
check h+m = 1.
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def rho(d,alpha):

T = RealDistribution(’beta’,((d-1)/2,1/2))

return T.cum_distribution_function(1-alpha^2)/2

d = 127

r = 45.953088

alpha = 0.28

while alpha < 0.38:

Pr = 1-prod(1-2*rho(d,j^(1.0/d)*alpha) for j in range(1,8129))

print(’%.6f %.6f’ % (r/(2*alpha),Pr))

alpha += 0.002

Fig.G.3. Sage script to check the red curve for m = 512 in Figure 8.13. See text for
description.

G Spot-checks of Figure 8.13

This appendix presents spot-checks of Figure 8.13. Specifically, this appendix
checks the red and blue curves for m = 512. The further advantage of the green
curve over the blue curve is not necessary for the main point of this paper.

G.1. Cap volumes. The checks below rely on calculating the probability

(Vold−1 Capd−1α )/(2 Vold−1 Capd−10 ) in Theorem 3.13: i.e., the percentage of the
unit (d − 1)-sphere contained in the α-cap of the sphere. One can statistically
estimate this probability by choosing random sphere points as in Section 8.12;
but computing the probability in a different way, specifically via Theorem 3.17,
helps serve as a double-check in case of, e.g., failures in how Section 8.12 was
generating sphere points.

Abbreviate (Vold−1 Capd−1α )/(2 Vold−1 Capd−10 ) as ρd(α) for 0 ≤ α ≤ 1. For
example, ρd(1) = 0; ρd(0) = 1/2; and ρ2(1/2) = 1/3, since 1/3 of the points
(x1, x2) on the unit 1-sphere (i.e., the unit circle) have x1 > 1/2.

The function rho inside the Sage script shown in Figure G.3 computes ρd(α),
given (d, α). This function, based on [15, page 50], uses Sage’s support for the
beta distribution. By definition the cumulative beta distribution function, with
parameters (a, b), maps x to B(x; a, b)/B(1; a, b); dividing by 2 and substituting
(x, a, b) = (1− α2, (d− 1)/2, 1/2) gives ρd(α) by Theorem 3.17.

G.2. Red curve: spherical model. Let L be the unit lattice for m = 512,
i.e., n = 256. This lattice has dimension d = n/2− 1 = 127.

By definition a spherical model M of L has the form {0,±µ1,±µ2, . . .} where
µ1, µ2, . . . are statistically independent uniform random variables in LR subject
to ||µj ||d2 = 2jπ−d/2(d/2)! detL. One then has ||µj ||2 = j1/d||µ1||2. The length
||µ1||2 is approximately 45.953088; see Table 8.3.

Now consider a vector ν of length ||µ1||2/2α with 0 < α < 1. Theorem 3.13
says that µ1 reduces ν with probability ρd(α), and that −µ1 reduces ν with the
same probability. These events are disjoint, for total probability 2ρd(α).
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For example, if α = 0.319118667, then ν has length ||µ1||2/2α ≈ 72, and
ρd(α) ≈ 0.000120578223. For comparison, in Figure 8.13, the 71.935 horizontal
line crosses the red curve for m = 512 around 50%, reporting that around half of
the input vectors in a pool of 1000 vectors of length 71.935 are reduced. This is
a much higher probability than 0.000120578223; but this is also reduction using
many thousands of vectors in M , not just ±µ1.

More generally, by the same theorem, µj reduces ν with probability ρd(j
1/dα).

For example, if again α = 0.319118667, then µ2 reduces ν with probability
ρd(2

1/dα) ≈ ρd(0.320865131) ≈ 0.000110944734; and the 7% longer vector µ8128

reduces ν with probability ρd(81281/dα) ≈ ρd(0.342562234) ≈ 0.0000377783784.
The number 8128 in the previous paragraph is (m/8)(m/4 − 1) = 64 · 127.

Each experiment in Figure 8.13 uses short vectors ±µ1, . . . ,±µ8128.
The probability that all of ±µ1, . . . ,±µ8128 fail to reduce ν is, by statistical

independence,
∏
j(1− 2ρd(j

1/dα)). The full Sage script in Figure G.3 computes

pairs (||µ1||2/2α, 1−
∏
j(1−2ρd(j

1/dα))) for various α, showing the probabilities
of successful reduction for various lengths of ν. The range of α was chosen so
that the probability drops from about 100% to about 0%. The pairs include,
e.g.,

(68.382571, 0.241688), (71.801700, 0.492219), (75.086745, 0.759362);

comparing these to the quartiles in the red curve in Figure 8.13 shows no obvious
discrepancies. Note that, since Figure 8.13 is reporting 1000 experiments, one
expects horizontal deviations above 1%, and comparing probabilities very close
to 0% or 100% is not meaningful.

G.4. Blue curve: Log((ζjm − 1)/(ζkm − 1)). The blue curve uses vectors in
L. Note that L has much shorter vectors than a spherical model M of L predicts.
For example, Log((ζ3m−1)/(ζm−1)) = Log(1+ ζm+ ζ−1m ) since Log ζm = 0; and
Log(1 + ζm + ζ−1m ) has length approximately 23.631207, as noted in Table 8.3,
much shorter than the minimum length 45.953088 of nonzero vectors in M . On
the other hand, this is not enough information to conclude that the 8128 vectors
(modulo negation) used in the blue curve are shorter than those in the model M ,
or, more to the point, that reduction is as effective as reported in Figure 8.13.

The following spot-check recalculates each uj,k = Log((ζjm−1)/(ζkm−1)), and
then takes two approaches to checking the blue curve:

• The first approach reuses the ρd function defined above to compute the
probability that ±uj,k reduces ν, assuming ν is uniformly distributed on a
sphere, and then models these probabilities as independent. This approach
relies only on ||uj,k||2.

• The second approach samples vectors ν to see whether they are successfully
reduced. This approach uses the uj,k vector, not just its length.

As noted in Section 8.12, one would not expect statistical independence of the
reduction probabilities, so the first approach is skating on thin ice. The second
approach has no such issues.
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def rho(d,alpha):

T = RealDistribution(’beta’,((d-1)/2,1/2))

return T.cum_distribution_function(1-alpha^2)/2

m = 512

n = 256

zetam = CC(-1)^(1/256)

d = 127

def isometry(u):

result = []

partialsum = 0

for j in range(d):

result += [sqrt(RR(1+1/(d-j)))*(partialsum/(d+1-j)+u[j])]

partialsum += u[j]

return vector(result)

place = {}

norm = {}

U = []

for j in range(3,n,2):

for h in range(1,n,2):

place[h,j] = 2*log(abs(sum(zetam^(g*h) for g in range(j))))

place[m-h,j] = place[h,j]

norm[j] = sqrt(sum(place[h,j]^2 for h in range(1,n,2)))

for k in range(1,n,2):

u = [place[(h*k)%m,j] for h in range(1,n,2)]

U += [isometry(u)]

print(norm[3])

def reduce(v):

return any((v-u)*(v-u) < v*v for u in U)

vlen = 55

while vlen >= 30:

Pr = 1-prod(1-2*rho(d,norm[j]/(2*vlen)) for j in range(3,n,2))^(m/8)

with seed(31415):

D = SphericalDistribution(dimension=d)

Pr2 = sum(reduce(vlen*D.get_random_element()) for r in range(100))

Pr2 /= 100

print(’%.6f %.6f %.6f’ % (vlen,Pr,Pr2))

vlen -= 1

Fig.G.5. Sage script to check the blue curve for m = 512 in Figure 8.13. See text for
description.
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For each j ∈ {3, 5, . . . ,m− 1}, one has uj,1 = Log((ζjm − 1)/(ζm − 1)) =
Log(1 + ζm + ζ2m + · · · + ζj−1m ). Place h in uj,1, for any h ∈ {1, 3, 5, . . . , n− 1},
is 2 log |1 + ζhm + ζ2hm + · · ·+ ζ

(j−1)h
m |, so

||uj,1||22 =
∑
h

(2 log |1 + ζhm + ζ2hm + · · ·+ ζ(j−1)hm |)2.

The case j = 3 is equivalent to Theorem 8.2.
For each k ∈ {1, 3, 5, . . . ,m− 1}, there is a unique ring morphism K 7→ K

mapping ζm to ζkm. This automorphism acts on LogK∗ as a permutation of the
entries of log vectors, so it preserves the length of log vectors. Applying this
automorphism to uj,1 gives ujk,k, i.e., ujk mod m,k.

Note that ζm−jm − 1 = −ζ−jm (ζjm − 1) so Log(ζm−jm − 1) = Log(ζjm − 1) so
um−j,1 = uj,1. Similarly ujk mod m,k = ujk mod m,m−k. Consequently one can
restrict attention to indices jk mod m and k in {1, 3, 5, . . . , n− 1}. This leaves
(m/4)(m/4 − 1) distinct lattice vectors, which up to negation are exactly the
(m/8)(m/4 − 1) lattice vectors used to define the blue curve. The lengths of
these vectors are m/4 copies of the lengths ||uj,1||2 described above for j ∈
{3, 5, . . . , n− 1}. These lengths are enough information to compute α and thus
ρd(α) for the first approach.

For the second approach, this appendix applies an isometry to embed each
uj,k into Rd, and then checks reducibility of 100 sample vectors separately for
each length, without the merging across lengths described in Section 8.12.

The Sage script in Figure G.5 takes both approaches, and prints out lines such
as 50.000000 0.999948 0.950000 saying that for input of length 50 the second
approach was observed reducing 95 out of 100 vectors while the first approach
predicted 99.9948%. Another output line 43.000000 0.731501 0.480000 is,
for the second approach, consistent with the median of the m = 512 blue
curve in Figure 8.13. Further output lines 46.000000 0.968990 0.780000 and
41.000000 0.458598 0.270000 are, for the second approach, consistent with
the quartiles in the figure. The script also recalculates and prints out the length
23.631207 of Log(1 + ζm + ζ−1m ).

The match between the second approach and the blue curve means that the
spot-check was successful. The mismatch between the first approach and the
blue curve does not indicate a failure of the spot-check, since the first approach
started with a questionable independence model. The mismatch also means that
this spot-check does not serve as a double-check on the calculations in the first
approach; the mismatch could be explained by inaccuracy in the independence
model, but could also be explained by calculation errors. The details of the first
approach are reported here in case this is useful for subsequent investigations of
the accuracy of the independence model.
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