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1 Introduction

The theorem is thought to be true in the classical sense—that is, in
the sense that it could be demonstrated by formal, deductive logic,
although for almost all theorems no such deduction ever took place
or ever will. —1979 DeMillo–Lipton–Perlis [40, page 274]

The standard benchmark for the human labor to transcribe one printed
page of textbook mathematics into machine-verified formal text is one
week, or US$150 per page at an outsourced wage.

—2008 Hales [57, page 1379]

In the most ideal circumstances, an expert can handle approximately
a half page to a page of a substantial mathematical text in a long,
uninterrupted day of formalizing.

—2014 Avigad–Harrison [7, page 75]

When mathematicians say that a theorem has been “proved,” they
still mean, as they always have, something more like: “we’ve reached
a social consensus that all the ideas are now in place for a strictly
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formal proof that could be verified by a machine . . . with the only
task remaining being massive rote coding work that none of us has
any intention of ever doing!” —2019 Aaronson [1]

It’s easy to find examples of papers on computer-checked proofs. Consider,
e.g., [54], a 2013 paper by Gonthier, Asperti, Avigad, Bertot, Cohen, Garillot,
Le Roux, Mahboubi, O’Connor, Ould Biha, Pasca, Rideau, Solovyev, Tassi, and
Théry titled “A machine-checked proof of the odd order theorem”. The odd-order
theorem says that every finite group of odd order is solvable. The original paper
proving this theorem, 1963 Feit–Thompson [44], had 255 pages; for comparison,
[54] reported that its machine-checked proof had more than 150000 lines.

The general publication structure here has two stages: (1) there’s a paper
with a theorem and a traditional-format proof; (2) eventually there’s a separate
paper on a computer-checked proof.

Some mathematicians perceive a paper on computer-checked proofs as rote
work—maybe useful, but not a “real” paper. Often the second paper, perhaps
trying to add evidence against this perspective, says that the second proof fixes
gaps and inefficiencies from the first, increases generality, and, more broadly,
displays increased understanding. It is time-consuming for readers to figure out
how to divide credit between the two proofs.

Now consider, as an alternative, papers with computer-checked proofs, by
which I mean papers that merge the two stages listed above: the first paper,
the one presenting the theorem, also includes a computer-checked proof. This
won’t retroactively happen for a paper that appeared in 1963, but the time-travel
obstacle doesn’t apply to new papers.

There are reasons to think that this single-stage process has fundamentally
better efficiency and better incentives than the two-stage process:

• The author writing the theorem and the traditional-format proof already
knows how the proof works. Most people writing a computer-checked version
of the proof would have to take time to read and understand the proof; the
author is in a better position.

• In cases where the traditional-format proof is wrong, writing a
computer-checked proof will catch the mistake, and doing this as early as
possible will minimize the time wasted by the mistake.

• The author can choose a different writing order to save more time: for
example, first writing the computer-checked proof, and then extracting
various steps to write the traditional-format proof. Computer assistance can
save time for all parts of this process: see, e.g., [48].

• Referees and other readers provided with a computer-checked proof spend
much less time worrying about the possibility that the theorem is wrong: in
the words of 1991 de Bruijn [28], referees “need not bother about correctness
and can concentrate on whether the paper is interesting and new”. The
current situation is that referees checking proofs—or delaying so as to
give the impression that they might be checking proofs—create random,
often annoyingly large, slowdowns in paper acceptance, so publish-or-perish
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authors have a direct incentive to lighten the referee’s load. As 2011
Bundy [31, Section 6.4] puts it: “Their reward for this additional effort would
be a quicker refereeing process and the confidence that no embarrassing error
would be found in their proofs.”

• Readers don’t have to figure out how to divide credit between a
traditional-format proof and a computer-checked proof. The author receives
credit for the whole package.

Readily available “proof assistants” include not just proof-checking software but
also (1) software to help authors construct checkable proofs and (2) libraries
of previously checked proofs. Six proof assistants mentioned later in this report
are Coq, HOL4, HOL Light, Isabelle/HOL, Lean, and Mizar; see [21], [100],
[60], [88], [85], [82], [9], [8], and [37] for more about Coq, HOL4, HOL Light,
Isabelle/HOL, the core Lean 4 language, the Lean math library, the core Mizar
language, the Mizar math library, and a recent open-source reimplementation
of portions of Mizar. (This report, following commonly used terminology, says
“Lean” etc. for the full proof assistants, including the math libraries.)

However, as far as I can tell, papers with computer-checked proofs—see below
for some examples—are much less common than papers on computer-checked
proofs. The elephant in the room, the obvious reason that most mathematicians
today wouldn’t even try to write papers with computer-checked proofs, is
that the literature gives mathematicians the impression that producing a
computer-checked proof is a painful, specialized process. For example:

• Regarding pain, 150000 lines from 15 authors sounds like a terrifying amount
of work—that’s 3000 pages at 50 lines per page, an order of magnitude larger
than the 255 pages of the original paper. This sounds like it easily justifies,
e.g., [1] describing the process as “massive rote coding work”.

• Regarding specialization, having a separate side of the literature where
proof-checking experts write papers on computer-checked proofs makes it
easy to assume that non-experts on proof-checking would be vastly slower
until they have gone through a long training period. This assumption is
reinforced by, e.g., the above quote from [7] saying specifically what an expert
can accomplish.

Does this impression match the actual situation in 2023? Could it be that
half of the proofs that will be published next year are proofs that the authors
would find affordable to computer-check with today’s proof assistants as part of
the paper-writing process, if they were simply made aware that they should try?

I have three preprints online with computer-checked proofs. I’ve also posted
another computer-checked proof where I hope a joint preprint will be online soon.
Section 3 summarizes the time that I spent writing computer-checked proofs for
each of these four papers: in short, a few weeks per paper.

Line counts—my computer-checked proofs are 2150 lines for [13], for example,
and 9951 lines for [17]—are terribly misleading. Readers hearing such line counts
don’t imagine that they’re just a few weeks of work. Section 2 pinpoints reasons
for the gap. (Similar gaps are visible, but not explained, in [67] and [62].)
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Meanwhile the parts of these four papers other than the computer-checked
proofs easily account for a year of work across the four papers. The papers have
non-proof components such as software, but, in each case, coming up with the
theorems in the first place was a major part of the research time. Adding a few
weeks per paper for computer-checked proofs is certainly a noticeable extra cost,
but also an affordable extra cost.

For one of these papers, I proved all theorems using the Lean proof assistant,
and then proved all theorems again using the HOL Light proof assistant. The
experiences were broadly similar, but I observed some differences that saved time
for writing the Lean proofs, and some differences that saved time for writing the
HOL Light proofs. See Section 4. Presumably it would be possible to modify a
proof assistant to save time in both ways.

I also have two recent preprints with theorems without computer-checked
proofs. See Section 5. My current estimate is that extending a proof-assistant
library to cover all the necessary pieces of background would need a few months
of work in each case.

1.1. Related work. My papers with computer-checked proofs are certainly not
the first such papers. Here are examples from several areas of mathematics and
computer science:

• 2006 Harrison [61] proved that consistency of the basic logic used in HOL
Light follows from a large-cardinal assumption, and reported that the proof
was checked by HOL Light. See also [2] for the latest extensions of this result.

• 2018 Buchholtz–van Doorn–Rijke [29] said “We present a development of the
theory of higher groups, including infinity groups and connective spectra, in
homotopy type theory. . . . Most of the results have been formalized in the
Lean proof assistant.” (Converting a proof into a computer-checked version
of the proof is typically referred to as “formalizing” the proof, although this
can be confusing for readers who expect “formal” vs. “informal” to refer to
a full traditional-format proof vs. a mere summary of proof highlights.)

• 2019 Gouëzel–Shchur [56] said “There is a gap in the proof of the main
theorem in the article [5] on optimal bounds for the Morse lemma in
Gromov hyperbolic spaces. We correct this gap, showing that the main
theorem of [5] is true. We also describe a computer certification of this
result.” This certification uses the Isabelle/HOL proof assistant. The paper
explains that the gap was found as part of an attempt to computer-check
an earlier proof—but to me [56] still has a very different flavor from papers
on computer-checked proofs. Other papers presenting corrected proofs of
previously claimed theorems look like this one; this one simply has the extra
feature of bolstering confidence by presenting a computer-checked proof.

• 2019 Strickland–Bellumat [102] said “We study a certain monoid of
endofunctors of the stable homotopy category that includes localizations
with respect to finite unions of Morava K-theories. . . . The combinatorial
parts of this work have been formalised in the Lean proof assistant”.

• 2020 Gouëzel–Karlsson [55] said “A result for subadditive ergodic cocycles is
proved that provides more delicate information than Kingman’s subadditive
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ergodic theorem . . . As a test case for the usability of proof assistants
for current mathematical research, Theorem 1.1 and its proof given
below have been completely formalized and checked in the proof assistant
Isabelle/HOL”.

• 2021 Bloom [24] proved “that any set A ⊂ N of positive upper density
contains a finite S ⊂ A such that

∑
n∈S

1
n = 1, answering a question of

Erdős and Graham”. Reportedly the paper is being updated to include an
appendix describing a Lean-checked proof by Mehta and Bloom. I should
note that [35] says the verification of [24] was “before Bloom had received a
referee’s report for the paper”—which is not the same as saying it was fast
enough to save time for the referee, one of the basic reasons to write papers
with computer-checked proofs.

• 2022 Wang–Zhang–Shao–Koenig [106] proved that a particular compiler
correctly translates programs from a particular variant of the C programming
language to machine language using a “nominal memory model”. This paper
uses the Coq proof assistant (as do many other POPL papers).

• 2023 Topaz [104] said “We present a variant of the fundamental theorem of
alternating pairs which works for arbitrary fields of positive characteristic
p and arbitrary coefficient fields of characteristic not dividing 2 · p. . . . the
proof of Theorem A has been formally verified”. This verification uses Lean.

Some of these are examples I bumped into, and some are examples that people
have helpfully pointed me to.

Note that, as [106] illustrates, papers with computer-checked proofs don’t
necessarily have traditional-format proofs. This might make them look like
papers on computer-checked proofs. I don’t claim that there’s always a sharp line,
but it’s useful to ask whether the main goal of the paper is to computer-check
a theorem from a previous paper; whether there was the initial stage of referees
looking for errors in the original traditional-format proof; and whether there’s
the followup credit battle between computer-checked proof C saying “T didn’t
really prove that” and traditional-format proof T saying “yes, I did, C is just
typing in minor details and nitpicks”.

There are also various examples of theorems that first appeared as
computer-checked theorems and that are clearly worthy of papers, but where
papers haven’t been written, often because the theorems are applied math and
the authors are busy with the applications. If the papers end up being written
then they will be papers with computer-checked proofs. An impressive new
example is Harrison’s CURVE25519_X25519_BYTE_SUBROUTINE_CORRECT from
[64], a HOL Light proof that some fast machine-language software correctly
computes the encryption function for an elliptic-curve cryptosystem; the speed
per se is cutting-edge research, the theorem statement relies on having definitions
of the machine language and of the mathematics, and the proof relies on a wide
range of tools to connect these objects.

Even though there are some examples of papers with computer-checked proofs,
it’s clear to me that most mathematicians today aren’t familiar with the process
of writing computer-checked proofs, and have a very wrong impression of the
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difficulty of the process. So I think there’s value in reporting my own case studies
of the process, and value specifically in challenging the misleading usage of line
counts. I hope to soon see many more authors reporting not just the line counts
but the amount of time used for successfully writing computer-checked proofs
for their own work.

2 A beginner writing computer-checked proofs

I heard about proof-checking software last century, but my first project using
such software was [13], the first of the papers covered in Section 3. This section
explains the process I followed to start that project. The process doesn’t match
any of the proof-assistant tutorials I’ve looked at. This section also explains why
readers should usually disregard line counts for computer-checked proofs.

2.1. Stating theorems. I picked the HOL Light proof assistant, for reasons
discussed in Section 4. As one part of the selection process, I looked at some
random examples of theorems from the HOL Light library.

The basic syntax for theorems in HOL Light is not normal mathematical
writing. Imagine some logician suddenly being in charge of mathematics and
saying that we all have to use special symbols ∧ and ∨ for “and” and “or” since,
well, that’s what logicians do, and, see, the symbols make perfect sense, just like
∩ and ∪ for sets. And that’s just the start. Oops, rewrite: ∧ that’s just the start.

But, okay, a bit of superficial renaming isn’t enough to scare me away. I am
not a wimp. This isn’t that hard to read:

!m n. m MOD n = m <=> n = 0 \/ m < n

Translation: for each m, n ∈ {0, 1, 2, . . .}, we have m mod n = m if and only if
n = 0 or m < n. (As usual, m mod n means the remainder when m is divided
by n.)

The only slightly tricky part of this translation is that definitions in HOL
Light are typically set up to create hypotheses on the input ranges, such as MOD
automatically creating a hypothesis that the inputs are in {0, 1, 2, . . .}. The <=>
is the logician’s⇔, which for me is part of blackboard style anyway, although in a
paper I would write “if and only if”. The \/ (“or”) is the logician’s aforementioned
∨ symbol, and the ! (“for all”) is an extremely rough ASCII approximation to
the logician’s ∀.

Actually, logicians who are serious about Sensible Notation write “for all” as
a big prefix

∧
. See, the semantics of “for all” are really a big “and” operation:

saying that all x ∈ {0, 1, 2} have f(x) = g(x) is the same as saying f(0) = g(0)
and f(1) = g(1) and f(2) = g(2). In other words:∧

x∈{0,1,2}

(f(x) = g(x))⇔ (f(0) = g(0)) ∧ (f(1) = g(1)) ∧ (f(2) = g(2)).

This is attractively parallel to⋂
x∈{0,1,2}

Sx = S0 ∩ S1 ∩ S2.
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The starting point of algebraic logic is saying that ∧ isn’t just parallel to ∩ but,
when interpreted correctly, the same thing.

See how I’ve veered off topic here? Proof-assistant tutorials are full of this.
You’re trying to find out how to use a proof assistant to check your proofs, and
you’re faced with tutorials written by people who can’t stop talking about logic.

Anyway, my experience was that it was easy to write definitions and theorems
in the HOL Light syntax—except that at the very beginning I didn’t understand
the easy way to express a permutation of {0, 1, . . . , n− 1} in HOL Light. The
following paragraphs explain the issue and the solution.

As a student, I learned that a function from set X to set Y was formally
defined as its graph: a subset f ⊆ X × Y such that, for each x ∈ X, there is a
unique y ∈ Y with (x, y) ∈ f . Of course, this unique y is denoted f(x).

HOL Light supports sets, but its default concept of function, including the
concise notation f(x), is defined differently, and applies only to the special case
that X is what’s called a “type”. This matters here because N = {0, 1, 2, . . .}
is a “type” in HOL Light but {0, 1, . . . , n− 1} isn’t. It was clear how I could
define a permutation of {0, 1, . . . , n− 1} as a graph and prove theorems about
that, but then I wouldn’t have the concise function notation. At best I would
have something like eval f(x), adding load to readers checking my theorem
statements—what’s eval? I’d have to show readers how I was defining eval and
the underlying graphs, and convince readers that I hadn’t accidentally made
vacuous definitions or otherwise misdefined things.

I sent email to the relevant mailing list asking for advice. The HOL Light
author explained that I could model a permutation of {0, 1, . . . , n− 1} as a
permutation of N that fixes {n, n + 1, . . .}. Aha!

One can also work with the larger class of functions from N to N that permute
{0, 1, . . . , n− 1}. In general, one can define concise-notation functions on any
subset of a type by simply defining them on the full type—with whatever
behavior outside the subset—and then considering how they behave on the
subset. For the case of permutations, it’s particularly clean to specify the
behavior outside the subset as the identity map, since the theory then factors into
a theory of fixing subsets and a subset-independent theory of permutations. I’d
still be happier just talking about permutations of {0, 1, . . . , n− 1}, but tossing
in an identity map on the rest of N isn’t a big complication.

2.2. Writing proofs. The proofs I looked at in the HOL Light library had
many weird names of many different proof-construction tools, but there were
also many short proofs that structurally looked like simply saying “this follows
from these previously proven theorems”. For example:

let MOD_EQ_SELF = prove
(`!m n. m MOD n = m <=> n = 0 \/ m < n`,
MESON_TAC[MOD_ZERO; MOD_LT; DIVISION; LE_1]);;

The first line is giving a name to this theorem. The second line is the theorem
statement. The third line is naming some previous theorems in the library that
together imply this theorem:
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• MOD_ZERO says n mod 0 = n;
• DIVISION says that if n is nonzero then m = bm/ncn + (m mod n) and that

m mod n < n;
• LE_1 says that n 6= 0, 0 < n, and 1 ≤ n are equivalent;
• MOD_LT says that if m < n then m mod n = m.

MESON_TAC was used in many of these proofs, and was clearly some sort of
general-purpose tool that automatically figures out how to put the previous
theorems together with basic logic. Here’s what it figures out in this example:
either n = 0, done, or n 6= 0, in which case m mod n < n from DIVISION, so if
m mod n = m then m < n as claimed; for the converse, substitute m for n in
MOD_ZERO to see that m mod 0 = m, i.e., m mod n = m as claimed if n = 0; and
use MOD_LT directly to see that m mod n = m as claimed if m < n.

When HOL Light checks this proof, it also prints out some numbers indicating
how deeply MESON_TAC is thinking about this:

0..0..2..10..39..151..solved at 158
0..0..solved at 2
0..0..1..solved at 4

The 158 + 2 + 4 computations aren’t expensive; this example runs in a tiny
fraction of a second.

There are limits—MESON_TAC won’t magically write a long proof for you—but
you can simply split theorems into baby steps and ask MESON_TAC to handle
each step. You have a theorem with hypotheses A, B, C where the proof draws
intermediate conclusion D from A, B, and then intermediate conclusion E from
C, D, and so on; so, okay, write a first theorem saying that A, B imply D, and
then a second theorem saying that C, D imply E, and so on, and for each theorem
give MESON_TAC the list of relevant definitions and lemmas.

That’s exactly what I did in my first proofs. There was a lot of copying
and pasting of formulas and hypotheses and conclusions, very quickly producing
a very large number of very short proofs. For example, one of my first
computer-checked proofs was as follows:

let xor1xor1 = prove(
`!n. xor1(xor1 n) = n`,
MESON_TAC[xor1xor1_ifodd;xor1xor1_ifeven;EVEN_OR_ODD]);;

I had defined xor1 as follows:

let xor1 = new_definition
`xor1 (n:num) = if EVEN n then n+1 else n-1`;;

HOL Light defines num as {0, 1, 2, . . .}; defines EVEN and ODD; and proves a
theorem EVEN_OR_ODD saying that each n ∈ {0, 1, 2, . . .} is even or odd. The
xor1xor1_ifeven and xor1xor1_ifodd used in the above proof are lemmas
that I had proven, using MESON_TAC and various further lemmas.

I learned, and started using, a little bit more than MESON_TAC. For example,
ARITH_RULE automatically proves various linear equations and inequalities. If
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you type ARITH_RULE `n <= m /\ m < n + 1 ==> m = n` then ARITH_RULE
proves this for you and immediately gives you back a lemma that you can
use inside MESON_TAC. If you want 0 < n ==> 1 <= n, you don’t have to
remember or look up that this is already available as part of LE_1; you can
type ARITH_RULE `0 < n ==> 1 <= n`.

I also started getting some idea of how much I could feed to MESON_TAC
at once. For unfolding definitions, it’s better to use REWRITE_TAC, a tool that
replaces L with R if it’s given a definition (or lemma) saying L = R; MESON_TAC’s
explorations, given the same equation, can at any moment try replacing L with
R or replacing R with L, which is more flexible but also takes more time. Also,
MESON_TAC has trouble figuring out what to substitute into a theorem’s variables
if the right substitution isn’t staring it in the face; there’s something called ISPEC
that lets you say the substitution explicitly.

I wrote a few longer proofs. Longer proofs have the advantage of avoiding the
copy-and-paste time of splitting out separate theorems—and also the naming
time; MESON_TAC has a variant ASM_MESON_TAC that automatically uses all the
intermediate conclusions obtained in the proof so far, with no need to give them
separate names.

On the other hand, longer proofs have a disadvantage for beginners: you need
to know more TAC names for specific types of proof steps. For example, in the
xorxor1 case, MESON_TAC was given lemmas saying

!n. EVEN n ==> xor1(xor1 n) = n

and

!n. ODD n ==> xor1(xor1 n) = n

and

!n. EVEN n \/ ODD n

and had no trouble figuring out how to put them together. Now imagine that,
instead of splitting out separate lemmas for the even and odd cases, I had decided
to write a combined proof of

!n. xor1(xor1 n) = n

saying, first, consider any particular n, and then note that that n is even or
odd, and here’s a proof of the even case, and here’s a proof of the odd case.
I would then need to know that “consider any particular n” is GEN_TAC and
that “split into cases” is DISJ_CASES_TAC. For beginners, it’s easier to just copy
and paste the desired theorem twice to make two lemmas, insert EVEN n ==>
and ODD n ==> into the two lemmas, prove those lemmas separately, and let
MESON_TAC figure out how the main theorem follows from the lemmas.

2.3. Speed variations. For most forms of writing, I’ll check everything I write
two or three times, trying (not always successfully—see Section 3.4) to eliminate
all mistakes:
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• First, I’ll check each piece soon after I’ve written it—for example, checking
a proof, or a segment of a long proof in progress—because sometimes a
mistake starts me down a very wrong path, and I’ll waste less time if I catch
this sooner. (Of course, most mistakes are eliminated during the pre-writing
process of theorem discovery and proof discovery, but not all. It’s important
to write and check full proofs.)

• Second, I’ll read through everything again at the end, in case something
slipped through the earlier checks.

• Third, if I make a change—for example, weakening a hypothesis—then I’ll
recheck everything flowing from that. Sometimes this can go through more
rounds. I’ll also do a broader third check if the second check was catching
more than an occasional mistake.

All of this hand-checking time disappears for computer-checked proofs. The
computer has checked the proof; I don’t need to check it again. This isn’t like
testing software and worrying that there are issues with untested cases. The
proof is done.

Sometimes I want a variant of a previous computer-checked theorem. Okay:
copy and paste, glance at the proof, tweak something, computer checks the
tweaked theorem, done. Rechecking a proof after modifying a hypothesis is much
faster than doing the same thing by hand. There are also some specific types of
proofs that are generated by automated tools much more quickly than a human
can type a traditional-format proof—for example, various manipulations of long
formulas.

But I also encountered all sorts of random slowdowns. Sometimes I feed a
proof step to MESON_TAC, and it sits there for seconds searching and not finding
a proof. Hmmm. I divide the step into really baby steps, and it gets through the
first step but sits there on the second. Hmmm. I check the list of lemmas that I
provided to MESON_TAC. Oops, it turns out that I named lemma X where what
I really wanted was lemma Y . Problem solved, but I’ve lost a minute on this,
which is much more time than I was spending on a typical proof step.

This start-and-stop feeling—an exciting minute successfully producing many
computer-checked lines at high speed, the next minute staring puzzled at the
computer output and making vastly slower progress—is not what I had expected
to encounter. What I had heard about computer-checked proofs, before I started
writing them, gave me the impression of consistent drudgery.

Consider, e.g. de Bruijn [27] reporting the “constancy of the loss factor”
(italics in original). This “loss factor”, now known as the de Bruijn factor, is
the length of a computer-checked proof divided by the length of the original
human proof. “Constancy” says that the de Bruijn factor “does not increase if
we go further in the book”. This refers to experiments with computer checking
of books presenting “very meticulous ‘ordinary’ mathematics”; the length of
computer-checked proofs was observed to scale approximately linearly with the
length of the traditional-format theorems.

My experience is that the length ratio between computer-checked proofs and
my trying-to-be-meticulous hand-written proofs depends very much on how
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much copying and pasting I happen to do. This length has very little importance;
what matters is the time to write computer-checked proofs. The writing time
varies tremendously from one step to another.

Many of the slowdowns I encountered were clearly artifacts of the tools I was
using. For example, if you take a lemma in HOL Light about arbitrary functions
f and then say ISPEC `g` to specialize the lemma to the particular function g
appearing in a proof, then HOL Light will complain. The problem here is that
HOL Light is parsing `g` independently of the current proof context, and has
no idea that g is meant as a function; you instead have to type something like
`g:X->Y` for the appropriate X and Y. Diagnosing and fixing a syntax issue like
this would often cost me much more than a minute, and there are many of these
syntax issues.

Mathematicians proving that functions f and g are equal by proving that
f(x) = g(x) for each x, or proving that sets S and T are equal by proving that
x ∈ S if and only if x ∈ T , or proving that

∑
x∈S f(x) =

∑
x∈S g(x) by proving

that f(x) = g(x) for each x ∈ S, don’t comment on the deduction principles
being used. MESON_TAC doesn’t handle these things automatically: you have to
tell it to use EQ_EXT or EXTENSION or SUM_EQ.

Even in cases where I had simply forgotten to list a relevant lemma, I found
myself wondering about ways that a proof assistant could have found the missing
lemma automatically, or at least given me more mathematically meaningful error
messages (as requested in [6, page 67]) so that I could immediately diagnose
the problem. HOL Light and other proof assistants support interactive proof
construction where, for any particular theorem you’re working on proving, you
can try applying one lemma after another and seeing at each step what the proof
assistant says still has to be proven—but, when a lemma application fails, I often
have to look very closely at the lemma to figure out why.

I don’t mean to exaggerate the difficulties here. Each of my projects to write
computer-checked proofs has succeeded in an affordable amount of time; see
Section 3. People building proof-checking tools have done amazing work to bring
the tools to their current levels of usability. Papers are continuing to appear on
further improvements, and I would guess that by the end of this decade automatic
tools will able to do most, if not all, of what I’ve done by hand. But maybe not,
and in any case I don’t see this as a reason to delay doing something that’s
already affordable and useful today.

3 Time to write computer-checked proofs

As noted in Section 1, I now have computer-checked proofs online for four papers.
This section summarizes what was proven, the lengths of traditional-format
proofs, and the amount of time spent writing computer-checked proofs.

The time metric is latency, reported in more detail as start dates and end
dates. Latency puts an upper bound, not a lower bound, on the minutes spent; I
don’t have records of the minutes spent, and I was also doing other things during



12 Daniel J. Bernstein

the same periods. But I do think the latency is highly correlated with the actual
time that I spent.

3.1. Control bits. Given “control bits” c0, c1, c2, c3, c4, c5 ∈ {0, 1}, consider
the permutation of {0, 1, 2, 3} built as follows:
• step 0: exchange 0 and 1 if c0 = 1, and exchange 2 and 3 if c1 = 1;
• step 1: exchange 0 and 2 if c2 = 1, and exchange 1 and 3 if c3 = 1;
• step 2: exchange 0 and 1 if c4 = 1, and exchange 2 and 3 if c5 = 1.

Any permutation of {0, 1, 2, 3} can be obtained from some sequence of control
bits.

More generally, any permutation of {0, 1, . . . , 2m − 1} is the result of applying
(2m − 1)2m−1 control bits, where the first 2m−1 control bits perform swaps at
distance 1, the next 2m−1 control bits perform swaps at distance 2, the next 2m−1

control bits perform swaps at distance 4, etc., the distances moving up and then
down through powers of 2. Fast parallel algorithms to convert a permutation into
a sequence of control bits were introduced by 1981 Lev–Pippenger–Valiant [79]
and independently 1982 Nassimi–Sahni [86], after a fast serial algorithm that
1968 Waksman [105] credited to Stone.

It takes effort to see why the Lev–Pippenger–Valiant and Nassimi–Sahni
algorithms work—for example, to understand why the Nassimi–Sahni algorithm
always produces the same control bits as the Stone algorithm while the
Lev–Pippenger–Valiant algorithm often doesn’t. I wrote a paper [13] to give
formulas for Stone’s control bits in terms of a permutation π, and to prove
that these control bits produce π. This reduces the verification of an alleged
control-bit computation via, e.g., the Nassimi–Sahni algorithm to a verification
that the computation matches these formulas.

Aside from computer checking, the paper is 18 pages: 3 pages of introduction,
4 pages of definition-theorem-proof in brutalist style (this is the part I turned
into computer-checked proofs), 6 pages tracing the history and surveying
optimizations, 3.5 pages regarding software, and 1.5 pages of references.
Computer checking is covered in an appendix to the paper:
• a page discussing translation into HOL Light,
• a table indexing the computer-checked definitions and theorems, and
• 47 pages displaying the 2150 lines that the computer checked.

Let me emphasize that the numbers 47 and 2150 here are terribly misleading:
these 47 pages of computer-checked material were much faster to write than a
normal 47-page paper would have been. I started writing the computer-checked
proofs on 9 September 2020, and posted the paper with computer-checked proofs
on 23 September 2020.

I made sure to report the speed in the appendix: “the human time to write
the proofs below was an unrecorded fraction of a two-week period”. For the next
version of the preprint, I’m planning to provide the computer-checked proofs as
an attachment to the PDF rather than as pages in an appendix. To be clear,
I do think computer checking of the proofs is an important part of the paper:
“verified” is the first word of the title.
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3.2. Asymptotics of a heuristic model of lattice security. I’m using
“lattice” in this report to mean a discrete subgroup of Rn, not a meet-join
algebra. Say you’re given a lattice L ⊆ Rn of rank n, and you want to find an
element v ∈ L given a nearby vector v + ε.

There are various cryptosystem proposals over the past several years saying
that solving large sizes of this problem requires time (3/2)β/2, where β and κ are
chosen with minimal β ≥ 60 subject to ((n + κ)s2 + 1)1/2/(d/β)1/2δ2β−d−1qκ/d

being below 1. Here d = n + κ + 1; δ = (β(πβ)1/β/(2π exp 1))1/2(β−1); and s, q
describe the sizes of ε, L. See [17] for full definitions.

There’s no hope of proving this. It’s a model based in part on hoping that
a known algorithm is close to optimal, in part on heuristics for the time taken
by the main algorithm steps, and in part on heuristics from [4] that lead to the
formulas displayed above saying which algorithm parameters (β, κ) will succeed.

A closer look shows another risk for users of the cryptosystems. Someone
attacking these cryptosystems is actually faced with multiple instances of the
same problem for the same L, and might be able to exploit this:

• Perhaps there’s an algorithm that finds multiple targets v0, v1, . . . ∈ L,
given v0 + ε0, v1 + ε1, . . ., more efficiently than repeated applications of a
single-target algorithm.

• Perhaps there’s an algorithm that finds one of many targets more efficiently
than picking the first target and applying a single-target algorithm.

Interesting multi-target speedups have been found for various other algorithmic
tasks. However, for this lattice problem, the literature expresses a belief that an
algorithm finding one of many targets has to take as much time as a single-target
algorithm. A 2021 paper [43, page 3] claims to be able to prove that this belief
follows from a preexisting conjecture.

An area packed so densely with conjectures and heuristics and beliefs and
hopes is a culture shock for mathematicians prioritizing proofs, but shouldn’t be
surprising. Cryptographers trying to evaluate the cost of attack algorithms don’t
have the luxury of insisting on provability—in particular, of ignoring unproven
speedups that are experimentally observed to work. There’s a long history of
unproven speedups for, e.g., integer factorization; see [18, Appendix B] for a
survey.

Anyway, the main point of my paper [17] is that, if you apply the same
heuristics to a particular algorithm for finding one of many targets, then you end
up with asymptotically better performance than the best single-target algorithms
known. Either the existing heuristics are failing, or the aforementioned belief is
wrong, or both.

The asymptotic algorithm analysis isn’t easy. Why shouldn’t readers assume
that, no, the previous literature is fine, and that there’s simply some mistake
buried inside my asymptotic calculations? The presence of asymptotics in my
main statement also puts limits on how convincing an experimental double-check
can be. Proving the accuracy of my analysis is critical for my paper, even in an
area that obviously doesn’t insist on proofs.
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I posted the first public version of [17] in November 2022, including 4 pages
with a sketch of my main asymptotic result. Part of this, 2.5 pages, was a proper
theorem and proof, but that theorem covered only asymptotic analysis of the
formulas above assuming β and κ have a particular asymptotic shape. The other
1.5 pages were summarizing how to asymptotically optimize β and κ, including
summarizing how the optima can be proven to fit the asymptotic shape that I
had analyzed. Of course, I wasn’t using the word “theorem” for the second part.

After posting that version, I typed up a full proof of a theorem on the
bottom-line asymptotics for optimal parameters, filling in all the details that
were missing from the original sketch. The final theorem statement by itself is
over half a page, and the proof in traditional format is a total of 13 pages.

I then wrote a computer-checked version of the proof, again using HOL Light.
I started on 21 February 2023 and finished on 15 March 2023. Over the next two
days I added an appendix to my paper regarding the computer-checked proofs:

• 4.5 pages going line by line through comparing the paper’s main theorem
statement to the computer-checked version of the statement (during these
days I tweaked the computer-checked version a bit to bring the statements
closer together, and, needless to say, asked the computer to check again);

• a page discussing the proof-writing process, in particular saying that I wrote
this proof during a 3.5-week period; and

• a page explaining exactly how to re-run the computer checking.

I posted the computer-checked proofs and a revised preprint on 17 March 2023.
I didn’t post the 13 pages of traditional-format proofs, but I’m planning to post
them as part of the next revision.

The computer-checked proofs occupy 9951 lines. This number is misleading
not just for the reasons explained in Section 2, but also because many of the lines
were actually produced by a small Python script that I wrote. The script takes
a formula as input and does some easy computer algebra to automatically print
out a proof, in HOL Light format, of first-order and second-order asymptotics
for the formula—using various background lemmas that I proved by hand, such
as anything in f(A0 + (A1 + o(1))/X) being in f(A0) + (A1f ′(A0) + o(1))/X if
f is continuously differentiable at A0, where the o(1) is as X →∞. There were
also various other parts that I wrote by hand for the optimal-shape reasoning,
but everything together was affordable—again, just a few weeks.

3.3. Speed of a gcd algorithm. Given integers f, g with f odd, recursively
define δn, fn, gn as follows:

(δ0, f0, g0) = (1/2, f, g);
(δn+1, fn+1, gn+1) = (1− δn, gn, (gn − fn)/2) if δn > 0 and gn is odd;
(δn+1, fn+1, gn+1) = (1 + δn, fn, (gn + (gn mod 2)fn)/2) otherwise.

It’s easy to see that gcd{f, g} = |fn| if gn = 0. What the computer-checked
proof from [16] says is that gn reaches 0 within a particular number of iterations
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determined by the initial sizes of f, g: specifically, if 0 ≤ g ≤ f ≤ 2b and
9437b + 1 ≤ 4096m, then gn = 0 for some n ≤ m.

Yang and I had a paper [20] in 2019 introducing this type of gcd algorithm
and, with δ0 = 1, proving a bound 25.1% worse than the above bound. The
improved bound in [16] comes in part from Maxwell and Wuille finding a different
way to prove the behavior of any particular m, in part from them finding that
δ0 = 1/2 is better than δ0 = 1, and in part from our finding a way to replace
the sequence of proofs for each m with a single proof handling all m at once.
Hopefully we’ll have a paper online soon explaining all the improvements over
[20]; in the meantime, readers can already find various online descriptions and
software and the computer-checked proof.

All of these proofs, starting with [20], involve large computer calculations. A
second computer-checked proof from [16] involves computations on particular
convex hulls with more than 100 points over a particular number field of degree
108, and improves the ratio 9437/4096 to

− log2

((
1591853137 + 3

√
273548757304312537
255

)1/54)
,

which appears to capture the actual behavior of the algorithm on worst-case
inputs. The 9437/4096 result is only marginally weaker and involves considerably
less computation, but still far more computation than one would want to carry
out by hand.

This is not moving from a hand-checked traditional-format proof to a
computer-checked proof. It is moving from a computer-assisted proof—this
means a hand-checked reduction to a large calculation, plus hand-checked
software to carry out that calculation—to a computer-checked proof, as in [53]
and [59]. Consequently, I’m not sure what to report as the length of the original
proof for comparison.

Here’s the time I spent writing computer-checked proofs for this, all in HOL
Light—not just the all-m proofs in [16], but also computer-checked versions of
the earlier proof strategy handling any particular m:
• In 2021, I spent a week writing a script to generate a computer-checked

proof for any particular m. I started 25 January 2021, and posted examples
of computer-checked proofs for various m on 31 January 2021. Two weeks
later, O’Connor and Poelstra [89] posted proofs for larger m verified in Coq.

• I returned to the any-particular-m proof on 18 March 2023, to see how far I
could push m by optimizing the calculations inside the proof. On 23 March,
I switched to writing all-m proofs. I finished on 6 April.

These stretches of time add up to 3.7 weeks. I then added a few minor tweaks.
I posted the all-m proofs—actually, a 3711-line Sage script that prints out the
proofs—on 16 April 2023.

3.4. Decoding binary Goppa codes. Fix nonnegative integers n, t; a finite
field k containing F2; distinct elements α1, α2, . . . , αn of k; and a squarefree
polynomial g ∈ k[x] of degree t with g(α1)g(α2) . . . g(αn) 6= 0.
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A “Goppa codeword” is a vector c ∈ Fn
2 satisfying

∑
i ciα

j
i /g(αi) = 0 for each

j ∈ {0, 1, . . . , t− 1}. There are various algorithms in the literature that recover
a Goppa codeword c ∈ Fn

2 from c + e for any e ∈ Fn
2 with #{i : ei 6= 0} ≤ t.

I wrote a paper [15] as a general-audience minicourse presenting the simplest
known polynomial-time algorithm for this task. The core work here was
optimizing the structure of theorems and proofs to get to this algorithm as
efficiently as possible (for example, [15] doesn’t need the Berlekamp–Massey
algorithm) starting from almost nothing (the first theorem is what people call
“Lagrange interpolation”, although that’s a misnomer—this was published by
Waring [107] more than a decade before Lagrange).

I also presented various optional material, such as Sage test scripts, summaries
of speedups in the literature, and a section about a cryptographic application.
For that application, it’s important not just to recover c from c + e with c, e as
above, but also to recognize whether the input in Fn

2 has the form c + e in the
first place. After applying a Goppa-decoding algorithm to recover maybe-c and
maybe-e from maybe-(c+e), one can simply check whether c is a Goppa codeword
and #{i : ei 6= 0} ≤ t. It’s easy to see other approaches from the literature; what
sounds fastest involves checking a derivative formula due to Forney.

My computer experiments seemed to be saying that, actually, these checks
don’t do anything in the context of this Goppa-decoding algorithm. I didn’t
know this before, and I couldn’t find it in the literature, and the coding theorists
I asked hadn’t heard about it. I tried hard to find counterexamples, and didn’t
find any. And then, aha, I figured out how to prove that obtaining a successful
output from the algorithm already forced the right output of the Forney formula.

I added another section stating and proving this. I explicitly recommended
against actually using this—“There are several reasons to recommend the second
approach . . . What happens if there’s a mistake in the extra logic leading to
Theorem 7.4, or in the handling of invalid inputs in the software implementing
a decoding algorithm?”—but I was still pleased at the discovery, both for the
unobvious mathematical content and for the thought that it could eventually be
useful once software was verified.

I posted the paper in March 2022. In August 2022, Hovav Shacham contacted
me and asked how I was obtaining a particular proof step. The answer, in short,
is that there was a mistake in the logic. The proof was wrong. An entire lemma
that I had stated—and that I had failed to test—was easily disproven. I still had
ample reason to conjecture the conclusion of the main “theorem”, but I hadn’t
proven it.

I promptly posted a revised paper with an erratum and a different, longer,
trickier, I claim carefully hand-checked, proof of the main theorem—actually a
more general theorem, skipping a hypothesis that had led to the shortcuts taken
by the failed lemma.

Of course, you’re wondering at this point whether another mistake could have
slipped through. I’ll skip the suspense: the theorem now has a computer-checked
proof. I mentioned, in Section 1 of this report, verifying the theorems from one
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paper using Lean and then also verifying them using HOL Light; that paper is
[15]. Dates:

• I started writing Lean proofs on 12 July 2023 and posted them on 26 July
2023.

• I started writing HOL Light proofs on 31 July 2023 and posted them on 11
August 2023.

Over the subsequent week, I added an appendix to the paper with a more
comprehensive discussion of proof-checker risks than I had put into previous
papers—for example, looking in detail at how HOL Light and Lean define
fields; Lean’s answer is surprisingly complicated—and then 25 pages reviewing
the paper’s computer-checked definitions and theorem statements. I allocated
a page for each theorem, putting the original theorem statement at the top of
the page followed by the two computer-checked theorem statements annotated
with translations into normal mathematical terminology. If this didn’t fit then
I used a separate page for each proof assistant. The point is that a reviewer
can compare the theorem statements to annotations without flipping pages. I
tweaked the theorem statements during the week to bring them closer together,
as I had done for [17]. I posted the revised paper on 18 August 2023.

Deleting all text from [15] beyond the traditional-format proofs and theorem
statements leaves 5.5 pages, about a third of that being the maybe-new
definitely-theorem. The Lean proofs are 3632 lines—which, as usual, is terribly
misleading; these lines were written during a 15-day period (aside from a few
minor tweaks later). The HOL Light proofs are 9317 lines—which is even more
misleading; these lines were written during a 12-day period.

I didn’t write any scripts to print out proofs for [15]. I did a lot of copying
and pasting. Running the final proofs through the standard gzip compression
program (as suggested in [109]) reduces the Lean proofs from 194560 bytes to
34067 bytes and the HOL Light proofs from 411296 bytes to 57221 bytes. Those
numbers don’t tell the reader what ultimately matters: namely, compared to the
time I spent coming up with theorem statements and traditional-format proofs
for the paper, the time I spent writing computer-checked proofs—and then doing
it again with another proof assistant!—was affordable.

4 Two proof assistants

People argue about the relative merits of the different systems much in
the same way that people argue about the relative merits of operating
systems, political loyalties, or programming languages.

—2008 Hales [57, page 1373]

HOL has no dependent types. Does this mean that there are entire
areas of mathematics which are off limits to his system? I conjecture
yes. Prove me wrong. . . . But do you people want to attract “working
mathematicians”? Then where are the schemes? Can your system
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even do schemes? I don’t know. Does anyone know? If it cannot then
this would be very valuable to know because it will help mathematician
early adopters to make an informed decision about which system to
use. —2020 Buzzard [33]

In this article we present a formalization of sheaves of rings and
schemes in Isabelle/HOL reaching the benchmark result set by [6]: an
affine scheme is a scheme. . . . It seems that our experience in Isabelle
to formalize schemes was less tumultuous than the corresponding one
in Lean . . . If, again, we gave a slightly different formulation for
the definition of a scheme, following Hartshorne [16] instead of the
Stacks project [23] as they did, it seems that this difficulty cannot
possibly have a direct counterpart in Isabelle, since it arose from the
difference between the so-called equality types, also known as identity
types, and the definitional equality, a difference which is peculiar to
dependent type theories. —2022 Bordg–Paulson–Li [25]

As reported in Section 3, I wrote proofs checked by Lean for the theorems
from [15] over a period of 15 days, and then proofs checked by HOL Light for
the same theorems over a period of 12 days. I had three HOL Light projects
before that. I also spent some time adding related comments to papers.

This section explains why I started with HOL Light in the first place, and
then describes various aspects of how I noticed my time being used in Lean
and of how I noticed my time being used in HOL Light. Among other things,
this section gives concrete examples of how advantages and disadvantages of
“dependent types” affected the speed of the proof-writing process for [15].

It seems necessary to emphasize, as a preliminary matter, that both tools were
successful for [15]. This section is looking at small differences, not showstoppers.

4.1. Initial considerations. Here’s why I picked HOL Light for my first
project writing computer-checked proofs, out of several proof assistants that
I noticed people frequently mentioning:

• HOL Light had already been used to successfully computer-check many
previous proofs, including proofs relying on nontrivial mathematics, such
as an analytic proof of the prime-number theorem. (See [63].) This made it
seem very unlikely that there would be any big problems in feeding my own
proofs to HOL Light.

• HOL Light’s proof-checking kernel looked simpler and smaller than anything
else I found. This, in conjunction with having nontrivial mathematics, made
it seem very likely that the non-kernel part of the system had helpful tools
for constructing serious towers of proofs: if you’re starting from scratch then
you need this construction process to be easy. This also reduced my concerns
about the risk of kernel bugs allowing, perhaps even encouraging, incorrect
proofs; see below.

• As Section 2 illustrates, explaining full details of a theorem statement written
in HOL Light looked like a tolerable amount of effort: some foreign notation,
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certainly, but nothing particularly complicated. I knew from the outset that I
would want my readers checking the computerized versions of my definitions
and theorem statements. See Section 4.2 below.

I wasn’t at all sure that HOL Light was the best choice; it simply seemed the
least risky overall.

Now that I have a bit of experience with proof assistants, I’m more worried
about bugs. There’s a comment in [7, page 74] saying “the proof checker keeps the
formalizer honest, requiring every step to be spelled out in complete detail”, and
there are similar comments in, e.g., [57, page 1376] and [91]—but this doesn’t
match my experience.

Some types of proofs have been automated. I’ve sometimes used automation
to successfully leap through a series of proof steps, and in those cases it’s simply
not true that my work in writing computer-checked proofs is a superset of the
work I’m doing in writing traditional-format proofs. As more and more types of
proofs are automated, it will become more and more common to rely on the proof
assistant for steps that the human has never actually thought through. If there
are bugs in proof-checkers, then presumably the automated tools will sometimes
accidentally exploit those bugs, as in the case reported in [81, page 289]. The
resulting pseudo-proofs have a competitive advantage, since the human wants to
believe that the result is proven.

To be clear, when I’m using a proof assistant, I’m never thinking anything like
“I’m working with Lean, bigger kernel, higher risk of bugs, let’s slow down and
check each step more carefully”. I’m instead focusing on how to get the proofs
done. The rest of this section presumes that proof-assistant kernels have been
checked more carefully than other software and are bug-free.

4.2. Theorem readability. More and more papers are going to appear with
computer-checked proofs. We’ll start to see examples where what the paper says
is wrong, and where the computer missed this because the computer was never
asked to check the paper’s theorem statement—it instead checked a different
theorem statement, and nobody noticed the difference.

The main defense available today is a skeptical reader, hopefully starting with
the paper’s author, checking whether the theorems and underlying definitions
match. Such a reader is slowed down by many discrepancies of syntax and
semantics. Here are some examples visible in [15]:

• The reader doesn’t expect a/b to be defined as ba/bc, and also doesn’t expect
it to allow b = 0. This is a dangerous choice of notation in Lean. Similar
comments apply to some extent to HOL Light, although this is less visible in
the theorem statements in [15] for reasons discussed below. There is a claim
in [32] that “dividing by 0 is not allowed in mathematics, and hence this
cannot be relevant to their work”, but in fact a mathematician is permitted
to deduce b 6= 0 from c = a/b, since a/b is undefined for b = 0. Redefining
the notation to allow b = 0 breaks this. Unless it occurs to the author to
state a conclusion c = a/b and a conclusion b 6= 0, the proof assistant won’t
check that b 6= 0, whereas the reader will think that this has been checked.
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• Many readers won’t recognize HOL Light’s \/ or Lean’s ∨, in part because of
how unpopular the notation is in mainstream mathematics compared to “or”
and in part because—depending on the font—Lean’s ∨ looks almost identical
to a lowercase v. (I spent a while searching for a font that I could use to
display Lean theorem statements in [15] without any missing characters.
DejaVu Sans Mono worked, but its ∨ and v are very similar. Perhaps I
should try non-monospaced fonts.)

• Readers are confronted with many further uses of punctuation that
aren’t standard in mainstream mathematics, no matter how sensible the
punctuation might seem to the designers of proof assistants. For example,
Lean uses a combination of brackets and braces and parentheses for
hypotheses (brackets for “type classes”, braces for “implicit” hypotheses,
parentheses for “explicit” hypotheses), uses a colon to separate hypotheses
from conclusions in a theorem statement, and uses → (not ⇒) for further
implications. HOL Light uses ! for “for all”, uses ? for “there exists”, and
uses \x. x+1 as an ASCII approximation to λx.x+1 where mathematicians
normally write x 7→ x + 1.

• A ring formula in HOL Light is much more verbose than a ring formula
in Lean. The expression G = ring_mul(x_ring k) g g in HOL Light takes
much more time for the eye to scan than G = g^2 in Lean or G = g2 in
normal writing. If this is a hypothesis and G isn’t used very often then one
normally eliminates the variable in favor of g2, but this relies on the notation
being concise. See Section 4.4 for the role of “types” here.

• Lean is more verbose than HOL Light in some distracting ways. For example,
when Lean hypotheses are placed before the colon in a theorem statement
(as the Lean documentation recommends) rather than used as implications
after the colon, they’re given names that aren’t used elsewhere in the theorem
statement. As another example, Lean keeps using the words DecidableEq
and noncomputable; I do not think those mean what you think they mean.

For [13], I inserted comments into the computer-checked proofs aimed at
introducing a general audience to the notation, but I think this way of organizing
the material puts too much load on a reader trying to check the translation.
For [17], I instead separately quoted the definitions and theorem statements in
line-by-line comparisons, as noted above. For [15], I used a visual organization
that I think works well for comparing theorem statements. These comparisons
take time to write, and take time for every skeptical reader to read.

One of the virtues of having computer-readable definitions and theorems and
proofs should be that you can have the computer automatically convert other
people’s notation into your favorite notation, and you can experiment with
different converters to see what you like best, and in any case convert everything
into Standard Do-Not-Annoy-The-Journal-Referees Notation for publication
(why should the human have to write something in two languages?), so that
there isn’t a tension between optimizing notation and communicating effectively.

As a starting point, I would like a tool that converts a proof assistant’s theorem
statement to a traditional-format theorem statement and a comparison chart.
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Tools such as [48] already demonstrate that much more than this is possible.
See also [58] for discussion of the readability of theorems and proofs.

Some people are hoping to replace the usual language of mathematics with the
language of a proof assistant (this one, not that one), eliminating the occasional
ambiguities and avoiding any need for translation. (As an analogy, I think Sage
is now familiar to so many readers that it’s a better choice than English for
algorithm statements.) However, in the short term, readers looking for theorem
statements are generally looking for traditional-format theorem statements, so
I can’t omit those, and it’s important to set up procedures ensuring that those
are correct.

4.3. Filling in background. Each of my projects to write computer-checked
proofs relied on many background lemmas that had already been proven, but
also involved proving further background lemmas.

There’s a cost in figuring out what has been proven already. Skimming
libraries helps. Lean has put some work into context-sensitive search tools that
can help: for example, you can try typing “exact?” as a proof step, and often
Lean will immediately respond with the name in the library for exactly the
lemma that finishes the proof.

Often it’s faster to just go ahead and prove something than to figure out
what’s already there. As some trivial examples, one lemma I wrote for HOL
Light for [15] says that if m, n ∈ N and mn < n then m = 0, and one lemma I
wrote for Lean for the same paper says that if n ∈ N is odd then 1 ≤ n. Writing
a proof for each lemma is very fast. The only issue is the aggregate work—which,
again, was affordable for each case in Section 3, but I think it’s useful to say
more about this. See also Section 5 for two examples of papers relying on more
pieces of background.

Section 3.4 mentioned that feeding the proofs from [15] through gzip produces
34067 bytes for Lean and 57221 bytes for HOL Light. If I remove the parts that
I think of as background then I obtain 21595 bytes for Lean and 26197 bytes for
HOL Light.

Certainly a noticeable fraction of my Lean time for [15], and a larger fraction
of my HOL Light time for [15], was spent writing background proofs. For
example, I easily found where HOL Light was developing some of the basic
theory of multivariate power series and polynomials (extension of morphisms,
for example, and polynomial rings over domains being domains), and more
theory of polynomials over the reals, but I ended up defining degrees for
univariate polynomials over arbitrary commutative rings and proving, e.g., that
deg fg = deg f + deg g when the base ring is a domain.

Logically, the degree definition is also a prerequisite for the theorem
statements in [15], so [15] presents it as a high-risk definition that needs
review—for HOL Light. Lean already had a definition of polynomial degrees,
presumably reducing the risk of mismatched definitions.

As another example, I proved in HOL Light that k[x] was Euclidean, to plug
into HOL Light’s existing proofs that Euclidean domains are principal-ideal
domains and hence Bézout rings, giving the coprimality facts that I needed. A
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small compensation for not finding previous HOL Light development of division
with remainder for k[x] is that I also had no incentive to use the dangerous
notation “/” for that operation.

As yet another example, I proved in HOL Light that n homogeneous linear
equations in more than n variables over a domain have a nonzero solution,
using the ancient row-reduction proof (Fangcheng, very long before Gauss). Lean
already had the special case that [15] needed (the case of fields), so I simply used
that—although actually this wasn’t so simple, for weird reasons; see Section 4.7
below.

The numbers above also don’t reflect the fact that Lean already had some
development of interpolation, in part because of previous attention to [15]. See
[26, Section 4]. If I had decided to reuse that then the Lean numbers would have
been smaller.

The background I wrote in Lean for [15] wasn’t exactly a subset of the
background I wrote in HOL Light—for example, Lean’s degree function produces
results in {−∞} ∪N as mathematicians expect, and I ended up proving various
background facts in Lean about operations on {−∞} ∪ N; for HOL Light, I
used the number theorist’s trick of defining 2deg f rather than defining deg f ,
so I didn’t need to handle −∞ in the first place—but was definitely much less
material overall.

4.4. The conciseness of dependent types. Let’s look at what the fuss is
about regarding “simple types” and “dependent types”.

It would be a big waste of time to write anything like the aforementioned
G = ring_mul(x_ring k) g g on a blackboard. In normal mathematical
writing, if g is an element of a ring R (such as, in this example, the polynomial
ring k[x] over a field k), then we freely use the concise notation g2 to mean the
square of g using R’s multiplication operation.

But, wait, is the previous sentence true? Apply the same claim to the
one-element ring {g}, which certainly contains g, to conclude that g2 = g, which
is certainly not always the same as the square of g in R, contradiction.

The actual situation is that if we’ve declared that R is a ring containing g, or
if this follows from previous declarations by various rules, then we freely use the
concise notation g2. One of the rules says that if g, h are declared to be elements
of R then g + h is automatically declared to be an element of R, so you’re free
to write (g + h)2. Generations of students learn these rules by osmosis.

There isn’t a rule saying that g is declared to be an element of {g}. You can, of
course, make declarations about multiple rings, but if the declared ring elements
overlap then you have to write things like +R and +S to disambiguate—except,
of course, in the common situation that the ring structures have been declared
to be compatible. Et cetera.

Proof assistants vary in how much support they have for the complications of
common notation. HOL Light defines g + h if you’ve declared that g and h are
integers, for example, but not if you’ve declared that they’re elements of a more
general commutative ring R. There are various mechanisms to modify the HOL
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Light syntax, but the limited amounts I know about those mechanisms aren’t
useful here.

When you tell HOL Light or Lean that g has “type” Z, written “g : int” in
HOL Light or “g : Z” in Lean, then the system knows that g is an element of
Z, and that you’re allowed to write g + g to refer to the sum in Z of g and g.
This improves conciseness not just for formulas but also for proofs: the system
automatically knows that g + g also has type Z.

To work with more general commutative rings in HOL Light, I was using less
concise notation involving ring_add etc., and I had various proof steps referring
to, e.g., HOL Light’s trivial RING_ADD lemma, which says that g + h ∈ R if
g, h ∈ R. I found this verbosity less time-consuming than one might expect, for
two reasons:

• Writing on a computer is not the same as writing on a blackboard. Copy
and paste generates boilerplate very quickly.

• HOL Light has automated tools for proving identities: as a small example,

RING_RULE `ring_mul r a b =
ring_add r (ring_mul r a c) (ring_mul r a (ring_sub r b c))`

automatically proves that if a, b, c ∈ R then ab = ac + a(b− c).

But there was certainly some slowdown from the formulas being longer. For
example, one time something wasn’t working and it eventually turned out that
I had a ring_add where I should have had a ring_sub, which I would certainly
have spotted more quickly if the formulas had been more concise.

Why does Lean support R as a type while HOL Light doesn’t? This is an
example of Lean supporting “dependent types” while HOL Light doesn’t.

Lean has, for example, a name Fin n for the type {0, 1, . . . , n− 1}. To be
more precise, the type is a copy of {0, 1, . . . , n− 1}. To be even more precise, an
element of the type is a pair (m, h), where m is an element of N and h is the
fact that m < n. To be more precise in a different direction, Fin n is a name
for a parameterized family of types, where the parameter, n, ranges over a type,
namely N.

HOL Light also has some names for parameterized families of types. For
example, the type X->Y is the set of functions from X to Y (and the type
supports the syntax f(x) for applying such a function to an element x of X).
To be more precise, X->Y is a name for a parameterized family of types, where
the two parameters, X and Y , range over the set of types.

HOL Light doesn’t have any way to define a type family with a parameter
that ranges over a type. You can build a type in HOL Light that’s (a copy of)
{0, 1, 2}, but if n is a variable in a theorem then you have no way to make a
{0, 1, . . . , n− 1} type, and if a subset R of X is a variable in a theorem then
you have no way to make an R type. If you want to work with functions on R
in HOL Light, it’s easiest to work with functions on X instead. This is why, in
Section 2.1, I ended up working with permutations of N instead of permutations
of {0, 1, . . . , n− 1}.
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4.5. Problem between chair and keyboard. The obvious question at this
point is why the theorems from [15] took me 15 days to write in Lean and only
12 days to write in HOL Light, despite HOL Light needing more background
development and being less concise.

One generic answer is that second formalizations are faster than first
formalizations. As noted in Section 1, most people explaining a proof to a
computer would first have to take time to understand the proof—which is often
a time-consuming task (see, e.g., [63, Sections 5 and 8]), especially when the
“proof” isn’t really a proof but rather a sketch of a proof strategy. Sometimes
the “theorem” isn’t even clearly stated, and one has to figure out what the
“proof” is supposed to be proving. Someone who goes through this preliminary
work as part of writing a computer-checked proof can then explain the proof to
another proof assistant without repeating the preliminary work.

But I had already written detailed proofs for the previous version of [15] and
knew exactly how they worked, along with all of the background. Furthermore,
around half of the material that I ended up proving for HOL Light (see
Section 4.3) was background material that I hadn’t proved for Lean, since for
Lean I was reusing existing lemmas. So I don’t think the second-formalization
effect is what’s going on here.

Another obvious answer comes from differences in experience levels. I’m
certainly nowhere near being a HOL Light expert, but I’m even farther from
being a Lean expert. All I did with Lean before [15] was spend a few days
listening to introductory Lean talks and solving a bunch of Lean exercises and
watching how various people were using Lean.

I think this difference was a contributing factor—for example, I did need some
time to get an idea of what background lemmas were available in Lean—but far
from a complete explanation.

I’m faster with HOL Light now than I was when I first started, but the only big
speedups have been in situations where I’ve been able to take better advantage
of automation; see below. My initial copy-and-paste process from Section 2 was
verbose but reasonably fast.

I had worked with HOL Light in other ways by the time I started with Lean,
and the process I saw people using in Lean looked very much like one of the
approaches I was familiar with from HOL Light. There were superficial syntax
differences: rw instead of REWRITE_TAC, for example, and sum_congr instead
of SUM_EQ. (I do prefer lowercase; the HOL Light proofs in [15] define various
synonyms such as let rw = REWRITE_TAC.) There was also a notable absence
of anything that looked like MESON_TAC—people were constantly working with
lower-level tools for explicitly manipulating the logic, which I found surprising.
I knew analogous logic tools in HOL Light and was using them in much the
same way that a traditional-format proof sometimes says things like “There are
now two cases”, but the normal “so” and “thus” and “therefore” proof steps are
trivially handled by ASM_MESON_TAC.

Automation can have a striking impact. Any computer-mathematics system
can immediately compute derivatives, but it’s even better to type
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DIFF_CONV `\x. (ln(x) + ln(pi*x)/x - ln(&2 * pi * exp(&1)))
/ (&2 * (x - &1))`

into HOL Light and immediately get back a theorem stating the derivative
of that expression under suitable conditions on x. This sort of thing makes
it seem defensible that they’re called “proof assistants” rather than “proof
nitpickers”. I definitely saved time in [17] with such tools—including my own
small asymptotic-analysis script, which I think can be cleaned up for broader
use. New papers are continually appearing on proof automation, saving more
and more time for proof-assistant users.

Automation had a smaller role in [15] but was certainly still present. I used
HOL Light’s RING_RULE, for example; I had also used ring in Lean. MESON_TAC
is also a small-scale example of automation; I was later told that supporting this
in Lean was an ongoing research project. Presumably I missed some relevant
automation that would have saved time for me in Lean, and presumably I also
missed some relevant automation that would have saved time for me in HOL
Light.

4.6. Translation steps in proofs. There’s something else where I know I was
frequently losing time with HOL Light—and losing more time with Lean.

Mathematics often has multiple ways to express the same thing. Saying that
(1 + x)m+n = (1 + x)m(1 + x)n in Z[x], for example, is equivalent to saying
that the coefficient of xd matches for each d, which, by the binomial theorem, is
equivalent to saying

(
m+n

d

)
=
∑

a+b=d

(
m
a

)(
n
b

)
, which you can alternatively prove

by observing the bijection between (1) ways to choose d items out of m+n items
and (2) ways to choose a, b with a + b = d, choose a items from the first m, and
choose b items from the remaining n.

There’s some redundancy in having things stated two ways. Some proofs are
easy either way. But some proofs are easier one way, and some proofs are easier
the other way, with each perspective bringing its own useful extra structure.

Unless proof assistants provide completely automatic translations, lemmas
end up sometimes being stated just one way, and sometimes being stated just
the other way, because people haven’t done the extra work to provide both
statements. If I have a proof step using a lemma stated one way, and then a
proof step using a lemma stated another way, then I need to insert a translation
step in between. Each translation step is easy, but these translation steps aren’t
as mindless as “I’m using g + h so prove it’s in the ring” boilerplate; they’re
driven back and forth by how the “real” proof steps happen to be stated.

This translation cost makes it useful to merge multiple perspectives in cases
where multiple perspectives don’t offer much extra value. For example, in
HOL Light, there’s no distinction between a subset of X, a function from
X to {True, False}, and an X-indexed vector with entries in {True, False}.
Great—sounds like there won’t be a split of lemmas across these three ways
to say the same thing. But then HOL Light somewhat spoils this unification by
defining x IN S to mean the same as S(x), with various lemmas stated in terms
of IN, requiring translation steps (e.g., “SET_TAC”). Section 4.7 gives an example
of how translations slowed me down more for Lean.
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In set theory, typically 3 is defined as {0, 1, 2}, and Y X is defined as the set
of functions from X to Y , so Y 3 is the set of functions from {0, 1, 2} to Y . A
common way to advertise proof assistants that emphasize type theory rather
than set theory is to claim that the statement 2 ∈ 3 is a “fake theorem”. I
don’t know whether the following theorem in HOL Light is also supposed to
be “fake”: {0}(163) = False, since {0} is actually a function, specifically the
function from N to {True, False} that’s False except for input 0. I do know that
unified descriptions of mathematical objects saved time for me in [15], since
the lemmas regarding those objects plugged directly into each other without
translation steps.

4.7. The curse of dependent types. Fix a field k, two Laurent series
A, B ∈ k((x−1)) with deg A > deg B, and a nonnegative integer t. Then there
are coprime a, b ∈ k[x] with deg a ≤ t, deg b < t, and deg(aB − bA) < deg A− t.

This is the second theorem in [15], except that the theorem statement in [15]
is only for polynomials A, B ∈ k[x], since this requires a bit less background
to state and is good enough for the paper. The theorem was originally proven
by Lagrange [76] as follows: the goal is to find a rational function b/a with
small numerator and denominator very close to B/A; now apply the theory of
continued fractions.

The proof in [15] is a much more direct proof due to Kronecker [75, pages
118–119 of cited PDF] without continued fractions. The proof occupies ten lines
in [15] but here’s the essence of it: a, b together have 2t + 1 degrees of freedom,
but clearly deg(aB − bA) < deg A + t, so asking for deg(aB − bA) < deg A − t
is imposing 2t linear constraints, so there’s a nonzero solution; to finish, divide
(a, b) by gcd{a, b}. This is a classic example of theorems about function fields
often being easier to prove than more general theorems about global fields.

Should be easy to convert this to a Lean-checked proof, right? As a starting
point, I quickly found Lean’s linear-algebra lemmas. The lemmas that sounded
most obviously useful were linearIndependent_iff_card_eq_finrank_span
and finrank_le, which together immediately imply that if V is a k-module of
smaller rank than #S then any S-indexed sequence of elements of V is linearly
dependent.

So, okay, define S as {0, 1, . . . , 2t}, or maybe more naturally the direct sum
of {0, 1, . . . , t} and {0, 1, . . . , t− 1}, to index the coefficients of a, b; define V as
k2t, or maybe more naturally k{deg A−t,...,deg A+t−1}; and define various elements
of V by extracting the right coefficients from A and B.

But, wait, it’s not that simple. The linear-algebra lemmas aren’t asking for a
set S; they’re asking for a type. Similarly, they aren’t asking for this V to be the
set of functions from an index set to k; they’re asking for a type, in this case the
functions from an index type to k.

Lean has a way to convert sets to types, as illustrated by the aforementioned
Fin, which converts the set {0, 1, . . . , n− 1} into a type Fin n. But Fin n isn’t
the same object as that set: it’s a copy of that set, namely the set of pairs (m, h)
where m ∈ N and h is the fact that m < n. The distinction is content-free
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symbol-pushing: it’s simply bundling elements of a set with the knowledge that
they’re elements of the set.

Are Lean’s lemmas about {0, 1, . . . , n− 1} stated as lemmas about this subset
of N, or lemmas about the type Fin n? The answers vary:

• The Lean linear-algebra lemmas that I looked at were stated in terms of
finite types such as Fin n.

• The Lean lemmas about sums that I looked at were sometimes stated in
terms of finite types such as Fin n, and were sometimes stated in terms of
finite subsets such as {0, 1, . . . , n− 1}.

• Kronecker’s proof considers the coefficient of xi in a polynomial for i ∈
{0, 1, . . . , n− 1}. The Lean lemmas about polynomials that I looked at used
natural numbers as exponents of x, not elements of Fin n.

My Lean rendition of the proof ended up translating back and forth between the
type and the subset. There’s a thicket of further types used in the proof; this
Fin n issue is just one example of the slowdown.

HOL Light also has a type N and a set N, but, because it doesn’t support
dependent types, it doesn’t have a type version of {0, 1, . . . , n− 1}. This
restriction is bad for conciseness if I want to use, e.g., the abbreviation
“+” for addition modulo n on {0, 1, . . . , n− 1}. But this restriction tends to
make lemmas easier to compose, because—for generality—lemmas tend to be
stated about subsets, and then simply work together with no translation steps.
I spent less time dealing with type conversions in the HOL Light version
of Kronecker’s proof than in the Lean version of Kronecker’s proof. I was
proving more background in HOL Light—including, as noted in Section 4.3,
the k-linear-dependence lemma that this proof needed—but I was also spending
less time in HOL Light than in Lean dealing with type conversions for the
background, and for the other theorems in [15].

It’s not that HOL Light magically merged everything. For example, a lemma
might be stated in terms of {0, 1, . . . , n− 1}, or might be stated in terms of the
hypothesis m < n, as in the mathematics literature. But I encountered more
splits in Lean.

Lean frequently restates a hypothesis or a set as a type. Each such type
definition provides another way to say the same thing. Some lemmas are stated
using the hypothesis. Some lemmas are stated using the set. Some lemmas
are stated using the type. Plugging one lemma into another often requires
a translation step. My experience is that these translations are easy but not
automatic. For example:

• It’s easy to use Lean’s Finset.sum_range, which, for a function f defined on
N, rewrites the sum of f over the subset {0, 1, . . . , n− 1} of N as the sum over
Fin n of f implicitly composed with the map from Fin n to {0, 1, . . . , n− 1}.
The syntax for the composition is concise, but this lemma is still a translation
step between different objects.

• It’s also easy to use Lean’s Finset.sum_fin_eq_range, which, for a function
f defined on Fin n, rewrites the sum of f over Fin n as the sum over
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{0, 1, . . . , n− 1} of the function g defined on N as follows: if m ∈ N has
m < n then g(m) = f((m, h)), where h is the fact that m < n; otherwise
g(m) = 0.

• If these are used automatically, then that’s news not just to me but, it
seems, also to the authors and reviewers of various proofs included in Lean
that explicitly use these translation steps.

As another example of Lean restating hypotheses as types, Lean has a
definition of a type degreeLE for the subset of k[x] of degree at most t, and
a type degreeLT for the subset of k[x] of degree below t. Surely Lean will also
add such types for the corresponding subsets of k((x−1)), if they aren’t there
already, and will gradually acquire lemmas about these types.

Certainly there are interesting interactions between the algebraic structure
and the degree bound, which is exactly why one sees them coming together in
Kronecker’s proof and many other proofs. One can reorganize Kronecker’s proof
into a series of proofs about these types:

• There’s not just B in k((x−1)), but B in the subset of k((x−1)) of degree
below n, where n = deg A.

• The multiplication aB is then mapping the subset of k[x] with degree at
most t times the subset of k((x−1)) with degree below n to the subset of
k((x−1)) with degree below n + t.

• Similar comments apply to bA, coming from two further types but producing
the same type as output, and then of course these are all k-vector spaces, in
particular with a subtraction operation on the output type giving aB − bA.

• Now apply the divide-by-xn−t-discarding-remainder operation, which can be
defined directly or induced through some calculation (and some care since I
didn’t require n ≥ t) from the same operation on k[x], to map the subset of
k((x−1)) with degree below n + t to the subset of k[x] of degree below 2t.

• And, great, now we have the desired linear map from dimension 2t + 1 to
dimension 2t, with all of the index and coindex manipulations factored into
separate statements about various maps between 10 different series types:
k[x], k[x] of degree at most t, k[x] of degree below t, k((x−1)), k((x−1)) of
degree below n, k((x−1)) of degree at most n, two product types, k((x−1))
of degree below n + t, and k[x] of degree below 2t.

• There are then a few further steps since the aB − bA in the middle of the
proof isn’t the same as the object that the theorem is talking about, namely
aB − bA in k((x−1)), but rather the image of that object under maps that
preserve degrees. Maybe Lean already has a degree-preserving-map type.

Pieces of this lengthy decomposition are also pieces of other proofs, offering the
hope of usefully compressing a sufficiently large pile of proofs. Giving names to
useful bundles of hypotheses often helps mathematics move forward. But a proof
assistant that provides endless ways to say the same thing—without completely
automatic translations—is making lemmas less likely to directly plug into each
other, and is slowing the user down.
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I’m skeptical of the idea that concise syntax requires this split of semantics.
Imagine a front-end converter for HOL Light that, in the context of hypotheses
saying that g, h are in a commutative ring R,

• lets the user see and type g + h as an abbreviation for ring_add R g h, and
• automatically, whenever g+h appears, inserts a boilerplate proof step saying

g + h ∈ R.

This wouldn’t be changing what theorems actually say inside the system, and in
particular wouldn’t be changing how theorems compose; it would be a separate
layer improving how some theorems are displayed and typed. Mizar has a “soft
typing” system that sounds similar, and Isabelle has “locales”.

If it’s feasible to build a modular system where the syntax advantages of
dependent types are provided as a separate layer that doesn’t affect theorem
semantics, then the slowdown that I’ve labeled as “the curse of dependent
types” should really be called “the curse of non-modular dependent types”. For
comparison, what [6] calls the “curse of DTT” sounds to me like a different
problem that wouldn’t be solved by such modularity—basically, whatever syntax
rules you pick have to be accompanied by parsing algorithms, and this can be
difficult or impossible to get right if the rules are too complicated.

4.8. User interfaces. Finally, I’ll comment on user interfaces, since I noticed
one user interface slowing me down considerably more than the other.

I heard that Lean supports multiple cores. I installed it on a 128-core server
with 512GB of RAM, and made sure the server wasn’t busy with anything else.

The documentation said “there are three editors you can use with Lean”, one
of those being neovim. Great—I’ve been using the vi family of editors for a long
time, and would have been slower using anything else.

There was a warning about the neovim support not being as well tested as the
Visual Studio Code support, so I wasn’t terribly surprised when neovim locked
up after 5 minutes of typing. Hard freeze: had to kill the editor and recover the
file, which is a fast operation, except that restarting the editor takes a noticeable
number of seconds for Lean to restart.

For comparison, HOL Light takes minutes to start by default—but there are
tools listed in the documentation that checkpoint and restart HOL Light after
the startup process. I tried one and it worked fine. I rarely restart HOL Light
anyway: it keeps running even if I close the editor, and it’s responding instantly
when I restart the editor. Once or twice a day I’ll start a separate copy of HOL
Light to recheck my file of completed proofs (sometimes I reshuffle theorems and
accidentally move a theorem above a lemma that it needs), but I’m not waiting
for that to finish—I’m typing other proofs.

I ended up using an editing pattern for Lean that triggered crashes less
frequently, so this particular issue was only a slight advantage for HOL Light.
Another user-interface issue described below made more of a difference.

For Lean, the user interface has a main editing window where I’m typing
theorems and proofs; this is saved as a file and ends up going online for people
to check. There’s a separate goal window where Lean displays the current
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hypotheses and desired conclusions. (Screenshots that I’ve seen from Lean with
other editors look like this too.) Some annotations are displayed in the main
window.

The way I’m currently using HOL Light looks similar to that. There’s a
main editor window (vim) where I’m typing theorems and proofs. There’s a
separate goal window where HOL Light displays the current hypotheses and
desired conclusions.

One difference is that there’s a third window for chatting with the HOL Light
software. HOL Light is continually saying things like what MESON_TAC is proving,
and how many computations it’s using, and, when a theorem is proven, a copy of
that theorem—typically I’ll be using this as a lemma for the next theorem, so it’s
good to have it available for reference on the side. Sometimes I’ll type different
theorem names in that window, and HOL Light replies with those theorems.

This interface is a HOL Light add-on step_hol_light from Wiedijk [111],
plus two small changes; see also [110] and [78]. One change (now integrated into
the latest version of [111]) is that I added “Unix.close fd0'” just before the
end of write_goals in step_hol_light, fixing a file-descriptor leak; otherwise
step_hol_light crashes after 8192 goal-stack updates with a common OS
configuration. I encountered this after a few hours of work; evidently I’m seeing
roughly one new goal stack per second on average, although this average conceals
small-scale variations. The other change is that for me the goal window is a
shell window running tail -f hol_light_goals, rather than the editor window
described in the step_hol_light documentation.

The way I was using HOL Light before step_hol_light had two windows: the
main editor window and the HOL Light chat window. I would type some proof
steps in the editor window, and then copy and paste them into the chat window,
at which point HOL Light would display the updated goals in that window. I
switched to step_hol_light partway through working on [15], replacing the
copy-and-paste steps with the Ctrl-H command from step_hol_light.

For Lean, typing #check and a theorem name in the main window keeps that
theorem similarly visible—if the theorem statement fits onto one line, which
it often doesn’t even if I use a wide-window format (main window on top,
goal window on bottom). There are various features to pop up a full theorem
statement. I sometimes fired up a separate window or two to keep the full
statements of multiple-line theorems visible while I was typing a proof.

Now here’s the big problem—well, no, not a big problem, just a continual
small drag, something I encountered much more frequently than startup time.
Very often I would type a few proof lines and Lean wouldn’t respond for a few
seconds. Sometimes it wouldn’t respond for 10 seconds. What was it doing? Was
a 128-core machine not big enough?

There’s no performance feedback from Lean by default, except for the
following sharp edge: sometimes Lean says that a slow proof has crashed into a
“heartbeat” limit. You don’t have to do a binary search on heartbeat limits to
quantify the slowness of each theorem—there’s a set_option profiler true
option that tells you how long each theorem is taking—but I didn’t find a way
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to see separate information about the time consumed by each proof line. So I
found myself trying to figure out what was triggering Lean’s non-responsiveness:

• It was clear that Lean’s search tools were one of the triggers—they have
random performance, sometimes very fast but sometimes very slow. But
I was mainly using those as a way to get an idea of what lemmas were
already available—which wasn’t how I was spending most of my time. Lean’s
non-responsiveness seemed much more pervasive.

• I noticed Lean frequently using many cores: it was spinning up 50 threads,
100 threads, even more. The number of threads seemed related to how quickly
I was typing. The obvious guess was that each character was causing Lean
to re-analyze what I was typing, and it often wasn’t keeping up. Writing
a theorem as part of a comment, and uncommenting it when I wanted to
see feedback from Lean, reduced the frequency of editor crashes and reduced
the CPU load. But this didn’t seem to be addressing the non-responsiveness:
even with much lower load, Lean would often take a long time to respond.

• Long formulas—I mean the lengths in [15], which are nowhere near the
lengths frequently appearing in some areas of mathematics—seemed to be
another trigger. I figured that this was from Lean trying to decide what
type each expression had, so I started sprinkling manual type declarations
everywhere (e.g., h*q:k[X] instead of just h*q). This seemed to help.

• Long proofs were clearly another trigger of non-responsiveness, perhaps the
most important trigger. Splitting long proofs into many lemmas clearly
helped. I ended up splitting 20 lemmas out of the longest proof in [15] simply
to keep Lean’s response time under control. The proof is heavily connected,
so these lemmas have long lists of hypotheses.

I had become accustomed to sometimes writing longer proofs in HOL Light to
save some copy-and-paste time and some naming time, especially for heavily
connected proofs like this. I noticed HOL Light slowing down noticeably when
it was faced with long lists of intermediate conclusions. I ended up splitting 4
lemmas out of the longest proof in [15] for HOL Light. But the slowdowns for
Lean felt much worse than what I’ve encountered for HOL Light.

For Lean, the editor window automatically includes a progress bar showing
which lines Lean has processed already. This progress bar seemed to have
per-theorem granularity rather than per-line granularity. It was easy to guess
that, whenever I pressed a key, Lean was re-processing the entire proof from the
beginning. This redundant work gave an easy explanation for how slowly Lean
was handling each new proof line. I’m told that, yes, this is how Lean naturally
handles proofs—switching to another editor wouldn’t have helped.

I’ve heard about ongoing work to address various performance problems in
Lean, including the problems I encountered. For example, it seems conceptually
straightforward to add a cache recording how proof steps were previously
processed, so that re-processing a proof spends time only on the new part. I’m
not aware of any structural reason that Lean shouldn’t be able to provide HOL
Light’s level of user-interface responsiveness.
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5 Libraries

Provers will not be used routinely until there is a solid basis of
well-developed mathematical theories from which novel research can
grow. But this basis must be provided by experienced mathematicians
adopting provers and formalising existing mathematics. Some
initial formalisation has been started by a few strongly motivated
mathematicians and those computer scientists with an interest in
both automated proof and mathematics, but this is insufficient as a
basis for novel mathematics. So, we have deadlock.

—2011 Bundy [31, Section 6]

There’s a critical ambiguity in the above quote. How comprehensive does a
proof-assistant library have to be to qualify as being “sufficient as a basis for
novel mathematics”? If it makes 20% or 50% or 80% of new proofs affordable
to formalize today, does one say that, no, this isn’t sufficient, because obviously
the objective is to reach 100%?

It is easy to see how the above argument that there’s “deadlock”—neither
side making progress—relies on this ambiguity:

• Interpreting “sufficient as a basis for novel mathematics” as “sufficient as a
basis for some new mathematics” breaks the second step of the argument,
the claim that “some initial formalisation” is “insufficient”. One doesn’t need
to see counterexamples (such as the initial work being sufficient for the new
mathematics in [24]) to see the gap in the argument.

• Interpreting “sufficient as a basis for novel mathematics” as “sufficient as
a basis for all new mathematics” breaks the first step of the argument,
the claim that not having such a library prevents provers from being used
“routinely”.

I don’t mean to downplay the importance of proof-assistant libraries. On the
contrary, each of my computer-checked-proof projects summarized in Section 3
included writing computer-checked versions of some background theory, and the
amount I was writing certainly included whatever background people hadn’t
already explained to the computer, plus redoing things that I didn’t find or
that I decided not to use for whatever reason. Avigad and Harrison [7, page
75] comment that “a formalizer often finds elementary gaps in the supporting
libraries that require extra time and effort to fill”; see also [63, Sections 3 and
5].

As more difficult case studies, this section explains what’s going on in my two
recent preprints with theorems without computer-checked proofs. I mentioned in
Section 1 that I would expect a few months of work to be required in each case
to cover all the necessary background in a proof assistant.

I don’t see this as an indication that there’s a deadlock for these background
topics. I think these two papers simply happen to be unlucky, where the
background they’re pulling together includes too many pieces that I haven’t
found in the libraries. Meanwhile other people are writing papers pulling together
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other selections of background, and will sometimes find enough in the libraries
that filling in the rest is affordable.

If, for example, a library doesn’t have the basic theory of lattices, it’s easy to
imagine the theory being added en passant by someone writing computer-checked
proofs for a paper proving something about the latest algorithm to reduce lattice
bases. If the library doesn’t have Minkowski’s lattice-based bound for class
groups of number fields, it’s easy to imagine the theory being added en passant
by someone writing computer-checked proofs for a paper using a class-group
calculation to characterize solutions to a Diophantine equation. Et cetera.

Or maybe these things are instead done by some student who’s taking
a number-theory course and decides to post some computer-checked proofs.
Mathematics students reportedly enjoy proof-assistant courses such as [34].

Another suggestion from [31, Section 6.4] is to have papers include
computer-checked proofs that take previous non-computer-checked theorems as
axioms (“authors would be free to encode other mathematicians’ theorems as
axioms in their formalisation”). I worry that allowing this would exacerbate
the problem from Section 4.2, leading to more and more examples of theorems
being labeled as computer-checked but being discovered to be incorrect; the
same concern was already expressed in [74, page 17]. The suggestion to allow
such proofs was explicitly motivated in [31] as an attempt to overcome deadlock,
but [31] never justified the claim that there was deadlock in the first place.

5.1. Algorithms. The case study in Section 5.2 below is an example of
a paper with theorems referring explicitly to algorithms. There are many
more such papers in the literature. Two famous examples from the Annals of
Mathematics are 1987 Lenstra “Factoring integers with elliptic curves” [77] and
2004 Agrawal–Kayal–Saxena “PRIMES is in P” [3].

For the first example, one finds “algorithm” mentioned explicitly in, e.g., the
statement of [77, Proposition 2.7]. For the second example, seeing that “PRIMES
is in P” is a statement about algorithms requires unwrapping some definitions:

• “P” is the set of languages recognizable in polynomial time.
• A “language” means a subset of {0, 1}∗. In particular, “PRIMES” means the

set of prime numbers written in binary: 10, 11, 101, etc.
• An algorithm A “recognizes” a language L if A(s) is 1 for all s ∈ L and 0

for all s /∈ L. Here A(s) means the output of A given input string s.
• The algorithm A takes “polynomial time” if there’s some polynomial p such

that, for every `, for every string s of length `, the time taken by A on input
s is at most p(`).

Actually, [3] stated stronger theorems that specify a particular prime-recognition
algorithm and say something more precise about the asymptotic time taken
by the algorithm: [3, Theorem 4.1] says “The algorithm above returns PRIME
if and only if n is prime”, and [3, Theorem 5.1] says “The asymptotic time
complexity of the algorithm is O˜(log21/2 n)”. The “O˜” notation is like O but
allows lower-order logarithmic factors: for example, an algorithm taking time
O(b(log b)2) to multiply b-bit integers takes time O˜(b).
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What are the underlying definitions of “algorithm” and “time”? 1994
Papadimitriou [90], a textbook on the theory of computational complexity, said
that Turing machines “will be our formal model for algorithms in this book”, gave
definitions of single-tape and multi-tape Turing machines, and defined “time”
for a multi-tape Turing machine as the number of steps taken by the machine.
In principle it’s clear how to give a reasonably short computer-checked proof of
“PRIMES is in P”, and more specifically of the 21/2 time exponent, starting
from these definitions:

• At the bottom level, 2020 Forster–Kunze–Wuttke [45] gave a definition
of multi-tape Turing machines in the Coq proof assistant, along with a
mechanism to build and analyze Turing machines starting from programs
written in a nicer language.

• 1994 Schönhage–Grotefeld–Vetter [96] presented explicit multi-tape Turing
machines for fast arithmetic on integers and polynomials. Computer-checked
proofs for the subroutines needed for [3] shouldn’t be too hard to write.

• At the top level, the original 2002 version of [3] relied on some heavy-duty
analytic number theory, but Lenstra pointed out how to avoid this, achieving
heavy-duty exponent 15/2 and elementary exponent 21/2; the journal
version of [3] presents both approaches. As a separate issue, proving the
speed of the algorithm stated in [3] seems to require transcendental number
theory (there’s a gap at this point in [3]; my paper [10] pinpointed the issue
and supplied a proof using Baker’s theorem), but it’s easy to tweak the
algorithm to avoid this.

2021 Chan–Norrish [38] used the HOL4 proof assistant to cover the top level,
and claimed that it “establishes formally that the AKS algorithm indeed shows
‘PRIMES is in P’ ”—but the paper never covered the bottom two levels; it didn’t
formally define P, for example. [38, Section 2.3, “Machine model”] postulated
the time taken by various arithmetic operations and list operations; it did not
define “algorithm”, let alone claim that this definition of “algorithm” allows the
same set of polynomial-time computations as Turing machines.

Having a definition of “algorithm” might not seem important. If a specific
algorithm A is defined as “Input x; compute y ← g(x); compute z ← f(y);
output z” then a theorem saying that A(x) = h(x) for all x can be, and in
the literature often is, rephrased as a theorem saying f(g(x)) = h(x) for all x.
Loops can be rephrased as recursive definitions. Time analyses of any specific
algorithm can be rephrased as analyses of the output of a modified algorithm
that incorporates a time-tracking step into each step of the original algorithm.

But the literature often has good reasons for stating theorems that explicitly
involve the concept of algorithms. It is often informative to consider properties
of broad classes of algorithms, such as the set of polynomial-time algorithms.
Algorithm designers often design algorithms by applying known transformations
of classes of algorithms, and often save time in proofs by appealing to general
correctness theorems for the transformations (random example: [98])—but
stating and proving the general theorems requires suitable definitions of the
relevant set of algorithms. Furthermore, the literature often studies the limits of
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what broad classes of algorithms can do; this is of interest both for its own sake
and as a guide to algorithm designers.

A complication here is that there isn’t just one concept of “algorithm” in the
literature. For example, multi-tape Turing machines aren’t good enough for the
theorems in [77] about an algorithm using elliptic curves to try to factor n: [77,
Section 2.5] states a “probabilistic algorithm” that starts by drawing elements of
Z/n “at random”. Supplementing a Turing machine with the ability to flip coins
gives a different machine model, a randomized Turing machine. A randomized
Turing machine has an output distribution and a time distribution, which are
defined via the infinite probability space {0, 1}∞, although for [77] one can get
away with finite probability spaces. Anyway, enough computer-checked measure
theory is already available to handle proofs about probabilities, and there are
computer-checked proofs of the behavior of some specific probabilistic algorithms
(see, e.g., [67])—which isn’t the same as having a definition of “probabilistic
algorithm” and theorems about that concept.

5.2. Looseness of FO derandomization. Cryptography is one context where
it’s important to understand the limits of broad classes of algorithms. The point
is that we’d like cryptosystems to protect against all feasible attacks.

I’ll focus here on one of the common design tools in cryptography, namely
upgrading a simpler security property into a more complicated security property.
The usual pattern is that there’s a transformation that, given any cryptosystem
X achieving security property S, produces a cryptosystem Y achieving security
property T , backed by a proof showing how any algorithm to attack Y can
be converted into an algorithm to attack X. This simplifies the analysis of the
T -security of Y : it suffices to analyze the S-security of X.

Cryptographers have an unfortunate habit of using the phrase “provably
secure” to refer to any cryptosystem Y produced by a transformation of this
type. Often Y isn’t actually secure; see 2019 Koblitz–Menezes [72] for a survey.
The most obvious way this can happen, beyond proof errors, is that X isn’t
secure. Another common failure mode is as follows:

• The proof puts a bound on the gap between the quantitative security levels
of X and Y .

• People design X to reach, e.g., 128 bits of security, meaning that every
high-probability attack takes time at least 2128, and leap to the conclusion
that Y also has 128 bits of security.

• The bound on the gap turns out to be very large, for example not ruling out
the possibility of Y having just 64 bits of security. (In cryptographic jargon,
the bound is “loose”.)

• Y is then shown to be in the “nightmare scenario” where the security loss is
about as bad as the proven bound allows, for example having just 64 bits of
security even though X still seems to have 128 bits of security. (At this point
mathematicians would call the bound reasonably tight, meaning that no big
improvements in the bound are possible, but in cryptography the bound is
still called “loose”.)
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Beyond the examples of “provably secure” cryptosystems whose security claims
are known to have failed because of “looseness”, there are further examples of
cryptosystems that have gone through the first three steps of this failure mode:
the proofs are known to be “loose”, but the designers aren’t targeting higher
security levels for X to compensate. Typically the designers are worrying about
performance, and are hoping that someone will come up with a “tighter” proof,
and, more to the point, are hoping that Y will be as secure as X whether or not
there’s a proof.

One simple example of a very widely used cryptographic transformation is
“Fujisaki–Okamoto derandomization”. To explain this, I need to start with the
general setting of “public-key encryption”:

• There’s a randomized “key-generation” algorithm that produces a user’s
“secret key” k and “public key” K.

• There’s an “encryption” algorithm E that, given a “plaintext” x and the
public key K, produces a “ciphertext” y. This algorithm is allowed to be
randomized, so y = E(x, K, r) for some random r.

• There’s a “decryption” algorithm D that, given the ciphertext E(x, K, r)
and the secret key k, recovers x.

The simplest security goal in this setting is “one-wayness”. Let’s assume that
the plaintext x is chosen uniformly at random from a set of 2256 plaintexts.
One-wayness means that every feasible algorithm has negligible probability
of recovering x given E(x, K, r) and the public key K; the definition is
parameterized by the notions of “feasible” and “negligible”.

One-wayness doesn’t guarantee security if a user is actually sending a 1-bit
message by choosing x to be either 0 or 1. It also does nothing to rule out the
following type of disaster: if D receives an input that doesn’t have the form
E(x, K, r), then D outputs the secret key k, or something else from which an
attacker can easily recover k. So people design tools to upgrade one-wayness to
a stronger security property.

At this point I can say what FO derandomization does: it replaces y =
E(x, K, r) with y = E(x, K, H(x)), where H is a public “hash function” that
everyone can compute. This isn’t actually designed to upgrade security from
one-wayness to something better: it’s instead designed to preserve one-wayness
while making encryption deterministic, as a preparatory step for transformations
that upgrade to better security but that rely on encryption being deterministic. I
won’t describe the latter transformations; readers who are interested can consult
1999 Fujisaki–Okamoto [46] and other papers cited in [14].

There’s a proof saying that FO derandomization preserves one-wayness except
for the following two issues:

• One issue is that the proof uses what’s called the “random-oracle model”,
where the hash function H is modeled as a uniform random function and
success probabilities of attacks are defined as averages over H. Any specific
easy-to-compute function that we plug in for H could be breakable without
contradicting the proof.
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• The other issue is that the proof is loose. Concretely, for an attacker carrying
out 2100 hash queries, the proof allows the attacker’s success chance against
E(x, k, H(x)) to be 2100 times larger than the attacker’s success chance
against E(x, k, r).

The underlying definitions of algorithms are definitions of probabilistic oracle
algorithms: Turing machines are augmented not just with a mechanism to read
the next bit from an auxiliary input chosen uniformly at random from {0, 1}∞,
but also with a mechanism to convert x into H(x).

Typically E is designed with the goal of ensuring that all feasible attacks have
success probability considerably below 1. This isn’t good enough for the proof to
guarantee security of the derandomized version of E. One should instead design
E with the goal of ensuring that all feasible attacks have success probability
below, say, 2−128.

Starting in 2018, I asked various people what they thought about this gap.
Some of them said that coming up with a better proof shouldn’t be hard, and
started sketching better proofs, but ran into trouble.

In 2021, I realized how to turn the trouble into examples of cryptosystems
where FO derandomization appears to lose security—including an example, in
the random-oracle model, of a cryptosystem where FO derandomization can be
proven to lose security. These cryptosystems are in the nightmare scenario: the
attacker’s success chance is multiplied by almost the number of hash queries, for
example 2100.

This doesn’t say that previous proposals of cryptosystems using FO
derandomization are broken, but it means that the gap in the security analysis
of FO derandomization for those cryptosystems isn’t going to be closed by a
proof at the level of generality of the existing proof of derandomization. Maybe
there’s a proof using some specific features of those proposals—or maybe there’s
an attack.

My preprint [14] states theorems about the provable example: in particular,
about the performance of a particular algorithm attacking the derandomized
system, and about the performance of any algorithm attacking the original
system. The theorem statements don’t involve algorithm time, but they do
involve the number of oracle calls, and they involve success probabilities. The
underlying definition of algorithms needs to allow oracles and randomization.

5.3. Non-randomness of S-unit lattices. Readers who don’t see algorithms
as interesting mathematical objects will, I suspect, be happier with the following
case study. As a starting point, consider the ratio between

• the number of elements of Z2 inside a circle of radius r centered at the origin
and

• πr2, the area inside the circle.

Gauss [49, pages 277–278] gave explicit bounds showing that this ratio converges
to 1 as r →∞. More generally, for any determinant-1 lattice L ⊆ Rn of rank n,
the ratio between



38 Daniel J. Bernstein

• the number of elements of L inside rB and
• the volume of rB

converges to 1 as r →∞, where rB = {x ∈ Rn : |x| ≤ r}.
Choose α so that the volume of αB is 1. Calculate ball volumes to see that

α ∈ (1 + o(1))
√

n/2πe as n → ∞. Define λ1(L) as the minimum length of
nonzero elements of L. The following heuristic argument concludes that λ1(L)
is between α and 31/nα, hence also in (1 + o(1))

√
n/2πe:

• Heuristically, there’s 1 element of L inside αB, evidently just the origin.
• Heuristically, since 31/nαB has volume 3, there are 3 elements of L inside

31/nαB, evidently the origin and ±v where ±v are two elements of L of
length λ1(L).

• Consequently α < λ1(L) ≤ 31/nα.

The heuristic steps ignore the difference between the aforementioned ratio and
1. This obviously can’t be exactly right (consider a ball of volume 3 when L has
four vectors of length λ1(L), or a ball of volume 2, or a ball of volume 1.7), so
let’s call the conclusion a “heuristic approximation”.

One can, with more work, prove something along these lines. 1945 Siegel [99]
gave an explicit definition of a probability measure on the set of determinant-1
rank-n lattices L ⊆ Rn that’s invariant under the action of SLn(R), and 1956
Rogers [95] analyzed the distribution of λ1(L) for L chosen at random from
this measure. See 2019 Strömbergsson–Södergren [103, Remark 1.8] for more
precise results. A random lattice L has λ1(L) ∈ (1 + O((log n)/n))

√
n/2πe with

probability 1−o(1) as n→∞, at least for some interpretations of the quantifiers.
1998 Hoffstein–Pipher–Silverman [65, page 273] used the name “gaussian

heuristic” for the statement that
√

n/2πe ≤ λ1(L) ≤
√

n/πe. That paper
introduced an influential line of lattice-based cryptosystems, and used heuristics
about vector lengths to analyze the scalability of some attack algorithms.
Many followup papers adopted the “Gaussian heuristic” name for a cloud of
related heuristics: for example, the statement that λ1(L) =

√
n/2πe, or the

statement that λ1(L) = α, or the statement that there are 1.3n+o(n) elements
of L ∩ 1.3λ1(L)B, or the statement that the latter elements are “uniformly
distributed over the ball”, in the words of [42, Heuristic 2, “consequence of
GH”].

These heuristics have been used to analyze the scalability of a variety of
attack algorithms, for example producing the complicated formulas discussed in
Section 3.2. As a simpler example, consider the following greedy algorithm to
find an element v ∈ L given v + ε: try subtracting u from the input for each u
in a database of short elements of L, and repeat as long as this keeps reducing
the input. The heuristics imply that, to have a noticeable chance of reducing the
input down to ε, this algorithm requires a database size exponential in n.

I doubt that Gauss would have approved of having his name used for these
heuristics. Consider, for example, the important lattice L = Zn:

• The minimum nonzero length λ1(L) is 1, so
√

n/2πe is a worse and worse
approximation to λ1(L) as n grows.
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• The only elements of L ∩ 1.3λ1(L)B are the standard unit vectors, their
negatives, and 0. Consequently, #(L∩1.3λ1(L)B) isn’t exponential in n: it’s
2n + 1.

• Greedily subtracting off those vectors from a given v + ε reliably finds ε.
There’s no need for an exponential-size database.

This particular counterexample to the heuristics might not seem relevant to
attack papers talking about “random” lattices—but one has to check whether
the lattices showing up in the attacks really are “random”; otherwise the attacks
might work much better than the heuristics predict. Let’s look at how some
special lattices arise in one line of attacks.

2009 Gentry [51] introduced a “fully homomorphic” cryptosystem in which
the secret key is an element g of (for example) the ring R = Z[x]/(xn + 1) where
n is a power of 2. The public key includes the ideal gR. One can view gR as a
lattice, and view the secret generator g as a short element of that lattice, but
finding short nonzero elements of lattices is supposed to be hard when n is big.

I wrote a blog post in 2014 [11] about “an ideal-lattice attack strategy that,
unlike traditional lattice attacks, exploits the multiplicative structure of ideals”:

• There were already well-known algorithms that find some generator of gR
in, conjecturally, subexponential time. The only issue for the attacker is that
this generator will have extremely large coefficients: it will be gu for some
extremely large unit u ∈ Z[x]/(xn + 1).

• Dirichlet’s log map converts the set of units into a lattice, and converts the
problem of finding u close to gu into the problem of finding a lattice vector
close to the log of gu. This lattice has rank only n/2 − 1. Rank isn’t the
only parameter influencing the performance of lattice algorithms, but it’s an
important parameter.

I described this method of finding generators as “reasonably well known among
computational algebraic number theorists”, and explained how to use subrings
of Z[x]/(xn + 1) to reduce the dimension further.

2014 Campbell–Groves–Shepherd [36] then observed that one can quickly
solve this particular lattice problem by subtracting off logs of particular units,
namely textbook generators of the group of “cyclotomic units”. There’s an
algebraic obstruction here—cyclotomic units aren’t necessarily all units of
Z[x]/(xn +1)—but the index (number theorists call this “h+

n ”) is typically small,
and in particular is reasonably conjectured to be 1 whenever n is a power of 2.

Meanwhile 2010 Lyubashevsky–Peikert–Regev [80] had shown that breaking
some other cryptosystems implied being able to find reasonably short nonzero
elements of arbitrary ideals, and had described this as a “very strong hardness
guarantee” for those cryptosystems. The attack against Gentry’s cryptosystem
was finding short elements of some ideals; could it be extended to handle
arbitrary ideals?

In 2016 [12], I suggested “solving a close-vector problem in the S-unit lattice,
to recover a short g from any S-unit multiple ug” as a generalization of unit
attacks. As background, “S-units” are a standard generalization of units in
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number theory: there’s a set S of primes, and anything whose factorization is
supported on those primes is called an S-unit (or “S-smooth”). For example,
10/3 is a {2, 3, 5}-unit. The lattice of logs of units extends straightforwardly to
a lattice of logs of S-units. The S-unit lattice is also the main object used in
the conjecturally-subexponential-time algorithms to find generators of principal
ideals.

2019 Pellet-Mary–Hanrot–Stehlé [92] analyzed this approach, specifically
using the greedy algorithm to solve the close-vector problem, and concluded that
this was better than previous attacks for some sizes of ε but took exponential time
for the sizes of ε used in [80]. Internally, this analysis applied the aforementioned
heuristics to S-unit lattices.

Lange and I have a preprint [19] saying that these heuristics “underestimate
the power of S-unit attacks: S-unit lattices, like Zd, have much shorter vectors
and reduce much more effectively” than the heuristics predict. In particular, for
each n, an S-unit attack with database size #S1+o(1) has success probability
converging to 1 as S increases; the heuristic analysis of [92] instead says that
the probability converges exponentially to 0.

This still leaves open the possibility that the heuristics are reasonably accurate
for smaller S—so [19] also collects evidence against the heuristics in further
cases: first, all sizes of S for the case n = 1; second, for each n, the smallest
S-unit lattice, namely the unit lattice.

Not everything in [19] is stated as a theorem: for example, the random-lattice
evidence for the heuristics is merely reviewed, not reproven. But there are various
theorems in [19], and the proofs rely on a range of algebraic and analytic
background facts, including various theorems of Kummer about cyclotomic units,
Dirichlet’s unit theorem, the Brauer–Siegel theorem (in the form of [108, page
44, bottom paragraph]) about the asymptotics of products of class numbers and
regulators, Robbins’s version [94] of Stirling’s formula, etc.

5.4. Interoperability among proof assistants. Research mathematics is a
cooperative, worldwide endeavor that transcends superficial language differences.
You can use a theorem that was published in French or German or Russian—and,
on the flip side, you don’t get any research credit for being the first person to
write the same thing in English, even if the exposition is a valuable service for
monolingual students.

Now imagine an alternate universe where each language has its own walled-off
mathematics literature. If you want to do mathematics, first you have to listen
to people claiming that you can’t write serious analysis in French and people
claiming that you can’t write serious algebra in English, and then you have to
pick a language for your first paper. You can’t use lemmas from any of the other
languages in your own theorems until they’ve been written in this language.

That’s the current universe of proof assistants. When people using proof
assistant P want theorems that are already in proof assistant Q, they generally
end up translating proofs by hand, with only partial automation. Even something
that sounds as minor as moving proofs from version 3 of Lean to version 4 of
Lean was reportedly a large task overall.
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Say a paper relies on background A, B, C, D, E, F , and proof assistant
P provides background A, B, C, and proof assistant Q provides background
A, D, E. Writing computer-checked proofs then means adding background
D, E, F if one picks proof assistant P , or adding background B, C, F if one
picks proof assistant Q, rather than just adding background F . The redundant
work doesn’t stop progress, but it slows it down.

I don’t expect this aspect of the proof-assistant situation to persist. For
comparison, programming languages already tend to be interoperable. The most
powerful feature of each programming language is its ability to use a mountain
of software written in other programming languages.

There’s already progress in automating proof translations: see, e.g., [73].
Surely someone will manage to write a proof assistant that makes it easy to use
lemmas from other proof assistants. Users will love this. Other proof assistants
will follow. Proof assistants will continue to compete for ease of use, but I hope
and expect that they won’t continue competing for time spent building separate
libraries. Instead they’ll be cooperating as tools for expanding a unified, shared,
computer-comprehensible version of the mathematics literature.
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