Putnam Mathematical Competition, 6 December 2003

Problem A1

Let n be a fixed positive integer. How many ways are there to write n as a sum of positive integers,

$$
n=a_{1}+a_{2}+\cdots+a_{k},
$$

with k an arbitrary positive integer and $a_{1} \leq a_{2} \leq \cdots \leq a_{k} \leq a_{1}+1$? For example, with $n=4$, there are four ways: $4,2+2,1+1+2,1+1+1+1$.

Problem A2

Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be nonnegative real numbers. Show that

$$
\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}+\left(b_{1} b_{2} \cdots b_{n}\right)^{1 / n} \leq\left(\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \cdots\left(a_{n}+b_{n}\right)\right)^{1 / n} .
$$

Problem A3

Find the minimum value of

$$
|\sin x+\cos x+\tan x+\cot x+\sec x+\csc x|
$$

for real numbers x.

Problem A4

Suppose that a, b, c, A, B, C are real numbers, $a \neq 0$ and $A \neq 0$, such that

$$
\left|a x^{2}+b x+c\right| \leq\left|A x^{2}+B x+C\right|
$$

for all real numbers x. Show that

$$
\left|b^{2}-4 a c\right| \leq\left|B^{2}-4 A C\right| .
$$

Problem A5

A Dyck n-path is a lattice path of n upsteps $(1,1)$ and n downsteps $(1,-1)$ that starts at the origin O and never dips below the x-axis. A return is a maximal sequence of contiguous downsteps that terminates on the x-axis. For example, the Dyck 5-path illustrated has two returns, of length 3 and 1 respectively.

Show that there is a one-to-one correspondence between the Dyck n-paths with no return of even length and the Dyck ($n-1$)-paths.

Problem A6

For a set S of nonnegative integers, let $r_{S}(n)$ denote the number of ordered pairs $\left(s_{1}, s_{2}\right)$ such that $s_{1} \in S, s_{2} \in S, s_{1} \neq s_{2}$, and $s_{1}+s_{2}=n$. Is it possible to partition the nonnegative integers into two sets A and B in such a way that $r_{A}(n)=r_{B}(n)$ for all n ?

Problem B1

Do there exist polynomials $a(x), b(x), c(y), d(y)$ such that

$$
1+x y+x^{2} y^{2}=a(x) c(y)+b(x) d(y)
$$

holds identically?

Problem B2

Let n be a positive integer. Starting with the sequence $1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}$, form a new sequence of $n-1$ entries $\frac{3}{4}, \frac{5}{12}, \ldots, \frac{2 n-1}{2 n(n-1)}$, by taking the averages of two consecutive entries in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a third sequence of $n-2$ entries and continue until the final sequence produced consists of a single number x_{n}. Show that $x_{n}<\frac{2}{n}$.

Problem B3

Show that for each positive integer n,

$$
n!=\prod_{i=1}^{n} \operatorname{lcm}\{1,2, \ldots,\lfloor n / i\rfloor\}
$$

(Here lcm denotes the least common multiple, and $\lfloor x\rfloor$ denotes the greatest integer $\leq x$.)
Problem B4
Let $f(z)=a z^{4}+b z^{3}+c z^{2}+d z+e=a\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right)$ where a, b, c, d, e are integers, $a \neq 0$. Show that if $r_{1}+r_{2}$ is a rational number, and if $r_{1}+r_{2} \neq r_{3}+r_{4}$, then $r_{1} r_{2}$ is a rational number.

Problem B5

Let A, B and C be equidistant points on the circumference of a circle of unit radius centered at O, and let P be any point in the circle's interior. Let a, b, c be the distances from P to A, B, C respectively. Show that there is a triangle with side lengths a, b, c, and that the area of this triangle depends only on the distance from P to O.

Problem B6

Let $f(x)$ be a continuous real-valued function defined on the interval $[0,1]$. Show that

$$
\int_{0}^{1} \int_{0}^{1}|f(x)+f(y)| d x d y \geq \int_{0}^{1}|f(x)| d x
$$

Solutions

D. J. Bernstein, 7 December 2003

Problem A1

Let n be a fixed positive integer. How many ways are there to write n as a sum of positive integers,

$$
n=a_{1}+a_{2}+\cdots+a_{k}
$$

with k an arbitrary positive integer and $a_{1} \leq a_{2} \leq \cdots \leq a_{k} \leq a_{1}+1$? For example, with $n=4$, there are four ways: $4,2+2,1+1+2,1+1+1+1$.

Solution: There are exactly n ways to write n as such a sum. More precisely, there is exactly 1 way $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ for each $k \in\{1,2, \ldots, n\}$.

Say $a_{1}, a_{2}, \ldots, a_{k}$ satisfy the stated conditions. Observe first that $n \geq a_{1}+a_{2}+\cdots+a_{k} \geq$ $1+1+\cdots+1=k$ so $k \in\{1,2, \ldots, n\}$. The inequalities $a_{1} \leq a_{2} \leq \cdots \leq a_{k} \leq a_{1}+1$ imply that all of $a_{1}, a_{2}, \ldots, a_{k}$ are in $\left\{a_{1}, a_{1}+1\right\}$. Define j as the number of occurrences of $a_{1}+1$; then $n=a_{1}+a_{2}+\cdots+a_{k}=k a_{1}+j$ with $0 \leq j \leq k-1$, so $a_{1}=\lfloor n / k\rfloor$ and $j=n \bmod k$. Thus $a_{1}, a_{2}, \ldots, a_{k}$ consist of $n \bmod k$ occurrences of $\lfloor n / k\rfloor+1$ preceded by $k-(n \bmod k)$ occurrences of $\lfloor n / k\rfloor$.

Conversely, take any $k \in\{1,2, \ldots, n\}$, and build $a_{1}, a_{2}, \ldots, a_{k}$ as $n \bmod k$ occurrences of $\lfloor n / k\rfloor+1$ preceded by $k-(n \bmod k)$ occurrences of $\lfloor n / k\rfloor$. Then $a_{1} \leq a_{2} \leq \cdots \leq a_{k}$; $a_{k} \leq\lfloor n / k\rfloor+1 \leq a_{1}+1$; and $a_{1}+a_{2}+\cdots+a_{k}=k\lfloor n / k\rfloor+(n \bmod k)=n$.

Problem A2

Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be nonnegative real numbers. Show that

$$
\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}+\left(b_{1} b_{2} \cdots b_{n}\right)^{1 / n} \leq\left(\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \cdots\left(a_{n}+b_{n}\right)\right)^{1 / n} .
$$

Solution: If $a_{i}=b_{i}=0$ then the left side and right side are both 0 . So assume that $a_{i}+b_{i}>0$ for each i. By the arithmetic-geometric mean inequality,

$$
\begin{aligned}
& \left(\frac{a_{1}}{a_{1}+b_{1}} \cdots \frac{a_{n}}{a_{n}+b_{n}}\right)^{1 / n}+\left(\frac{b_{1}}{a_{1}+b_{1}} \cdots \frac{b_{n}}{a_{n}+b_{n}}\right)^{1 / n} \\
& \quad \leq \frac{1}{n}\left(\frac{a_{1}}{a_{1}+b_{1}}+\cdots+\frac{a_{n}}{a_{n}+b_{n}}\right)+\frac{1}{n}\left(\frac{b_{1}}{a_{1}+b_{1}}+\cdots+\frac{b_{n}}{a_{n}+b_{n}}\right)=1 .
\end{aligned}
$$

Clear denominators: $\left(a_{1} \cdots a_{n}\right)^{1 / n}+\left(b_{1} \cdots b_{n}\right)^{1 / n} \leq\left(\left(a_{1}+b_{1}\right) \cdots\left(a_{n}+b_{n}\right)\right)^{1 / n}$.

This result, Hölder's inequality, is fairly standard course material, so it isn't a reasonable Putnam problem.

Problem A3

Find the minimum value of

$$
|\sin x+\cos x+\tan x+\cot x+\sec x+\csc x|
$$

for real numbers x.
Solution: The problem does not make sense as stated: the trigonometric functions are not all defined when x is a multiple of $\pi / 2$. I presume that the intent was to say "for real numbers x where $\sin x \neq 0$ and $\cos x \neq 0$," i.e., for real numbers x that are not multiples of $\pi / 2$.

The statement of the problem also implies that there $i s$ a minimum value of the function. Are contestants required to prove this, or are they allowed to assume it? I presume that contestants are required to prove it.

Anyway, the minimum is $2 \sqrt{2}-1$.
Write $y=\sin x+\cos x$. Then $y^{2}=(\sin x)^{2}+(\cos x)^{2}+2 \sin x \cos x=1+2 \sin x \cos x$, so $\tan x+\cot x=(\sin x)^{2} /(\sin x \cos x)+(\cos x)^{2} /(\sin x \cos x)=2 /\left(y^{2}-1\right)$ and $\sec x+\csc x=$ $(\sin x) /(\sin x \cos x)+(\cos x) /(\sin x \cos x)=2 y /\left(y^{2}-1\right)$, so $\sin x+\cos x+\tan x+\cot x+$ $\sec x+\csc x=y+2 /\left(y^{2}-1\right)+2 y /\left(y^{2}-1\right)=y+2 /(y-1)$.

If $y>1$ then, by the arithmetic-geometric-mean inequality, $(y-1)+2 /(y-1) \geq$ $2 \sqrt{(y-1) 2 /(y-1)}=2 \sqrt{2}$, so $y+2 /(y-1) \geq 2 \sqrt{2}+1>2 \sqrt{2}-1$. If $y<1$ then similarly $(1-y)+2 /(1-y) \geq 2 \sqrt{2}$ so $-(y+2 /(y-1)) \geq 2 \sqrt{2}-1$. In both cases, $|y+2 /(y-1)| \geq 2 \sqrt{2}-1$, so $|\sin x+\cos x+\tan x+\cot x+\sec x+\csc x| \geq 2 \sqrt{2}-1$.

To see that the alleged minimum is achieved, note that $1 / \sqrt{2}-1 \in[-1,1]$, and set $x=\pi / 4+\arccos (1 / \sqrt{2}-1)$. Then $y=\sqrt{2} \cos (x-\pi / 4)=1-\sqrt{2}$ so $y+2 /(y-1)=1-2 \sqrt{2}$.

Problem A4

Suppose that a, b, c, A, B, C are real numbers, $a \neq 0$ and $A \neq 0$, such that

$$
\left|a x^{2}+b x+c\right| \leq\left|A x^{2}+B x+C\right|
$$

for all real numbers x. Show that

$$
\left|b^{2}-4 a c\right| \leq\left|B^{2}-4 A C\right|
$$

Solution: Assume without loss of generality that $a>0$. (Otherwise replace (a, b, c) with $(-a,-b,-c)$; this transformation does not change $\left|a x^{2}+b x+c\right|$, and it does not change $\left|b^{2}-4 a c\right|$.) Similarly assume that $A>0$.

Observe that $\lim _{x \rightarrow \infty}\left(A x^{2}+B x+C\right) / x^{2}=A$. Thus $\lim _{x \rightarrow \infty}\left|\left(A x^{2}+B x+C\right) / x^{2}\right|=A$. Similarly $\lim _{x \rightarrow \infty}\left|\left(a x^{2}+b x+c\right) / x^{2}\right|=a$. Hence $a \leq A$.
Now write $d=b^{2}-4 a c$ and $D=B^{2}-4 A C$.
Case 1: $D>0$. Write $r=(-B+\sqrt{D}) / 2 A$ and $s=(-B-\sqrt{D}) / 2 A$; then $r \neq s$. If $x \in\{r, s\}$ then $A x^{2}+B x+C=0$ so $\left|a x^{2}+b x+c\right| \leq|0|=0$ so $a x^{2}+b x+c=0$. Thus $a x^{2}+b x+c=a(x-r)(x-s)$; so $d=a^{2}(r-s)^{2}=a^{2}(\sqrt{D} / A)^{2}=D a^{2} / A^{2}$. Hence $0<d \leq D$.

Case 2: $D=0$. The functions $A x^{2}+B x+C$ and $-A x^{2}-B x-C$ both have value 0 and derivative 0 for $x=-B / 2 A$, so the intermediate function $a x^{2}+b x+c$ also has value 0 and derivative 0 , i.e., a double root. Hence $d=0$.
Case 3: $D<0$. Then $A x^{2}+B x+C=A(x+B / 2 A)^{2}-D / 4 A>0$ for all real numbers x, so $\pm\left(a x^{2}+b x+c\right) \leq A x^{2}+B x+C$ for all x, so $(A \mp a) x^{2}+(B \mp b) x+(C \mp c) \leq 0$ for all x, so $(B \mp b)^{2} \leq 4(A \mp a)(C \mp c)$, i.e., $B^{2} \mp 2 B b+b^{2} \leq 4 A C+4 a c \mp(4 A c+4 a C)$. Average $\mp=+$ and $\mp=-$ to see that $B^{2}+b^{2} \leq 4 A C+4 a c$, i.e., $d \leq-D$.
On the other hand, take $x=-B / 2 A$ to see that $-d / 4 a \leq a(x+b / 2 a)^{2}-d / 4 a=$ $a x^{2}+b x+c \leq A x^{2}+B x+C=-D / 4 A$; i.e., $-d \leq-D a / A \leq-D$.

Problem A5

A Dyck n-path is a lattice path of n upsteps $(1,1)$ and n downsteps $(1,-1)$ that starts at the origin O and never dips below the x-axis. A return is a maximal sequence of contiguous downsteps that terminates on the x-axis. For example, the Dyck 5 -path illustrated has two returns, of length 3 and 1 respectively.

Show that there is a one-to-one correspondence between the Dyck n-paths with no return of even length and the Dyck ($n-1$)-paths.

Solution: The problem fails to specify the range of n. The definition of a (-1)-path is unclear, so I presume that the definition of n-paths is for all $n \geq 0$ and that the conclusion is for all $n \geq 1$.

Fix $n \geq 1$. If $k \in\{1,2, \ldots, n\}$ then any $(n-k)$-path, followed by an upstep, followed by any $(k-1)$-path, followed by a downstep, forms an n-path. Every n-path is obtained in this way from a unique k, a unique $(n-k)$-path, and a unique $(k-1)$-path. (The upstep, $(k-1)$-path, and downstep are the last mountain in the n-path.)

Hence $C_{n}=C_{n-1} C_{0}+C_{n-2} C_{1}+\cdots+C_{0} C_{n-1}$ for $n \geq 1$, where C_{n} is the number of n-paths. Note that $C_{0}=1$.

Next define O_{n} as the number of n-paths having a final return of odd length. Note that $O_{0}=0$. For $n \geq 1$, every such path is obtained from a unique $k \in\{1,2, \ldots, n\}$, a unique ($n-k$)-path, and a unique $(k-1)$-path that does not have a final return of odd length; hence $O_{n}=C_{n-1}\left(C_{0}-O_{0}\right)+C_{n-2}\left(C_{1}-O_{1}\right)+\cdots+C_{0}\left(C_{n-1}-O_{n-1}\right)$.

Next define X_{n} as the number of n-paths having no return of even length. Note that $X_{0}=1$. For $n \geq 1$, every such path is obtained from a unique $k \in\{1,2, \ldots, n\}$, a unique $(n-k)$-path having no return of even length, and a unique $(k-1)$-path that does not have a final return of odd length; hence $X_{n}=X_{n-1}\left(C_{0}-O_{0}\right)+X_{n-2}\left(C_{1}-O_{1}\right)+\cdots+$ $X_{0}\left(C_{n-1}-O_{n-1}\right)$.

In particular, $X_{1}=X_{0}\left(C_{0}-O_{0}\right)=1(1-0)=1=C_{0}$ as desired.
Assume inductively that $X_{1}=C_{0}, X_{2}=C_{1}$, and so on through $X_{n}=C_{n-1}$. Then $X_{n+1}=X_{n}\left(C_{0}-O_{0}\right)+X_{n-1}\left(C_{1}-O_{1}\right)+\cdots+X_{1}\left(C_{n-1}-O_{n-1}\right)+X_{0}\left(C_{n}-O_{n}\right)=$ $C_{n-1}\left(C_{0}-O_{0}\right)+C_{n-2}\left(C_{1}-O_{1}\right)+\cdots+C_{0}\left(C_{n-1}-O_{n-1}\right)+\left(C_{n}-O_{n}\right)=O_{n}+C_{n}-O_{n}=C_{n}$.

In other words, the number of n-paths with no return of even length is the same as the number of $(n-1)$-paths; i.e., there is a one-to-one correspondence between the two sets.

Problem A6

For a set S of nonnegative integers, let $r_{S}(n)$ denote the number of ordered pairs $\left(s_{1}, s_{2}\right)$ such that $s_{1} \in S, s_{2} \in S, s_{1} \neq s_{2}$, and $s_{1}+s_{2}=n$. Is it possible to partition the nonnegative integers into two sets A and B in such a way that $r_{A}(n)=r_{B}(n)$ for all n ?

Solution: Yes.
Define $A=\{0,3,5,6,9, \ldots\}$ as the set of nonnegative integers n whose binary expansions have an even number of 1 's, and define $B=\{1,2,4,7,8, \ldots\}$ as the set of nonnegative integers n whose binary expansions have an odd number of 1's.
Define f as the formal power series $\sum_{n \in A} x^{n}$. Similarly define $g=\sum_{n \in B} x^{n}$.
Now $f\left(x^{2}\right)+x g\left(x^{2}\right)=\sum_{n \in A} x^{2 n}+\sum_{n \in B} x^{2 n+1}=\sum_{2 n \in A} x^{2 n}+\sum_{2 n+1 \in A} x^{2 n+1}=$ $\sum_{m \in A} x^{m}=f$. Similarly $g\left(x^{2}\right)+x f\left(x^{2}\right)=g$. Hence $f-g=f\left(x^{2}\right)-g\left(x^{2}\right)+x g\left(x^{2}\right)-$ $x f\left(x^{2}\right)=(1-x)\left(f\left(x^{2}\right)-g\left(x^{2}\right)\right)$.
Furthermore, $f+g=\sum_{n} x^{n}=1 /(1-x)$. Hence $f^{2}-g^{2}=(f-g)(f+g)=f\left(x^{2}\right)-g\left(x^{2}\right)$.
On the other hand, $f^{2}=\sum_{s \in A, t \in A} x^{s} x^{t}=\sum_{s \in A} x^{2 s}+\sum_{s \in A, t \in A, s \neq t} x^{s+t}=f\left(x^{2}\right)+$ $\sum_{n} r_{A}(n) x^{n}$. Similarly $g^{2}=g\left(x^{2}\right)+\sum_{n} r_{B}(n) x^{n}$. Hence $\sum_{n} r_{A}(n) x^{n}=f^{2}-f\left(x^{2}\right)=$ $g^{2}-g\left(x^{2}\right)=\sum_{n} r_{B}(n) x^{n}$; i.e., $r_{A}(n)=r_{B}(n)$ for all n.

Problem B1

Do there exist polynomials $a(x), b(x), c(y), d(y)$ such that

$$
1+x y+x^{2} y^{2}=a(x) c(y)+b(x) d(y)
$$

holds identically?
Solution: No.
Suppose that $1+x y+x^{2} y^{2}=a(x) c(y)+b(x) d(y)$. Write $a(x), b(x), c(y), d(y)$ respectively as $a_{0}+a_{1} x+a_{2} x^{2}+\cdots, b_{0}+b_{1} x+b_{2} x^{2}+\cdots, c_{0}+c_{1} y+c_{2} y^{2}+\cdots, d_{0}+d_{1} y+d_{2} y^{2}+\cdots$. Then

$$
\begin{aligned}
1+x y+x^{2} y^{2}= & \left(a_{0} c_{0}+b_{0} d_{0}\right)+\left(a_{0} c_{1}+b_{0} d_{1}\right) y+\left(a_{0} c_{2}+b_{0} d_{2}\right) y^{2} \\
& +\left(a_{1} c_{0}+b_{1} d_{0}\right) x+\left(a_{1} c_{1}+b_{1} d_{1}\right) x y+\left(a_{1} c_{2}+b_{1} c_{2}\right) x y^{2} \\
& +\left(a_{2} c_{0}+b_{2} c_{0}\right) x^{2}+\left(a_{2} c_{1}+b_{2} c_{1}\right) x^{2} y+\left(a_{2} c_{2}+b_{2} c_{2}\right) x^{2} y^{2}+\cdots .
\end{aligned}
$$

Extract coefficients: $a_{0} c_{0}+b_{0} d_{0}=1$, so $a_{0} c_{0} c_{1}+b_{0} c_{1} d_{0}=c_{1}$; and $a_{0} c_{1}+b_{0} d_{1}=0$, so $a_{0} c_{0} c_{1}+b_{0} c_{0} d_{1}=0$, so $b_{0}\left(c_{1} d_{0}-c_{0} d_{1}\right)=c_{1}$. Similarly $b_{0}\left(c_{1} d_{2}-d_{1} c_{2}\right)=0$ and $b_{2}\left(c_{1} d_{2}-d_{1} c_{2}\right)=c_{1}$. If $b_{0}=0$ then $c_{1}=0$; if $b_{0} \neq 0$ then $c_{1} d_{2}-d_{1} c_{2}=0$ so $c_{1}=0$. Either way, $c_{1}=0$. Exchange a, c with b, d to see that $d_{1}=0$. Hence $1=a_{1} c_{1}+b_{1} d_{1}=0$; contradiction.

Problem B2

Let n be a positive integer. Starting with the sequence $1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}$, form a new sequence of $n-1$ entries $\frac{3}{4}, \frac{5}{12}, \ldots, \frac{2 n-1}{2 n(n-1)}$, by taking the averages of two consecutive entries in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a third sequence of $n-2$ entries and continue until the final sequence produced consists of a single number x_{n}. Show that $x_{n}<\frac{2}{n}$.

Solution: The k th repeated average of u_{1}, u_{2}, \ldots is $\left(\binom{k}{0} u_{1}+\binom{k}{1} u_{2}+\cdots+\binom{k}{k} u_{k}\right) / 2^{k}$, $\left(\binom{k}{0} u_{2}+\binom{k}{1} u_{3}+\cdots+\binom{k}{k} u_{k+1}\right) / 2^{k}, \ldots$, by induction on k.
In particular, the $(n-1)$ st repeated average of $1,1 / 2, \ldots, 1 / n$, namely x_{n}, is

$$
\begin{aligned}
\frac{1}{2^{n-1}} \sum_{0 \leq i \leq n-1}\binom{n-1}{i} \frac{1}{i+1} & =\frac{2}{n \cdot 2^{n}} \sum_{0 \leq i \leq n-1}\binom{n-1}{i} \frac{n}{i+1} \\
& =\frac{2}{n \cdot 2^{n}} \sum_{0 \leq i \leq n-1}\binom{n}{i+1}=\frac{2}{n \cdot 2^{n}}\left(2^{n}-1\right)<\frac{2}{n} .
\end{aligned}
$$

Problem B3

Show that for each positive integer n,

$$
n!=\prod_{i=1}^{n} \operatorname{lcm}\{1,2, \ldots,\lfloor n / i\rfloor\}
$$

(Here lcm denotes the least common multiple, and $\lfloor x\rfloor$ denotes the greatest integer $\leq x$.)
Solution: Let p be a prime number. For any positive integer u, $\operatorname{write}^{\operatorname{ord}}{ }_{p} u$ for the largest nonnegative integer e such that p^{e} divides u.

If $p^{e} \leq m<p^{e+1}$ then $\operatorname{ord}_{p} \operatorname{lcm}\{1,2, \ldots, m\}=e$. Indeed, p^{e} appears in $\{1,2, \ldots, m\}$, so it divides $\operatorname{lcm}\{1,2, \ldots, m\}$, while p^{e+1} divides none of $\{1,2, \ldots, m\}$, and hence does not divide lcm $\{1,2, \ldots, m\}$.

Hence $\operatorname{ord}_{p} \operatorname{lcm}\{1,2, \ldots,\lfloor n / i\rfloor\}=e$ exactly when $p^{e} \leq\lfloor n / i\rfloor<p^{e+1}$.
Next consider the sum $[i \leq n / p]+\left[i \leq n / p^{2}\right]+\left[i \leq n / p^{3}\right]+\cdots$, where $[\cdots]$ means 1 when \cdots is true, 0 otherwise. This sum is e exactly when $i \leq n / p^{e}$ but $i>n / p^{e+1}$, i.e., when $p^{e} \leq\lfloor n / i\rfloor<p^{e+1}$. Hence

$$
\begin{aligned}
\operatorname{ord}_{p} \prod_{i} \operatorname{lcm}\{1,2, \ldots,\lfloor n / i\rfloor\} & =\sum_{i} \operatorname{ord}_{p} \operatorname{lcm}\{1,2, \ldots,\lfloor n / i\rfloor\} \\
& =\sum_{i}\left([i \leq n / p]+\left[i \leq n / p^{2}\right]+\left[i \leq n / p^{3}\right]+\cdots\right) \\
& =\lfloor n / p\rfloor+\left\lfloor n / p^{2}\right\rfloor+\left\lfloor n / p^{3}\right\rfloor+\cdots=\operatorname{ord}_{p} n!.
\end{aligned}
$$

This is true for every prime p, so $\prod_{i} \operatorname{lcm}\{1,2, \ldots,\lfloor n / i\rfloor\}=n!$.

Problem B4

Let $f(z)=a z^{4}+b z^{3}+c z^{2}+d z+e=a\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right)$ where a, b, c, d, e are integers, $a \neq 0$. Show that if $r_{1}+r_{2}$ is a rational number, and if $r_{1}+r_{2} \neq r_{3}+r_{4}$, then $r_{1} r_{2}$ is a rational number.

Solution: Abbreviate $r_{1}+r_{2}$ as u, and $r_{3}+r_{4}$ as v. Then

$$
\begin{aligned}
f(z) / a & =\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right)=\left(z^{2}-u z+r_{1} r_{2}\right)\left(z^{2}-v z+r_{3} r_{4}\right) \\
& =z^{4}-(u+v) z^{3}+\left(u v+r_{1} r_{2}+r_{3} r_{4}\right) z^{2}-\left(u r_{3} r_{4}+v r_{1} r_{2}\right) z+r_{1} r_{2} r_{3} r_{4} .
\end{aligned}
$$

Thus $u+v$ is rational, and by hypothesis u is rational, so v is rational, so $u v$ and $u-v$ are rational. Furthermore, $u v+r_{1} r_{2}+r_{3} r_{4}$ is rational, so $r_{1} r_{2}+r_{3} r_{4}$ is rational, so $u r_{1} r_{2}+u r_{3} r_{4}$ is rational. Next, $u r_{3} r_{4}+v r_{1} r_{2}$ is rational, so $(u-v) r_{1} r_{2}$ is rational. By hypothesis $u-v$ is nonzero, so $r_{1} r_{2}$ is rational.

This is too easy for a B4 problem.

Problem B5

Let A, B and C be equidistant points on the circumference of a circle of unit radius centered at O, and let P be any point in the circle's interior. Let a, b, c be the distances from P to A, B, C respectively. Show that there is a triangle with side lengths a, b, c, and that the area of this triangle depends only on the distance from P to O.

Solution: Put the circle into the complex plane, translated so that $O=0$ and rotated so that $A=1$. Then B and C are the two primitive cube roots of 1 .
Define $\Delta=2 a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}-a^{4}-b^{4}-c^{4}$. Heron's theorem states that a, b, c are the side lengths of a triangle if and only if $\Delta>0$, and that the triangle has area $\sqrt{\Delta} / 4$.

Write P as $r u$ where r is a nonnegative real number and u is a complex number of absolute value 1. Then $a^{2}=|P-A|^{2}=|r u-1|^{2}=(r u-1)(r / u-1)=s-r u-r / u$ where $s=1+r^{2} ; b^{2}=|P-B|^{2}=|r u-B|^{2}=(r u-B)(r / u-C)=s-C r u-B r / u$; and $c^{2}=|P-C|^{2}=|r u-C|^{2}=(r u-C)(r / u-B)=s-B r u-C r / u$.

Square to obtain a^{4}, b^{4}, c^{4}, and add. All of the u 's drop out of the resulting formula, since $1+B+C=0$ and $1+B^{2}+C^{2}=0$. (For example, the cross-terms $2 r s u$, $2 C r s u$, and $2 B r s u$ add up to 0.) Hence $a^{4}+b^{4}+c^{4}=3\left(s^{2}+2 r^{2}\right)$. By a similar computation, $a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}=3 s^{2}+\left(2 B+2 C+B^{2}+C^{2}\right) r^{2}=3\left(s^{2}-r^{2}\right)$. Hence $\Delta=3\left(s^{2}-4 r^{2}\right)=3\left(1-r^{2}\right)^{2}$.

By hypothesis P is in the interior of the unit circle; i.e., $0 \leq r<1$. Hence $\Delta>0$. The area of the triangle is $\left(1-r^{2}\right) \sqrt{3} / 4$, which is determined by $r=|P|$ as claimed.

Problem B6

Let $f(x)$ be a continuous real-valued function defined on the interval $[0,1]$. Show that

$$
\int_{0}^{1} \int_{0}^{1}|f(x)+f(y)| d x d y \geq \int_{0}^{1}|f(x)| d x
$$

Solution: If x_{1}, \ldots, x_{n} are real numbers in $[0,1]$ then

$$
\sum_{i \neq j} 2\left[f\left(x_{i}\right) f\left(x_{j}\right)<0\right] \min \left\{\left|f\left(x_{i}\right)\right|,\left|f\left(x_{j}\right)\right|\right\} \leq n \sum_{j}\left|f\left(x_{j}\right)\right|
$$

by Lemma 1 below. Integrate over all x_{1}, \ldots, x_{n} :

$$
n(n-1) \iint 2[f(x) f(y)<0] \min \{|f(x)|,|f(y)|\} d x d y \leq n^{2} \int|f(x)| d x
$$

Divide by n^{2} :

$$
\frac{n-1}{n} \iint 2[f(x) f(y)<0] \min \{|f(x)|,|f(y)|\} d x d y \leq \int|f(x)| d x
$$

Take the limit as $n \rightarrow \infty$:

$$
\iint 2[f(x) f(y)<0] \min \{|f(x)|,|f(y)|\} d x d y \leq \int|f(x)| d x
$$

Finally, $|u+v|=|u|+|v|-2[u v<0] \min \{|u|,|v|\}$, so

$$
\begin{aligned}
\iint & |f(x)+f(y)| d x d y \\
& =\int|f(x)| d x+\int|f(y)| d y-2 \iint[f(x) f(y)<0] \min \{|f(x)|,|f(y)|\} d x d y \\
& \geq \int|f(y)| d y
\end{aligned}
$$

as claimed.
Lemma 1: $\sum_{i \neq j} 2\left[r_{i} r_{j}<0\right] \min \left\{\left|r_{i}\right|,\left|r_{j}\right|\right\} \leq n \sum_{j}\left|r_{j}\right|$ for any real numbers $r_{1}, r_{2}, \ldots, r_{n}$. Proof: Without loss of generality assume that $\left|r_{1}\right| \geq\left|r_{2}\right| \geq \cdots \geq\left|r_{n}\right|$. Then the sum on the left is equal to $\sum_{i<j} 4\left[r_{i} r_{j}<0\right]\left|r_{j}\right|$.
Define a_{j} for $j \geq 0$ as the number of positive entries in $r_{1}, r_{2}, \ldots, r_{j}$. Define b_{j} for $j \geq 0$ as the number of negative entries in $r_{1}, r_{2}, \ldots, r_{j}$. The product $a_{j} b_{j}$ is at most $(j / 2)^{2} \leq(n / 2)(j / 2)$, so

$$
\begin{aligned}
& \left(a_{1} b_{1}-a_{0} b_{0}\right)\left|r_{1}\right|+\left(a_{2} b_{2}-a_{1} b_{1}\right)\left|r_{2}\right|+\cdots+\left(a_{n} b_{n}-a_{n-1} b_{n-1}\right)\left|r_{n}\right| \\
& =a_{1} b_{1}\left(\left|r_{1}\right|-\left|r_{2}\right|\right)+a_{2} b_{2}\left(\left|r_{2}\right|-\left|r_{3}\right|\right)+\cdots+a_{n-1} b_{n-1}\left(\left|r_{n-1}\right|-\left|r_{n}\right|\right)+a_{n} b_{n}\left(\left|r_{n}\right|\right) \\
& \leq \frac{n}{2} \frac{1}{2}\left(\left|r_{1}\right|-\left|r_{2}\right|\right)+\frac{n}{2} \frac{2}{2}\left(\left|r_{2}\right|-\left|r_{3}\right|\right)+\cdots+\frac{n}{2} \frac{n-1}{2}\left(\left|r_{n-1}\right|-\left|r_{n}\right|\right)+\frac{n}{2} \frac{n}{2}\left(\left|r_{n}\right|\right) \\
& =\frac{n}{4}\left|r_{1}\right|+\frac{n}{4}\left|r_{2}\right|+\frac{n}{4}\left|r_{3}\right|+\cdots+\frac{n}{4}\left|r_{n}\right| .
\end{aligned}
$$

Next observe that $a_{j} b_{j}-a_{j-1} b_{j-1}$ is exactly b_{j-1} if $r_{j}>0 ; a_{j-1}$ if $r_{j}<0$; and 0 if $r_{j}=0$. In other words, $a_{j} b_{j}-a_{j-1} b_{j-1}$ is the number of $i<j$ such that $r_{i} r_{j}<0$. Hence $\sum_{i<j} 4\left[r_{i} r_{j}<0\right]\left|r_{j}\right|=\sum_{j} 4\left(a_{j} b_{j}-a_{j-1} b_{j-1}\right)\left|r_{j}\right| \leq n \sum_{j}\left|r_{j}\right|$ as claimed.

