
Putnam Mathematical Competition, 6 December 2003

Problem A1

Let n be a fixed positive integer. How many ways are there to write n as a sum of
positive integers,

n = a1 + a2 + · · · + ak,

with k an arbitrary positive integer and a1 ≤ a2 ≤ · · · ≤ ak ≤ a1 +1? For example, with
n = 4, there are four ways: 4, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1.

Problem A2

Let a1, a2, . . . , an and b1, b2, . . . , bn be nonnegative real numbers. Show that

(a1a2 · · · an)1/n + (b1b2 · · · bn)1/n ≤ ((a1 + b1)(a2 + b2) · · · (an + bn))1/n.

Problem A3

Find the minimum value of

|sinx + cosx + tanx + cotx + secx + cscx|

for real numbers x.

Problem A4

Suppose that a, b, c, A,B,C are real numbers, a 6= 0 and A 6= 0, such that

∣

∣ax2 + bx + c
∣

∣ ≤
∣

∣Ax2 + Bx + C
∣

∣

for all real numbers x. Show that

∣

∣b2 − 4ac
∣

∣ ≤
∣

∣B2 − 4AC
∣

∣ .

Problem A5

A Dyck n-path is a lattice path of n upsteps (1, 1) and n downsteps (1,−1) that starts
at the origin O and never dips below the x-axis. A return is a maximal sequence of
contiguous downsteps that terminates on the x-axis. For example, the Dyck 5-path
illustrated has two returns, of length 3 and 1 respectively.
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Show that there is a one-to-one correspondence between the Dyck n-paths with no return
of even length and the Dyck (n − 1)-paths.

Problem A6

For a set S of nonnegative integers, let rS(n) denote the number of ordered pairs (s1, s2)
such that s1 ∈ S, s2 ∈ S, s1 6= s2, and s1 + s2 = n. Is it possible to partition the
nonnegative integers into two sets A and B in such a way that rA(n) = rB(n) for all n?



Problem B1

Do there exist polynomials a(x), b(x), c(y), d(y) such that

1 + xy + x2y2 = a(x)c(y) + b(x)d(y)

holds identically?

Problem B2

Let n be a positive integer. Starting with the sequence 1,
1

2
,
1

3
, . . . ,

1

n
, form a new

sequence of n−1 entries
3

4
,

5

12
, . . . ,

2n − 1

2n(n − 1)
, by taking the averages of two consecutive

entries in the first sequence. Repeat the averaging of neighbors on the second sequence
to obtain a third sequence of n−2 entries and continue until the final sequence produced

consists of a single number xn. Show that xn <
2

n
.

Problem B3

Show that for each positive integer n,

n! =
n

∏

i=1

lcm {1, 2, . . . , bn/ic} .

(Here lcm denotes the least common multiple, and bxc denotes the greatest integer ≤ x.)

Problem B4

Let f(z) = az4 + bz3 + cz2 + dz + e = a(z − r1)(z − r2)(z − r3)(z − r4) where a, b, c, d, e
are integers, a 6= 0. Show that if r1 + r2 is a rational number, and if r1 + r2 6= r3 + r4,
then r1r2 is a rational number.

Problem B5

Let A, B and C be equidistant points on the circumference of a circle of unit radius
centered at O, and let P be any point in the circle’s interior. Let a, b, c be the distances
from P to A,B,C respectively. Show that there is a triangle with side lengths a, b, c,
and that the area of this triangle depends only on the distance from P to O.

Problem B6

Let f(x) be a continuous real-valued function defined on the interval [0, 1]. Show that

∫ 1

0

∫ 1

0

|f(x) + f(y)| dx dy ≥
∫ 1

0

|f(x)| dx.



Solutions

D. J. Bernstein, 7 December 2003

Problem A1

Let n be a fixed positive integer. How many ways are there to write n as a sum of
positive integers,

n = a1 + a2 + · · · + ak,

with k an arbitrary positive integer and a1 ≤ a2 ≤ · · · ≤ ak ≤ a1 +1? For example, with
n = 4, there are four ways: 4, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1.

Solution: There are exactly n ways to write n as such a sum. More precisely, there is
exactly 1 way (a1, a2, . . . , ak) for each k ∈ {1, 2, . . . , n}.
Say a1, a2, . . . , ak satisfy the stated conditions. Observe first that n ≥ a1+a2+· · ·+ak ≥
1 + 1 + · · · + 1 = k so k ∈ {1, 2, . . . , n}. The inequalities a1 ≤ a2 ≤ · · · ≤ ak ≤ a1 + 1
imply that all of a1, a2, . . . , ak are in {a1, a1 + 1}. Define j as the number of occurrences
of a1 + 1; then n = a1 + a2 + · · · + ak = ka1 + j with 0 ≤ j ≤ k − 1, so a1 = bn/kc and
j = n mod k. Thus a1, a2, . . . , ak consist of n mod k occurrences of bn/kc + 1 preceded
by k − (n mod k) occurrences of bn/kc.
Conversely, take any k ∈ {1, 2, . . . , n}, and build a1, a2, . . . , ak as n mod k occurrences
of bn/kc+ 1 preceded by k − (n mod k) occurrences of bn/kc. Then a1 ≤ a2 ≤ · · · ≤ ak;
ak ≤ bn/kc + 1 ≤ a1 + 1; and a1 + a2 + · · · + ak = k bn/kc + (n mod k) = n.

Problem A2

Let a1, a2, . . . , an and b1, b2, . . . , bn be nonnegative real numbers. Show that

(a1a2 · · · an)1/n + (b1b2 · · · bn)1/n ≤ ((a1 + b1)(a2 + b2) · · · (an + bn))1/n.

Solution: If ai = bi = 0 then the left side and right side are both 0. So assume that
ai + bi > 0 for each i. By the arithmetic-geometric mean inequality,

(

a1

a1 + b1

· · · an

an + bn

)1/n

+

(

b1

a1 + b1

· · · bn

an + bn

)1/n

≤ 1

n

(

a1

a1 + b1

+ · · · + an

an + bn

)

+
1

n

(

b1

a1 + b1

+ · · · + bn

an + bn

)

= 1.

Clear denominators: (a1 · · · an)1/n + (b1 · · · bn)1/n ≤ ((a1 + b1) · · · (an + bn))1/n.



This result, Hölder’s inequality, is fairly standard course material, so it isn’t a reasonable
Putnam problem.

Problem A3

Find the minimum value of

|sinx + cosx + tanx + cotx + secx + cscx|
for real numbers x.

Solution: The problem does not make sense as stated: the trigonometric functions are
not all defined when x is a multiple of π/2. I presume that the intent was to say “for real
numbers x where sinx 6= 0 and cosx 6= 0,” i.e., for real numbers x that are not multiples
of π/2.

The statement of the problem also implies that there is a minimum value of the function.
Are contestants required to prove this, or are they allowed to assume it? I presume that
contestants are required to prove it.

Anyway, the minimum is 2
√

2 − 1.

Write y = sinx + cosx. Then y2 = (sinx)2 + (cosx)2 + 2 sinx cosx = 1 + 2 sinx cosx, so
tanx+cotx = (sinx)2/(sinx cosx)+(cosx)2/(sinx cosx) = 2/(y2−1) and secx+cscx =
(sinx)/(sin x cosx) + (cosx)/(sinx cosx) = 2y/(y2 − 1), so sinx+ cosx+ tanx + cotx +
secx + cscx = y + 2/(y2 − 1) + 2y/(y2 − 1) = y + 2/(y − 1).

If y > 1 then, by the arithmetic-geometric-mean inequality, (y − 1) + 2/(y − 1) ≥
2
√

(y − 1)2/(y − 1) = 2
√

2, so y + 2/(y − 1) ≥ 2
√

2 + 1 > 2
√

2 − 1. If y < 1 then

similarly (1 − y) + 2/(1 − y) ≥ 2
√

2 so −(y + 2/(y − 1)) ≥ 2
√

2 − 1. In both cases,
|y + 2/(y − 1)| ≥ 2

√
2 − 1, so |sinx + cosx + tanx + cotx + secx + cscx| ≥ 2

√
2 − 1.

To see that the alleged minimum is achieved, note that 1/
√

2 − 1 ∈ [−1, 1], and set
x = π/4+arccos(1/

√
2−1). Then y =

√
2 cos(x−π/4) = 1−

√
2 so y+2/(y−1) = 1−2

√
2.

Problem A4

Suppose that a, b, c, A,B,C are real numbers, a 6= 0 and A 6= 0, such that
∣

∣ax2 + bx + c
∣

∣ ≤
∣

∣Ax2 + Bx + C
∣

∣

for all real numbers x. Show that
∣

∣b2 − 4ac
∣

∣ ≤
∣

∣B2 − 4AC
∣

∣ .

Solution: Assume without loss of generality that a > 0. (Otherwise replace (a, b, c)
with (−a,−b,−c); this transformation does not change

∣

∣ax2 + bx + c
∣

∣, and it does not

change
∣

∣b2 − 4ac
∣

∣.) Similarly assume that A > 0.



Observe that limx→∞(Ax2 +Bx+C)/x2 = A. Thus limx→∞

∣

∣(Ax2 + Bx + C)/x2
∣

∣ = A.

Similarly limx→∞

∣

∣(ax2 + bx + c)/x2
∣

∣ = a. Hence a ≤ A.

Now write d = b2 − 4ac and D = B2 − 4AC.

Case 1: D > 0. Write r = (−B +
√

D)/2A and s = (−B −
√

D)/2A; then r 6= s. If
x ∈ {r, s} then Ax2 + Bx + C = 0 so

∣

∣ax2 + bx + c
∣

∣ ≤ |0| = 0 so ax2 + bx + c = 0.

Thus ax2 + bx + c = a(x− r)(x− s); so d = a2(r − s)2 = a2(
√

D/A)2 = Da2/A2. Hence
0 < d ≤ D.

Case 2: D = 0. The functions Ax2 +Bx+C and −Ax2 −Bx−C both have value 0 and
derivative 0 for x = −B/2A, so the intermediate function ax2 + bx + c also has value 0
and derivative 0, i.e., a double root. Hence d = 0.

Case 3: D < 0. Then Ax2 + Bx + C = A(x + B/2A)2 − D/4A > 0 for all real numbers
x, so ±(ax2 + bx + c) ≤ Ax2 + Bx + C for all x, so (A ∓ a)x2 + (B ∓ b)x + (C ∓ c) ≤ 0
for all x, so (B ∓ b)2 ≤ 4(A∓ a)(C ∓ c), i.e., B2 ∓ 2Bb+ b2 ≤ 4AC + 4ac∓ (4Ac + 4aC).
Average ∓ = + and ∓ = − to see that B2 + b2 ≤ 4AC + 4ac, i.e., d ≤ −D.

On the other hand, take x = −B/2A to see that −d/4a ≤ a(x + b/2a)2 − d/4a =
ax2 + bx + c ≤ Ax2 + Bx + C = −D/4A; i.e., −d ≤ −Da/A ≤ −D.

Problem A5

A Dyck n-path is a lattice path of n upsteps (1, 1) and n downsteps (1,−1) that starts
at the origin O and never dips below the x-axis. A return is a maximal sequence of
contiguous downsteps that terminates on the x-axis. For example, the Dyck 5-path
illustrated has two returns, of length 3 and 1 respectively.
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Show that there is a one-to-one correspondence between the Dyck n-paths with no return
of even length and the Dyck (n − 1)-paths.

Solution: The problem fails to specify the range of n. The definition of a (−1)-path
is unclear, so I presume that the definition of n-paths is for all n ≥ 0 and that the
conclusion is for all n ≥ 1.

Fix n ≥ 1. If k ∈ {1, 2, . . . , n} then any (n − k)-path, followed by an upstep, followed
by any (k− 1)-path, followed by a downstep, forms an n-path. Every n-path is obtained
in this way from a unique k, a unique (n − k)-path, and a unique (k − 1)-path. (The
upstep, (k − 1)-path, and downstep are the last mountain in the n-path.)



Hence Cn = Cn−1C0 + Cn−2C1 + · · · + C0Cn−1 for n ≥ 1, where Cn is the number of
n-paths. Note that C0 = 1.

Next define On as the number of n-paths having a final return of odd length. Note that
O0 = 0. For n ≥ 1, every such path is obtained from a unique k ∈ {1, 2, . . . , n}, a unique
(n− k)-path, and a unique (k − 1)-path that does not have a final return of odd length;
hence On = Cn−1(C0 − O0) + Cn−2(C1 − O1) + · · · + C0(Cn−1 − On−1).

Next define Xn as the number of n-paths having no return of even length. Note that
X0 = 1. For n ≥ 1, every such path is obtained from a unique k ∈ {1, 2, . . . , n}, a unique
(n − k)-path having no return of even length, and a unique (k − 1)-path that does not
have a final return of odd length; hence Xn = Xn−1(C0 −O0) + Xn−2(C1 −O1) + · · · +
X0(Cn−1 − On−1).

In particular, X1 = X0(C0 − O0) = 1(1 − 0) = 1 = C0 as desired.

Assume inductively that X1 = C0, X2 = C1, and so on through Xn = Cn−1. Then
Xn+1 = Xn(C0 − O0) + Xn−1(C1 − O1) + · · · + X1(Cn−1 − On−1) + X0(Cn − On) =
Cn−1(C0−O0)+Cn−2(C1−O1)+· · ·+C0(Cn−1−On−1)+(Cn−On) = On+Cn−On = Cn.

In other words, the number of n-paths with no return of even length is the same as the
number of (n− 1)-paths; i.e., there is a one-to-one correspondence between the two sets.

Problem A6

For a set S of nonnegative integers, let rS(n) denote the number of ordered pairs (s1, s2)
such that s1 ∈ S, s2 ∈ S, s1 6= s2, and s1 + s2 = n. Is it possible to partition the
nonnegative integers into two sets A and B in such a way that rA(n) = rB(n) for all n?

Solution: Yes.

Define A = {0, 3, 5, 6, 9, . . .} as the set of nonnegative integers n whose binary expansions
have an even number of 1’s, and define B = {1, 2, 4, 7, 8, . . .} as the set of nonnegative
integers n whose binary expansions have an odd number of 1’s.

Define f as the formal power series
∑

n∈A xn. Similarly define g =
∑

n∈B xn.

Now f(x2) + xg(x2) =
∑

n∈A x2n +
∑

n∈B x2n+1 =
∑

2n∈A x2n +
∑

2n+1∈A x2n+1 =
∑

m∈A xm = f . Similarly g(x2) + xf(x2) = g. Hence f − g = f(x2) − g(x2) + xg(x2) −
xf(x2) = (1 − x)(f(x2) − g(x2)).

Furthermore, f +g =
∑

n xn = 1/(1−x). Hence f2−g2 = (f−g)(f +g) = f(x2)−g(x2).

On the other hand, f2 =
∑

s∈A,t∈A xsxt =
∑

s∈A x2s +
∑

s∈A,t∈A,s6=t xs+t = f(x2) +
∑

n rA(n)xn. Similarly g2 = g(x2) +
∑

n rB(n)xn. Hence
∑

n rA(n)xn = f2 − f(x2) =
g2 − g(x2) =

∑

n rB(n)xn; i.e., rA(n) = rB(n) for all n.



Problem B1

Do there exist polynomials a(x), b(x), c(y), d(y) such that

1 + xy + x2y2 = a(x)c(y) + b(x)d(y)

holds identically?

Solution: No.

Suppose that 1+xy+x2y2 = a(x)c(y)+b(x)d(y). Write a(x), b(x), c(y), d(y) respectively
as a0 +a1x+a2x

2 + · · · , b0 + b1x+ b2x
2 + · · · , c0 + c1y + c2y

2 + · · · , d0 +d1y +d2y
2 + · · ·.

Then

1 + xy + x2y2 = (a0c0 + b0d0) + (a0c1 + b0d1)y + (a0c2 + b0d2)y
2

+ (a1c0 + b1d0)x + (a1c1 + b1d1)xy + (a1c2 + b1c2)xy2

+ (a2c0 + b2c0)x
2 + (a2c1 + b2c1)x

2y + (a2c2 + b2c2)x
2y2 + · · · .

Extract coefficients: a0c0 + b0d0 = 1, so a0c0c1 + b0c1d0 = c1; and a0c1 + b0d1 = 0,
so a0c0c1 + b0c0d1 = 0, so b0(c1d0 − c0d1) = c1. Similarly b0(c1d2 − d1c2) = 0 and
b2(c1d2 − d1c2) = c1. If b0 = 0 then c1 = 0; if b0 6= 0 then c1d2 − d1c2 = 0 so c1 = 0.
Either way, c1 = 0. Exchange a, c with b, d to see that d1 = 0. Hence 1 = a1c1+b1d1 = 0;
contradiction.

Problem B2

Let n be a positive integer. Starting with the sequence 1,
1

2
,
1

3
, . . . ,

1

n
, form a new

sequence of n−1 entries
3

4
,

5

12
, . . . ,

2n − 1

2n(n − 1)
, by taking the averages of two consecutive

entries in the first sequence. Repeat the averaging of neighbors on the second sequence
to obtain a third sequence of n−2 entries and continue until the final sequence produced

consists of a single number xn. Show that xn <
2

n
.

Solution: The kth repeated average of u1, u2, . . . is (
(

k
0

)

u1 +
(

k
1

)

u2 + · · · +
(

k
k

)

uk)/2k,

(
(

k
0

)

u2 +
(

k
1

)

u3 + · · · +
(

k
k

)

uk+1)/2k, . . . , by induction on k.

In particular, the (n − 1)st repeated average of 1, 1/2, . . . , 1/n, namely xn, is

1

2n−1

∑

0≤i≤n−1

(

n − 1

i

)

1

i + 1
=

2

n · 2n

∑

0≤i≤n−1

(

n − 1

i

)

n

i + 1

=
2

n · 2n

∑

0≤i≤n−1

(

n

i + 1

)

=
2

n · 2n
(2n − 1) <

2

n
.



Problem B3

Show that for each positive integer n,

n! =
n

∏

i=1

lcm {1, 2, . . . , bn/ic} .

(Here lcm denotes the least common multiple, and bxc denotes the greatest integer ≤ x.)

Solution: Let p be a prime number. For any positive integer u, write ordp u for the
largest nonnegative integer e such that pe divides u.

If pe ≤ m < pe+1 then ordp lcm {1, 2, . . . ,m} = e. Indeed, pe appears in {1, 2, . . . ,m},
so it divides lcm {1, 2, . . . ,m}, while pe+1 divides none of {1, 2, . . . ,m}, and hence does
not divide lcm {1, 2, . . . ,m}.
Hence ordp lcm {1, 2, . . . , bn/ic} = e exactly when pe ≤ bn/ic < pe+1.

Next consider the sum [i ≤ n/p]+ [i ≤ n/p2]+ [i ≤ n/p3]+ · · ·, where [· · ·] means 1 when
· · · is true, 0 otherwise. This sum is e exactly when i ≤ n/pe but i > n/pe+1, i.e., when
pe ≤ bn/ic < pe+1. Hence

ordp

∏

i

lcm {1, 2, . . . , bn/ic} =
∑

i

ordp lcm {1, 2, . . . , bn/ic}

=
∑

i

([i ≤ n/p] + [i ≤ n/p2] + [i ≤ n/p3] + · · ·)

= bn/pc +
⌊

n/p2
⌋

+
⌊

n/p3
⌋

+ · · · = ordp n!.

This is true for every prime p, so
∏

i lcm {1, 2, . . . , bn/ic} = n!.

Problem B4

Let f(z) = az4 + bz3 + cz2 + dz + e = a(z − r1)(z − r2)(z − r3)(z − r4) where a, b, c, d, e
are integers, a 6= 0. Show that if r1 + r2 is a rational number, and if r1 + r2 6= r3 + r4,
then r1r2 is a rational number.

Solution: Abbreviate r1 + r2 as u, and r3 + r4 as v. Then

f(z)/a = (z − r1)(z − r2)(z − r3)(z − r4) = (z2 − uz + r1r2)(z
2 − vz + r3r4)

= z4 − (u + v)z3 + (uv + r1r2 + r3r4)z
2 − (ur3r4 + vr1r2)z + r1r2r3r4.

Thus u + v is rational, and by hypothesis u is rational, so v is rational, so uv and u − v
are rational. Furthermore, uv + r1r2 + r3r4 is rational, so r1r2 + r3r4 is rational, so
ur1r2 + ur3r4 is rational. Next, ur3r4 + vr1r2 is rational, so (u − v)r1r2 is rational. By
hypothesis u − v is nonzero, so r1r2 is rational.



This is too easy for a B4 problem.

Problem B5

Let A, B and C be equidistant points on the circumference of a circle of unit radius
centered at O, and let P be any point in the circle’s interior. Let a, b, c be the distances
from P to A,B,C respectively. Show that there is a triangle with side lengths a, b, c,
and that the area of this triangle depends only on the distance from P to O.

Solution: Put the circle into the complex plane, translated so that O = 0 and rotated
so that A = 1. Then B and C are the two primitive cube roots of 1.

Define ∆ = 2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4. Heron’s theorem states that a, b, c are
the side lengths of a triangle if and only if ∆ > 0, and that the triangle has area

√
∆/4.

Write P as ru where r is a nonnegative real number and u is a complex number of
absolute value 1. Then a2 = |P − A|2 = |ru − 1|2 = (ru − 1)(r/u − 1) = s − ru − r/u

where s = 1 + r2; b2 = |P − B|2 = |ru − B|2 = (ru − B)(r/u − C) = s − Cru − Br/u;

and c2 = |P − C|2 = |ru − C|2 = (ru − C)(r/u − B) = s − Bru − Cr/u.

Square to obtain a4, b4, c4, and add. All of the u’s drop out of the resulting formula,
since 1 + B + C = 0 and 1 + B2 + C2 = 0. (For example, the cross-terms 2rsu,
2Crsu, and 2Brsu add up to 0.) Hence a4 + b4 + c4 = 3(s2 + 2r2). By a similar
computation, a2b2 + a2c2 + b2c2 = 3s2 + (2B + 2C + B2 + C2)r2 = 3(s2 − r2). Hence
∆ = 3(s2 − 4r2) = 3(1 − r2)2.

By hypothesis P is in the interior of the unit circle; i.e., 0 ≤ r < 1. Hence ∆ > 0. The
area of the triangle is (1 − r2)

√
3/4, which is determined by r = |P | as claimed.

Problem B6

Let f(x) be a continuous real-valued function defined on the interval [0, 1]. Show that

∫ 1

0

∫ 1

0

|f(x) + f(y)| dx dy ≥
∫ 1

0

|f(x)| dx.

Solution: If x1, . . . , xn are real numbers in [0, 1] then

∑

i6=j

2[f(xi)f(xj) < 0]min {|f(xi)| , |f(xj)|} ≤ n
∑

j

|f(xj)|

by Lemma 1 below. Integrate over all x1, . . . , xn:

n(n − 1)

∫ ∫

2[f(x)f(y) < 0]min {|f(x)| , |f(y)|} dx dy ≤ n2

∫

|f(x)| dx.



Divide by n2:

n − 1

n

∫ ∫

2[f(x)f(y) < 0]min {|f(x)| , |f(y)|} dx dy ≤
∫

|f(x)| dx.

Take the limit as n → ∞:

∫ ∫

2[f(x)f(y) < 0]min {|f(x)| , |f(y)|} dx dy ≤
∫

|f(x)| dx.

Finally, |u + v| = |u| + |v| − 2[uv < 0]min {|u| , |v|}, so

∫ ∫

|f(x) + f(y)| dx dy

=

∫

|f(x)| dx +

∫

|f(y)| dy − 2

∫ ∫

[f(x)f(y) < 0]min {|f(x)| , |f(y)|} dx dy

≥
∫

|f(y)| dy

as claimed.

Lemma 1:
∑

i6=j 2[rirj < 0]min {|ri| , |rj |} ≤ n
∑

j |rj | for any real numbers r1, r2, . . . , rn.

Proof: Without loss of generality assume that |r1| ≥ |r2| ≥ · · · ≥ |rn|. Then the sum on
the left is equal to

∑

i<j 4[rirj < 0] |rj |.
Define aj for j ≥ 0 as the number of positive entries in r1, r2, . . . , rj . Define bj for
j ≥ 0 as the number of negative entries in r1, r2, . . . , rj . The product ajbj is at most
(j/2)2 ≤ (n/2)(j/2), so

(a1b1 − a0b0) |r1| + (a2b2 − a1b1) |r2| + · · · + (anbn − an−1bn−1) |rn|
= a1b1(|r1| − |r2|) + a2b2(|r2| − |r3|) + · · · + an−1bn−1(|rn−1| − |rn|) + anbn(|rn|)

≤ n

2

1

2
(|r1| − |r2|) +

n

2

2

2
(|r2| − |r3|) + · · · + n

2

n − 1

2
(|rn−1| − |rn|) +

n

2

n

2
(|rn|)

=
n

4
|r1| +

n

4
|r2| +

n

4
|r3| + · · · + n

4
|rn| .

Next observe that ajbj − aj−1bj−1 is exactly bj−1 if rj > 0; aj−1 if rj < 0; and 0 if
rj = 0. In other words, ajbj −aj−1bj−1 is the number of i < j such that rirj < 0. Hence
∑

i<j 4[rirj < 0] |rj | =
∑

j 4(ajbj − aj−1bj−1) |rj | ≤ n
∑

j |rj | as claimed.


