ARBITRARILY TIGHT BOUNDS
ON THE DISTRIBUTION OF SMOOTH INTEGERS

DANIEL J. BERNSTEIN

ABSTRACT. This paper presents lower bounds and upper bounds on
the distribution of smooth integers; builds an algebraic framework for
the bounds; shows how the bounds can be computed at extremely
high speed using FFT-based power-series exponentiation; explains
how one can choose the parameters to achieve any desired level of
accuracy; and discusses several generalizations.

1. INTRODUCTION

A positive integer is y-smooth if it has no prime divisors larger than y.
Define ¥(H,y) as the number of y-smooth integers in [1, H].

This paper presents lower bounds and upper bounds on ¥. The bounds
are parametrized, and can be made arbitrarily close to ¥, as discussed in
section 4. The proofs are easy; for example, a typical lower bound is

U(H,17) = # {(a,b,c,d e, f,g) : 223°5°7¢11¢13/179 < H}

where 3 = 21230/776 3 F _ 91802/776 - 5 7 _ 92179/776 5 7 T —
22685/776 ~ 11 13 = 22872/776 - 13 and 17 = 23172/776 > 17. What makes
these bounds interesting is that they can be computed at extremely high
speed, even when y is large. See section 3.

As far as I know, the first publication of bounds of this type was by
Coppersmith in [24]. Coppersmith showed how to compute an arbitrarily
tight lower bound on a variant of ¥ in a reasonable amount of time. The
main improvements in this paper are the fast algorithms in section 3 and
the algebraic framework in section 2.

Several generalizations are discussed in section 5. For example, one can
quickly compute accurate bounds on the distribution of y-smooth ideals in
each ideal class in a number field.
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Other work. There are many limited-precision approximations to ¥. See
[82], [72], [66], and [81] for detailed surveys of the results and the underlying
techniques.

Dickman in [29] observed that lim, .., ¥(y*,y)/y* = p(u) for u > 0.
Here p is the unique continuous function satisfying p(u) =1 for 0 < u <1
and up(u) = [ | p(t)dt for u > 1. One can rapidly compute p and some
useful variants of p to high accuracy; see [95], [20], [71, section 9], [50], [49],
[77], [21, section 3], [70], and [3, section 4]. For asymptotics as u — oo
see [15], [26], [17], [64], [88], and [96]. Hildebrand in [61] showed that the
error |U(H,y)/Hp(u) — 1|, where H = y*, is at most a constant (which
has not been computed) times (log(u + 1))/logy if w > 1, H > 3, and
logy > (loglog H)%7. For prior results see [23], [16], [84], [22], [27], [31],
[32], [51], [18], [59], and [57].

De Bruijn in [25] pointed out that H fOH p(u—(logt)/logy) d(|t]/t) is a
better approximation to W(H,y). See [87] and [66] for further information.
I am not aware of any attempts to compute this approximation.

Rankin in [85] observed that ¥(H,y) < H*/[],<,(1—p~°) for any s > 0.
This upper bound is minimized when s satisfies >° _ (logp)/(p® — 1) =
log H. Hildebrand and Tenenbaum in [65] showed that the approximation

1 p*(logp)*\ /2 1
“(ory BO8P) H*
S<7TZ (ps_l)Z H]__p—s

p<y p<y

to W(H,y), with the same choice of s as in Rankin’s bound, has error
at most a constant (again not computed) times 1/u + (logy)/y. Hunter
and Sorenson in [67] showed that one can compute these approximations
in time roughly y. Sorenson subsequently suggested replacing each Zp< v
with -, e+ cp<, for some ¢ between 0 and 1, then approximating
Zyc <p<y by an integral; this saves time at the expense of accuracy.

See [92] and [30] for more information on ¥(H,y) when y is extremely
small: in particular, on the accuracy of approximations such as ¥(H,5) ~

(log H)3/6(log 2)(log 3)(log 5).

Notation. lg means log,.

[--+] means 1 if --- is true, O otherwise. For example, [r > 0] means 1 if
r is nonnegative, 0 otherwise.

r + --. means the function that maps r to ---. Here r is a dummy
variable used in - - -. The domain of the function is usually R and is always
clear from context. For example, » — 72 is the function f : R — R such
that f(r) = r% and r — [r € Z] is the function g : R — R such that
g(r)=1forr € Z and g(r) =0 for r ¢ Z.
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2. ONE-VARIABLE DISCRETE GENERALIZED POWER SERIES

A series over Q is a function f : R — Q such that {r < h: f(r) # 0}
is finite for every h € R. A distribution over Q is a function e : R — Q
such that {r < v:e(r) # 0} is empty for some v € R. Observe that any
series over Q is a distribution over Q.

The reader should think of a series f as a formal sum ) g f(r)z". The

set of series includes (formal) fractional power series such as 14 z'230/776 1

x2460/T76 ... e, s [r > 0][r € (1230/776)Z]. Tt also includes Dirichlet
series suchas ( =), o, 28" =1+ 2 + 283 + 22 + 785 4 ...
Theorem 2.1. Let e be a distribution over Q. Let f be a series over
Q. Then {r e R:e(r)f(t —r) # 0} is finite for every t € R; the function
c=(t— D, crelr)f(t—r)) is a distribution over Q; and if e is a series
over Q then c is a series over Q.

The distribution ¢ here is the product of e and f, abbreviated ef.

Proof. There is some v € R such that {r < v:e(r) # 0} is empty; and
{s<t—wv:f(s)#0} is finite, so {r >v: f(t—r) # 0} is finite. Thus
{r :e(r)f(t —r) # 0} is finite.

There is some w € R such that {s <w: f(s) # 0} is empty. Now
e(r)f(t—r)=0forallt <v+w and all r € R: if r < v then e(r) = 0; if
r>vthent—r <wso f(t—r)=0. Hence ) g e(r)f(t —r)=0 for all
t < v+ w. Thus cis a distribution.

Finally, fix h € R. If e is a series then {r < h —w: e(r) # 0} is finite,
and {s <h—wv: f(s) # 0} is finite, so {t < h: ¢(t) # 0} is finite. (If t < h
and ¢(t) # 0 then e(r) f(s) # 0 for some r,s with 7 + s = ¢. Then e(r) # 0
sor>vsos=t—r<h—ov;similarly r < h —w.) O

Theorem 2.2. Let e be a distribution over Q. Let f and g be series over

Q. Then e(fg) = (ef)g-

Proof. (e(f))(t) = Y, e(s) - (f9)(t — 8) = 3, 3, e(s)f(r)g(t — s — ) =
S, Y, 68/ (u—s)glt—w) = )W) gt~ w) = (ef)g)®). O

In particular, product is associative on series. Consequently the set of
series is a commutative ring under the following operations: 0 is 7 — 0; 1
isr—=[r=0;—fisr— —f(r); f+gisr— f(r)+ g(r); and fg is the
product defined above. The set of fractional power series is a subring, as
is the set of Dirichlet series.

Define distr as the distribution 7 + [r > 0]. The distribution of
terms of f is the product distr f, i.e., the function h — 3 __, f(s). This
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is consistent with the usual notion of the (logarithmic) distribution of terms
of a Dirichlet series: for example, distr ¢ is the function h + 2" |, which
counts positive integers n with lgn < h.
Theorem 2.3. Let e1,es be distributions over Q. Let f be a series over
Q. Ifegr > ey and f >0 thenerf > exf.

Here > is pointwise comparison of functions: f > 0 means that f(r) >0
for all r, and e; > e; means that e;(r) > ea(r) for all r.

Proof. (e1f)(t) =3, ea(r)- f(t—7) 2 3, ea(r) - f(E —7) = (e2/)(1)- T

Theorem 2.4. Let f1,...,fn,91,..-,9n be series over Q with f; > 0,
g; > 0, and distr f; > distr g; for all i. Then distr f1 ... f, > distrg; ... gn-

Proof. For n = 0: distr1 > distr 1.
For n > 1: By induction distr f;...f,_ 1 > distrg;...gn_1- Apply
Theorem 2.3 twice:

distr fy ... fn_1fn >distrgy ... gn_1fn =distr fr,g1--.9n_1
> distrgng1 ...gn_1 = distrg; ... gn_19n

since f, > 0and g;...g,_1 > 0. O

Notes. The proofs here are standard, but I do not know a reference for the
results. The larger ring of “one-variable generalized power series over Q" —
functions f : R — Q such that every nonempty subset of {r € R : f, #0}
has a least element—is widely known but is not equipped with a useful
notion of distribution. This larger ring was introduced by Malcev; see [86]
for more information.

3. BOUNDS ON THE DISTRIBUTION OF SMOOTH INTEGERS

Fix positive integers y and a. For each prime p < y select a real number
P > p, preferably as small as possible, with algp € Z. Define f as the
series Y, [n is y-smooth] w'g’_’ =1L, (1+ z'8P 4 2187 4 ...) and define
g as the series [ ., (1 + z'8P 4 p2l8P ..,

Observe that g is a fractional power series with far fewer terms than f.
For example, if y = 108, o = 776, and p is chosen reasonably, then g is the
series

Z0/776  pTT6/TT6 | 11230/776 | ,1552/776 | ,1802/776 4 ,.2006/776

+ -+ + 22865947044254982061725502189392100000/776 ..

with fewer than 100000 terms having exponents below 100000/776, while
f has more than 1033 terms in the same exponent range.
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Now distr(1 + z'8? + z218P 4 ...) > distr(1 + z'8? + 22187 1 ...) so
distr f > distr g by Theorem 2.4. In other words,

_ 1 _ 1 _
(h— T(2" ) > distrepo(.rlgp + §$215p + §m3lgp + - )
p<y
where exp is the usual exponential function on fractional power series. This
is my lower bound on ¥. The analogous upper bound is

1 1
(b ®(2"y)) < distr epo(m‘g2 +5@? 4 o )
p<y

with p < p. See Figure 1 for an example of the lower bound.

If g = 3,50 gna™® then ¥(2"/%,y) > (distrg)(n/a) = go + -+ + gn-
By computing g mod z", i.e., computing the integers go, g1, - - , gha—1, ONE
obtains lower bounds on ¥(H,y) for every H in the geometric progression
20 ot/ gh—2/a gh—1l/a Gee Figure 2.

g
[ IHHX.|I||||I|||||||||||||H|‘

FI1GURE 1. For y = 7 and a = 5: Graphs of g, distr g, and
h — W (2", y), restricted to [0,10]. Vertical range [0, 143].
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Enumerate primes p <y

2,3,5, ...

For each p, find multiple of 1/a no smaller than lgp
lg2,1g3,1g5h, ...

Compute Y _ ('8 + 12267 +...) mod z"

P<y
log g mod z"
Exponentiate

gmod z" = go + &'/ + -+

Compute partial sums go, go + g1,---,90 + g1 + - + gha—1

FiGURE 2. How to compute lower bounds on ¥(2°,y),
W(21/(1’:y), R ) m(2h71/a,y)'

A split-radix FFT uses (124 0(1))halg ha additions and multiplications
in R to multiply in R[z'/%]/z"; see [9]. Brent’s exponentiation algorithm
in [11] then uses (88 + o(1))halg ha additions and multiplications in R to
compute g mod z" given log g mod z*. The constant 88 can be improved
to 34; see [10]. One can enumerate primes p < y as described in [2]; the
computation of log g mod z" involves a few additions for each p.

It should be possible to carry out the operations in R in rather low
precision if all the coefficients are scaled properly. However, I have not
yet analyzed the roundoff error here. I instead compute g mod (z",q) for
several primes ¢ by exponentiating log g mod (z",q). Logarithms do not
make sense in (Z/q)[z'/*], but they do make sense in (Z/q)[z'/*]/z" when
q exceeds ha.

Software that performs these computations for any y < 239, with ha =
262144 and a = 776, is available from http://cr.yp.to/psibound.html.
The software uses 4.5 - 10'® Pentium-III cycles for y = 10® or 9.3 - 101°
cycles for y = 10°. It prints a sequence of lower bounds on ¥(H,y) for
262144 values of H up to 2262144/776  The choice of a is explained in the
next section; the analogous upper-bound computation uses o = 771.

The computation of log g can be improved. If y is large then there are
many primes p for each value of lgp, and there are faster ways to count
them than to enumerate them. Sorenson points out that the counts can be
saved if one wants to handle several values of y.
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4. ACCURACY

Write g = [[,, (1 + #'87 4+ 2?87 4 ...) as in the previous section, so
that U(H,y) > (distrg)(lgH). How close is ¥(H,y) to (distr g)(lg H)?
How close is it to the analogous upper bound?

One can answer this question by computing and comparing the bounds.
The software described above finds that (2300, 230)/2300 > 3012.10-11,
for example, and W (2390 230) /2300 < 3,047 .1071!; evidently both bounds
are quite close. (In contrast, p(10) ~ 2.770 - 10711

But this answer does not provide any guidance in choosing o before the
computation is done. How can we select a to achieve a particular level of
accuracy? Are some choices of a better than others?

This section considers another answer: if ¢ is chosen properly then 1 <
U(H,y)/(distr g)(Ig H) < V(H,y)/¥(HY(+) y). The point is that one
already has a good estimate for the ratio W(H,y)/¥(H'/ (19 y), namely
1+ elog H. Here is a brief summary of the literature:

e Hildebrand in [60] proved that, for an extremely broad range of H
and y, the ratio is at most about 1 + e(H/¥(HY (1) 4))logy.
e Hildebrand in [62] proved that, when € is not very small, the ratio
is at most H¢/(17€) which is approximately 1 + elog H.
e Hensley in [58] proved that ¥(H,y)/¥(H/c,y) is around c for typ-
ical values of H and y if c is close to 2. Consequently the product
of many ratios of the form W(H,y)/¥(HY(1*€) v), for varying H,
must be large. Quite a few of the ratios have to be at least about
He/(1+e)
For uniform lower bounds see [41], [4], [62], [75], [69], and [98]. See [66] and
[40] for precise asymptotics when € is not very small and log y is noticeably
bigger than (log H)%/6.

How ¢ depends on «. Define ¢ as the maximum of (lgp)/lgp — 1 for
primes p < y. Then

distr(1 + z(19)lep | p2(1+e)lgp | . -) < distr(1 4 z'87 + 22187 4 ...)

so W(HY(1+€) 4) < (distr g)(lg H). (Zagier comments that this inequality
also allows g to serve as an upper bound on ¥.)

Assume for simplicity that p is chosen as small as possible, so that
algp = [algp]. Note that 2 = 2; this is the point of the requirement that
a be an integer. Then € < 1/(alg3).

When « increases by a factor of 10, this upper bound on € decreases by
a factor of 10. The computation described in the previous section takes

about 10 times as long and produces bounds for 10 times as many values
of H.
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Some values of a are particularly good. If olg3 is within (1g3)/1g7 of
the next integer, and algb is within (Ig5)/1g7 of the next integer, then
€ <1/(algT7). If & = 776 then 1/(alg3) =~ 0.000813, while e ~ 0.000226.
It is easy to see that ea — 0 for selected @ — .

Experiments show that (distr g)(lg H) is usually closer to ¥(H,y) than
to U(H 1/(1+e) y). A more precise analysis would be interesting.

Exact computation of V. If H is slightly below an integer, and e is
slightly below 1/Hlog H, then |H'/(+9)| = |H]|, so ¥(H,y) is exactly
(distr g)(1g H).

Fast power-series exponentiation is not useful in this extreme case. Series
such as g should be represented in sparse form: a multiset S of integers
represents the series ) | z™/ . Straightforward series multiplication then
takes at most 2% (H, y) additions of integers, each integer having about lg H
bits, to produce the portion of g relevant to ¥(H,y). The result reveals
the approximate logarithm of every smooth number n < H with enough
accuracy to recover n or n — 1.

Occasionally one wants to know W(H,y) for only one H. Partition
{p <y} into two sets P; and Ps; factor g as g1g2 accordingly; compute
g1 and go; finally compute (distr g)(Ig H) as ), (distr g1)(r) - g2(Ig H — 7).
The total number of relevant terms of g; and go, hence the total time
needed, can be quite a bit smaller than ¥(H,y).

Notes. The ideas in this paper evolved as follows.

I presented the exact ¥ algorithms in [7]. That paper was not phrased
in the language of series; I used logarithms and « merely because additions
are faster than multiplications.

I subsequently noticed that reducing o would produce bounds on ¥ at
high speed. In 1997, I rephrased the algorithms in the language of series,
and realized the relevance of fast power-series exponentiation. An extended
abstract of this paper appeared in [8]. I found Coppersmith’s article [24]
in 2000 as I was preparing the bibliography for this paper.

5. GENERALIZATIONS AND VARIANTS

Omitting tiny primes. One can replace {p < y} by a subset, such as
{p: z < p <y}. For previous work see [37], [89], and [90].

Squarefree integers. One can restrict the powers of p that are allowed
to appear: for example, one can replace 1+ '8P 4+ 2187 ... by 1 + z'&P
to bound the distribution of smooth squarefree integers. For previous work
see [44] and [80].
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Arithmetic progressions. Fix a positive integer m. Define ¥(H,y, ) as
the number of y-smooth integers n € [1, H] with n =4 (mod m).

Let S be the finite monoid Z/m under multiplication. The ring Q[S]
is the set of functions a : S — Q with the following operations: 0 is
s—=0;1iss—>[s=1]; —ais s — —a(s); a+bis s — a(s) + b(s); and
abis s = 37, . u=s @(t)b(u). Define a partial order a > b meaning that
a(s) > b(s) for all s. Everything in section 2 generalizes immediately to
series over Q[S].

Define 7 : Z — Q[S] as n — (s — [s = nmodm]). Then = is
a monoid morphism: 7(1) = 1 and w(nn') = w(n)7(n’). The images
m(0),7(1),...,7(m — 1) are linearly independent over Q.

Define f as the series Y, [n is y-smooth] 7(n)z'8" over Q[S]. Then
(distr f)(IgH) =3 g<;cm (1) ¥(H,y,1). For example, if m = 3 and y = 5,
then f is the series

ﬂ_(o)(xlgS + ‘,L.lgG + ‘,L.ng + xlg12 + xlng +xlg18 4. )
+ 7T(1)(.’L‘lg1 + xlg4 + xlglO + mlglﬁ + :I:lg25 + $lg40 + .. )
+7T(2)($lg2 + :L.lgs + :L.lgS + xngO + :L.lg32 +$1g50 4o ),
and (distr f)(Ig12) = 47 (0) + 37(1) + 37 (2).

Now f is the product over p of 1 + 7(p)z'8P + 7(p)2x?18P 4 ..., and
distr(14+7(p)z'8P+m(p)2x2'8P+- .. ) > distr(1+n(p)z'8P+7(p)222 8P - . .),
so distr f > distrexp Y. _ (7(p)x'8P + §m(p)®z>'8P + -..). A fractional-
power-series exponentiation over Q[S] thus produces a lower bound on
distr f, i.e., a lower bound on ¥(H,y,1) for each 7 and various H. One can
save time by working in the smaller ring Q[(Z/m)*] and ignoring primes
that divide m.

For previous work see [16], [36], [53], [54], [38], [39], [33], [5], [47], [48],
(93], [97], and [34]. See [43] for more information on monoid rings and
group rings.

Number fields. Let K be a number field, R its ring of integers. A nonzero
ideal n of R is y-smooth if it has no prime divisors of norm larger than y.
Define f as the series Y [n is y-smooth] z'8"°™"_ Then f is the product
of 14 glgrormp 4 g2lgnormp 4 ... gyer smooth prime ideals p. One obtains
a lower bound on distr f by increasing each lgnorm p to a nearby multiple
of 1/a. For previous work see [68] (in the case K = Q[v/—1]), [42], [35],
58], [72], [73], [79], and [12].

In some applications—notably integer factorization with the number
field sieve, as described in [74]—one wants to know the distribution of
smooth elements of R. A fractional-power-series exponentiation over Q[G],
where G is the ideal class group of R, produces bounds on the distribution of
smooth ideals in each ideal class; in particular, the distribution of smooth
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principal ideals. One can replace G by a ray class group or a ray class
monoid to bound smoothness in arithmetic progressions. The use of these
techniques to estimate the speed of the number field sieve will be discussed
in a subsequent paper.

Function fields. Dirichlet series for function fields over F, are already
power series: lgnormn € (1gq)Z for every nonzero ideal n. For example,
the sum of [n is 22°-smooth] z'87°"™ ™ for nonzero polynomials n over Fy is
142z +4x% +---+3356538930025341312355485742% + - - - . The bounds in
this paper boil down to a known algorithm to compute the exact coefficients
of this series. For asymptotic estimates see [19], [76], [6], and [83].

Coprime pairs. Consider the series
Z [ny is y-smooth][ny is y-smooth][ged {ny,ny} = 1] ' B™ 52

ni,n2

in two variables x1, 2. This series is the product over smooth primes p of

1428 42287 ... 4 2I8P 4 £2'8P ... With a two-variable power-series
exponentiation one can bound the distribution of smooth coprime pairs
(n1,n2).

This is, for y = 89, the problem considered by Coppersmith in [24].
Coppersmith replaced exponents klgp by [aklgp|/a, and multiplied the
resulting series; I replace klgp by k[algp]/a, which is not quite as small
but is better suited for exponentiation.

For limited-precision estimates see [44], [45], and [46].

Number of prime factors. The series Y, [n is y-smooth] z'6"w?(™) in
two variables z,w, where Q(n) = }_ ord,n, is the product over smooth
primes p of 1 + z'8Pw + 2218Pyw?2 4 .... The exponentiation here is faster
than in the case of coprime pairs, because the exponents of w are very
small. For previous work see [28], [56], and [63].

Semismoothness. The analysis and optimization of factoring algorithms
often relies on the distribution of positive integers n that have no prime
divisors larger than z and at most one prime divisor larger than y. This is
not a local condition, but the sum of 8™ is nevertheless a product

(” > x‘”)H<1+x‘g"+w2‘g”+---)
y<p<z p<y

of sparse series with nonnegative coefficients, so one can efficiently bound
the distribution of these n’s. For previous work see [71] and [3].



TIGHT BOUNDS ON THE DISTRIBUTION OF SMOOTH INTEGERS 11

REFERENCES

[1] —, Journées arithmétiques de Besangon, Astérisque 147-148, Société Mathé-
matique de France, Paris, 1987. MR 87m:11003.

[2] A. O. L. Atkin, Daniel J. Bernstein, Prime sieves using binary quadratic forms,
submitted for publication; available from http://cr.yp.to/papers/primesieves.
dvi.

[3] Eric Bach, René Peralta, Asymptotic semismoothness probabilities, Mathematics of
Computation 65 (1996), 1701-1715. MR 98a:11123.

[4] Antal Balog, On the distribution of integers having no large prime factor, in [1]
(1987), 27-31. MR 88g:11061.

[5] Antal Balog, Carl Pomerance, The distribution of smooth numbers in arithmetic
progressions, Proceedings of the American Mathematical Society 115 (1992), 33—43.
MR 92h:11075.

[6] Renet Lovorn Bender, Carl Pomerance, Rigorous discrete logarithm computations
in finite fields via smooth polynomials, in [13] (1998), 221-232. MR 99¢:11156.

[7] Daniel J. Bernstein, Enumerating and counting smooth integers, chapter 2, Ph.D.
thesis (1995), University of California at Berkeley; available from http://cr.yp.
to/papers/epsi.dvi.

[8] Daniel J. Bernstein, Bounding smooth integers (exztended abstract), in [14] (1998),
128-130; available from http://cr.yp.to/papers/psi-abs.dvi.

[9] Daniel J. Bernstein, Multidigit multiplication for mathematicians, to appear, Ad-
vances in Applied Mathematics; available from http://cr.yp.to/papers/m3.dvi.

[10] Daniel J. Bernstein, Removing redundancy in high-precision Newton iteration,
draft.

[11] Richard P. Brent, Multiple-precision zero-finding methods and the complezity of el-
ementary function evaluation, in [94], 151-176; available from http://web.comlab.
ox.ac.uk/oucl/work/richard.brent/pub/pub028.html. MR 54 #11843.

[12] Johannes A. Buchmann, Christine S. Hollinger, On smooth ideals in number fields,
Journal of Number Theory 59 (1996), 82-87. MR 97h:11140.

[13] Duncan A. Buell, Jeremy T. Teitelbaum, Computational perspectives on number
theory, American Mathematical Society, Providence, Rhode Island, 1998. ISBN 0—
8218-0880-X. MR 98g:11001.

[14] Joe P. Buhler (editor), Algorithmic number theory: ANTS-III, Lecture Notes in
Computer Science 1423, Springer-Verlag, Berlin, 1998. ISBN 3-540-64657-4. MR
2000g:11002.

[15] Aleksandr A. Buchstab, Asymptotic estimates of a general number theoretic func-
tion, Matematicheskif Sbornik 44 (1937), 1239-1246.

[16] Aleksandr A. Buchstab, On those numbers in an arithmetic progression all prime
factors of which are small in order of magnitude, Doklady Akademii Nauk SSSR
67 (1949), 5-8. MR 11,84b.

[17] E. Rodney Canfield, The asymptotic behavior of the Dickman-de Bruijn function,
Congressus Numerantium 35 (1982), 139-148. MR 85g:11082.

[18] E. Rodney Canfield, Paul Erdés, Carl Pomerance, On a problem of Oppenheim
concerning “factorisatio numerorum”, Journal of Number Theory 17 (1983), 1-28.
MR 85j:11012.

[19] Mireille Car, Théorémes de densité dans Fq[z], Acta Arithmetica 48 (1987), 145—
165. MR 88g:11090.



12

(20]

(21]

(22]

(23]
(24]
(28]

(26]

(27]

28]

[29]
[30]
[31]
[32]

(33]

(34]

DANIEL J. BERNSTEIN

Jean-Marie-Francois Chamayou, A probabilistic approach to a differential-difference
equation arising in analytic number theory, Mathematics of Computation 27
(1973), 197-203. MR 49 #1725.

Angela Y. Cheer, Daniel A. Goldston, A differential delay equation arising from
the sieve of Eratosthenes, Mathematics of Computation 55 (1990), 129-141. MR
90j:11091.

Sarvadaman D. Chowla, William E. Briggs, On the number of positive integers < x
all of whose prime factors are < y, Proceedings of the American Mathematical
Society 6 (1955), 558-562. MR 17,1271

Sarvadaman D. Chowla, T. Vijayaraghavan, On the largest prime divisors of num-
bers, Journal of the Indian Mathematical Society 11 (1947), 31-37. MR 9,332d.
Don Coppersmith, Fermat’s last theorem (case 1) and the Wieferich criterion,
Mathematics of Computation 54 (1990), 895-902. MR 90h:11024.

Nicolaas G. de Bruijn, On the number of positive integers < z and free of prime
factors > y, Indagationes Mathematicae 13 (1951), 50-60. MR 13,724e.

Nicolaas G. de Bruijn, The asymptotic behaviour of a function occurring in the
theory of primes, Journal of the Indian Mathematical Society 15 (1951), 25-32.
MR 13,326f.

Nicolaas G. de Bruijn, On the number of positive integers < x and free of prime
factors > y. II, Indagationes Mathematicae 28 (1966), 239-247. MR 34 #5770.
Jean-Marie De Koninck, Douglas Hensley, Sums taken over n < z with prime
factors <y of 2% | and their derivatives with respect to z, Journal of the Indian
Mathematical Society 42 (1979), 353-365. MR 81k:10065.

K. Dickman, On the frequency of numbers containing primes of a certain relative
magnitude, Ark. Mat. Astr. Fys. 22 (1930), 1-14.

Veikko Ennola, On numbers with small prime divisors, Annales Academiae Scien-
tiarum Fennicae Series A T 440 (1969). MR 39 #5492.

Paul Erdés, Jack H. van Lint, On the number of positive integers < x and free of
prime factors >y, Simon Stevin 40 (1966/1967), 73-76. MR 35 #2836.

A. S. Fainleib, The estimate from below of the quantity of numbers with small prime
divisors, Doklady Akademii Nauk UzSSR (1967), 3-5. MR 46 #5265.

Etienne Fouvry, Gérald Tenenbaum, Entiers sans grand facteur premier en progres-
sions arithmetiques, Proceedings of the London Mathematical Society 63 (1991),
449-494. MR 93c:11074.

Etienne Fouvry, Gérald Tenenbaum, Répartition statistique des entiers sans grand
facteur premier dans les progressions arithmétiques, Proceedings of the London
Mathematical Society 72 (1996), 481-514. MR 97h:11098.

John B. Friedlander, On the number of ideals free from large prime divisors, Journal
fiir die Reine und Angewandte Mathematik 255 (1972), 1-7. MR 45 #8627.

John B. Friedlander, Integers without large prime factors, Indagationes Mathemat-
icae 35 (1973), 443-451. MR 49 #4957.

John B. Friedlander, Integers free from large and small primes, Proceedings of the
London Mathematical Society 33 (1976), 565-576. MR 54 #5139.

John B. Friedlander, Integers without large prime factors. II, Acta Arithmetica 39
(1981), 53-57. MR 83b:10052.

John B. Friedlander, Integers without large prime factors. III, Archiv der Mathe-
matik 43 (1984), 32-36. MR 86d:11072.

John B. Friedlander, Andrew Granville, Smoothing “smooth” numbers, Philosoph-
ical Transactions of the Royal Society of London Series A 345 (1993), 339-347;
available from http://www.math.uga.edu/~andrew/agpapers.html. MR 95b:11086.



TIGHT BOUNDS ON THE DISTRIBUTION OF SMOOTH INTEGERS 13

[41] John B. Friedlander, Jeffrey C. Lagarias, On the distribution in short intervals
of integers having no large prime factor, Journal of Number Theory 25 (1987),
249-273. MR 88d:11084.

[42] John R. Gillett, On the largest prime divisors of ideals in fields of degree n, Duke
Mathematical Journal 37 (1970), 589-600. MR 42 #3052.

[43] Robert Gilmer, Commutative semigroup rings, University of Chicago, Chicago,
Illinois, 1984. ISBN 0-226-29391-2. MR 85e:20058.

[44] Andrew Granville, On positive integers < z with prime factors < tlogz, in
[78] (1989), 403-422; available from http://www.math.uga.edu/"andrew/agpapers.
html. MR 92h:11076.

[45] Andrew Granville, The lattice points of an n-dimensional tetrahedron, Aequa-
tiones Mathematicae 41 (1991), 234-241; available from http://www.math.uga.
edu/~andrew/agpapers.html. MR 92b:11070.

[46] Andrew Granville, On pairs of coprime integers with no large prime factors, Ex-
positiones Mathematicae 9 (1991), 335-350. MR 92m:11095.

[47] Andrew Granville, Integers, without large prime factors, in arithmetic progressions.
I, Acta Mathematica 170 (1993), 255-273; available from http://www.math.uga.
edu/~andrew/agpapers.html. MR 94f:11091.

[48] Andrew Granville, Integers, without large prime factors, in arithmetic progressions.
II, Philosophical Transactions of the Royal Society of London Series A 345 (1993),
349-362; available from http://www.math.uga.edu/~andrew/agpapers.html. MR
94k:11104.

[49] Frieder Grupp, On difference-differential equations in the theory of sieves, Journal
of Number Theory 24 (1986), 154-173. MR 87k:11101.

[50] Frieder Grupp, Hans-Egon Richert, The functions of the linear sieve, Journal of

Number Theory 22 (1986), 208-239. MR 87f:11071.

Heini Halberstam, On integers all of whose prime factors are small, Proceedings

of the London Mathematical Society 21 (1970), 102-107. MR 42 #4509.

[52] Glyn Harman, Short intervals containing numbers without large prime factors,
Mathematical Proceedings of the Cambridge Philosophical Society 109 (1991), 1-5.
MR 91h:11093.

[53] D. G. Hazlewood, On integers all of whose prime factors are small, Bulletin of the
London Mathematical Society 5 (1973), 159-163. MR 49 #2615.

[54] D. G. Hazlewood, On k-free integers with small prime factors, Proceedings of the
American Mathematical Society 52 (1975), 40-44. MR 51 #10256.

[55] D. G. Hazlewood, On ideals having only small prime factors, Rocky Mountain
Journal of Mathematics 7 (1977), 753-768. MR 56 #2941.

[56] Douglas Hensley, The sum of af* () over integers n < x with all prime factors
between o and y, Journal of Number Theory 18 (1984), 206-212. MR 85i:11071.

[57] Douglas Hensley, The number of positive integers < z and free of prime factors

> y, Journal of Number Theory 21 (1985), 286-298. MR 87e:11110.

Douglas Hensley, A property of the counting function of integers with no large

prime factors, Journal of Number Theory 22 (1986), 46-74. MR 87f:11065.

Adolf Hildebrand, Integers free of large prime factors and the Riemann hypothesis,

Mathematika 31 (1984), 258-271. MR 87a:11086.

Adolf Hildebrand, Integers free of large prime divisors in short intervals, Quarterly

Journal of Mathematics 36 (1985), 57-69. MR 86£:11066.

Adolf Hildebrand, On the number of positive integers < x and free of prime factors

> y, Journal of Number Theory 22 (1986), 289-307. MR 87d:11066.

ot
=

S o o
R )

=
=



14

(62]
(63]

(64]

(65]

(66]

(67]

(68]

(69]

[70]
[71]
[72]
(73]

[74]

[75]

[76]

[77]

(78]
[79]

(80]

81]

DANIEL J. BERNSTEIN

Adolf Hildebrand, On the local behavior of ¥(z,y), Transactions of the American
Mathematical Society 297 (1986), 729-751. MR 87k:11099.

Adolf Hildebrand, On the number of prime factors of integers without large prime
divisors, Journal of Number Theory 25 (1987), 81-106. MR 88d:11085.

Adolf Hildebrand, The asymptotic behavior of the solutions of a class of differential-
difference equations, Journal of the London Mathematical Society 42 (1990), 11-31.
MR 92f:11123.

Adolf Hildebrand, Gérald Tenenbaum, On integers free of large prime factors,
Transactions of the American Mathematical Society 296 (1986), 265-290. MR
87£:11066.

Adolf Hildebrand, Gérald Tenenbaum, Integers without large prime factors, Journal
de Théorie des Nombres de Bordeaux 5 (1993), 411-484. MR 95d:11116.

Simon Hunter, Jonathan Sorenson, Approzimating the number of integers free
of large prime factors, Mathematics of Computation 66 (1997), 1729-1741. MR
98¢:11093.

James H. Jordan, The divisibility of Gaussian integers by large Gaussian primes,
Duke Mathematical Journal 32 (1965), 503-509. MR 32 #2392.

Jerzy Kaczorowski, Alberto Perelli, On the distribution in short intervals of prod-
ucts of a prime and integers from a given set, Mathematical Proceedings of the
Cambridge Philosophical Society 124 (1998), 1-14. MR 99g:11111.

H. G. Khajah, Eduardo L. Ortiz, On a differential-delay equation arising in number
theory, Applied Numerical Mathematics 21 (1996), 431-437. MR 98d:11160.
Donald E. Knuth, Luis Trabb Pardo, Analysis of a simple factorization algorithm,
Theoretical Computer Science 3 (1976), 321-348. MR 58 #16485.

Uwe Krause, Anzahl der Ideale a mit Na < z und Primteilern p mit Np < y,
Diplomarbeit, Philipps-Universitdt Marburg, 1989.

Uwe Krause, Abschatzungen fur die Funktion ¥k (z,y) in algebraischen Zahl-
kérpern, Manuscripta Mathematica 69 (1990), 319-331. MR 91i:11165.

Arjen K. Lenstra, Hendrik W. Lenstra, Jr. (editors), The development of the number
field sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, Berlin, 1993. ISBN
3-540-57013-6. MR 96m:11116.

Hendrik W. Lenstra, Jr., Jonathan Pila, Carl Pomerance, A hyperelliptic smooth-
ness test. I, Philosophical Transactions of the Royal Society of London Series A
345 (1993), 397-408. MR 94m:11107.

Eugenijus Manstavi¢ius, Semigroup elements free of large prime factors, in [91]
(1992), 135-153. MR 93m:11091.

George Marsaglia, Arif Zaman, John C. W. Marsaglia, Numerical solution of some
classical differential-difference equations, Mathematics of Computation 53 (1989),
191-201. MR 90h:65124.

Richard A. Mollin (editor), Number theory and applications, Kluwer, Dordrecht,
1989. ISBN 0-7923-0149-8. MR 92¢:11002.

Pieter Moree, An interval result for the number field ¥ (z,y) function, Manuscripta
Mathematica 76 (1992), 437-450. MR 93h:11127.

Pieter Moree, On the number of y-smooth natural numbers < z representable as
a sum of two integer squares, Manuscripta Mathematica 80 (1993), 199-211. MR
94g:11069.

Pieter Moree, Psizyology and Diophantine equations, Dissertation, Rijksuniversiteit
te Leiden, Leiden, 1993; available from http://web.inter.nl.net/hcc/J.Moree/
linkind2.htm. MR 96e:11114.



(82]

(83]

(84]

(85]
(86]
(87]

(88]

TIGHT BOUNDS ON THE DISTRIBUTION OF SMOOTH INTEGERS 15

Karl K. Norton, Numbers with small prime factors, and the least kth power non-
residue, American Mathematical Society, Providence, Rhode Island, 1971. MR 44
7#3948.

Daniel Panario, Xavier Gourdon, Philippe Flajolet, An analytic approach to smooth
polynomials over finite fields, in [14] (1998), 226-236. MR 1 726 074.

V. Ramaswami, The number of positive integers < z and free of prime divisors
> z¢, and a problem of S. S. Pillai, Duke Mathematical Journal 16 (1949), 99—
109. MR 10,597b.

Robert A. Rankin, The difference between consecutive prime numbers, Journal of
the London Mathematical Society 13 (1938), 242—-247.

Paulo Ribenboim, Fields: algebraically closed and others, Manuscripta Mathemat-
ica 75 (1992), 115-150. MR 93£:13014.

Fric Saias, Sur le nombre des entiers sans grand facteur premier, Journal of Num-
ber Theory 32 (1989), 78-99. MR 90£:11080.

Eric Saias, Entiers sans grand mi petit facteur premier. I, Acta Arithmetica 61
(1992), 347-374. MR 93d:11096.

Eric Saias, Entiers sans grand ni petit facteur premier. II, Acta Arithmetica 63
(1993), 287-312. MR 94¢:11089.

[90] Eric Saias, Entiers sans grand ni petit facteur premier. III, Acta Arithmetica 71

(1995), 351-379. MR, 96g:11113.

[91] Fritz Schweiger, Eugenijus Manstavi€ius (editors), New trends in probability and

statistics, volume 2, VSP, Utrecht, 1992. ISBN 90-6764-094-8. MR 93g:11005.

[92] Wilhelm Specht, Zahlenfolgen mit endlich vielen Primteilern, Bayerische Akademie

der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Sitzungsberichte
(1949), 149-169. MR 11,500f.

[93] Gérald Tenenbaum, Cribler les entiers sans grand facteur premier, Philosophical

Transactions of the Royal Society of London Series A 345 (1993), 377-384. MR
95d:11119.

[94] Joseph F. Traub, Analytic computational complezity, Academic Press, New York,

1976. MR 52 #15938.

[95] Jan van de Lune, Evert Wattel, On the numerical solution of a differential-

difference equation arising in analytic number theory, Mathematics of Computation
32 (1969), 417-421. MR 40:1050.

[96] Ti Zuo Xuan, On the asymptotic behavior of the Dickman-de Bruijn function,

Mathematische Annalen 297 (1993), 519-533. MR 94j:11095.

[97] Ti Zuo Xuan, Integers with no large prime factors, Acta Arithmetica 69 (1995),

303-327. MR 96¢:11106.

[98] TiZuo Xuan, On smooth integers in short intervals under the Riemann hypothesis,

Acta Arithmetica 88 (1999), 327-332. MR 2000d:11110.

DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE (M/C 249),

THE UNIVERSITY OF ILLINOIS AT CHICAGO, 851 SOUTH MORGAN STREET, CHICAGO, IL
60607-7045

E-mail address: djb@cr.yp.to



