
Predicting performance for
post-quantum encrypted-file systems

Daniel J. Bernstein1,2

1 Department of Computer Science, University of Illinois at Chicago, USA
2 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany

djb@cr.yp.to

Abstract. Public-key cryptography is widely deployed for encrypting
stored files. This paper uses microbenchmarks and purchase costs
to predict the performance of various post-quantum KEMs in this
application, in particular concluding that Classic McEliece is (1) the
most efficient option and (2) easily affordable.
Keywords: post-quantum cryptography, encryption, performance

1 Introduction

Windows Pro, Enterprise, and Education include an “Encrypting File System”.
Microsoft describes EFS in [14] as “the built-in file encryption tool for Windows
file systems”, and explains that each file stored under EFS is automatically
encrypted to the public key of the user authorized to access the file:

EFS enables transparent encryption and decryption of files by
using advanced, standard cryptographic algorithms. Any individual or
program that doesn’t possess the appropriate cryptographic key cannot
read the encrypted data. Encrypted files can be protected even from
those who gain physical possession of the computer that the files reside
on. . . . EFS encryption doesn’t occur at the application level but rather
at the file-system level; therefore, the encryption and decryption process
is transparent to the user and to the application. . . . File encryption uses
a symmetric key, which is then itself encrypted with the public key of
a public key encryption pair. The related private key must be available
in order for the file to be decrypted. This key pair is bound to a user
identity and made available to the user who has possession of the user
ID and password.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) as part of the Excellence Strategy of the German Federal
and State Governments—EXC 2092 CASA—390781972 “Cyber Security in the
Age of Large-Scale Adversaries”; by the U.S. National Science Foundation
under grant 2037867; and by the Taiwan’s Executive Yuan Data Safety and
Talent Cultivation Project (AS-KPQ-109-DSTCP). “Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation” (or other funding agencies). Permanent ID of this document:
27c1d851ac2f907d715a0bbad5fa60623088bc54. Date: 2023.12.06.

2 Daniel J. Bernstein

Windows also supports full-disk encryption (“BitLocker”). Microsoft’s BitLocker
FAQ [21] explains that per-file encryption and full-disk encryption provide
different security features:

Encrypting File System (EFS) can be used to encrypt files on a
BitLocker-protected drive. BitLocker helps protect the entire operating
system drive against offline attacks, whereas EFS can provide additional
user-based file level encryption for security separation between multiple
users of the same computer. EFS can also be used in Windows to encrypt
files on other drives that aren’t encrypted by BitLocker.

There are many other examples of per-file public-key encryption. Apple’s iPhone,
despite its reputation as a single-user device protected by full-disk encryption,
also automatically creates ciphertexts to the user’s Curve25519 public key, for
example for backups and to be able to encrypt incoming messages while the
device is locked. See [5, pages 80 and 82]. For Linux tools that automatically
encrypt files to a per-user GPG public key, see, e.g., [15], [19], and [23] for
incoming mail messages, or [24] for incoming HTTP uploads.

To protect against an attacker with a quantum computer, one can and
should upgrade encrypted-file systems from pre-quantum public-key encryption
to post-quantum public-key encryption: for example, choose any post-quantum
KEM, generate a KEM ciphertext to the user’s KEM public key for each
encrypted file, and use the resulting KEM session key to encrypt the file, or to
encrypt another (perhaps longer-lasting) symmetric key used in turn to encrypt
the file. “Hybrid”/“double encryption” approaches, retaining the existing layer
of public-key encryption while adding a new layer of post-quantum public-key
encryption, are also straightforwardly applicable (and recommended) here: e.g.,
encrypt with the old layer and then the new, or vice versa, or hash session keys
and ciphertexts obtained from the old and new layers to obtain a hybrid session
key used to encrypt the file.

1.1. Contributions of this paper. This paper asks what the performance
consequences are of upgrading encrypted-file systems to use post-quantum
cryptography. This paper uses microbenchmarks from eBACS [12] to predict
the answer for post-quantum KEMs currently under consideration by NIST
and/or ISO: BIKE, Classic McEliece, FrodoKEM, and Kyber. One patented
KEM, HQC, has not submitted up-to-date software to eBACS and is omitted.

This comparison is analogous to, e.g., [17] comparing some post-quantum
KEMs according to “compactness” and “the round-trip time of ephemeral key
exchange”. The latter is computed in [17] as the sum of microbenchmarks for key
generation, encapsulation, and decapsulation, disregarding KEM-independent
overheads such as end-to-end communication latency. Two differences between
this paper’s comparison and the comparison in [17] are as follows:

• Beyond separately measuring storage space, communication, and CPU time,
this paper uses purchase costs as a way to put all of these on the same scale,
whereas [17] treats space and time as independent, not even accounting for
the effect of “compactness” upon “round-trip time”.

Predicting performance for post-quantum encrypted-file systems 3

• An encrypted-file system reuses a user’s public key for all of the files
encrypted to that user, whereas [17] considers a protocol that generates
a new key for every ciphertext. All of the KEMs considered in this paper
are designed for IND-CCA2 security, allowing keys to be reused for many
ciphertexts.

These differences change which KEMs score best. Consider, in particular, Classic
McEliece, the post-quantum encryption system with by far the strongest security
track record. This system is often claimed to be non-competitive in performance
because it has much larger per-key costs than alternatives: e.g., 1047319 bytes
for a mceliece6960119 public key, compared to 1568 bytes for a kyber1024
public key. However, Classic McEliece has much smaller per-ciphertext costs
than alternatives: e.g., 194 bytes for a mceliece6960119 ciphertext, compared
to 1568 bytes for a kyber1024 ciphertext. Classic McEliece ends up being the
most efficient way to encrypt many files to one key.

1.2. Variables. The predictions throughout this paper are in terms of the
following variables. There are U users of the file system; e.g., U = 1 for a
single-user file system. There are E files encrypted to an average user, for a total
of UE encrypted files. There are D file-decryption operations by an average user,
for a total of UD decrypted files. There are S files encrypted to an average user
and still stored, for a total of US stored encrypted files. There is then a choice
of KEM.

This paper takes four concrete examples to illustrate the impact of variations
in E, D, and S:

• (E, D, S) = (100000, 200000, 50000). This models a user receiving and
storing 100 messages per work day for 5 years in an encrypted-file system,
assuming 200 work days per year, while decrypting each message twice on
average. S is half as large as E since at an average moment only half of the
messages have arrived.

• (E, D, S) = (200000, 400000, 100000). This models a more active user.
• (E, D, S) = (200000, 200000, 100000). Same, except that the user decrypts

each message only once on average.
• (E, D, S) = (200000, 200000, 2000). Same, except that the user has a

message-deletion policy and deletes an average message in just 10 work days.

This paper presumes that servers will be replaced with new, more cost-effective
servers after 5 years, outweighing any increase in the number of messages, so
this paper focuses on costs in the first 5 years.

Here is a sanity check on the 100-message-per-day number: [26] indicates
that there were 333.2 billion email messages sent worldwide each day in 2022,
the equivalent of 600 billion messages per work day. Of course, email messages
are not necessarily stored in encrypted-file systems (even if they should be for
security); in the opposite direction, email messages are only one example of files
that can be stored in encrypted-file systems. It would be interesting to collect
real-world data regarding the variables (E, D, S).

4 Daniel J. Bernstein

S = 2000 S = 50000 S = 100000
mceliece348864f 459612 5067612 9867612
mceliece460896f 849768 8337768 16137768
mceliece6960119f 1449267 10761267 20461267
mceliece6688128f 1474924 11458924 21858924
mceliece8192128f 1787944 11771944 22171944
kyber512 1538432 38402432 76802432
kyber768 2179584 54403584 108803584
kyber1024 3140736 78404736 156804736
bikel1 3152764 78656764 157306764
bikel3 6243188 155763188 311513188
frodokem640aes 19469504 486029504 972029504
frodokem640shake 19469504 486029504 972029504
frodokem976aes 31534928 787246928 1574446928
frodokem976shake 31534928 787246928 1574446928
frodokem1344aes 43328608 1081664608 2163264608
frodokem1344shake 43328608 1081664608 2163264608

Table 2.1.1. Number of bytes stored by each KEM per user of an encrypted-file
system. S is the number of files stored per user. Rows are sorted by the last column.
Columns are sorted by S.

2 Space

This section predicts the space consumption of various KEMs in the context of
encrypted-file systems. This section also reviews the purchase cost of storage.

2.1. Bytes stored. Each user incurs KEM-specific storage for a KEM public
key and a KEM private key, so there are U public keys and U private keys. Each
stored file incurs KEM-specific storage for a KEM ciphertext, so there are US
ciphertexts. The KEM-specific storage consumed per user is thus 1 public key
plus 1 private key plus S ciphertexts. Table 2.1.1 reports this amount of storage
for the examples of S listed in Section 1.2. All tables in this paper are produced
by Python scripts provided as PDF attachments to this paper.

2.2. The purchase cost of storage per byte. A typical 20TB hard drive
today, the Western Digital WD201KFGX, is available for under $400. The data
sheet for this drive [30] indicates average power consumption of 6.9 watts during
read/write and 1.6 watts on standby. If the drive runs continuously for its 5-year
warranty period then it consumes between 70 and 300 kilowatt-hours depending
on how frequent the read/write operations are. A typical power supply is over
90% efficient, and then purchasing this energy at a typical price of 10 cents per
kilowatt-hour adds between $7 and $33, making little difference next to the $400
purchase price of the drive itself.

During the same 5-year period, the drive provides 100 terabyte-years of
storage; i.e., one terabyte-year of storage costs about $4. In other words, storing
a byte for a year costs about 2−38 dollars.

Predicting performance for post-quantum encrypted-file systems 5

Costs vary depending on the storage technology. For example, SSDs are often
chosen over hard drives because they provide data access with lower latency and
higher throughput; but a 4TB SSD currently costs about $200, more than twice
as expensive per byte as the hard drive. Also, a typical SSD warranty is limited
to 5 years or a few petabytes written, so applications that rewrite all their data
every day (e.g., continuously recording video feeds and retaining them for 24
hours) will end up replacing SSDs roughly every year, further increasing the
cost per byte-year of storage.

Another reason for higher costs per byte-year is overprovisioning. For example,
a user purchasing much more storage for a laptop than currently needed, so as
to leave room for future growth, ends up paying more per byte-year of storage.

3 Communication

This section predicts the amount of data read and written by various KEMs in
the context of encrypted-file systems. This section also reviews the purchase cost
of the relevant communication mechanisms.

3.1. Bytes written and read. Each user incurs the cost of writing a KEM
public key and a KEM private key, so there are U public keys written and U
private keys written. This paper assumes that caching of user keys in RAM is
sufficiently effective that the cost of reading keys can be ignored.

Each encrypted file incurs the cost of writing a KEM ciphertext, so there are
UE ciphertexts written. Each file-decryption operation incurs the cost of reading
a KEM ciphertext, so there are UD ciphertexts read.

The KEM-specific reading and writing per user is thus 1 public key plus 1
private key plus E + D ciphertexts. Table 3.1.1 computes this number of bytes
for the examples of (E, D) listed in Section 1.2.

3.2. The purchase cost of communication per byte. The drive described
in Section 2.2 has an internal transfer rate of 268 MB/second, according to [30].
Reading or writing data adds 5.3 watts compared to standby and, perhaps more
relevant to marginal cost accounting, 3.1 watts compared to idle. Either way,
the cost is roughly 2−51 dollars per byte at 10 cents per kWh.

Remote file systems are more expensive. For example, storing data in the
cloud incurs costs to transmit data to and from the cloud, although it has the
benefit of reducing the need for overprovisioning.

One way to estimate the purchase price of a byte of Internet communication
is to look at advertisements of, e.g., $70/month for a gigabit (roughly
100MB/second) connection, suggesting a cost around 2−42 dollars per byte.
There are, however, widespread reports of these connections being limited to
a few terabytes per month, roughly 2−36 dollars per byte.

This paper uses an intermediate estimate obtained as follows. A 2018
estimate [6] was that Internet data transmission costs “0.06 kWh/GB”, with
a historical trend of dropping by a factor 2 every 2 years. At 10 cents per kWh,
this is 0.006 dollars per GB in 2018, or projected 2−40 dollars per byte in 2024.

6 Daniel J. Bernstein

E = 100000 E = 200000 E = 200000
D = 200000 D = 200000 D = 400000

mceliece348864f 29067612 38667612 57867612
mceliece460896f 47337768 62937768 94137768
mceliece6960119f 59261267 78661267 117461267
mceliece6688128f 63458924 84258924 125858924
mceliece8192128f 63771944 84571944 126171944
kyber512 230402432 307202432 460802432
kyber768 326403584 435203584 652803584
kyber1024 470404736 627204736 940804736
bikel1 471906764 629206764 943806764
bikel3 934513188 1246013188 1869013188
frodokem640aes 2916029504 3888029504 5832029504
frodokem640shake 2916029504 3888029504 5832029504
frodokem976aes 4723246928 6297646928 9446446928
frodokem976shake 4723246928 6297646928 9446446928
frodokem1344aes 6489664608 8652864608 12979264608
frodokem1344shake 6489664608 8652864608 12979264608

Table 3.1.1. Number of bytes read+written by each KEM per user of an encrypted-file
system. E is the number of files encrypted per user. D is the number of files decrypted
per user. Rows are sorted by the last column. Columns are sorted by (E, D).

Recall from Section 2.2 the estimate of about 2−38 dollars per byte-year stored.
If data is stored for only 10 days, about 2−5 years, then this storage costs
2−43 dollars per byte, so it is outweighed by 2−40 dollars per byte to upload
to the cloud (plus the same for each download); communication costs for cloud
storage end up dominant for, e.g., (E, D, S) = (200000, 200000, 2000). If data
is instead stored for years then a few uploads and downloads are outweighed
by the data-storage costs: the data-storage costs end up dominant for, e.g.,
(E, D, S) = (200000, 400000, 100000).

4 CPU time

This section predicts the number of CPU cycles used by various KEMs in the
context of encrypted-file systems. This section also reviews the purchase cost of
CPU cycles.

4.1. Cycles used. Each user generates a KEM public key and a KEM
private key, so there are U key-generation operations. Each encrypted file
incurs a KEM-specific encapsulation operation, so there are UE encapsulation
operations. Each decryption of a file incurs a KEM-specific decapsulation
operation, so there are UD encapsulation operations.

The KEM cycles per user are thus 1 key generation plus E encapsulations
plus D decapsulations. Table 4.1.1 computes the number of Skylake cycles for

Predicting performance for post-quantum encrypted-file systems 7

E = 100000 E = 200000 E = 200000
D = 200000 D = 200000 D = 400000

kyber512 9160223055 12738623055 18320423055
kyber768 13803039812 19140439812 27606039812
kyber1024 19515254565 26862854565 39030454565
mceliece348864f 25341940075 28417140075 50655140075
mceliece460896f 54924488505 61773088505 109756488505
mceliece6960119f 65542051009 78232651009 130902451009
mceliece6688128f 69839600596 81593300596 139453300596
mceliece8192128f 72425959005 86494859005 144619259005
bikel1 324313986627 335022786627 648627386627
frodokem640aes 545458931360 730642231360 1090916431360
bikel3 1001268224846 1026646824846 2002534824846
frodokem976aes 1048656438075 1414876938075 2097309938075
frodokem640shake 1250679172307 1669926472307 2501354472307
frodokem1344aes 1729058990308 2318073590308 3458112990308
frodokem976shake 2657322821805 3556652121805 5314637321805
frodokem1344shake 4608595220865 6163803420865 9217175820865

Table 4.1.1. Number of Skylake cycles used by each KEM per user of an encrypted-file
system. E is the number of files encrypted per user. D is the number of files decrypted
per user. Rows are sorted by the last column. Columns are sorted by (E, D).

these operations for the examples of (E, D) listed in Section 1.2, starting from
the median cycle counts from [12].

4.2. The purchase cost of CPU time per cycle. A Dell PowerEdge T440
server with two Intel Xeon Silver 4216 CPUs, 16GB of ECC RAM, and a 5-year
warranty costs $3787 today from https://dell.com. This is not the lowest-cost
processing currently available, but it suffices for purposes of this paper.

Each of the two CPUs has 16 cores and a base frequency of 2.1GHz; this
paper assumes that Turbo Boost is disabled. The CPU cores together carry
out 263.2 cycles in 5 years. The CPU microarchitecture is Cascade Lake, which is
essentially Skylake plus AVX-512; beware that Table 4.1.1 does not use AVX-512
and is presumably overestimating costs on these CPUs.

The server has a 495W power supply, but can be reasonably estimated to
draw under 300W from the wall since each CPU has a thermal design power of
100W. Running continuously for 5 years (i.e., 43.83 kilo-hours) then costs under
$1315 at 10 cents per kWh.

Overall a CPU cycle on these CPUs costs about 2−51 dollars. Recall from
Section 3.2 that reading a byte from a local hard drive also costs roughly 2−51

dollars, but reading a byte from remote storage costs roughly 2−40 dollars; and
recall from Section 2.2 that a byte-year of storage costs about 2−38 dollars.

https://dell.com

8 Daniel J. Bernstein

E = 100000 E = 200000 E = 200000 E = 200000
D = 200000 D = 200000 D = 200000 D = 400000

S = 50000 S = 2000 S = 100000 S = 100000
mceliece348864f 0.00008501 0.00001933 0.00015623 0.00016611
mceliece460896f 0.00014574 0.00003983 0.00026230 0.00028362
mceliece6960119f 0.00018573 0.00005587 0.00033253 0.00035594
mceliece6688128f 0.00019779 0.00005774 0.00035436 0.00038007
mceliece8192128f 0.00020350 0.00006447 0.00036109 0.00038692
kyber512 0.00056300 0.00002818 0.00112342 0.00112596
kyber768 0.00079795 0.00004041 0.00159199 0.00159585
kyber1024 0.00114981 0.00005791 0.00229402 0.00229956
bikel1 0.00128884 0.00019494 0.00243817 0.00257758
bikel3 0.00271172 0.00054733 0.00498959 0.00542325
frodokem640aes 0.00731619 0.00060952 0.01447109 0.01463195
frodokem640shake 0.00762937 0.00102664 0.01488821 0.01525831
frodokem976aes 0.01192375 0.00109002 0.02354235 0.02384681
frodokem976shake 0.01263814 0.00204116 0.02449349 0.02527559
frodokem1344aes 0.01651103 0.00166379 0.03251292 0.03302112
frodokem1344shake 0.01778980 0.00337164 0.03422076 0.03557866

Table 5.1.1. Estimated dollar costs for each KEM per user of an encrypted-file system
in the local-storage scenario. E is the number of files encrypted per user. D is the
number of files decrypted per user. S is the number of files stored per user. Rows are
sorted by the last column. Columns are sorted by (E, D, S).

5 Total costs

This section predicts the total dollar costs per user of various KEMs in the
context of encrypted-file systems. These predictions are split into two scenarios
covered in Section 3.2: data being stored locally on a hard drive, and data being
stored remotely in the cloud.

5.1. The local-storage scenario. Table 5.1.1 makes predictions for the
local-storage scenario. The cost of 5 years of storing a byte is estimated as 2−36

dollars; the cost of reading or writing a byte is estimated as 2−51 dollars; the cost
of a cycle is estimated as 2−51 dollars. These estimates come from Sections 2.2,
3.2, and 4.2.

The minimum per-user cost in Table 5.1.1 is from mceliece348864f for
(E, D, S) = (200000, 200000, 2000); recall that this is the setting of 200 files
per day being encrypted to a user (and then decrypted) but files being deleted
after 10 days. Here is a spot-check on this table entry:

• mceliece348864f has a 96-byte ciphertext for each of the 2000 stored files,
occupying 192000 bytes of storage. mceliece348864f also has a 261120-byte
public key and a 6492-byte private key, so the total storage is 459612 bytes.
Multiplying by the estimated 2−36 dollars per byte gives 6.688 microdollars.

Predicting performance for post-quantum encrypted-file systems 9

• mceliece348864f also writes 96-byte ciphertexts for 200000 encryption
operations, reads 96-byte ciphertexts for 200000 decryption operations, and
writes a public key and a private key, for a total of 38667612 bytes read
and written. Multiplying by the estimated 2−51 dollars per byte gives 0.017
microdollars. (In Section 5.2, this 2−51 changes to 2−40, increasing this cost
to 35.168 microdollars.)

• The median cycle counts for mceliece348864f from [12] are 28740075
cycles for keygen, 30752 cycles for enc, and 111190 cycles for dec, so 1
keygen, 200000 enc, and 200000 dec consume a total of 28.417 billion cycles.
Multiplying 28.417 billion cycles by the estimated 2−51 dollars per cycle gives
12.620 microdollars.

The total matches the 19.33 microdollars (0.00001933) in Table 5.1.1.
In the same (E, D, S) = (200000, 200000, 2000) setting, kyber512 is

28.18 microdollars per user; mceliece460896f is 39.83 microdollars per
user; kyber768 is 40.41 microdollars per user; mceliece6960119f is 55.87
microdollars per user; kyber1024 is 57.91 microdollars per user. Note that precise
comparisons are uncertain since the numbers come from rough estimates; the
reason for reporting extra digits is to support spot-checks.

For the other (E, D, S) settings in Table 5.1.1, the KEM costs are considerably
higher and are dominated by ciphertext storage. This also makes Kyber
strikingly less efficient than Classic McEliece.

5.2. The cloud-storage scenario. Table 5.2.1 makes predictions for the
cloud-storage scenario, with reading or writing a byte estimated as 2−40 dollars.
The cost of 5 years of storing a byte is estimated as 2−36 dollars; the cost of
reading or writing a byte is estimated as 2−40 dollars (this is what is different
from Section 5.1); the cost of a cycle is estimated as 2−51 dollars. These estimates
come from Sections 2.2, 3.2, and 4.2.

Classic McEliece is the clear winner across all of the (E, D, S) settings in
Table 5.2.1. The closest competition is for (E, D, S) = (200000, 200000, 2000),
where mceliece348864f costs 54.48 microdollars per user, mceliece6960119f
costs 127.37 microdollars per user, kyber512 costs 307.44 microdollars per user,
and kyber1024 costs 628.07 microdollars per user.

6 Costs in context

This section compares the costs of post-quantum encrypted-file systems to
other file-system costs and to costs of other applications of post-quantum
cryptography.

6.1. Other file-system costs. The numbers in Tables 5.1.1 and 5.2.1 for
mceliece6960119f, which is designed for long-term security, are under 1/2000
of a dollar per user, suggesting that deployment in this application is very easily
affordable. However, costs could be higher than this, for example because more
expensive storage technologies are being used (see Section 2.2) or because many
more files are being stored.

10 Daniel J. Bernstein

E = 100000 E = 200000 E = 200000 E = 200000
D = 200000 D = 200000 D = 200000 D = 400000

S = 50000 S = 2000 S = 100000 S = 100000
mceliece348864f 0.00011143 0.00005448 0.00019138 0.00021872
mceliece460896f 0.00018878 0.00009704 0.00031951 0.00036919
mceliece6960119f 0.00023960 0.00012737 0.00040403 0.00046271
mceliece6688128f 0.00025548 0.00013433 0.00043096 0.00049449
mceliece8192128f 0.00026147 0.00014135 0.00043797 0.00050162
kyber512 0.00077245 0.00030744 0.00140268 0.00154486
kyber768 0.00109467 0.00043603 0.00198762 0.00218928
kyber1024 0.00157744 0.00062807 0.00286418 0.00315480
bikel1 0.00171783 0.00076692 0.00301015 0.00343555
bikel3 0.00356124 0.00168002 0.00612228 0.00712228
frodokem640aes 0.00996701 0.00414393 0.01800550 0.01993356
frodokem640shake 0.01028019 0.00456106 0.01842263 0.02055992
frodokem976aes 0.01621742 0.00681490 0.02926723 0.03243410
frodokem976shake 0.01693181 0.00776604 0.03021837 0.03386288
frodokem1344aes 0.02241046 0.00952968 0.04037881 0.04481993
frodokem1344shake 0.02368923 0.01123753 0.04208666 0.04737746

Table 5.2.1. Estimated dollar costs for each KEM per user of an encrypted-file system
in the cloud-storage scenario. E is the number of files encrypted per user. D is the
number of files decrypted per user. S is the number of files stored per user. Rows are
sorted by the last column. Columns are sorted by (E, D, S).

A different way to build confidence in the affordability of post-quantum
encrypted-file systems is to compare the costs of post-quantum cryptography
to other file-system costs. For example, measurements of the distribution of file
sizes (see, e.g., [27] and [16]) indicate that the average file size has grown past
a megabyte, making it implausible that there can be an issue with adding a
relatively small KEM ciphertext to each file.

A counterargument is as follows. Both [27] and [16] show a large spread of
file sizes, with the average file size differing across use cases. For example, [16]
observes work by “IT staff (e.g., programmer, systems administrator)” storing
much smaller files than other use cases, and explains this via a previous study of
the prevalence of “plain text files”, “documents”, and “media” across different
use cases.

It would be interesting to collect statistics on the sizes of files stored on
encrypted-file systems: for example, how do incoming messages automatically
encrypted by an iPhone compare in size to other files? It would also be interesting
to collect statistics on how often files of different sizes are decrypted.

It is conceivable that there are use cases that store a huge number of 100-byte
files in an encrypted-file system and that would object to adding 194 bytes per
file for a mceliece6960119f ciphertext. Quantitatively, a dollar pays for 5-year
storage of about a quarter billion of these ciphertexts; what happens if a user is
storing many billions of files?

Predicting performance for post-quantum encrypted-file systems 11

However, it is reasonably clear that such use cases are not common, since they
would already incur larger overheads for unencrypted-file systems. For example,
Windows NTFS allocates storage in units of “clusters”, and NTFS “clusters”
cannot be smaller than 512 bytes (see [29]), so every 100-byte file is wasting 412
bytes of disk space.

To summarize, the evidence indicates that upgrading encrypted-file systems
to mceliece6960119f will be easily affordable for practically all use cases.

6.2. Other applications. The affordability of this upgrade to post-quantum
cryptography sounds very different from a common narrative that post-quantum
performance is a major issue. Consider, for example, NIST’s round-3 report [3]
commenting extensively on post-quantum performance, deferring a decision on
whether to standardize Classic McEliece, and rejecting FrodoKEM outright:

Classic McEliece was a finalist, but is not being standardized by NIST
at this time. Although it is widely regarded as secure, NIST does not
yet anticipate it being widely used because of its large public key
size . . . Frodo is clearly not an immediate drop-in general-purpose
scheme.

One might try to explain the different conclusions regarding affordability by
hypothesizing that

• encrypted-file systems are an unusual application because of their reuse of
public keys, while

• normal applications generate a new public key for every ciphertext, involving
thousands of times more data for Classic McEliece than just the ciphertexts.

But it is very easy to find literature on protocols relying on IND-CCA2 security to
be able to reuse keys. Furthermore, long-term identity keys are used pervasively
in protocol design, and can be long-term signature keys but—in any protocol
where the signer is online—can also be long-term encryption keys, as in, e.g., [7,
Section 3.2], [8], [9], [10, Section 8], and [25]. The available evidence indicates
that post-quantum encryption is more efficient than post-quantum signatures.
A full analysis of the efficiency of post-quantum cryptography certainly has to
include long-term post-quantum encryption keys, contrary to the idea that each
encryption key is used just once.

Even in situations where there is a new public key for every ciphertext, this
merely doubles the amount of FrodoKEM data. Why is FrodoKEM “clearly not
an immediate drop-in general-purpose scheme”? One might try to answer this
question by formulating the following further hypotheses:

• Encrypted-file systems, at least for the limited sizes of (E, D, S) in
Tables 5.1.1 and 5.2.1, are far below the overall volume of “general-purpose”
usage of public-key cryptography, in particular for retrieving web pages.

• Quantitatively, even though those tables estimate 5 years of active use of
an encrypted-file system as costing just pennies per user with FrodoKEM,
users incur many more public-key operations for retrieving web pages, and

12 Daniel J. Bernstein

with FrodoKEM or Classic McEliece those operations would add up to a
significant cost.

But there does not appear to be any documentation quantifying the dollar cost
here.

An earlier NIST report [2] stated that FrodoKEM in TLS key exchange
would cost “around 20,000 bytes” plus “2 million cycles” for the server, and
concluded that FrodoKEM does not have “acceptable performance in widely
used applications overall”. In response to the question of why this cost was not
“acceptable”, NIST wrote the following [22]:

While it is not possible to speak for what every user of our standards
would or wouldn’t find “acceptable”, there is a pretty large difference
between the performance of Frodo on the one hand and Kyber, NTRU,
and Saber on the other hand. We are therefore more confident that
Kyber, NTRU, or Saber will be considered “acceptable” for most users
than that Frodo will.

Quantifying costs in context produces different conclusions. The average web
page has grown past 2 megabytes (see [18]), and a single TLS session can retrieve
any number of web pages from a server. A web page can collect data from
multiple servers, but the number of TCP connections per web page has dropped
to 10 (see again [18]), so the number of TLS sessions involved is at most 10.
In other words, the 20000 bytes for FrodoKEM cannot add more than 10% to
overall web-page traffic, and if a user is retrieving at least 10 web pages per TLS
session then 20000 bytes cannot add more than 1%.

NIST’s calculation of 20000 bytes implicitly assumes that a key is transmitted
for every ciphertext—which is another indication of the application not caring
about key-distribution costs, given that those costs can obviously be reduced:

• A server that announces a new key every day can receive any number of
ciphertexts to that key from any number of clients. Each client receives at
most one key from the server per day—for example, spending at most 2−20

dollars per server per day for Classic McEliece keys.
• Keys also do not need to be sent from end to end: they can use lower-cost

broadcast networks, for example using existing ISP-level caches to share
key-retrieval costs across users. This can turn Classic McEliece into the
lowest-cost KEM (see [4, Section 4] and [11, pages 16–18]), much as in the
case of encrypted-file systems.

• Users are often on more expensive cellular networks, but they can download
keys for frequently used servers in advance. An iPhone already automatically
waits until it is on a wireless network before downloading software upgrades;
it can do the same to reduce the cost of downloading new public keys. Servers
can also distribute multiple keys in advance to simplify download scheduling,
for example distributing the keys to be used for the next 7 days; this is
compatible with erasing each key within a day of user data being sent to
that key.

Predicting performance for post-quantum encrypted-file systems 13

The absence of these features in TLS today is easily explained by (1) the history
of TLS using small-key cryptosystems and (2) the lack of evidence that the
key-distribution costs matter to the end user.

Recall the estimate from Section 3.2 of 2−40 dollars per byte for Internet
communication. This corresponds to 50 million 20000-byte FrodoKEM sessions
per dollar: i.e., spending a dollar on FrodoKEM traffic would pay for 50000 new
FrodoKEM sessions per work day for 5 years. These are sizes for frodokem640,
but frodokem1344 is only about twice as large. It would be interesting to collect
data on the number of TLS sessions initiated in a day by an average user’s
browser, the number of different TLS servers contacted, etc.

In general, given trends towards larger volumes of data, one would expect that
the costs of post-quantum public-key encryption will ultimately be irrelevant
compared to the costs of symmetric cryptography and non-cryptographic
costs. This is not necessarily the situation today, but it is concerning to see
unsubstantiated claims of unaffordability being used to discourage deployment
of lower-risk cryptosystems.

References

[1] — (no editor), Information: equity, diversity, inclusion, justice, and
relevance—proceedings of the 84th ASIS&T annual meeting, ASIST 2021,
Salt Lake City, UT, USA, October 30–November 2, 2021, Proceedings of the
Association for Information Science and Technology, 58, Wiley, 2021. See [16].

[2] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh
Dang, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, Daniel Smith-Tone, Status report on the second round
of the NIST Post-Quantum Cryptography Standardization Process (2020).
NISTIR 8309. URL: https://csrc.nist.gov/publications/detail/nistir/
8309/final. Citations in this document: §6.2.

[3] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John
Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta,
Ray Perlner, Angela Robinson, Daniel Smith-Tone, Status report on the
third round of the NIST Post-Quantum Cryptography Standardization Process
(2022). NISTIR 8413. URL: https://web.archive.org/web/20230824124130/
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf.
Citations in this document: §6.2.

[4] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan
Gilcher, Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki,
Ruben Niederhagen, Kenneth G. Paterson, Edoardo Persichetti, Christiane
Peters, Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai,
Martin Tomlinson, Wen Wang, Classic McEliece: conservative code-based
cryptography: guide for implementors (2022). URL: https://classic.
mceliece.org/mceliece-impl-20221023.pdf. Citations in this document: §6.2.

[5] Apple, Apple Platform Security (2022). URL: https://web.archive.org/
web/20231128180844/https://help.apple.com/pdf/security/en_US/apple-
platform-security-guide.pdf. Citations in this document: §1.

https://csrc.nist.gov/publications/detail/nistir/8309/final
https://csrc.nist.gov/publications/detail/nistir/8309/final
https://web.archive.org/web/20230824124130/https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf
https://web.archive.org/web/20230824124130/https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf
https://classic.mceliece.org/mceliece-impl-20221023.pdf
https://classic.mceliece.org/mceliece-impl-20221023.pdf
https://web.archive.org/web/20231128180844/https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://web.archive.org/web/20231128180844/https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf
https://web.archive.org/web/20231128180844/https://help.apple.com/pdf/security/en_US/apple-platform-security-guide.pdf

14 Daniel J. Bernstein

[6] Joshua Aslan, Kieren Mayers, Jonathan G. Koomey, Chris France, Electricity
intensity of Internet data transmission: untangling the estimates, Journal of
Industrial Ecology 22 (2018), 785–798. URL: https://onlinelibrary.wiley.
com/doi/10.1111/jiec.12630. Citations in this document: §3.2.

[7] Mihir Bellare, Ran Canetti, Hugo Krawczyk, A modular approach to the design
and analysis of authentication and key exchange protocols (extended abstract), in
STOC 1998 [28] (1998), 419–428. URL: https://eprint.iacr.org/1998/009.
Citations in this document: §6.2.

[8] Daniel J. Bernstein, DNSCurve: Usable security for DNS (2009). URL: https://
dnscurve.org. Citations in this document: §6.2.

[9] Daniel J. Bernstein, The post-quantum Internet (2016). URL: https://cr.yp.
to/talks.html#2016.02.24. Citations in this document: §6.2.

[10] Daniel J. Bernstein, D2.5: Internet: Integration (2018). URL: https://www.
pqcrypto.eu/deliverables/d2.5.pdf. Citations in this document: §6.2.

[11] Daniel J. Bernstein, Migrating to the McEliece cryptosystem (2023). URL:
https://cr.yp.to/talks.html#2023.10.25. Citations in this document: §6.2.

[12] Daniel J. Bernstein, Tanja Lange (editors), eBACS: ECRYPT Benchmarking
of Cryptographic Systems (2023). Accessed 1 December 2023. URL: https://
bench.cr.yp.to. Citations in this document: §1.1, §4.1, §5.1.

[13] Alexandra Boldyreva, Vladimir Kolesnikov (editors), Public-key
cryptography—PKC 2023—26th IACR international conference on practice
and theory of public-key cryptography, Atlanta, GA, USA, May 7–10, 2023,
proceedings, part I, 13940, Springer, 2023. ISBN 978-3-031-31367-7. See [17].

[14] Roberta Bragg, The Encrypting File System (2009). URL: https://web.
archive.org/web/20221007214414/https://learn.microsoft.com/en-us/
previous-versions/tn-archive/cc700811(v=technet.10)?redirectedfrom=
MSDN#XSLTsection125121120120. Citations in this document: §1.

[15] Mike Cardwell, Automatically encrypting all incoming email (2010). URL:
https://www.grepular.com/Automatically_Encrypting_all_Incoming_
Email. Citations in this document: §1.

[16] Jesse David Dinneen, Ba Xuan Nguyen, How big are peoples’ computer files?
File size distributions among user-managed collections, in ASIST 2021 [1]
(2021), 425–429. URL: https://arxiv.org/abs/2107.03272. Citations in this
document: §6.1, §6.1, §6.1.

[17] Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, Gregor
Seiler, Dominique Unruh, A thorough treatment of highly-efficient NTRU
instantiations, in PKC 2023 [13] (2023), 65–94. URL: https://eprint.iacr.
org/2021/1352. Citations in this document: §1.1, §1.1, §1.1, §1.1, §1.1.

[18] HTTP Archive, Report: state of the web (2023). accessed 1 December 2023.
URL: https://httparchive.org/reports/state-of-the-web. Citations in this
document: §6.2, §6.2.

[19] Julian Andres Klode, Encrypted email storage, or DIY ProtonMail (2019).
URL: https://blog.jak-linux.org/2019/06/13/encrypted-email-storage/.
Citations in this document: §1.

[20] Jay Ligatti, Xinming Ou, Jonathan Katz, Giovanni Vigna (editors), CCS ’20:
2020 ACM SIGSAC conference on computer and communications security,
virtual event, USA, November 9–13, 2020, ACM, 2020. ISBN 978-1-4503-7089-9.
See [25].

[21] Microsoft, BitLocker FAQ (2023). URL: https://web.archive.org/web/
20230813064046/https://learn.microsoft.com/en-us/windows/security/

https://onlinelibrary.wiley.com/doi/10.1111/jiec.12630
https://onlinelibrary.wiley.com/doi/10.1111/jiec.12630
https://eprint.iacr.org/1998/009
https://dnscurve.org
https://dnscurve.org
https://cr.yp.to/talks.html#2016.02.24
https://cr.yp.to/talks.html#2016.02.24
https://www.pqcrypto.eu/deliverables/d2.5.pdf
https://www.pqcrypto.eu/deliverables/d2.5.pdf
https://cr.yp.to/talks.html#2023.10.25
https://bench.cr.yp.to
https://bench.cr.yp.to
https://web.archive.org/web/20221007214414/https://learn.microsoft.com/en-us/previous-versions/tn-archive/cc700811(v=technet.10)?redirectedfrom=MSDN#XSLTsection125121120120
https://web.archive.org/web/20221007214414/https://learn.microsoft.com/en-us/previous-versions/tn-archive/cc700811(v=technet.10)?redirectedfrom=MSDN#XSLTsection125121120120
https://web.archive.org/web/20221007214414/https://learn.microsoft.com/en-us/previous-versions/tn-archive/cc700811(v=technet.10)?redirectedfrom=MSDN#XSLTsection125121120120
https://web.archive.org/web/20221007214414/https://learn.microsoft.com/en-us/previous-versions/tn-archive/cc700811(v=technet.10)?redirectedfrom=MSDN#XSLTsection125121120120
https://www.grepular.com/Automatically_Encrypting_all_Incoming_Email
https://www.grepular.com/Automatically_Encrypting_all_Incoming_Email
https://arxiv.org/abs/2107.03272
https://eprint.iacr.org/2021/1352
https://eprint.iacr.org/2021/1352
https://httparchive.org/reports/state-of-the-web
https://blog.jak-linux.org/2019/06/13/encrypted-email-storage/
https://web.archive.org/web/20230813064046/https://learn.microsoft.com/en-us/windows/security/operating-system-security/data-protection/bitlocker/faq
https://web.archive.org/web/20230813064046/https://learn.microsoft.com/en-us/windows/security/operating-system-security/data-protection/bitlocker/faq

Predicting performance for post-quantum encrypted-file systems 15

operating-system-security/data-protection/bitlocker/faq. Citations in
this document: §1.

[22] Ray Perlner, Re: ROUND 2 OFFICIAL COMMENT: Frodo (2020).
URL: https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/
7aenKgDWV2k/m/1SJkfLT9DQAJ. Citations in this document: §6.2.

[23] J. Nathanael Philipp, Auto encrypt all incoming email with postfix
(2019). URL: https://jnphilipp.org/posts/auto-encrypt-all-incoming-
email-with-postfix/. Citations in this document: §1.

[24] Leif Ryge, Yet another solution to XKCD #949 (2023). URL: https://github.
com/leif/dropsite. Citations in this document: §1.

[25] Peter Schwabe, Douglas Stebila, Thom Wiggers, Post-quantum TLS without
handshake signatures, in CCS 2020 [20] (2020), 1461–1480. URL: https://
eprint.iacr.org/2020/534. Citations in this document: §6.2.

[26] Statista, Number of sent and received e-mails per day worldwide from 2017
to 2026 (2023). URL: https://web.archive.org/web/20231127073251/
https://www.statista.com/statistics/456500/daily-number-of-e-mails-
worldwide/. Citations in this document: §1.2.

[27] Andrew S. Tanenbaum, Jorrit N. Herder, Herbert Bos, File size distribution on
UNIX systems: then and now, ACM SIGOPS Operating Systems Review 40
(2006), 100–104. URL: https://www.minix3.org/docs/jorrit-herder/osr-
jan06.pdf. Citations in this document: §6.1, §6.1.

[28] Jeffrey Scott Vitter (editor), Proceedings of the thirtieth annual ACM symposium
on the theory of computing, Dallas, Texas, USA, May 23–26, 1998, ACM, 1998.
ISBN 0-89791-962-9. See [7].

[29] Garrett Watumull, Cluster size recommendations for ReFS and NTFS (2019).
URL: https://techcommunity.microsoft.com/t5/storage-at-microsoft/
cluster-size-recommendations-for-refs-and-ntfs/ba-p/425960. Citations
in this document: §6.1.

[30] Western Digital, WD Red Pro (2023). URL: https://web.archive.org/web/
20231026192501/https://documents.westerndigital.com/content/dam/
doc-library/en_us/assets/public/western-digital/product/internal-
drives/wd-red-pro-hdd/product-brief-western-digital-wd-red-pro-hdd.
pdf. Citations in this document: §2.2, §3.2.

https://web.archive.org/web/20230813064046/https://learn.microsoft.com/en-us/windows/security/operating-system-security/data-protection/bitlocker/faq
https://web.archive.org/web/20230813064046/https://learn.microsoft.com/en-us/windows/security/operating-system-security/data-protection/bitlocker/faq
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/7aenKgDWV2k/m/1SJkfLT9DQAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/7aenKgDWV2k/m/1SJkfLT9DQAJ
https://jnphilipp.org/posts/auto-encrypt-all-incoming-email-with-postfix/
https://jnphilipp.org/posts/auto-encrypt-all-incoming-email-with-postfix/
https://github.com/leif/dropsite
https://github.com/leif/dropsite
https://eprint.iacr.org/2020/534
https://eprint.iacr.org/2020/534
https://web.archive.org/web/20231127073251/https://www.statista.com/statistics/456500/daily-number-of-e-mails-worldwide/
https://web.archive.org/web/20231127073251/https://www.statista.com/statistics/456500/daily-number-of-e-mails-worldwide/
https://web.archive.org/web/20231127073251/https://www.statista.com/statistics/456500/daily-number-of-e-mails-worldwide/
https://www.minix3.org/docs/jorrit-herder/osr-jan06.pdf
https://www.minix3.org/docs/jorrit-herder/osr-jan06.pdf
https://techcommunity.microsoft.com/t5/storage-at-microsoft/cluster-size-recommendations-for-refs-and-ntfs/ba-p/425960
https://techcommunity.microsoft.com/t5/storage-at-microsoft/cluster-size-recommendations-for-refs-and-ntfs/ba-p/425960
https://web.archive.org/web/20231026192501/https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/internal-drives/wd-red-pro-hdd/product-brief-western-digital-wd-red-pro-hdd.pdf
https://web.archive.org/web/20231026192501/https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/internal-drives/wd-red-pro-hdd/product-brief-western-digital-wd-red-pro-hdd.pdf
https://web.archive.org/web/20231026192501/https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/internal-drives/wd-red-pro-hdd/product-brief-western-digital-wd-red-pro-hdd.pdf
https://web.archive.org/web/20231026192501/https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/internal-drives/wd-red-pro-hdd/product-brief-western-digital-wd-red-pro-hdd.pdf
https://web.archive.org/web/20231026192501/https://documents.westerndigital.com/content/dam/doc-library/en_us/assets/public/western-digital/product/internal-drives/wd-red-pro-hdd/product-brief-western-digital-wd-red-pro-hdd.pdf

	Predicting performance for post-quantum encrypted-file systems
	1 Introduction
	1.1 Contributions of this paper.
	1.2 Variables.

	2 Space
	2.1 Bytes stored.
	Table 2.1.1. Table of bytes stored.
	2.2 The purchase cost of storage per byte.

	3 Communication
	3.1 Bytes written and read.
	Table 3.1.1. Table of bytes read+written.
	3.2 The purchase cost of communication per byte.

	4 CPU time
	4.1 Cycles used.
	Table 4.1.1. Table of cycles used.
	4.2 The purchase cost of CPU time per cycle.

	5 Total costs
	5.1 The local-storage scenario.
	Table 5.1.1. Total costs, local-storage scenario.
	5.2 The cloud-storage scenario.
	Table 5.2.1. Total costs, cloud-storage scenario.

	6 Costs in context
	6.1 Other file-system costs.
	6.2 Other applications.

	References

#!/usr/bin/env python3

import sys

sk = {}
pk = {}
ct = {}
key = {}
enc = {}
dec = {}

for line in sys.stdin:
 line = line.strip()
 line = line.split(':')
 if line[0] == 'sk': sk[line[2]] = int(line[1])
 if line[0] == 'pk': pk[line[2]] = int(line[1])
 if line[0] == 'ct': ct[line[2]] = int(line[1])
 if line[0] == 'key': key[line[4]] = int(line[2])
 if line[0] == 'enc': enc[line[4]] = int(line[2])
 if line[0] == 'dec': dec[line[4]] = int(line[2])

EDSlist = (
 (100000,200000,50000),
 (200000,400000,100000),
 (200000,200000,100000),
 (200000,200000,2000),
)

EDlist = sorted(set((E,D) for E,D,S in EDSlist))

print(r'\begin{tabular}{l%s}' % ('|r'*len(EDlist)))

print(r'&%s\\' % '&'.join(f'$E={E}$' for E,D in EDlist))
print(r'&%s\\' % '&'.join(f'$D={D}$' for E,D in EDlist))
print(r'\noalign{\hrule}')

data = []

for system in sk:
 datum = [system]
 for E,D in EDlist:
 datum += [pk[system]+sk[system]+(E+D)*ct[system]]
 datum = list(reversed(datum))
 data += [datum]

data.sort()

for datum in data:
 datum = list(reversed(datum))
 system = datum[0]
 print(fr'\tt {system}&{"&".join(map(str,datum[1:]))}\\')

print(r'\end{tabular}')

#!/usr/bin/env python3

import sys

sk = {}
pk = {}
ct = {}
key = {}
enc = {}
dec = {}

for line in sys.stdin:
 line = line.strip()
 line = line.split(':')
 if line[0] == 'sk': sk[line[2]] = int(line[1])
 if line[0] == 'pk': pk[line[2]] = int(line[1])
 if line[0] == 'ct': ct[line[2]] = int(line[1])
 if line[0] == 'key': key[line[4]] = int(line[2])
 if line[0] == 'enc': enc[line[4]] = int(line[2])
 if line[0] == 'dec': dec[line[4]] = int(line[2])

EDSlist = (
 (100000,200000,50000),
 (200000,400000,100000),
 (200000,200000,100000),
 (200000,200000,2000),
)

Slist = sorted(set(S for E,D,S in EDSlist))

print(r'\begin{tabular}{l%s}' % ('|r'*len(Slist)))

print(r'&%s\\' % '&'.join(f'$S={S}$' for S in Slist))
print(r'\noalign{\hrule}')

data = []

for system in sk:
 datum = [system]
 for S in Slist:
 datum += [sk[system]+pk[system]+S*ct[system]]
 datum = list(reversed(datum))
 data += [datum]

data.sort()

for datum in data:
 datum = list(reversed(datum))
 system = datum[0]
 print(fr'\tt {system}&{"&".join(map(str,datum[1:]))}\\')

print(r'\end{tabular}')

#!/usr/bin/env python3

import sys

sk = {}
pk = {}
ct = {}
key = {}
enc = {}
dec = {}

for line in sys.stdin:
 line = line.strip()
 line = line.split(':')
 if line[0] == 'sk': sk[line[2]] = int(line[1])
 if line[0] == 'pk': pk[line[2]] = int(line[1])
 if line[0] == 'ct': ct[line[2]] = int(line[1])
 if line[0] == 'key': key[line[4]] = int(line[2])
 if line[0] == 'enc': enc[line[4]] = int(line[2])
 if line[0] == 'dec': dec[line[4]] = int(line[2])

EDSlist = (
 (100000,200000,50000),
 (200000,400000,100000),
 (200000,200000,100000),
 (200000,200000,2000),
)

EDlist = sorted(set((E,D) for E,D,S in EDSlist))

print(r'\begin{tabular}{l%s}' % ('|r'*len(EDlist)))

print(r'&%s\\' % '&'.join(f'$E={E}$' for E,D in EDlist))
print(r'&%s\\' % '&'.join(f'$D={D}$' for E,D in EDlist))
print(r'\noalign{\hrule}')

data = []

for system in sk:
 datum = [system]
 for E,D in EDlist:
 datum += [key[system]+E*enc[system]+D*dec[system]]
 datum = list(reversed(datum))
 data += [datum]

data.sort()

for datum in data:
 datum = list(reversed(datum))
 system = datum[0]
 print(fr'\tt {system}&{"&".join(map(str,datum[1:]))}\\')

print(r'\end{tabular}')

#!/usr/bin/env python3

import sys

spacedollars = 0.5**int(sys.argv[1])
communicationdollars = 0.5**int(sys.argv[2])
timedollars = 0.5**int(sys.argv[3])

sk = {}
pk = {}
ct = {}
key = {}
enc = {}
dec = {}

for line in sys.stdin:
 line = line.strip()
 line = line.split(':')
 if line[0] == 'sk': sk[line[2]] = int(line[1])
 if line[0] == 'pk': pk[line[2]] = int(line[1])
 if line[0] == 'ct': ct[line[2]] = int(line[1])
 if line[0] == 'key': key[line[4]] = int(line[2])
 if line[0] == 'enc': enc[line[4]] = int(line[2])
 if line[0] == 'dec': dec[line[4]] = int(line[2])

EDSlist = (
 (100000,200000,50000),
 (200000,400000,100000),
 (200000,200000,100000),
 (200000,200000,2000),
)

EDSlist = sorted(EDSlist)

print(r'\begin{tabular}{l%s}' % ('|r'*len(EDSlist)))

print(r'&%s\\' % '&'.join(f'$E={E}$' for E,D,S in EDSlist))
print(r'&%s\\' % '&'.join(f'$D={D}$' for E,D,S in EDSlist))
print(r'&%s\\' % '&'.join(f'$S={S}$' for E,D,S in EDSlist))
print(r'\noalign{\hrule}')

data = []

for system in sk:
 datum = [system]
 for E,D,S in EDSlist:
 space = sk[system]+pk[system]+S*ct[system]
 communication = pk[system]+sk[system]+(E+D)*ct[system]
 time = key[system]+E*enc[system]+D*dec[system]
 dollars = space*spacedollars+communication*communicationdollars+time*timedollars
 datum += [dollars]
 datum = list(reversed(datum))
 data += [datum]

data.sort()

for datum in data:
 datum = list(reversed(datum))
 system = datum[0]
 costs = ['%.8f'%c for c in datum[1:]]
 print(fr'\tt {system}&{"&".join(costs)}\\')

print(r'\end{tabular}')

#!/bin/sh
./total-table.py 36 40 51 < micro.txt > cloud-table.tex

#!/bin/sh
./communication-table.py < micro.txt > communication-table.tex

#!/bin/sh
./total-table.py 36 51 51 < micro.txt > local-table.tex

#!/bin/sh
./space-table.py < micro.txt > space-table.tex

#!/bin/sh
./time-table.py < micro.txt > time-table.tex

sk:1632:kyber512
sk:2400:kyber768
sk:3168:kyber1024
sk:5223:bikel1
sk:10105:bikel3
sk:19888:frodokem640aes
sk:19888:frodokem640shake
sk:31296:frodokem976aes
sk:31296:frodokem976shake
sk:43088:frodokem1344aes
sk:43088:frodokem1344shake
sk:6492:mceliece348864f
sk:13608:mceliece460896f
sk:13932:mceliece6688128f
sk:13948:mceliece6960119f
sk:14120:mceliece8192128f
pk:800:kyber512
pk:1184:kyber768
pk:1568:kyber1024
pk:1541:bikel1
pk:3083:bikel3
pk:9616:frodokem640aes
pk:9616:frodokem640shake
pk:15632:frodokem976aes
pk:15632:frodokem976shake
pk:21520:frodokem1344aes
pk:21520:frodokem1344shake
pk:261120:mceliece348864f
pk:524160:mceliece460896f
pk:1044992:mceliece6688128f
pk:1047319:mceliece6960119f
pk:1357824:mceliece8192128f
ct:768:kyber512
ct:1088:kyber768
ct:1568:kyber1024
ct:1573:bikel1
ct:3115:bikel3
ct:9720:frodokem640aes
ct:9720:frodokem640shake
ct:15744:frodokem976aes
ct:15744:frodokem976shake
ct:21632:frodokem1344aes
ct:21632:frodokem1344shake
ct:96:mceliece348864f
ct:156:mceliece460896f
ct:194:mceliece6960119f
ct:208:mceliece6688128f
ct:208:mceliece8192128f
key:22856:23055:23197:kyber512
key:39664:39812:39979:kyber768
key:54352:54565:55144:kyber1024
enc:35635:35784:35887:kyber512
enc:53260:53374:53430:kyber768
enc:73395:73476:73571:kyber1024
dec:27860:27909:27963:kyber512
dec:42277:42328:42392:kyber768
dec:59632:60838:61169:kyber1024
key:585916:586627:587619:bikel1
key:1620479:1624846:1636511:bikel3
enc:106566:107088:107954:bikel1
enc:253078:253786:254476:bikel3
dec:1565915:1568023:1570410:bikel1
dec:4875632:4879440:4904569:bikel3
key:1430646:1431360:1432614:frodokem640aes
key:2927460:2938075:2948543:frodokem976aes
key:3871424:3872307:3874364:frodokem640shake
key:4978873:4990308:5002070:frodokem1344aes
key:8315033:8321805:8332894:frodokem976shake
key:14615846:14620865:14623986:frodokem1344shake
enc:1850844:1851833:1852861:frodokem640aes
enc:3657922:3662205:3665735:frodokem976aes
enc:4190475:4192473:4194634:frodokem640shake
enc:5874307:5890146:5897893:frodokem1344aes
enc:8989131:8993293:8999832:frodokem976shake
enc:15524708:15552082:15572745:frodokem1344shake
dec:1799989:1801371:1802299:frodokem640aes
dec:3409692:3412165:3426040:frodokem976aes
dec:4155533:4157140:4159478:frodokem640shake
dec:5697991:5700197:5704050:frodokem1344aes
dec:8788150:8789926:8801785:frodokem976shake
dec:15229886:15266862:15280189:frodokem1344shake
key:28650704:28740075:28876620:mceliece348864f
key:91276808:92488505:92614199:mceliece460896f
key:181382806:181651009:182056514:mceliece6960119f
key:225403834:225900596:226270797:mceliece6688128f
key:232048948:232659005:233923666:mceliece8192128f
enc:29255:30752:33419:mceliece348864f
enc:62213:68486:74728:mceliece460896f
enc:112925:117537:126163:mceliece6688128f
enc:123079:126906:132140:mceliece6960119f
enc:135974:140689:142797:mceliece8192128f
dec:110986:111190:111381:mceliece348864f
dec:239582:239917:240322:mceliece460896f
dec:263025:263349:263612:mceliece6960119f
dec:288949:289300:289860:mceliece6688128f
dec:290044:290622:291372:mceliece8192128f

