
PIPPENGER’S EXPONENTIATION ALGORITHM

DANIEL J. BERNSTEIN

Abstract. Pippenger’s exponentiation algorithm computes a power, or a

product of powers, or a sequence of powers, or a sequence of products of

powers, with very few multiplications. Pippenger’s algorithm was published
twenty-five years ago, but it is still not widely understood or appreciated,

although certain parts of it have recently been reinvented, republished, and

popularized. This paper is an exposition of the state of the art in generic
exponentiation algorithms: in particular, Pippenger’s algorithm.

1. Introduction

One can compute the power x27182 with 18 multiplications; or the power x31415

with 19 multiplications; or the pair x31415, x27182 with 21 multiplications; or the
product x31415

1 x27182
2 with 22 multiplications.

This paper explains the state of the art in algorithms that use multiplications
(and nothing but multiplications!) to compute powers; more generally, to compute
products of powers, or sequences of powers, or sequences of products of powers.
Here is a summary of the major breakthroughs:

• Brauer’s algorithm, published in 1939, computes a power. It uses at most
about (1 + 1/ lg lgB) lgB multiplications if the exponent is below B.
• Straus’s algorithm, published in 1964, computes a product of p powers. It

uses at most about (1 + p/ lg lgB) lgB multiplications if each exponent is
below B.
• Yao’s algorithm, published in 1976, computes a sequence of p powers of a

single base. It uses at most about (1+p/ lg lgB) lgB multiplications if each
exponent is below B.
• Pippenger’s algorithm, published in 1976, replaces lg lgB with lg(p lgB),

improving on both Straus’s algorithm and Yao’s algorithm when p is large.
More generally, Pippenger’s algorithm computes a sequence of q products of
powers of p inputs. It uses at most about (min {p, q}+ pq/ lg(pq lgB)) lgB
multiplications if each exponent is below B.

Section 2 of this paper explains a popular language for describing exponentiation
algorithms. Section 3 explains Brauer’s algorithm, several minor improvements
pointed out by Knuth and Thurber, and Straus’s algorithm. Section 4 explains
Yao’s algorithm. Section 5 explains the relationship between Brauer-Straus-type
algorithms and Yao-type algorithms. Section 6 explains a special case of Pippenger’s
algorithm, where all the exponents are in {0, 1}. Section 7 explains the general case.

Date: 20020118.

2020 Mathematics Subject Classification. Primary 11Y16.

1



2 DANIEL J. BERNSTEIN

2. Addition chains

An addition chain of length ` is a sequence of ` + 1 integers, where the first
integer is 1 and each subsequent integer is a sum of two earlier integers. In other
words, it is a sequence c0, c1, . . . , c` such that c0 = 1 and, for each k ∈ {1, 2, . . . , `},
there exist i, j ∈ {0, 1, . . . , k − 1} such that ck = ci + cj .

For example, 1, 2, 3, 5, 7, 14, 28, 56, 63 is an addition chain of length 8, because
2 = 1 + 1, 3 = 2 + 1, 5 = 3 + 2, 7 = 5 + 2, 14 = 7 + 7, 28 = 14 + 14, 56 = 28 + 28,
and 63 = 56 + 7.

Using chains to compute powers. Short addition chains are a model of fast
algorithms for modular exponentiation. For each addition chain c0, c1, . . . , c`, there
is an algorithm that computes the c`th power of its input with ` multiplications,
by computing successively the c1st power, the c2nd power, etc.

For example, given m, and given an integer x between 0 and m − 1, one can
compute successively

x2 mod m = (x · x) mod m,
x3 mod m = ((x2 mod m) · x) mod m,
x5 mod m = ((x3 mod m) · (x2 mod m)) mod m,
x7 mod m = ((x5 mod m) · (x2 mod m)) mod m,
x14 mod m = ((x7 mod m) · (x7 mod m)) mod m,
x28 mod m = ((x14 mod m) · (x14 mod m)) mod m,
x56 mod m = ((x28 mod m) · (x28 mod m)) mod m,
x63 mod m = ((x56 mod m) · (x7 mod m)) mod m,

obtaining x63 mod m with 8 multiplications modulo m.
Minimizing exponentiation time is not exactly the same problem as minimizing

addition-chain length, for several reasons:

• Multiplication time is generally not constant. Multiplication of xe mod m
by xf mod m may take less time if e = f , for example, or if xe mod m
is small, or if xe mod m was read or written recently, or if xe mod m has
participated in any previous multiplication.

• There may be several choices of (i, j) such that ck = ci + cj . For example,
the chain 1, 2, 3, 4, 7 has 4 = 3 + 1 and 4 = 2 + 2. The choice sometimes
affects the speed of exponentiation; the chain does not specify a choice.

• The fact that there exists an addition chain of length ` containing n does
not mean that the programmer knows the addition chain. One often wants
an algorithm that can compute an nth power, or several nth powers, given
n as input. The time to find an addition chain is added to the time spent
on multiplications, and must be minimized accordingly.

• Sometimes there are faster algorithms to compute xn mod m. If m is prime
and n is noticeably larger than m, for example, then one should first replace
n with 1 + ((n− 1) mod (m− 1)). Perhaps there are faster algorithms even
when n is fairly small.

The model has nevertheless turned out to be useful. For example, Brauer proved
in [9] that there is an addition chain of length (1 + o(1)) lg n containing n. “The
proof yields an easy method for constructing the addition chains,” Brauer wrote.
Brauer’s algorithm is explained in Section 3 of this paper; it is, for a wide range of
m and n, nearly the fastest known algorithm to compute xn mod m.



PIPPENGER’S EXPONENTIATION ALGORITHM 3

Finding shortest addition chains. Consider the set of (n1, . . . , np, `) such that
there is an addition chain of length ` containing n1, . . . , np. Downey, Leong, and
Sethi in [14] proved that this set is NP-complete.

Many people incorrectly claim that Downey, Leong, and Sethi proved that the
p = 1 subset is NP-complete. As far as I know, nobody has proven this. Perhaps
there is a fast algorithm to find a minimum-length addition chain containing n.

Many people also misrepresent NP-completeness as an obstacle to finding chains
that are usually the shortest possible.

Other semigroups. One can replace Z/m by any semigroup where multiplication
is computable. If there is an addition chain of length ` containing n then there is
an algorithm that computes nth powers in the semigroup with ` multiplications.

(There is, in fact, a generic algorithm that computes nth powers in every
semigroup with ` multiplications. This means that the algorithm invokes an oracle
` times and that, for every semigroup H, the algorithm computes nth powers in H
if the oracle computes products in H.)

Example: Given an element x of a finite extension ring of Z/m, one can compute
xn with ` multiplications in the ring. Legendre in [27, pages 487–488] computed
x105 in the ring (Z/211)[x]/(x3 − 10x + 85) by computing successively x2, x3, x5,
x10, x20, x25, x40, x80, x105.

Another example: Given an integer x, one can compute nx with ` additions. For
example, one can compute 5x with three additions. (Note that other algorithms
are much faster when n and x are both large.) This is a popular way to multiply
small integers on computers that have fast circuitry for addition but relatively slow
circuitry for multiplication. “If we have no MULTIPLY instruction in our machine,
we must simulate scalar multiplication by addition,” Pippenger wrote in [34, page
258]. “This problem would be more realistic if we allowed negative coefficients,
subtractions, and short shifts. These changes would not affect our analysis or
results in any significant way.”

Another example: Given a point x on an elliptic curve over a finite ring, one can
compute the nth multiple of x on the curve with ` additions on the curve. This is
another situation where subtractions are easy.

Last example: Given an integer x, one can compute xn with ` multiplications.
See [30], [19], [31], and [41] for optimization of addition chains in two models of this
situation; note that multiplication time is not even close to constant.

3. Brauer’s algorithm, 1939

Brauer in [9] published an algorithm that computes an nth power with lg n +
(1 + o(1))(lg n)/ lg lg n multiplications.

The shortest addition chain containing n has length at least lg n. Erdős proved
in [17] that, for almost all n, the shortest addition chain containing n has length
lg n+(1+o(1))(lg n)/ lg lg n. Therefore Brauer’s chain is always within a factor 1+
(1+o(1))/ lg lg n of the shortest, and almost always within a factor 1+o(1)/ lg lg n.

Brauer’s chain is actually a family of chains, parametrized by a positive integer
k, and defined recursively as follows:

Bk(n) =

{
1, 2, 3, . . . , 2k − 1 if n < 2k,

Bk(q), 2q, 4q, 8q, . . . , 2kq, n if n ≥ 2k and q = bn/2kc.



4 DANIEL J. BERNSTEIN

1 = 12
2 = 102
3 = 112
4 = 1002
5 = 1012
6 = 1102
7 = 1112

14 = 11102 = 7 · 2
28 = 111002 = 7 · 22
56 = 1110002 = 7 · 23
61 = 1111012 = 7 · 23 + 5

122 = 11110102 = 7 · 24 + 5 · 2
244 = 111101002 = 7 · 25 + 5 · 22
488 = 1111010002 = 7 · 26 + 5 · 23
490 = 1111010102 = 7 · 26 + 5 · 23 + 2
980 = 11110101002 = 7 · 27 + 5 · 24 + 2 · 2

1960 = 111101010002 = 7 · 28 + 5 · 25 + 2 · 22
3920 = 1111010100002 = 7 · 29 + 5 · 26 + 2 · 23
3926 = 1111010101102 = 7 · 29 + 5 · 26 + 2 · 23 + 6
7852 = 11110101011002 = 7 · 210 + 5 · 27 + 2 · 24 + 6 · 2

15704 = 111101010110002 = 7 · 211 + 5 · 28 + 2 · 25 + 6 · 22
31408 = 1111010101100002 = 7 · 212 + 5 · 29 + 2 · 26 + 6 · 23
31415 = 1111010101101112 = 7 · 212 + 5 · 29 + 2 · 26 + 6 · 23 + 7

Figure 1. Computing 31415 with 22 additions: Brauer’s chain B3(31415).

In other words: Write n in radix 2k as 2jkcj + · · ·+ 22kc2 + 2kc1 + c0, with cj 6= 0.
The chain is 1, 2, 3, . . . , 2k − 1, then 2cj , 4cj , 8cj , . . . , 2

kcj , then 2kcj + cj−1, then
2k+1cj + 2cj−1, . . . , 2

2kcj + 2kcj−1, then 22kcj + 2kcj−1 + cj−2, and so on.
Brauer’s chain has length j(k + 1) + 2k − 2 if jk ≤ lg n < (j + 1)k. The length

is minimized for k around lg lg n− 2 lg lg lg n.
Figure 1 shows Brauer’s chain for k = 3 and n = 31415; Figure 2 shows Brauer’s

chain for k = 3 and n = 27182. Each chain has length 22. One can easily reduce
this length to 20 in the first case and 19 in the second, as explained below. The
minimum possible lengths of addition chains are 19 and 18 respectively.

If 2511 ≤ n < 2512 then Brauer’s chain has length 649 for k = 4, 642 for k = 5,
and 657 for k = 6. For k = 5 one writes n = 2510c102 + · · ·+ 25c1 + c0, where each
of the 103 coefficients c0, c1, . . . , c102 is between 0 and 31 inclusive; Brauer’s chain
involves 30 preliminary steps, 510 doublings starting from c102, and 102 additions
of c101, c100, . . . , c0.

Brauer’s algorithm is often called “the left-to-right 2k-ary method,” or simply
“the 2k-ary method.” It is extremely popular. It is easy to implement; constructing
the chain for n is a simple matter of inspecting the bits of n. It does not require
much storage.

Minor improvement: start high. There is no reason for an addition chain to
include a number twice. Knuth commented in [21] that one can omit 2q if q < 2k−1,
and 4q if q < 2k−2, and so on. This saves (−1− blg nc) mod k steps, reducing the



PIPPENGER’S EXPONENTIATION ALGORITHM 5

1 = 12
2 = 102
3 = 112
4 = 1002
5 = 1012
6 = 1102
7 = 1112

12 = 11002 = 6 · 2
24 = 110002 = 6 · 22
48 = 1100002 = 6 · 23
53 = 1101012 = 6 · 23 + 5

106 = 11010102 = 6 · 24 + 5 · 2
212 = 110101002 = 6 · 25 + 5 · 22
424 = 1101010002 = 6 · 26 + 5 · 23
424 = 1101010002 = 6 · 26 + 5 · 23 + 0
848 = 11010100002 = 6 · 27 + 5 · 24 + 0 · 2

1696 = 110101000002 = 6 · 28 + 5 · 25 + 0 · 22
3392 = 1101010000002 = 6 · 29 + 5 · 26 + 0 · 23
3397 = 1101010001012 = 6 · 29 + 5 · 26 + 0 · 23 + 5
6794 = 11010100010102 = 6 · 210 + 5 · 27 + 0 · 24 + 5 · 2

13588 = 110101000101002 = 6 · 211 + 5 · 28 + 0 · 25 + 5 · 22
27176 = 1101010001010002 = 6 · 212 + 5 · 29 + 0 · 26 + 5 · 23
27182 = 1101010001011102 = 6 · 212 + 5 · 29 + 0 · 26 + 5 · 23 + 6

Figure 2. Computing 27182 with 22 additions: Brauer’s chain B3(27182).

chain length to blg nc + j + 2k − k − 1: for example, 639 if 2511 ≤ n < 2512 and
k = 5.

Minor improvement: eliminate zero digits. Knuth also commented that one
can compress two steps 2kq, n to a single step when n = 2kq. For example, in
Figure 2, one can omit the second 424. If 2511 ≤ n < 2512 and k = 5 then there are
typically 3 or 4 zeros among c0, c1, . . . , c101, saving 3 or 4 steps.

Minor improvement: eliminate even digits. Thurber pointed out in [39] that,
if k ≥ 3 and n ≥ 2k, one can eliminate the numbers 4, 6, 8, 10, . . . , 2k − 2 from
Brauer’s chain, reducing the chain length to 2k−1 + (k + 1)j. The idea is to change
“double, then add r” into “add r/2, then double” if r is even; and to compute 2cj
as (cj − 1) + (cj + 1) if cj is even.

For example, in Figure 1, one can omit 4 and 6, changing “double, then add 6”
into “add 3, then double” later in the chain. The same works in Figure 2: one can
construct 12 as 5 + 7 without 6. Thurber’s improvement saves 14 steps for k = 5,
30 steps for k = 6, etc.

Belaga independently made the same observation in [4, page 7] a few years later.
Belaga’s proof applies only if cj is odd.

Minor improvement: vary the exponents. Thurber also pointed out that one
can usually reduce the number of nonzero coefficients in the expansion n = 2jkcj +
· · ·+ 22kc2 + 2kc1 + c0 by allowing some flexibility in the exponents 0, k, 2k, . . . , jk.



6 DANIEL J. BERNSTEIN

1 = 12
2 = 102
3 = 112
4 = 1002
5 = 1012
6 = 1102
7 = 1112
6 = 1102 = 3 · 2

12 = 11002 = 3 · 22
24 = 110002 = 3 · 23
25 = 110012 = 3 · 23 + 1
50 = 1100102 = 3 · 24 + 2

100 = 11001002 = 3 · 25 + 22

200 = 110010002 = 3 · 26 + 23

204 = 110011002 = 3 · 26 + 23 + 4
408 = 1100110002 = 3 · 27 + 24 + 4 · 2
816 = 11001100002 = 3 · 28 + 25 + 4 · 22

1632 = 110011000002 = 3 · 29 + 26 + 4 · 23
1639 = 110011001112 = 3 · 29 + 26 + 4 · 23 + 7
3278 = 1100110011102 = 3 · 210 + 27 + 4 · 24 + 7 · 2
6556 = 11001100111002 = 3 · 211 + 28 + 4 · 25 + 7 · 22

13112 = 110011001110002 = 3 · 212 + 29 + 4 · 26 + 7 · 23
13113 = 110011001110012 = 3 · 212 + 29 + 4 · 26 + 7 · 23 + 1

Figure 3. Computing 13113 with 22 additions: Brauer’s chain B3(13113).

1 = 12
3 = 112
5 = 1012
7 = 1112

12 = 11002 = 6 · 2
24 = 110002 = 6 · 22
48 = 1100002 = 6 · 23
51 = 1100112 = 6 · 23 + 3

102 = 11001102 = 6 · 24 + 3 · 2
204 = 110011002 = 6 · 25 + 3 · 22
408 = 1100110002 = 6 · 26 + 3 · 23
816 = 11001100002 = 6 · 27 + 3 · 24

1632 = 110011000002 = 6 · 28 + 3 · 25
1639 = 110011001112 = 6 · 28 + 3 · 25 + 7
3278 = 1100110011102 = 6 · 29 + 3 · 26 + 7 · 2
6556 = 11001100111002 = 6 · 210 + 3 · 27 + 7 · 22

13112 = 110011001110002 = 6 · 211 + 3 · 28 + 7 · 23
13113 = 110011001110012 = 6 · 211 + 3 · 28 + 7 · 23 + 1

Figure 4. Computing 13113 with 17 additions.



PIPPENGER’S EXPONENTIATION ALGORITHM 7

For example, 3 ·212+29+4 ·26+7 ·23+1 can be written as 6 ·211+3 ·28+7 ·23+1.
Compare Figure 3 to Figure 4. The nonzero coefficients here are often visualized
as “windows” through which one can see all the nonzero bits of n:

3 · 212 + 29 + 4 · 26 + 7 · 23 + 1 = 1 1 0 0 1 1 0 0 1 1 1 0 0 1

6 · 211 + 3 · 28 + 7 · 23 + 1 = 1 1 0 0 1 1 0 0 1 1 1 0 0 1

The idea of varying the exponents is often called “sliding windows.”
One popular chain, combining all of the above improvements, is the chain defined

recursively for k ≥ 2 and n ≥ 2k as follows:

Tk(n) =


1, 2, 3, 5, 7, . . . , 2k − 1, n if n < 2k+1 and n is even,

Tk(n/2), n if n ≥ 2k+1 and n is even,

Tk(n− (n mod 2dlgne−k)), n if n < 22k and n is odd,

Tk(n− (n mod 2k)), n if n ≥ 22k and n is odd.

The leftmost window always has k bits; subsequent windows start with a 1, end
with a 1, and have at most k bits. If 2511 ≤ n < 2512 and k = 5 then the chain
length is typically about 608.

Minor improvement: use negative digits. Coefficients −1,−3, . . . ,−(2k − 1)
are just as good as 1, 3, . . . , 2k − 1 for semigroups where division is as easy as
multiplication, such as the group of points on an elliptic curve. One can round n
to the nearest multiple of 2k+1 instead of rounding it down to the nearest multiple
of 2k. This typically saves about 12 multiplications if 2511 ≤ n < 2512 and k = 5.

Minor improvement: limit the precomputation. There is no reason for an
addition chain to include a number that will not be used. Knuth commented that
“often” one can omit steps from the initial sequence 1, 2, 3, . . . , 2k − 1. This is not
true if 2511 ≤ n < 2512 and k = 5, for example, but it is true when k is chosen
somewhat larger.

The initial sequence 1, 2, 3, . . . , 2k − 1 can be replaced by any addition chain
that contains c0, c1, . . . , cj . Thurber pointed this out explicitly in [39, page 912].
Thurber gave the example 516723 = 63·216+39·24+3, with addition chain starting
1, 2, 3, 6, 9, 15, 24, 39, 63 and continuing in the obvious way.

One could use Yao’s algorithm or Pippenger’s algorithm to find an addition chain
containing c0, c1, . . . , cj . Or one can spend more time searching for a better chain;
see, e.g., [7, pages 405–406].

Multiple inputs. Straus in [38] generalized Brauer’s algorithm to compute a
product xn1

1 xn2
2 . . . x

np
p ; in other words, to obtain the vector (n1, n2, . . . , np) by

additions starting from the unit vectors.
Straus’s algorithm uses j(k + 1) + 2pk − p− 1 additions if jk ≤ lgB ≤ (j + 1)k,

where B is the maximum of n1, n2, . . . , np. Write (n1, n2, . . . , np) in radix 2k; each
coefficient is a vector (r1, r2, . . . , rp) with r1, r2, . . . , rp ∈ {0, 1, . . . , 2k − 1}. The
algorithm obtains all of those vectors with 2pk − p− 1 additions, and then obtains
(n1, n2, . . . , np) with (k + 1)j additions.

If p is fixed and B →∞ then Straus’s algorithm uses lgB+(p+o(1))(lgB)/ lg lgB
additions with the optimal choice of k.



8 DANIEL J. BERNSTEIN

(1, 0)
(0, 1)
(1, 1) = (1, 0) + (0, 1)
(2, 2) = (1, 1) + (1, 1)
(4, 4) = (2, 2) + (2, 2)
(5, 5) = (4, 4) + (1, 1)
(6, 5) = (5, 5) + (1, 0)
(7, 6) = (6, 5) + (1, 1)

(14, 12) = (7, 6)2
(28, 24) = (7, 6)22

(56, 48) = (7, 6)23

(61, 53) = (7, 6)23 + (5, 5)
(122, 106) = (7, 6)24 + (5, 5)2
(244, 212) = (7, 6)25 + (5, 5)22

(245, 212) = (7, 6)25 + (5, 5)22 + (1, 0)
(490, 424) = (7, 6)26 + (5, 5)23 + (1, 0)2
(980, 848) = (7, 6)27 + (5, 5)24 + (1, 0)22

(1960, 1696) = (7, 6)28 + (5, 5)25 + (1, 0)23

(3920, 3392) = (7, 6)29 + (5, 5)26 + (1, 0)24

(3926, 3397) = (7, 6)29 + (5, 5)26 + (1, 0)24 + (6, 5)
(7852, 6794) = (7, 6)210 + (5, 5)27 + (1, 0)25 + (6, 5)2

(15704, 13588) = (7, 6)211 + (5, 5)28 + (1, 0)26 + (6, 5)22

(31408, 27176) = (7, 6)212 + (5, 5)29 + (1, 0)27 + (6, 5)23

(31415, 27182) = (7, 6)212 + (5, 5)29 + (1, 0)27 + (6, 5)23 + (7, 6)

Figure 5. Computing the vector (31415, 27182) with 22 additions.

The minor improvements described above can be generalized to this situation.
Figure 5, for example, shows how to compute x31415

1 x27182
2 , given x1 and x2, with

just 22 multiplications.
One variant of Straus’s algorithm is to build each (r1, r2, . . . , rp) upon demand

as a sum of (r1, 0, . . . , 0) and (0, r2, . . . , 0) and so on. This algorithm is typically a
little slower than Straus’s algorithm; it uses j(k + p) + (2k − 1)p− 1 additions.

Setting the record straight. Thurber’s improvements in [39] were reinvented
and republished two decades later in [26] and [6].

ElGamal in [16] presented the special case (p, k) = (2, 1) of Straus’s algorithm
as “Shamir’s trick.” Many subsequent papers give credit to Shamir, rather than
Straus, for the particular algorithm, and for the general observation that computing
xn1
1 xn2

2 is faster than computing xn1
1 , xn2

2 . I see no reason that Shamir should receive
any credit here.

4. Yao’s algorithm, 1976

Yao in [40] published an algorithm that, like Brauer’s algorithm, computes an
nth power with lg n + (1 + o(1))(lg n)/ lg lg n multiplications.



PIPPENGER’S EXPONENTIATION ALGORITHM 9

1 = 12
2 = 102
4 = 1002
8 = 10002

16 = 100002
32 = 1000002
64 = 10000002 520 = 10000010002 = d(5)

128 = 100000002 1040 = 100000100002 = 2d(5)
256 = 1000000002 2080 = 1000001000002 = 4d(5)
512 = 10000000002 2600 = 1010001010002 = 5d(5)

1024 = 100000000002 4097 = 10000000000012 = d(6)
2048 = 1000000000002 8194 = 100000000000102 = 2d(6)
4096 = 10000000000002 16388 = 1000000000001002 = 4d(6)
8192 = 100000000000002 24582 = 1100000000001102 = 6d(6)

16384 = 1000000000000002 27182 = 1101010001011102

Figure 6. Computing 27182 with 23 additions: Yao’s chain.

Select a positive integer k. Write n in radix 2k as 2jkcj + · · ·+ 22kc2 + 2kc1 + c0,
with cj 6= 0, exactly as in Section 3. Define d(z) as the sum of 2ik over all i such
that ci = z.

Yao’s chain begins with 1, 2, 4, 8, . . . , 2blgnc; adds various 2ik together to obtain
d(z) for each z ∈

{
1, 2, 3, . . . , 2k − 1

}
such that d(z) is nonzero; then obtains zd(z)

for each z; and finally obtains n = d(1) + 2d(2) + 3d(3) + · · ·+ (2k − 1)d(2k − 1).
Figure 6 shows Yao’s chain for 27182. The chain has length 23.

Minor improvements. One can start Yao’s chain with 1, 2, 4, 8, . . . , 2jk, saving
blg nc − jk steps. The rest of the chain uses only 1, 2k, 22k, . . . , 2jk.

It is usually best to compute n =
∑

z zd(z) as the sum of the terms d(2k − 1),
d(2k − 1) + d(2k − 2), and so on through d(2k − 1) + d(2k − 2) + · · ·+ d(2) + d(1).
These terms can in turn be computed with at most 2k−2 successive additions. The
number of additions depends on which d(z)’s are 0.

Yao’s algorithm, with these two basic improvements, is exactly the algorithm
shown in [22, answer to exercise 4.6.3–9]. The improved chain has length at most
j(k + 1) + 2k − 2, just like Brauer’s chain. Each of the improvements to Brauer’s
chain explained in Section 3 can be matched by a further improvement to Yao’s
chain. This is not a coincidence—see Section 5.

Multiple outputs. Yao’s chain is mostly independent of n. Computing xn takes

just j + 2k − 2 multiplications, after the initial computation of x2k , x22k , . . . , x2jk .
(The formula j + 2k − 2 assumes the two basic improvements. Similar comments
apply without the improvements, but the formula becomes more complicated.)

Obviously one can use Yao’s algorithm to compute many powers xn1 , xn2 , . . . , xnp

quickly. The union of Yao’s chains for n1, n2, . . . , nk is a chain of length j(k + p) +
(2k − 2)p containing n1, n2, . . . , np, provided that lg n1, lg n2, . . . , lg np are smaller
than (j + 1)k. Minor improvements are again possible.



10 DANIEL J. BERNSTEIN

Yao concluded in [40, page 103] that there is an addition chain containing
n1, n2, . . . , np of length at most lgB + (p+ o(1))(lgB)/ lg lgB if p is fixed, B →∞,
and n1, n2, . . . , np < B.

Setting the record straight. Knuth failed to give Yao credit for the algorithm
in [22, answer to exercise 4.6.3–9]. Knuth obtained the algorithm in a different
way, by feeding Brauer’s algorithm to the machinery explained in Section 5, but this
discovery was not independent of Yao’s paper; Knuth’s knowledge of the machinery
can be traced back to Yao’s paper. Knuth did not notice that the algorithm was
mostly independent of the exponent, or that it was (aside from minor improvements)
the same as Yao’s algorithm. Knuth did, however, present Yao’s algorithm with
proper credit in [22, answer to exercise 4.6.3–32].

Many years later, unaware of both [22, answer to exercise 4.6.3–9] and [22, answer
to exercise 4.6.3–32], Brickell, Gordon, McCurley, and Wilson in [10] announced
that one could compute a power with a chain mostly independent of the exponent.
The Brickell-Gordon-McCurley-Wilson algorithm is identical to Yao’s algorithm for
multiple outputs with the two basic improvements.

I have seen dozens of papers assigning credit to [10]. In every case, credit should
instead have been assigned to Yao in [40].

Adding injury to insult, Sandia National Laboratories obtained United States
Patent 5299262 on behalf of Brickell, Gordon, and McCurley, and then sold the
patent to RSA Data Security, Inc. The patent was filed in August 1992; it will
expire in August 2012. The patent is clearly invalid, and I will be happy to testify
to that effect.

One can reasonably give credit to Brickell, Gordon, McCurley, and Wilson for
the two basic improvements on Yao’s algorithm for multiple outputs. Yao’s paper
did not have the two basic improvements. Knuth’s exercise had the two basic
improvements, but was not recognized as a variant of Yao’s algorithm.

5. Transposition

This section presents a matrix formulation of addition chains, and then explains
what happens when the matrix is transposed. Special case: The transpose of a
Brauer-Straus-type algorithm is a Yao-type algorithm, and vice versa.

It is difficult to assign credit for algorithm transposition. The long and messy
history is summarized at the end of this section. The fact that transposition is
interesting even for a single power was pointed out by Knuth and Papadimitriou in
[25], and highlighted by Knuth in [22, pages 460–462].

Matrices. Consider once again the addition chain (c0, c1, c2, c3, c4, c5, c6, c7, c8) =
(1, 2, 3, 5, 7, 14, 28, 56, 63), proven to be an addition chain by the formulas c0 = 1,
c1 = c0 + c0, c2 = c1 + c0, c3 = c2 + c1, c4 = c3 + c1, c5 = c4 + c4, c6 = c5 + c5,
c7 = c6 + c6, c8 = c7 + c4. Let M be the matrix of coefficients of c0, c1, . . . , c8 in



PIPPENGER’S EXPONENTIATION ALGORITHM 11

these formulas for c0, c1, . . . , c8:

M =



0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 since c1 = 2c0,
1 1 0 0 0 0 0 0 0 since c2 = 1c0 + 1c1,
0 1 1 0 0 0 0 0 0 since c3 = 1c1 + 1c2,
0 1 0 1 0 0 0 0 0 since c4 = 1c1 + 1c3,
0 0 0 0 2 0 0 0 0 since c5 = 2c4,
0 0 0 0 0 2 0 0 0 since c6 = 2c5,
0 0 0 0 0 0 2 0 0 since c7 = 2c6,
0 0 0 0 1 0 0 1 0 since c8 = 1c4 + 1c7.


An easy calculation shows that

1

1−M
=



1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0
5 2 1 1 0 0 0 0 0
7 3 1 1 1 0 0 0 0
14 6 2 2 2 1 0 0 0
28 12 4 4 4 2 1 0 0
56 24 8 8 8 4 2 1 0
63 27 9 9 9 4 2 1 1


.

The first column of 1/(1 −M) is the original chain 1, 2, 3, 5, 7, 14, 28, 56, 63. Note
also that the last row of 1/(1−M) shares many numbers with the Yao-type chain
1, 2, 4, 8, 9, 18, 27, 54, 63.

More generally, let M be a lower-triangular nonnegative integer matrix with
zero diagonal. Typically each entry of M will be in {0, 1, 2, 3}, although this is not
required. Define P = 1/(1−M) = 1 + M + M2 + M3 + · · · .

The standard method to compute P , given M , is substitution: computing P
one row at a time from the formula P = 1 + MP . This method exploits the fact
that M is lower-triangular with zero diagonal, i.e., that Mki = 0 for i ≥ k. The kth
row Pk is ek +

∑
i MkiPi = ek +

∑
i<k MkiPi, where ek is the kth unit vector; so

one can compute Pk from ek, P1, . . . , Pk−1 with
∑

i Mki vector additions, by adding
each Pi to the current sum Mki times.

The total number of vector additions to compute all the rows P1, P2, . . . of P ,
starting from the unit vectors, is the sum

∑
k,i Mki of all the entries of M .

Often one wants only a few entries of these vectors. One can compress each
vector by discarding v columns, and skip the additions of the corresponding unit
vectors. It then takes (

∑
k,i Mki)− v vector additions to compute the compressed

rows of P , starting from the unit vectors and the zero vector. Every addition-chain
algorithm discussed in this paper can be expressed in this form.

The same comments apply to an upper-triangular nonnegative integer matrix M
with zero diagonal, except that the rows of P are computed from bottom to top
rather than top to bottom.



12 DANIEL J. BERNSTEIN

Consider, as another example, the matrices

M =


0 0 0 0 0 0
3 0 0 0 0 0
1 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 1 0 2 0

 and P =
1

1−M
=


1 0 0 0 0 0
3 1 0 0 0 0
7 2 1 0 0 0
14 4 2 1 0 0
28 8 4 2 1 0
63 18 9 4 2 1

 .

The sum of the entries of M is 13, so computing P1, P2, P3, P4, P5, P6 from the unit
vectors as explained above takes 13 vector additions. For example, the last row of
M is (0, 0, 1, 0, 2, 0), so P6 = e6 + P3 + P5 + P5 = (0, 0, 0, 0, 0, 1) + (7, 2, 1, 0, 0, 0) +
(28, 8, 4, 2, 1, 0) + (28, 8, 4, 2, 1, 0); computing P6 from e6, P3, P5 takes 3 additions.

Computing the first, third, and fourth entries of each vector, starting from
(1, 0, 0) and (0, 1, 0) and (0, 0, 1) and (0, 0, 0), takes only 13− 3 = 10 additions:

(3, 0, 0) = (1, 0, 0) + (1, 0, 0) + (1, 0, 0),
(7, 1, 0) = (0, 1, 0) + (3, 0, 0) + (3, 0, 0) + (1, 0, 0),

(14, 2, 1) = (0, 0, 1) + (7, 1, 0) + (7, 1, 0),
(28, 4, 2) = (14, 2, 1) + (14, 2, 1),
(63, 9, 4) = (7, 1, 0) + (28, 4, 2) + (28, 4, 2).

Computing the first entry of each vector, starting from 1 and 0, takes only
13 − 5 = 8 additions: 3 = 1 + 1 + 1, 7 = 1 + 3 + 3, 14 = 7 + 7, 28 = 14 + 14,
63 = 7 + 28 + 28.

Transposition. One can use the formula P = 1 + PM to compute the column
vectors of P one at a time, right to left, starting from the unit vectors. The
number of column additions here is the sum of all the entries of M .

For example, one can compute the column vector (1, 3, 7, 14, 28, 63) from the unit
vectors with 13 vector additions.

This column-by-column algorithm is the transpose of the row-by-row algorithm.
It is the row-by-row algorithm applied to the transpose M∗ of M ; note that P ∗ =
1/(1−M∗).

Transposition is often phrased in the language of graphs. The matrix M is
viewed as a digraph with vertices 1, 2, 3, . . . and with Mki edges from vertex i to
vertex k, or equivalently one edge of weight Mki from vertex i to vertex k. The
matrix P = 1/(1 −M) counts paths in the digraph: the number of paths from
vertex i to vertex k in the digraph is exactly Pki. The transpose of M is the same
digraph, except that all edges are reversed.

Examples of transposition. Recall from Section 4 that, given x1, x2, x3, x4, x5,
one can compute x5

5x
4
4x

3
3x

2
2x1 with 8 multiplications: (1, 1, 0, 0, 0) = (1, 0, 0, 0, 0) +

(0, 1, 0, 0, 0), (1, 1, 1, 0, 0) = (0, 0, 1, 0, 0)+(1, 1, 0, 0, 0), (1, 1, 1, 1, 0) = (0, 0, 0, 1, 0)+
(1, 1, 1, 0, 0), (1, 1, 1, 1, 1) = (0, 0, 0, 0, 1)+(1, 1, 1, 1, 0), (5, 4, 3, 2, 1) = (1, 0, 0, 0, 0)+
(1, 1, 0, 0, 0) + (1, 1, 1, 0, 0) + (1, 1, 1, 1, 0) + (1, 1, 1, 1, 1). This computation is the
transpose of the simple computation 2 = 1 + 1, 3 = 1 + 2, 4 = 1 + 3, 5 = 1 + 4.

More generally: The improved version of Yao’s xn algorithm shown in [22, answer
to exercise 4.6.3–9] is the transpose of Brauer’s xn algorithm (without repeated and
unused numbers). The further improvement from [22, answer to exercise 4.6.3–9]
to [23, answer to exercise 4.6.3–9] is the transpose of Thurber’s elimination of even
digits in Brauer’s algorithm.



PIPPENGER’S EXPONENTIATION ALGORITHM 13

Yao’s original xn algorithm is the transpose of a clumsier version of Brauer’s

algorithm, in which x2, x3, x4, . . . , x2k−1 are computed separately instead of by
successive multiplications.

Yao’s xn1 , xn2 , . . . , xnp algorithm is almost, though not exactly, the transpose of
Straus’s xn1

1 xn2
2 . . . x

np
p algorithm. It is actually the transpose of the slightly slower

variant of Straus’s algorithm described at the end of Section 3, plus the clumsiness
mentioned above.

The reader may enjoy transposing Straus’s algorithm: in particular, transposing
Figure 5 to find an addition chain of length 21 containing 27182 and 31415.

Setting the record straight. Lupanov in [29] pointed out a less general form of
transposition, namely transposition for Boolean matrices. Here one considers the
positions, but not the values, of nonzero entries in M and 1/(1 − M). This is
second-hand information; I’m still looking for an English translation of Lupanov’s
article.

Fiduccia in [18] considered general linear computations, allowing additions and
scalar multiplications. Fiduccia observed that the transpose of any computation of
a matrix is a computation of the transpose of the matrix. This is also second-hand
information; I’m still looking for [18] and Fiduccia’s 1973 thesis at Brown.

Pippenger in [34, page 259] observed (in graph-theoretic language) that sequences
of additions specified by M are computations of submatrices of 1/(1−M). He also
observed that transposing M would transpose the submatrices.

I should comment on the different proof strategies here. I also have to check [2].
Transposition was subsequently reinvented and republished as the centerpiece of

three papers, all of which cited [34]:

• Olivos in [33] proved that the minimum number of vector additions needed
to compute (n1, n2, . . . , np), given the unit vectors, is p− 1 more than the
minimum length of an addition chain containing n1, n2, . . . , np, if none of
n1, n2, . . . , np are 0. Olivos’s proof laboriously constructs transpositions
without the help of graphs or matrices.

• Knuth and Papadimitriou in [25] proved that, more generally, the minimum
number of vector additions needed to compute the column vectors of a p×q
matrix, given the unit vectors, is p − q more than the number of vector
additions needed to compute the row vectors of the matrix, if none of the
row and column vectors are 0. Knuth and Papadimitriou said that they
were using “a graph-theoretic formulation of the problem—first employed
by Pippenger.”

• Kaminski, Kirkpatrick, and Bshouty in [20] published transposition in the
same level of generality as Fiduccia, calling it a “modest generalization” of
Lupanov’s results and Pippenger’s results.

My feeling at this point is that Fiduccia deserves much more credit, but obviously
I have to find Fiduccia’s papers before rendering final judgment.

6. Pippenger’s multiple-product algorithm, 1976

Pippenger’s multiple-product algorithm in [34] computes products of specified
subsequences of a sequence. In other words, it computes products of powers, where
all the exponents are in {0, 1}. In other words, it obtains specified vectors over {0, 1}



14 DANIEL J. BERNSTEIN

by additions starting from the unit vectors. In other words, it obtains specified sets
by disjoint unions starting from singletons.

Pippenger’s exponentiation algorithm uses the multiple-product algorithm as a
subroutine, as explained in Section 7.

Pippenger’s multiple-product algorithm has two inputs: a sequence x1, . . . , xp,
and a sequence of nonempty subsets S1, S2, . . . , Sq of {1, . . . , p}. The output is
the corresponding sequence of products X(S1), X(S2), . . . , X(Sq), where X(S) =∏

i∈S xi. For example, if the inputs are x1, x2, x3, x4 and {1, 3}, {1, 2, 4}, {2, 3, 4},
then the output is x1x3, x1x2x4, x2x3x4.

Option 1. In some cases, Pippenger’s algorithm computes each desired product
separately. The total number of multiplications here is w−q, where w is the weight
of S1, S2, . . . , Sq: the sum #S1 + #S2 + · · · + #Sq. This is a good choice when w
is small.

Option 2. In some cases, Pippenger’s algorithm partitions the input. Figure 7
summarizes input partitioning.

Input partitioning is a generalization of Kronrod’s Boolean matrix-multiplication
algorithm in [3]. It works as follows. Choose an integer c ≥ 2; typically c will be
logarithmic in pq. Partition {1, 2, 3, . . . , p} into dp/ce parts, each part of size c or
smaller: P0 = {1, 2, . . . , c} and P1 = {c + 1, c + 2, . . . , 2c} and so on.

Observe that X(S) = X(P0 ∩ S)X(P1 ∩ S) · · · . For each j, compute X(T )
for all nonempty subsets T of Pj , from smallest to largest; this takes at most
dp/ce (2c− c− 1) multiplications and produces at most dp/ce (2c− 1) values X(T ).
Now use Pippenger’s algorithm recursively to compute each desired X(S) as the
product of all relevant X(T ).

Consider, for example, inputs x1, x2, x3, x4 and 13, 124, 234. Choose c = 2.
Compute X(1) = x1, X(2) = x2, X(12) = x1x2, X(3) = x3, X(4) = x4, and
X(34) = x3x4. Then use Pippenger’s algorithm recursively to compute X(1)X(3),
X(12)X(4), X(2)X(34).

Another example: Consider inputs x1, x2, x3, x4 and 134, 12, 1234. Then the
recursive step is to compute X(1)X(34), X(12), X(12)X(34). The total number of
multiplications here is 4.

Larger example: Consider inputs x1, x2, . . . , x8 and 134567, 1235, 145678, 234578,
124568, 123478, 1234568, 1357, 2348, 13567. Choose c = 3. Compute X(1) = x1,
X(2) = x2, X(3) = x3, X(12) = x1x2, X(13) = x1x3, X(23) = x2x3, X(123) =
X(12)x3, X(4) = x4, X(5) = x5, X(6) = x6, X(45) = x4x5, X(46) = x4x6,

p inputs: x1, x2, . . . , xp

at most dp/ce (2c − c− 1) multiplications
��

at most dp/ce (2c − 1) intermediate X(T )’s

recursively; weight at most dp/ce q
��

q outputs

Figure 7. Input partitioning.



PIPPENGER’S EXPONENTIATION ALGORITHM 15

p inputs: x1, x2, . . . , xp

++

at most dp/ae
(
a
b

)
(b− 1) multiplications

��
at most dp/ae

(
a
b

)
intermediate X(T )’s

recursively; weight at most bw/bc
��

at most q relevant products of X(T )’s

at most q dp/ae (b− 1) multiplications
��

q outputs

Figure 8. Input clumping.

X(56) = x5x6, X(456) = X(45)x6, X(7) = x7, X(8) = x8, X(78) = x7x8.
Then use Pippenger’s algorithm recursively to compute X(13)X(456)X(7) and
X(123)X(5) and so on.

Option 3. In some cases, Pippenger’s algorithm clumps the input. Figure 8
summarizes input clumping.

Input clumping works as follows. Choose an integer b ≥ 2 and an integer a ≥ b.
Typically b will be 2, while a will be fairly large, only a polylogarithmic factor
smaller than p. Partition {1, 2, 3, . . . , p} into dp/ae parts, each part of size a or
smaller: P0 = {1, 2, . . . , a} and P1 = {a + 1, a + 2, . . . , 2a} and so on.

For each j, compute X(T ) for every size-b subset T of Pj , by multiplying the
relevant x’s. There are at most dp/ae

(
a
b

)
such T ′s, and each one involves b − 1

multiplications. (There is some room for improvement here when b ≥ 3.)
Choose a decomposition of each input set S as a disjoint union of as many T ’s

as possible, plus a few overflow elements—at most b− 1 overflow elements in each
part, totaling at most dp/ae (b− 1) overflow elements.

Use Pippenger’s algorithm recursively to compute all the relevant products of
X(T )’s; the weight here is at most bw/bc, because at most #S/b disjoint size-b sets
T can fit inside S. Then multiply these products by the overflow x’s to compute the
desired products X(S); there are at most q dp/ae (b− 1) overflow multiplications.

Example: Consider again 134567, 1235, 145678, 234578, 124568, 123478, 1234568,
1357, 2348, 13567. Choose b = 2 and a = 4. Compute X(12) = x1x2, X(13) = x1x3,
X(14) = x1x4, X(23) = x2x3, X(24) = x2x4, X(34) = x3x4; similarly compute
X(56), X(57), X(58), X(67), X(68), X(78). Use Pippenger’s algorithm recursively
to compute X(13)X(56), X(12), X(14)X(56)X(78), etc. The desired outputs are
then X(13)X(56)x4, X(12)x3x5, X(14)X(56)X(78), etc.

Option 4. In some cases, Pippenger’s algorithm clumps the output. Figure 9
summarizes output clumping.

Output clumping is the transpose of input clumping. It works as follows. Choose
an integer b ≥ 2 and an integer a ≥ b. Partition the output indices {1, 2, 3, . . . , q}
into dq/ae parts, each part of size a or smaller: Q0 = {1, 2, . . . , a} and Q1 =
{a + 1, a + 2, . . . , 2a} and so on.



16 DANIEL J. BERNSTEIN

p inputs: x1, x2, . . . , xp

++

recursively; weight at most bw/bc
��

at most dq/ae
(
a
b

)
relevant X(T (U))’s

at most dq/ae
(
a
b

)
(b− 1) multiplications

��
at most q relevant products of X(T (U))’s

at most p dq/ae (b− 1) multiplications
��

q outputs

Figure 9. Output clumping.

Consider all the size-b subsets U of parts. For each i ∈ {1, 2, . . . , p}, choose a
decomposition of {j : i ∈ Sj} as a disjoint union of as many U ’s as possible, plus
a few overflow elements—at most b− 1 overflow elements in each part, totaling at
most dq/ae (b − 1) overflow elements. Define T (U) as the set of i’s for which U is
used in this union.

Use Pippenger’s algorithm recursively to compute X(T (U)) for each U such that
T (U) is nonempty; the weight here is at most bw/bc. Then compute each desired
X(Sj) as the product of X(T (U)) for each U containing j and any relevant overflow
x’s; there are at most dq/ae

(
a
b

)
(b − 1) multiplications of X(T (U))’s, and then at

most p dq/ae (b− 1) overflow multiplications.
Example: Consider one last time 134567, 1235, 145678, 234578, 124568, 123478,

1234568, 1357, 2348, 13567. Choose b = 2 and a = 4. Use Pippenger’s algorithm
recursively to compute X(135), X(467), X(2), X(58), etc. The desired outputs are
X(135)X(467), X(135)X(2), X(467)X(58)x1, X(2)X(58)x3x4x7, etc.

The complete algorithm. Pippenger’s algorithm is parametrized by a recursion
level L, a sequence c, a1, b1, a2, b2, . . . , aL−1, bL−1, and an optional toggle. It first
partitions the input with parameter c, then clumps the output with parameters
a1, b1 at the next level of recursion, then clumps the input with parameters a2, b2
at the next level of recursion, and so on, alternating between clumping the output
and clumping the input. Finally, after L levels of recursion, Pippenger’s algorithm
simply computes each desired product separately.

The effect of the toggle is to transpose everything: partition the output, then
clump the input, then clump the output, etc.

Later I will discuss recursion level 1, with parameter c, and recursion level 2, with
parameters c, a, b. I have left the toggle—in particular, output partitioning—as an
exercise for the reader.

Pippenger did much more optimization work in [34] and [35]. Pippenger proved
that a particular parameter sequence uses at most (1+o(1))pq/ lg pq multiplications,
if (lg p)/q and (lg q)/p are both in o(1). Pippenger also showed, by adapting a
counting argument of Lupanov in [29], that almost all sequences of q subsets require
(1 + o(1))pq/ lg pq multiplications, if (lg p)/q and (lg q)/p are both in o(1).



PIPPENGER’S EXPONENTIATION ALGORITHM 17

One can quickly compute Pippenger’s parameter sequence given p, q, although
Pippenger did not say this explicitly. See [34] or [35] for details of the construction.
In practice, one can usually afford to experiment with many parameter sequences.

Recursion level 1. The special case L = 1 of Pippenger’s algorithm partitions
the input with parameter c, and computes each desired product separately inside
the recursion. This takes at most dp/ce (2c − c − 1) + dp/ce q − q multiplications;
see Figure 7.

The choice c ≈ lg q− lg lg q is reasonable if q is fairly large and p is substantially
larger than lg q. Then 2c − c− 1 ≈ q/ lg q and dp/ce ≈ p/ lg q, so there are at most
about pq/ lg q + pq/(lg q)2 multiplications.

Recursion level 2. The special case L = 2 of Pippenger’s algorithm partitions
the input with parameter c, clumps the output with parameters a and b inside
the recursion, and computes each desired product separately at the next level of
recursion.

The choices c ≈ lg q − 3 lg lg q and a ≈ q/(lg q)2 and b = 2 are reasonable if
q is fairly large and p ≥ q. Define p′ = pq/(lg q)4 and w′ = pq/ lg q. The input
partitioning takes at most about p′ multiplications to reduce to a problem of size
at most about p′, q, w′; see Figure 7. The output clumping takes at most about
q2/2(lg q)2 + p′(lg q)2 multiplications to reduce to a problem of weight at most
about w′/2; see Figure 9. The rest of the computation takes at most about w′/2
multiplications. The total number of multiplications is at most about pq/2 lg q +
pq/(lg q)2 + q2/2(lg q)2 + pq/(lg q)4.

7. Pippenger’s exponentiation algorithm, 1976

Pippenger’s exponentiation algorithm in [34] reduces any exponentiation problem
to a multiple-product problem, and then solves that problem with the algorithm
described in Section 6.

Single base. Given x, a bound B, and a set S of integers in {1, 2, . . . , B − 1},
Pippenger’s exponentiation algorithm computes xe for all e ∈ S as follows.

The first step is the same as in Yao’s algorithm. Choose a positive integer k.

Define xi = x2ki

and p = d(lgB)/ke. Compute x0, x1, x2, . . . , xp−1 with (p − 1)k
squarings.

Express each desired exponent e ∈ S as e0 + 2e1 + · · · + 2k−1ek−1, where each
ej is a sum of distinct powers of 2k. In other words, write e in radix 2k, write each
coefficient in radix 2, and transpose the resulting matrix of bits.

By construction, each xej for ej 6= 0 is a product of a nonempty subsequence of
x0, x1, . . . , xp−1. There are at most k#S of these products; compute all of them by
Pippenger’s multiple-product algorithm.

Finally, compute each xe as ((· · · (xek−1)2xek−2 · · · )2xe1)2xe0 . There are at most
2(k − 1) multiplications here, totaling 2(k − 1)#S for all e ∈ S.

Consider, for example, exponents 31415 and 27182. Choose k = 3. Express
31415 as e0 + 2e1 + 4e2 where e0 = 20 + 29 + 212, e1 = 20 + 23 + 26 + 212, and
e2 = 20 + 23 + 29 + 212; express 27182 as f0 + 2f1 + 4f2 where f0 = 23 + 29,

f1 = 20 + 212, and f2 = 20 + 23 + 29 + 212. Compute x20 , x23 , x26 , x29 , x212 ; then
compute xe0 , xe1 , xe2 , xf0 , xf1 , xf2 ; finally compute x31415 and x27182. Figure 10
shows an addition chain obtained in this way.



18 DANIEL J. BERNSTEIN

1 = 12 = 20

2 = 102
4 = 1002
8 = 10002 = 23

16 = 100002
32 = 1000002
64 = 10000002 = 26

128 = 100000002
256 = 1000000002
512 = 10000000002 = 29

1024 = 100000000002
2048 = 1000000000002
4096 = 10000000000002 = 212

520 = 10000010002 = 23 + 29 = f0
4097 = 10000000000012 = 20 + 212 = f1
4161 = 10000010000012 = 20 + 26 + 212

4169 = 10000010010012 = 20 + 23 + 26 + 212 = e1
4609 = 10010000000012 = 20 + 29 + 212 = e0
4617 = 10010000010012 = 20 + 23 + 29 + 212 = e2 = f2

9234 = 100100000100102 = 2e2
13403 = 110100010110112 = 2e2 + e1
26806 = 1101000101101102 = 4e2 + 2e1
31415 = 1111010101101112 = 4e2 + 2e1 + e0
9234 = 100100000100102 = 2f2

13331 = 110100000100112 = 2f2 + f1
26662 = 1101000001001102 = 4f2 + 2f1
27182 = 1101010001011102 = 4f2 + 2f1 + f0

Figure 10. Computing 27182 and 31415 with 26 additions.

Pippenger proved that, with a particular choice of parameters, this algorithm
computes xe for all e ∈ S with at most lgB + (1 + o(1))(#S lgB)/ lg(#S lgB)
multiplications, if lg #S is in o(lgB). Pippenger chose k = d

√
(lgB)/#Se: for

example, k = 1 if #S ≥ lgB. There are (p− 1)k < lgB initial squarings; at most
2(k − 1)#S < 2

√
#S lgB final multiplications; and, in the middle, at most about

pk#S/ lg(pk#S) ≈ #S lgB/ lg(#S lgB) multiplications to compute at most k#S
products of subsequences of x0, . . . , xp−1.

Single base, recursion level 1. Here is a complete description of one special case
of Pippenger’s exponentiation algorithm, with recursion level L = 1 in Pippenger’s
multiple-product algorithm.

The inputs are x, a bound B, and a set S of integers in {1, 2, . . . , B − 1}. The
algorithm will compute xe for all e ∈ S.

Choose a positive integer k. Define xi = x2ki

and p = d(lgB)/ke. Compute
x0, x1, . . . , xp−1 with (p− 1)k squarings.

Choose a positive integer c. For each j, compute
∏

i∈T xi for all nonempty
subsets T of {cj, cj + 1, . . . , cj + c− 1}∩{0, 1, . . . , p− 1}. There are at most 2c−1



PIPPENGER’S EXPONENTIATION ALGORITHM 19

such sets, totaling at most dp/ce (2c− 1) over all j; this computation takes at most
dp/ce (2c − c− 1) multiplications.

Now compute each desired xe with at most k(dp/ce−1)+2(k−1) multiplications
as follows. Write e as e0 + 2e1 + · · ·+ 2k−1ek−1, where each ej is a sum of distinct
powers of 2k. Compute xej as a product of at most dp/ce of the previously computed
products

∏
i∈T xi. Then compute xe as ((· · · (xek−1)2xek−2 · · · )2xe1)2xe0 .

Single base, recursion level 1, with k = 1. For example, if k = 1, simply write
each new exponent e in radix 2c as f0 + 2cf1 + · · · , and compute xe as the product
of xf0 and x2cf1 and so on, all of which have been previously computed.

The initial computation of dp/ce (2c − 1) ≈ 2c(lgB)/c products takes p − 1 +
dp/ce (2c − c− 1) ≈ 2c(lgB)/c multiplications. Each new exponent then takes just
dp/ce − 1 ≈ (lgB)/c multiplications.

Apparently this special case was, historically, the first part of Pippenger’s work.
The total number of multiplications, (#S+2c)(lgB)/c, was reported by Yao in [40]
as an improvement by Pippenger upon Yao’s results. If c ≈ lg #S−lg lg #S and #S
is large then this special case of Pippenger’s algorithm uses about #S(lgB)/ lg #S
multiplications, while Yao’s algorithm uses about #S(lgB)/ lg lgB multiplications.

The general case. Pippenger’s exponentiation algorithm, in its full generality,
computes q products of powers of x1, x2, . . . , xp as follows. Write each desired

output in the form y0y
2
1 · · · y2

k−1

k−1 , where each yh is a product of x2ik

j for some set of

pairs (i, j). Compute all x2ik

j by successive squarings; compute all yh by Pippenger’s
multiple-product algorithm; then compute each desired output with at most 2(k−1)
multiplications.

Assume that each exponent is below B, and that (lgP )/q lgB and (lg q)/p lgB
are in o(1). Pippenger proved in [34] that, with a particular choice of parameters,
this algorithm uses at most p lgB + (1 + o(1))(pq lgB)/ lg(pq lgB) multiplications,
and a transposed algorithm uses at most q lgB + (1 + o(1))(pq lgB)/ lg(pq lgB)
multiplications.

By generalizing the counting arguments of Lupanov in [29] and Erdős in [17],
Pippenger showed in [36] that almost all exponent matrices require min {p, q} lgB+
(1 + o(1))(pq lgB)/ lg(pq lgB) multiplications. Thus there is not much room for
improvement in Pippenger’s algorithm. Of course, minor improvements may still
be useful in practice.

Setting the record straight. The special case L = 1 of Pippenger’s algorithm is
often incorrectly credited to Lim and Lee, who reinvented it many years later and
published it in [28], after Brickell, Gordon, McCurley, and Wilson in [10] reinvented
and published the special case L = k = 1.

Knuth in [22, answer to exercise 4.6.3–39] described Pippenger’s results as a
“comprehensive generalization” of Straus’s results and Yao’s results. This is rather
misleading. I did not realize for many years that—for example—Pippenger had a
different, and generally faster, algorithm to compute many powers of a single base.

References

[1] —, 17th annual symposium on foundations of computer science, IEEE Computer Society,

Long Beach, California, 1976. MR 56 #1766.

[2] Andreas Antoniou, Digital filters: analysis and design, McGraw-Hill, New York, 1979. ISBN
0070021171.



20 DANIEL J. BERNSTEIN

[3] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, I. A. Faradžev, On economical construction

of the transitive closure of an oriented graph, Soviet Mathematics Doklady 11 (1970), 1209–

1210. MR 42 #4441.
[4] Edward G. Belaga, The additive complexity of a natural number, Soviet Mathematics Doklady

17 (1976), 5–9. MR 53 #13141.

[5] G. R. Blakley, David Chaum (editors), Advances in cryptology: CRYPTO ’84, Lecture Notes
in Computer Science, 196, Springer-Verlag, Berlin, 1985. ISBN 3–540–15658–5. MR 86j:94003.

[6] Irina E. Bocharova, Boris D. Kudryashov, Fast exponentiation in cryptography, in [12] (1995),

146–157. MR 97m:94013.
[7] Jurjen Bos, Matthijs Coster, Addition chain heuristics, in [8] (1989), 400–407.

[8] Gilles Brassard (editor), Advances in cryptology—CRYPTO ’89, Lecture Notes in Computer

Science 435, Springer-Verlag, Berlin, 1990. ISBN 0–387–97317–6. MR 91b:94002.
[9] Alfred Brauer, On addition chains, Bulletin of the American Mathematical Society 45 (1939),

736–739. MR 1,40a.
[10] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, David B. Wilson, Fast exponen-

tiation with precomputation (extended abstract), in [37] (1993), 200–207; newer version in

[11].
[11] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, David B. Wilson, Fast exponenti-

ation with precomputation: algorithms and lower bounds (1995); draft in [10]. Available from

http://research.microsoft.com/~dbwilson/bgmw/.
[12] Girard Cohen, Marc Giusti, Teo Mora (editors), Applied algebra, algebraic algorithms and

error-correcting codes, Lecture Notes in Computer Science 948, Springer-Verlag, Berlin, 1995.

ISBN 3–540–60114–7. MR 97k:68003.
[13] Yvo Desmedt (editor), Advances in cryptology—CRYPTO ’94, Lecture Notes in Computer

Science 839, Springer-Verlag, Berlin, 1994.

[14] Peter Downey, Benton Leong, Ravi Sethi, Computing sequences with addition chains, SIAM
Journal on Computing 10 (1981), 638–646. MR 82h:68064.

[15] Taher ElGamal, A public key cryptosystem and a signature scheme based on discrete loga-
rithms, in [5] (1985), 10–18; newer version in [16]. MR 87b:94037.

[16] Taher ElGamal, A public key cryptosystem and a signature scheme based on discrete loga-

rithms, IEEE Transactions on Information Theory 31 (1985), 469–472; draft in [15].
[17] Paul Erdős, Remarks on number theory III: On addition chains, Acta Arithmetica 6 (1960),

77–81. MR 22 #12085.

[18] Charles M. Fiduccia, On obtaining upper bounds on the complexity of matrix multiplication,
in [32] (1972), 31–40. MR 52 #12398.

[19] Ronald L. Graham, Andrew C. Yao, Frances F. Yao, Addition chains with multiplicative cost,

Discrete Mathematics 23 (1978), 115–119. MR 80d:68051.
[20] Michael Kaminski, David G. Kirkpatrick, Nader H. Bshouty, Addition requirements for ma-

trix and transposed matrix products, Journal of Algorithms 9 (1988), 354–364. MR 89m:68061.

[21] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms,
1st edition, 2nd printing, Addison-Wesley, Reading, 1971. MR 44 #3531.

[22] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms,
2nd edition, Addison-Wesley, Reading, 1981. ISBN 0–201–03822–6. MR 83i:68003.

[23] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms,

3rd edition, Addison-Wesley, Reading, 1997. ISBN 0–201–89684–2.
[24] Donald E. Knuth (editor), Selected papers on analysis of algorithms, CSLI Publications,

Stanford, 2000. ISBN 1–57586–212–3. MR 2001c:68066.

[25] Donald E. Knuth, Christos H. Papadimitriou, Duality in addition chains, Bulletin of the
European Association for Theoretical Computer Science 13 (1981), 2–4; reprinted in [24,

chapter 31].

[26] K. Y. Lam, L. C. K. Hui, On the efficiency of SS(l) square-and-multiply exponentiation
algorithms, Electronics Letters 30 (1994), 2115–2116.

[27] Adrien-Marie Legendre, Recherches d’analyse indéterminée, Histoire de L’Académie Royale

des Sciences (1785), 465–559.
[28] Chae Hoon Lim, Pil Joong Lee, More flexible exponentiation with precomputation, in [13]

(1994), 95–107.

[29] O. B. Lupanov, On rectifier and contact rectifier circuits, Doklady Akademii Nauk SSSR 111
(1956), 1171–1174. MR 19,807a.



PIPPENGER’S EXPONENTIATION ALGORITHM 21

[30] Daniel P. McCarthy, The optimal algorithm to evaluate xn using elementary multiplication

methods, Mathematics of Computation 31 (1977), 251–256. MR 55 #1811.

[31] Daniel P. McCarthy, Effect of improved multiplication efficiency on exponentiation algo-
rithms derived from addition chains, Mathematics of Computation 46 (1986), 603–608. MR

87e:68046.

[32] Raymond E. Miller, James W. Thatcher (editors), Complexity of computer computations,
Plenum Press, New York, 1972. ISBN 0306307073. MR 51 #9575.

[33] Jorge Olivos, On vectorial addition chains, Journal of Algorithms 2 (1981), 13–21. MR

83h:68044.
[34] Nicholas Pippenger, On the evaluation of powers and related problems (preliminary version),

in [1] (1976), 258–263; newer version split into [35] and [36]. MR 58 #3682.

[35] Nicholas Pippenger, The minimum number of edges in graphs with prescribed paths, Mathe-
matical Systems Theory 12 (1979), 325–346; draft in [34]. MR 81e:05079.

[36] Nicholas Pippenger, On the evaluation of powers and monomials, SIAM Journal on Com-
puting 9 (1980), 230–250; draft in [34]. MR 82c:10064.

[37] Rainer A. Rueppel (editor), Advances in cryptology: EUROCRYPT ’92, Lecture Notes in

Computer Science 658, Springer-Verlag, Berlin, 1993. ISBN 3–540–56413–6. MR 94e:94002.
[38] Ernst G. Straus, Addition chains of vectors (problem 5125), American Mathematical Monthly

70 (1964), 806–808.

[39] Edward G. Thurber, On addition chains l(mn) ≤ l(n) − b and lower bounds for c(r), Duke
Mathematical Journal 40 (1973), 907–913. MR 48 #8429.

[40] Andrew C. Yao, On the evaluation of powers, SIAM Journal on Computing 5 (1976), 100–103.

MR 52 #16128.
[41] Hans Zantema, Minimizing sums of addition chains, Journal of Algorithms 12 (1993), 281–

307. MR 92i:68064.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-
versity of Illinois at Chicago, Chicago, IL 60607–7045

Email address: djb@cr.yp.to


