FASTER ALGORITHMS TO FIND NON-SQUARES MODULO WORST-CASE INTEGERS

DANIEL J. BERNSTEIN

Abstract

This paper presents two algorithms that, given an n-bit positive integer $m \in 1+8 \mathbf{Z}$ that is not a square, find an element of \mathbf{Z} / m that is a nonsquare or a nonzero non-unit. Under a standard conjecture, the first algorithm takes time $O\left(n(\lg n)^{3} \lg \lg n\right)$. Under a new but plausible conjecture, the second algorithm takes expected time $O(n)$.

Consider the problem of finding a nonzero element of \mathbf{Z} / m that is not a square in $(\mathbf{Z} / m)^{*}$, given an odd positive integer m that is not a square in \mathbf{Z} : in other words, finding an integer r that is not congruent to a square modulo m, or that has a factor in common with m without being divisible by m.

There are two standard solutions to this problem. One is a randomized algorithm that takes essentially linear expected time on, for example, a multitape Turing machine. The other is a deterministic algorithm that, under a standard conjecture, takes essentially quadratic time.

This paper presents an improved deterministic algorithm that, under the same conjecture, takes essentially linear time; and an improved randomized algorithm that, under a new but plausible conjecture, takes linear expected time.

In practice, people use - and should continue to use - the original deterministic algorithm: its average time over typical distributions of m appears to be linear, with a very small constant.

Strategy. One can trivially handle certain cases by inspecting a few bits of m. If $m \in 3+4 \mathbf{Z}$ then one can take $r=-1$. If $m \in 5+8 \mathbf{Z}$ then one can take $r=2$.

Assume, from now on, that $m \in 1+8 \mathbf{Z}$. Write $n=\lceil\lg m\rceil$.
The standard way to find r is to compute the Jacobi symbol of r modulo m for various candidate r 's:

- If the Jacobi symbol is 0 or 1 , try the next r.
- If the Jacobi symbol is -1 , stop: r is a non-square modulo m.
- If the Jacobi symbol is undefined, stop: r is a nonzero non-unit modulo m. Even better, the Jacobi-symbol computation has found a factor of m.
Schönhage's fast-gcd algorithm in [7] computes the Jacobi symbol of two $O(n)$-bit inputs in time $O\left(n(\lg n)^{2} \lg \lg n\right)$.

There are two popular sequences of candidate r 's, as described below.
Deterministic algorithms. One popular sequence is the sequence of odd primes: try $r=3$, then $r=5$, then $r=7$, then $r=11$, etc. It is well known that the Jacobi-symbol computation of r modulo m becomes simpler and faster when r is

[^0]small; see, e.g., the proof of [2, Theorem 7.8.2]. Most of the work is a single division, computing $m \bmod r$.

How many r 's are needed? A standard conjecture is that the number of r 's is $n+o(n)$ for worst-case moduli m. See, e.g., [1] and [5].

If there are n Jacobi-symbol computations, and one Jacobi-symbol computation takes time at least n, then the total time is at least n^{2}, right? Wrong! One can use the Moenck-Borodin multipoint-evaluation algorithm to compute $m \bmod r$ for many r 's simultaneously. If there are $O(n)$ primes r, each having $O(\lg n)$ bits, then this computation takes time $O\left(n(\lg n)^{3} \lg \lg n\right)$. See, e.g., [3, Theorem 3.4]. It is easy to complete the Jacobi-symbol computations, and enumerate the primes in the first place, within the same time bound.

It is already standard practice to compute $m \bmod r$ for a few r 's simultaneously: one reduces m modulo a single-word product of r 's, then reduces the result modulo each r. See, e.g., [6, page 146]. The Moenck-Borodin algorithm uses the same idea recursively on a larger scale.

Of course, for typical moduli m, the first few r 's suffice. One could try a smaller set of primes r as a preliminary step. The prime 3 suffices for half of all moduli; it can be tried in time $O(n)$. The prime 5 suffices for half of the remaining moduli; it can be tried in time $O(n)$. The primes below $(\lg n) / \lg \lg n$ suffice for most moduli; they can all be tried together in time $O(n)$, as explained below. The primes below $n / \lg n$ suffice for practically all moduli; they can be tried in total time $O(n \lg n \lg \lg n)$.

Randomized algorithms. The other popular sequence of r 's is a sequence of independent uniform random odd integers between 0 and $m-1$; actually, between 0 and $2^{n}-1$, so that one can generate each candidate r by generating $n-1$ random bits. This algorithm finds r in expected time $O\left(n(\lg n)^{2} \lg \lg n\right)$: there are at least $(m-1) / 4 \geq 2^{n} / 8$ qualifying values of r, so the expected number of Jacobi-symbol computations is at most 4 . (This is not the optimal constant.)

Even better, take r to be a uniform random odd integer between 0 and $2^{k}-1$, where k is much smaller than n; say $k=2\lceil\lg n\rceil$. The bottleneck in the Jacobisymbol computation is then an n-bit-by- k-bit division, which takes time $O(n)$ by an adaptation of Kaminski's algorithm in [4]. I conjecture that the expected number of Jacobi-symbol computations is bounded.

I should add a table of numerical evidence for this conjecture. I should probably explain Kaminski's algorithm; my recollection is that Kaminski focused entirely on the function-field case. Perhaps I should just tell people to select r as a sum of 10 random powers of 2 , with exponents bounded by $n /(\lg n)^{3}$, although I have to be a bit more careful with constants in this case to make the conjecture plausible.

References

[1] Eric Bach, Lorenz Huelsbergen, Statistical evidence for small generating sets, Mathematics of Computation 61 (1993), 69-82. MR 93k:11089.
[2] Eric Bach, Jeffrey Shallit, Algorithmic number theory, volume 1: efficient algorithms, MIT Press, Cambridge, Massachusetts, 1996. ISBN 0-262-02405-5. Available from http://www. math.uwaterloo.ca/~shallit/ant.html.
[3] Daniel J. Bernstein, How to find small factors of integers, to appear, Mathematics of Computation. Available from http://cr.yp.to/papers.html.
[4] Michael Kaminski, A linear time algorithm for residue computation and a fast algorithm for division with a sparse divisor, Journal of the ACM 34 (1987), 968-984. MR 89f:68033.
[5] Richard F. Lukes, C. D. Patterson, Hugh C. Williams, Some results on pseudosquares, Mathematics of Computation 65 (1996), 361-372. MR 96e:11010.
[6] Hans Riesel, Prime numbers and computer methods for factorization, 2nd edition; Progress in Mathematics 126, Birkhauser, Boston, 1994. ISBN 0817637435. MR 95h:11142.
[7] Arnold Schönhage, Schnelle Berechnung von Kettenbruchentwicklugen, Acta Informatica 1 (1971), 139-144.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The University of Illinois at Chicago, Chicago, IL 60607-7045

Email address: djb@cr.yp.to

[^0]: Date: 20011220.
 2020 Mathematics Subject Classification. Primary 11Y16.
 The author was supported by the National Science Foundation under grant DMS-9970409.

