Abstract. This paper presents two algorithms that, given an \(n \)-bit positive integer \(m \in 1 + 8\mathbb{Z} \) that is not a square, find an element of \(\mathbb{Z}/m \) that is a non-square or a nonzero non-unit. Under a standard conjecture, the first algorithm takes time \(O(n(\lg n)^3 \lg \lg n) \). Under a new but plausible conjecture, the second algorithm takes expected time \(O(n) \).

Consider the problem of finding a nonzero element of \(\mathbb{Z}/m \) that is not a square in \((\mathbb{Z}/m)^\ast \), given an odd positive integer \(m \) that is not a square in \(\mathbb{Z} \): in other words, finding an integer \(r \) that is not congruent to a square modulo \(m \), or that has a factor in common with \(m \) without being divisible by \(m \).

There are two standard solutions to this problem. One is a randomized algorithm that takes essentially linear expected time on, for example, a multitape Turing machine. The other is a deterministic algorithm that, under a standard conjecture, takes essentially quadratic time.

This paper presents an improved deterministic algorithm that, under the same conjecture, takes essentially linear time; and an improved randomized algorithm that, under a new but plausible conjecture, takes linear expected time.

In practice, people use—and should continue to use—the original deterministic algorithm: its average time over typical distributions of \(m \) appears to be linear, with a very small constant.

Strategy. One can trivially handle certain cases by inspecting a few bits of \(m \). If \(m \in 3 + 4\mathbb{Z} \) then one can take \(r = -1 \). If \(m \in 5 + 8\mathbb{Z} \) then one can take \(r = 2 \).

Assume, from now on, that \(m \in 1 + 8\mathbb{Z} \). Write \(n = \lceil \lg m \rceil \).

The standard way to find \(r \) is to compute the Jacobi symbol of \(r \) modulo \(m \) for various candidate \(r \)'s:

- If the Jacobi symbol is 0 or 1, try the next \(r \).
- If the Jacobi symbol is \(-1\), stop: \(r \) is a non-square modulo \(m \).
- If the Jacobi symbol is undefined, stop: \(r \) is a nonzero non-unit modulo \(m \).

Even better, the Jacobi-symbol computation has found a factor of \(m \).

Schönhage’s fast-gcd algorithm in [7] computes the Jacobi symbol of two \(O(n) \)-bit inputs in time \(O(n(\lg n)^2 \lg \lg n) \).

There are two popular sequences of candidate \(r \)'s, as described below.

Deterministic algorithms. One popular sequence is the sequence of odd primes: try \(r = 3 \), then \(r = 5 \), then \(r = 7 \), then \(r = 11 \), etc. It is well known that the Jacobi-symbol computation of \(r \) modulo \(m \) becomes simpler and faster when \(r \) is
small; see, e.g., the proof of [2, Theorem 7.8.2]. Most of the work is a single division, computing \(m \mod r \).

How many \(r \)'s are needed? A standard conjecture is that the number of \(r \)'s is \(n + o(n) \) for worst-case moduli \(m \). See, e.g., [1] and [5].

If there are \(n \) Jacobi-symbol computations, and one Jacobi-symbol computation takes time at least \(n \), then the total time is at least \(n^2 \), right? Wrong! One can use the Moenck-Borodin multipoint-evaluation algorithm to compute \(m \mod r \) for many \(r \)'s simultaneously. If there are \(O(n) \) primes \(r \), each having \(O(\lg n) \) bits, then this computation takes time \(O(n(\lg n)^3\lg\lg n) \). See, e.g., [3, Theorem 3.4]. It is easy to complete the Jacobi-symbol computations, and enumerate the primes in the first place, within the same time bound.

It is already standard practice to compute \(m \mod r \) for a few \(r \)'s simultaneously: one reduces \(m \) modulo a single-word product of \(r \)'s, then reduces the result modulo each \(r \). See, e.g., [6, page 146]. The Moenck-Borodin algorithm uses the same idea recursively on a larger scale.

Of course, for typical moduli \(m \), the first few \(r \)'s suffice. One could try a smaller set of primes \(r \) as a preliminary step. The prime 3 suffices for half of all moduli; it can be tried in time \(O(n) \). The prime 5 suffices for half of the remaining moduli; it can be tried in time \(O(n) \). The primes below \((\lg n)/\lg\lg n \) suffice for most moduli; they can all be tried together in time \(O(n) \), as explained below. The primes below \(n/\lg n \) suffice for practically all moduli; they can be tried in total time \(O(n\lg n\lg\lg n) \).

Randomized algorithms. The other popular sequence of \(r \)'s is a sequence of independent uniform random odd integers between 0 and \(m – 1 \); actually, between 0 and \(2^n – 1 \), so that one can generate each candidate \(r \) by generating \(n – 1 \) random bits. This algorithm finds \(r \) in expected time \(O(n(\lg n)^2\lg\lg n) \): there are at least \((m – 1)/4 \geq 2^n/8 \) qualifying values of \(r \), so the expected number of Jacobi-symbol computations is at most 4. (This is not the optimal constant.)

Even better, take \(r \) to be a uniform random odd integer between 0 and \(2^k – 1 \), where \(k \) is much smaller than \(n \); say \(k = 2 \lceil \lg n \rceil \). The bottleneck in the Jacobi-symbol computation is then an \(n \)-bit-by-\(k \)-bit division, which takes time \(O(n) \) by an adaptation of Kaminski's algorithm in [4]. I conjecture that the expected number of Jacobi-symbol computations is bounded.

I should add a table of numerical evidence for this conjecture. I should probably explain Kaminski's algorithm; my recollection is that Kaminski focused entirely on the function-field case. Perhaps I should just tell people to select \(r \) as a sum of \(10 \) random powers of 2, with exponents bounded by \(n/(\lg n)^3 \), although I have to be a bit more careful with constants in this case to make the conjecture plausible.

References

Department of Mathematics, Statistics, and Computer Science (M/C 249), The University of Illinois at Chicago, Chicago, IL 60607–7045

Email address: djb@cr.yp.to