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Abstract. We introduce the multiple-lattice number field sieve. The formal relation

between the multiple-lattice number field sieve and the number field sieve is the
same as the formal relation between the multiple-polynomial quadratic sieve and the

quadratic sieve.

1. Introduction

The object of this paper is to show that the multiple-polynomial variation [9] of
the quadratic sieve [8] has an analogue for the number field sieve [5].

In section 2 we review the now-standard sieving technique introduced in [8], with
emphasis on concepts shared by the quadratic sieve and the number field sieve. In
section 3 we explain how the general multiple-lattice idea applies to the quadratic
sieve and the number field sieve.

2. Sieving

An integer is smooth if all its prime divisors are small. In both the quadratic
sieve and the number field sieve we search for smooth values of a polynomial on an
integer lattice. We choose the polynomial in view of an integer, n, and we hope
that by combining enough smooth values we can construct a factor of n.

QS. The quadratic sieve polynomial is g(x) = (x+r)2−n. Here r is an integer close
to
√
n; say r = b

√
nc. We want to find smooth values of g on the one-dimensional

lattice of integers x.
We pause to establish some terminology. Let p be a positive integer. Then p

divides g(x) if and only if p divides g(x+ p). Hence the set of x such that p divides
g(x) is a finite union of arithmetic progressions. We refer to these progressions as
p-lattices; each progression is a sublattice of our lattice of integers x.

Here is what it means to sieve for smooth values of g. Consider a row of boxes
labelled by the values of x in some range. Figure out all the p-lattices for various
prime powers p. Given a p-lattice L, hop through the boxes for x ∈ L, and record
p in each box.

After sieving we zoom through all the boxes. In the box for x we have recorded
some prime powers p dividing g(x). If it seems likely, on the basis of a quick
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estimate for g(x), that there are enough p’s for g(x) to be smooth, then we spend a
few moments dividing g(x) by its known factors and checking whether the quotient
z is smooth.

Note that to find z we do not have to calculate g(x) in high precision. When
there are many p’s it is easier to compute z modulo some integer t coprime to each
p. Given bounds on g(x) we may find upper and lower bounds for z, and thus
reconstruct z from z mod t if t is large enough. We could even compute z modulo
several small t’s, and reconstruct z with the Chinese Remainder Theorem.

NFS. In the number field sieve we choose an integer m and an integer polynomial
f such that n = f(m). Let d be the degree of f ; then N(x, y) = f(x/y)yd is
a homogeneous polynomial of degree d in x and y. Now the number field sieve
polynomial is h(x, y) = (x −my)N(x, y). We want to find smooth values of h on
the two-dimensional lattice of integers x and y. (This is not the most general form
of the number field sieve; see, for example, [2, section 12].)

Fix a positive integer p. Then the set of x such that p divides h(x, y) is a finite
union of sublattices, which we call p-lattices, of our two-dimensional lattice. We
use the p-lattices for various prime powers p to sieve over a two-dimensional array of
boxes. In practice one can speed this up a bit by paying attention to the structure
of the number field sieve polynomial: h(x, y) is smooth if and only if x −my and
N(x, y) are both smooth. We may sieve x−my and N(x, y) separately.

3. Multiple lattices

In section 2 we explained how to look for smooth values of a polynomial on an
integer lattice. We may use the same procedure to look for smooth values on a
sublattice of the original lattice. We propose the term multiple-lattice variation
for the general practice of sieving over many sublattices. In this section we consider
the impact of the multiple-lattice variation upon the effectiveness of sieving.

History. In the beginning Carl Pomerance discovered the quadratic sieve [8]. The
multiple-lattice variation was first discovered by James A. Davis, then applied by
Davis together with Diane B. Holdridge [4], and independently discovered and ap-
plied by Peter L. Montgomery [9]. Later John M. Pollard discovered the number
field sieve [5] and applied the Davis/Holdridge variation to it [7].

Several versions of the multiple-lattice quadratic sieve and the multiple-lattice
number field sieve have their own names. The Davis/Holdridge version is the
special-q variation; the Montgomery version is the multiple-polynomial variation;
and the Pollard version is the lattice sieve.

Note that [3] is an unrelated method, which involves multiple polynomials in a
much more fundamental way than the multiple-polynomial variation. To prevent
confusion one could refer to [3] as the multiple number field sieve.

Overhead. Sieving time per box is approximately constant. But this approxima-
tion breaks down if we search through too few boxes, because we always spend some
extra time figuring out p-lattices for each p. To keep overhead down we must sieve
through at least, say, B boxes at a time: an interval of length B for the quadratic
sieve, or some sort of rectangular blob of area B for the number field sieve. In the
following discussion we will treat B as a constant.
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Expansion. Our goal is to find as many smooth polynomial values as possible.
Since small values are more likely to be smooth than large values, we should sieve
over regions where our polynomial is as small as possible.

Both the quadratic sieve polynomial g and the number field sieve polynomial h
are designed to be reasonably small near the origin. Say we sieve over B boxes
centered around the origin. For the quadratic sieve, g(x) is typically as large as

B
√
n. For the number field sieve, x −my is typically as large as (m/2)

√
B, and

N(x, y) is typically as large as cBd/2 where c reflects the coefficients of N , so h(x, y)
is typically proportional to B(d+1)/2.

The primary disadvantage of sieving over a sublattice is that we move rapidly
away from the origin. B boxes within a sublattice of determinant q cover the same
range as Bq boxes within the original lattice. Hence, for the quadratic sieve, g(x)
expands by a factor of q. For the number field sieve, x −my expands by a factor
of
√
q and N(x, y) expands by a factor of qd/2.

Note that one can reduce the expansion slightly by choosing sublattices that
interact well with the coefficients of the polynomial. For example, as pointed out
in [9], polynomial values in the multiple-polynomial variation are typically a factor

of
√

8 smaller than polynomial values in the special-q variation.
Note, furthermore, that the same disadvantage occurs if we sieve over more than

B boxes in the original lattice. If we sieve over kB boxes, we see a k expansion for
the quadratic sieve, and an overall k(d+1)/2 expansion for the number field sieve.

Squeezing. The primary advantage of the multiple-lattice variation is that for our
sublattice we may select a determinant-q q-lattice. Thus we force every value of
the polynomial to be divisible by q.

For the quadratic sieve we squeeze a factor of q out of g(x), exactly balancing the
expansion by q mentioned above. We thus have a nearly infinite supply of equally
useful sublattices. It is much better to systematically use these sublattices than to
sieve farther away from the origin in the original lattice.

We briefly survey examples of the multiple-lattice quadratic sieve. The special-q
variation uses small primes q, in the same range as allowable factors of smooth
numbers. The multiple-polynomial variation uses larger q’s—preferably squares,
which are useful for factoring even though they are not smooth. (We can use any
q at the expense of a single smooth value on the q-lattice. This is worthwhile if we
find several smooth values.) The self-initialization procedure reduces overhead by
simultaneously considering several q’s built up from subsets of a single small set of
primes.

Next we consider the multiple-lattice number field sieve. After squeezing a q
factor out of h(x, y), we are left with an overall expansion of q(d−1)/2. Since q(d−1)/2

grows as q grows, it may be better to sieve more than B boxes for a single q than
to sieve B boxes for several q’s.

We may quantify this effect as follows. If we sieve B boxes for q0, we suffer an

overall expansion of q
(d−1)/2
0 . If we sieve kB boxes for q < q0, we suffer an overall

expansion of k(d+1)/2q(d−1)/2. To make these expansions match we should take
k ≈ (q0/q)

(d−1)/(d+1). For example, if d = 5, the number of boxes we sieve for q
should be proportional to q−2/3. Sieving 10B boxes for a single q ≈ 107 is about
as productive as sieving B boxes for ten values of q ≈ 3 · 108.

To analyze the multiple-lattice number field sieve more accurately we would have
to take into account the structure of h(x, y). We have a choice: we may squeeze our
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q factor out of either x−my or N(x, y). Probably squeezing q out of x−my, as in
the lattice sieve, is best for special numbers, while squeezing q out of N(x, y) is best
for general numbers. In the first case the total effect of squeezing and expansion
is to gain

√
q for x − my and lose qd/2 for N(x, y). In the second case we lose

√
q for x−my and lose qd/2−1 for N(x, y). The resulting smoothness probabilities

will depend on the relative sizes of q, x −my, N(x, y), and the bound for smooth
primes.

Collisions. Multiple lattices generally intersect. One difficulty of sieving over
several lattices is that any smooth value at the intersection of two lattices—i.e.,
any smooth value divisible by two of our q’s—will be found twice. Davis and
Holdridge call this event a collision. It is not difficult to weed out duplicates (or
triplicates!), but any collision indicates that we have wasted some sieving time.

When every q has a large prime factor, there is no problem: we insist that values
be smooth (apart from q), and hence not divisible by any other q.

In the special-q method it is traditional to ignore p-sublattices of q-lattices for
p > q, on the theory that polynomial values divisible by p will be found when q = p.
This conveniently papers over the duplication problem without solving it. For the
number field sieve, that theory is not even close to correct, and we suggest breaking
with tradition.

Any precise analysis of the multiple-lattice variation will have to take collisions
into account.

Avoiding redundancy. Here is a different use of the multiple-lattice number field
sieve.

The quadratic sieve polynomial q(x) = (x + r)2 − n takes the same value for x
and for −x− 2r. If one is smooth then the other is too. But we cannot double our
money this way, since these two smooth values together will eventually produce a
trivial factorization of n.

In the number field sieve, (x, y) and (−x,−y) carry the same information. So
we insist that y be positive. Furthermore, given (x, y) it is redundant to consider
(dx, dy) for d > 1. So we insist that x and y be coprime.

Now the number of useful inputs with a given y, and hence the number of smooth
values, is correlated with φ(y)/y, the chance that x is coprime to y. So to save time
we can simply throw away all y divisible by 6. Arjen K. Lenstra independently
proposed considering the three coprime possibilities for (x mod 2, y mod 2). In
general we may consider the coprime possibilities for (x mod s, y mod s). Each
possibility defines a sublattice, and we sieve separately over each sublattice.
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