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Abstract. This paper questions various claims from the paper “Social
distancing strategies for curbing the COVID-19 epidemic” by Kissler,
Tedijanto, Lipsitch, and Grad: most importantly, the claim that China’s
“intense” distancing measures achieved only a 60% reduction in R0.
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1 Introduction

The 22 March 2020 paper “Social distancing strategies for curbing the COVID-
19 epidemic” [5] reports calculations in a model where distancing reduces R0 by
at most 60%, and claims that 60% is “on par with the reduction in R0 achieved
in China through intense social distancing measures (3)”.

Reference “(3)” is a 9 March 2020 paper [1] that does not say what [5] claims
it says. What [1] actually says about the effect of China’s distancing upon R0 is
the following:

With an early epidemic value of R0 of 2.5, social distancing would have
to reduce transmission by about 60% or less, if the intrinsic transmission
potential declines in the warm summer months in the northern hemi-
sphere. This reduction is a big ask, but it did happen in China.

In other words, if R0 in China was originally 2.5 without distancing, and if
China’s interventions had less than a 60% effect, then the new R0 would have
been larger than 1, so the epidemic would have continued to spread exponentially
in China—but the news reports say that the epidemic was stopped in China, so
R0 there must have been reduced by at least 60%.

How does [5] conclude that “intense” distancing reduces R0 by at most 60%?
There do not seem to be any further comments on this topic in [5]; also, [1]
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does not seem to present any justification for its claim that reducing R0 by
60% is a “big ask”. Is it plausible that an “intense” lockdown—presumably a
drastic reduction in the amount of contact between typical people—would reduce
transmission by only 60%? The actual level of reduction directly affects the main
quantitative conclusions of [5].

The main objective of this paper is to see what the distancing model in [5] says
regarding the initial COVID-19 outbreak and subsequent lockdown in China.
The software used in [5] does not seem to be available; this paper is accompanied
by new public-domain software intended to implement the same model.

The new computations conclude that, with the minimum R0 allowed in the
model of [5], China would have a 43-day period of hospitalizations being within
50% of peak, and a 53-day period of critical-care cases being within 50% of peak.
For comparison, China’s reports of “severe cases” between 24 January and 28
March show only a 26-day period of “severe cases” being within 50% of peak.

This comparison is consistent with the theory that “intense” distancing cut
China’s rate of new infections much more sharply than assumed in [5]. There
was no way for [5] to rule out this theory, so [5] should have considered much
smaller R0 values. This paper also covers various other problems with [5].

The theory stated in the previous paragraph should be treated with caution,
for several reasons. The hope of strong effects from interventions creates a bias
towards believing that such effects exist. Overly optimistic COVID-19 models
have slowed down interventions (see, e.g., [2]), and newer models suggest that
this slowness will turn out to have caused many unnecessary deaths; further
policy decisions based on other unproven theories can be similarly disastrous.
There are many other possible explanations for the relatively short period of
“severe cases” in China: for example, perhaps increased contact tracing and
wearing of masks helped reduce transmission; perhaps changes in treatment or
in reporting policies reduced the number of reported “severe” cases.

Furthermore, the fragments of data considered here cannot reliably distinguish
between, e.g., the theory that “intense” distancing reduces R0 by 90% and the
theory that “intense” distancing reduces R0 by 99%. Policymakers trying to
find the best combinations of non-pharmaceutical interventions to keep R0 low
until a vaccine is available—for example, keeping it safely below 1, the “dance”
explained in [7]—want to know much more regarding the impact of various types
of distancing, the impact of encouraging widespread wearing of masks, etc. This
paper should not be viewed as answering these questions; this paper merely
disputes the overconfident answer given in [2].

The only policy recommendation in this paper is as follows. Governments
should systematically allocate 5% of their daily COVID-19 testing capacity to
testing people chosen at random from census rolls, with whatever incentives are
necessary to create compliance (e.g., in the United States, a $100 reward to
each person tested in this way). The resulting data regarding infection rates
would help rule out incorrect theories regarding the prevalence of COVID-19,
and would provide essential feedback regarding the impact of interventions. No
claims of novelty are made regarding this recommendation.



Further analysis of the impact of distancing upon the COVID-19 pandemic 3

2 The model

This section reviews [5]’s model of COVID-19 spread.

2.1. Introduction to SIR models. An “SIR model” works as follows. There
are N people in the population. This population is partitioned into three sub-
populations (“compartments”):

• Some people are “susceptible” people who have never been exposed to the
disease. The fraction of people who are susceptible is called S, so in total
there are SN susceptible people.

• Some people are “infectious” people who have been exposed to the disease
and could be spreading it. The fraction of people who are infectious is called
I, so in total there are IN infectious people.

• Some people are “recovered” people who have been exposed to the disease
and are no longer spreading it. The fraction of people who are recovered is
called R, so in total there are RN recovered people.

The fractions S, I,R have S+ I+R = 1. These fractions change over time. Note
that the literature often relabels SN, IN,RN as S, I,R, which also changes the
equations shown below.

Each infectious person is assumed to take, on average, 1/γ days to recover,
where γ is a parameter in the model. One can imagine several different ways to
define the exact timing of recovery:

• Each infectious person recovers after exactly 1/γ days. (There is no variance
in the recovery time.)

• Each infectious person has probability γ of recovering each day. (There is
much more variance in the recovery time.)

• Each infectious person has probability γ/24 of recovering each hour.
• Et cetera.

An SIR model uses the limit of these possibilities, continuously compounding
the probability of recovery. Mathematically, if there are no new infections, then
this model says that the derivative I ′(t) is −γI(t) where t is time measured in
days, so I(t) = I(0) exp(−γt).

Meanwhile each infectious person is assumed to transmit the disease to an
average of β people each day, spread uniformly at random through the entire
population. This transmission affects only susceptible people: each infectious
person infects, on average, βS people each day. The IN infectious people are
assumed to infect separate people, a total of βISN people on average each day,
increasing I at a rate βIS. This again is modeled as a continuous process:

S′(t) = −βI(t)S(t),

I ′(t) = βI(t)S(t)− γI(t),

R′(t) = γI(t).

These ordinary differential equations are the definition of an SIR model. These

equations are abbreviated “S
βI−→ I

γ−→ R”. Readers familiar with state-transition
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diagrams for discrete automata should observe that the notation here does not
include self-loops, the default possibility of staying in the current compartment.

Without doing the work of analyzing solutions to these equations, one can
guess that each infectious person will transmit the disease to an average of
β/γ people, and thus infect an average of (β/γ)S people, during the 1/γ days
of an average infection. The ratio β/γ is called R0. This back-of-the-envelope
calculation suggests that an epidemic with R0 < 1 will remain under control,
while an epidemic with R0 > 1 will explode exponentially until S drops to 1/R0

(“herd immunity”).
One can see the same effects in the model: any nonzero rate of infectious

people will increase (i.e., I ′(t) > 0) as long as βS(t) > γ, i.e., R0S(t) > 1. Once
S(t) drops to 1/R0, the quantity I(t) stops increasing. The remaining infectious
people continue infecting more, pushing S(t) somewhat below 1/R0, but the
recovery rate begins to reduce I(t).

2.2. General issues with SIR models. Real diseases seem to be less infectious
at first but become more infectious after an incubation period; an SIR model
does not account for this. An “SEIR model” tries to address this by adding an
extra compartment for “exposed” people who are infected but not yet infectious:

S′(t) = −βI(t)S(t),

E′(t) = βI(t)S(t)− νE(t),

I ′(t) = νE(t)− γI(t),

R′(t) = γI(t).

These equations are abbreviated “S
βI−→ E

ν−→ I
γ−→ R”. The equations say that

an exposed person takes, on average, 1/ν days to become infectious. Note that
this delay slows down the progress of the epidemic, but also slows down the effect
of interventions that are based only on observations of I and not on observations
of E.

Real diseases also have different effects on different people—and, presumably,
different levels of transmission—but SIR models and SEIR models do not account
for this. The paper [5] tries to address this for COVID-19 by modeling three
different levels of disease severity:

• Mild infections (“IR”) progress to recovery (“RR”).
• Moderate infections (“IH”) progress to hospitalization (“HH”), and then

progress to recovery (“RH”).
• Critical infections (“IC”) progress to hospitalization (“HC”), and then to

critical care (“CC”), and then to recovery (“RC”).

The model thus has 11 compartments (including S and E). This makes the
model sound more complicated than it actually is: one can compute the same
results with just 7 compartments, namely S, E, I = IR + IH + IC , HH , HC ,
C = CC , and R = RR +RH +RC .

More broadly, when someone objects that an SIR/SEIR model is oversimpli-
fied, the standard response is to add more transitions to the model. For example:
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• Perhaps observations show that immunity lapses. The standard response is
to add an R→ S transition.

• Perhaps the observed variance of progression times for a disease is smaller
than predicted in an SEIR model. The standard response is to add more
stages of progression, such as S → E1 → E2 → I1 → I2 → R, narrowing the
variance while preserving the average.

• Perhaps the period of infectiousness begins before the period of symptoms,
and people with symptoms take more precautions to reduce transmission.
The standard response—assuming, e.g., an S → E1 → E2 → I1 → I2 → R
model—is to model a larger transmission speed from I1 than from I2. The
terminology used for such a model distinguishes the “latent period”, meaning
the non-infectious time spent in E, from the “incubation period”, meaning
the pre-symptomatic time spent in E and I1.

• Part of the rationale for health-care workers to wear protective equipment
is that hospitalized and critical-care patients—and the health-care workers
themselves—are believed to be sources of infection. This is not accounted
for in the model of [5]. The standard response would be to add further
compartments to track infections of health-care workers.

• People are spread around the globe. Infections are sometimes carried by
travelers or possibly by packages, but presumably infections are much more
likely to spread locally. The standard response is to have local compartments,
perhaps with different transmission rates that try to account for local factors
such as population density and frequency of mask use.

All of these models depend heavily upon parameters such as β and γ. Small
mistakes in estimating those parameters can easily produce vastly larger errors
in predictions. This difficulty is exacerbated by the practice of adding more and
more compartments to models, along with more and more dimensions in the
parameter space, since the problem of computing parameters accurately from
output data typically becomes exponentially more difficult as the dimension
grows. Furthermore, modeling a discrete probabilistic process as a continuous
deterministic process becomes increasingly difficult to justify as the number of
compartments increases.

2.3. Parameters in [5]. In the model of [5], the speed (per day) of progres-
sion from being infectious (I → R or I → HH or I → HC , depending on the
disease severity) is 1/5 (“γ”); the speed of progression from hospitalization to
recovery (HH → R) for moderate cases is 1/8 (“δH”); the speed of progression
from hospitalization to critical care (HC → C) is 1/6 (“δC”); and the speed of
progression from critical care to recovery (C → R) is 1/10 (“ξC”). The speed
of progression from being exposed to being infectious is not stated in [5] but
appears to be modeled as 1/5.

In this model, a critical infection takes an average of 5+5+6 = 16 days before
critical care, and an average of 16 + 10 = 26 days before the end of critical care.
After a rapid burst of new infections, an intervention that drastically reduces
new infections would not produce a peak of critical-care patients in this model
until about three weeks later.
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The model of [5] assumes that 95.6% of infections are mild while the other
4.4% require hospitalization. The procedures that have produced these numbers
are not robust, as emphasized in [3], but this paper’s policy recommendation (see
Section 1) would rapidly produce robust numbers. This is not an endorsement
of the controversial idea from [3] of delaying serious interventions until robust
numbers are available.

Within hospitalizations, the model of [5] assumes that 30% (i.e., 1.32% of
total infections) require critical care.

There is one more parameter in the model of [5], the most important param-
eter: namely, R0, which in turn determines β = γR0. This is modeled in five
stages:

• The wintertime R0 is modeled as either 2 or 2.5. Beware that the litera-
ture includes a wider range of estimates for R0, and underestimating R0 is
dangerous.

• The summertime R0 is modeled as either 70% (more optimistic) or 100%
(less optimistic) of the wintertime R0.

• The current-time R0 is modeled as a cosine curve from the wintertime R0

down to the summertime R0 and back up. The maximum is assumed to
occur 3.8 weeks (26.6 days) before the end of the year.

• The distancing R0 takes 0%, 20%, 40%, or 60% away from the current-
time R0, reflecting four different hypotheses regarding the effectiveness of
distancing.

• The final R0 is modeled as either the current-time R0 or the distancing R0,
depending on whether distancing is “on” or “off”.

The paper analyzes the consequences in this model of a few different strategies
for deciding when to turn distancing on or off.

To summarize, the differential equations for the model of [5] are as follows,
where R0 is the final R0 defined above:

HH

1/6

''
S

R0I/5 // E
1/5 // I

0.956/5 //

0.0308/5
>>

0.0132/5   

R

HC
1/8

// C
1/10

??

As mentioned earlier, this is presented with 11 compartments in [5], but these 7
compartments produce the same results in a simpler way.

2.4. Further issues with the model. According to Wikipedia, more than
10000 people in Italy have been reported dead with COVID-19 at the time of
this writing, including more than 600 per day for each of the past 9 days. It is
plausible (although not proven) that almost all of those deaths were not merely
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with COVID-19 but caused by COVID-19; and that if COVID-19 is not brought
under control then it will cause millions of deaths worldwide within a year.

Perhaps many of these deaths can be avoided through, e.g., widespread mask
usage, combined with several periods of distancing over the next year, followed
by widespread vaccination. However, this cannot even be expressed, let alone
analyzed, in the model of [5]:

• The model includes on/off distancing, but does not include masks or any
other non-pharmaceutical interventions.

• The model does not include the possibility of future vaccination (S → R).
• The model does not include deaths. Dead people are treated as “recovered”—

they have been exposed to the disease and are no longer spreading it. This
simplification does not change the analysis of the spread of the epidemic,
but the terminology is ethically questionable and presumably reduces the
amount of attention given to one of the most important variables.

All of the parameters and distancing strategies considered in [5] result in mass
COVID-19 infection within a few years—but a closer look shows that some
scenarios have far fewer infections than others by mid-2021. In an extended model
that accounts for deaths and the possibility of widespread vaccination, these
scenarios would have far fewer deaths than other scenarios. There could be an
even larger reduction in COVID-19 infections and deaths if non-pharmaceutical
interventions are more effective than assumed in [5]. This again highlights the
importance of understanding the actual impact of distancing, masks, etc.

3 What the model predicts for hypothetical future
United States distancing

This section reviews, and disputes some of, (1) the calculations that [5] carries
out within its model, and (2) the conclusions that [5] claims on the basis of these
calculations.

3.1. Software engineering. https://cr.yp.to/2020/gigo-20200329.py, an
attachment to this paper, is a Python script that produces (as PDF files) all of
the graphs shown here.

As noted in Section 1, the software used in [5] does not seem to be available. It
is easy to find software online for other SIR/SEIR/. . . models, including software
that appears reasonably easy to adapt to the model of [5], but all of this software
seems to depend on ODE-solving packages (e.g., scipy.integrate.odeint),
and it is not clear how much review those packages have had from a safety-
engineering perspective.

This paper’s Python script begins with a table of transitions, for example

expressing E
1/5−−→ I as follows:

(’E’,’I’,1/5.0)

Transition speeds can be functions: for example, the transition

https://cr.yp.to/2020/gigo-20200329.py
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(’S’,’E’,paperinitialpulse)

uses the following function:

def paperinitialpulse(day,distancing):

return 0.01/7 if day < startday+3.5 else 0

This appears to match the description in [5] of how the initial infection is mod-
eled: “infection is introduced through a half-week pulse in the force of infection”.
The height of this pulse is not stated in [5], but an earlier paper suggests 0.01
per week.

The most complicated transition is

(’S’,’E’,paperbeta,’I’)

for S
βI−→ E. The function paperbeta is

def seasonalimprovement(day):

summerimprovement = 0.3

wintershift = 3.8*7 # peak of winter before end of December

angle = 2*pi*(day+wintershift)/(7.0*seasonal)

return summerimprovement*0.5*(1-cos(angle))

def paperbeta(day,distancing):

R = R0

if seasonal: R *= 1-seasonalimprovement(day)

if distancing: R *= 1-0.6

return R/5.0

where a careful reviewer needs to check every line against the model of β in [5].
The Python script then solves the corresponding differential equations from

first principles: at each moment in time, use the table of transitions to compute
the rate of change of each variable, and then compute

day += daydelta

for c in current:

current[c] += change[c]*daydelta

to move to the next moment in time. The yes/no distancing variable is not
differentiable and is instead updated by iterating the following function:

def paperstrategy(day,distancing):

if current[’I’] >= 37.5/10000: distancing = 1

if current[’I’] <= 10.0/10000: distancing = 0

return distancing

This matches the main distancing strategy highlighted in [5], where distancing
is “turned ‘on’ when the prevalence of infection rose above . . . 37.5 cases per
10,000 people”, and off when the prevalence drops below 10.0 cases per 10,000
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people. (“Infection” here appears to refer specifically to the I compartment, so
it should have said “infectiousness”.)

If these calculations were performed in exact arithmetic (or interval arithmetic
in higher and higher precision), rather than floating-point arithmetic, then the
outputs over any compact interval would converge to the exact solution of the
equations as daydelta converges down to 0. This does not imply that the out-
puts of the Python script are exact: the script uses floating-point arithmetic
and a specific nonzero daydelta. More precisely, the script takes daydelta as
1/72 days (20 minutes), but decreases daydelta towards 0 when I approaches
the 37.5/10000 or 10.0/10000 cutoffs. Some spot-checks suggest that smaller
choices of daydelta produce visually identical graphs, but this is very far from
a thorough error analysis.

Differential equations are normally solved by more complicated algorithms
that are designed to obtain better tradeoffs between equation-solving time and
accuracy. However, simpler algorithms are easier to review. The first 98 lines of
this Python script include the transition tables, underlying functions, differential-
equation solver, and recording the history of output data, using no libraries other
than π and cos. The script then has more lines—which also need review!—for
turning the data into graphs using matplotlib, a relatively complicated library.

3.2. Disputing the calculations in [5]. The paper [5] claims, within its model,
that the (37.5, 10.0) distancing strategy explained above achieves the “goal of
keeping the number of critical care patients below 0.89 per 10,000 adults” under
the following assumptions: wintertime R0 = 2, and distancing achieves a 60%
reduction inR0. This conclusion is stated for both the “seasonal and non-seasonal
cases”, i.e., for summertime R0 being either 70% or 100% of the wintertime R0.

The conclusion is backed by a non-seasonal graph [5, Figure 3(A)] and by a
seasonal graph [5, Figure 3(B)]. The seasonal graph comes close to exceeding
0.89 (in July 2021), but does not exceed it. The (37.5, 10.0) choice is close to,
but not at, the edge of safe possibilities shown in [5, Figure S3]. The assumption
that R0 = 2 is important: other graphs [5, Figures S6(A), S6(B)] say that this
distancing strategy does not achieve the goal if R0 = 2.5.

Figure 3.3 shows three plots produced by this paper’s Python script with
wintertime R0 = 2. The first plot is a recalculation of the non-seasonal [5,
Figure 3(A)]. The black and red curves, as in [5, Figure 3(A)], show 10000I and
10000C; the top line shows a cutoff of 0.89 for 10000C, and the dotted lines
show cutoffs of 37.5 and 10 for 10000I. The green curve shows 1− S increasing
to slightly above 0.4 by January 2023; this green curve matches [5, Figure 3(F)].
The orange curve shows 10000H = 10000HH + 10000HC (which is not plotted
in [5]). As expected, each peak of infectiousness (black) triggers a later peak
of hospitalizations (orange), followed by a peak of critical-care patients (red).
These graphs go several months beyond the graphs in [5], so it is unsurprising
that they show an extra period of distancing.

The second and third plots are two different recalculations of the seasonal [5,
Figure 3(B)]. The second plot seems to match [5, Figure 3(B)]. The third plot
looks the same at the beginning, but looks different in 2022, and in particular
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Fig. 3.3. Model from [5], in the case R0 = 2, with 60% reduction from distancing.
First plot: no seasonality. Second plot: model with a typo, 55-week 30% seasonality.
Third plot: 52-week 30% seasonality. See text for further details.

crosses the 0.89 line. The only difference between the models used in the second
and third plots is as follows:

• One of the plots uses a 52-week seasonality period as specified in [5].
• The other plot is a calculation in a model that was modified through the

introduction of a typographical error, replacing 52 with 55.

This illustrates how safety conclusions can be undermined by errors hidden inside
epidemic-modeling software. This illustration is not hypothetical: the second
plot, the one that seems to match [5, Figure 3(B)], is the one that includes the
typographical error.

If the third plot here is correct then the (37.5, 10.0) safety claim in [5] is
wrong. Occam’s razor suggests that the safety claim in [5], and the underlying
calculations in [5], arise from the typographical error mentioned above.
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In all of these models, the distancing trigger creates an immediate reduction
in E, a less sharp reduction in I within a week, and a reduction in C in under
a month. For comparison, peaks in I that occur without intervention (because
1− S has increased enough compared to R0) continue to trigger new infections
for some time, and relatively large peaks in C. This is why the mid-2022 red-
versus-black gap in the third plot is relatively large compared to the other red-
versus-black gaps: a peak in I occurs just below the trigger for intervention. It
should be clear that this variation can occur within this model, even under the
assumptions that (1) there are mistakes in the third plot and (2) a corrected
version of the same plot would not show this variation.

One can see this variation in gaps in [5, Figure S6(D)], but these phenomena—
and their safety consequences—do not seem to have been noted in [5]. The error
analyses in [5] were too limited to catch this error, and there is no evidence that
the software was subjected to any double-checks or other review.

One can respond that 0.89 is not exceeded by much in the third plot, and
that we should have enough critical-care capacity by then to handle this. Such
a response is missing the broader point. If a change from 52 to 55 was not
caught, why should one expect larger errors to be caught? Current practices in
modeling epidemics obviously do not have adequate guarantees of the correctness
of software claimed to be implementing models. The dangers of inaccuracies in
computations are added to the dangers of inaccuracies in the models per se.

Email dated 25 Mar 2020 05:19:27 -0000 to the contact authors for [5] included
a preliminary public version of this paper’s Python script, noted the discrepancy
with [5, Figure 3(B)], noted the contradiction with the (37.5, 10.0) safety claim,
and suggested posting software “for public review so that errors can be more
easily located and corrected”. This email did not elicit a response. Considerable
effort spent reverse-engineering [5, Figure 3(B)] eventually identified the theory
of a 55 typographical error. The unavailability of the software continues to make
the theory unnecessarily difficult to confirm.

As further checks on this paper’s Python script, Figure 3.4 includes the same
calculations for R0 = 2.5. Compare the top two plots to [5, Figures S6(A),
S6(B)].

3.5. Implementability of distancing strategies. Recall that this distancing
strategy is triggered by I crossing particular cutoffs, namely 37.5/10000 and
10.0/10000. A policymaker considering this strategy immediately runs into the
problem that the real-world I is unknown at each moment. (This is separate
from the question of whether the strategy is safe; see above.)

The paper [5] claims that, to “implement an effective intermittent social dis-
tancing strategy”, it will be “necessary to carry out widespread surveillance to
monitor when the prevalence thresholds that trigger the beginning or end of
distancing have been crossed”.

Collecting data regarding COVID-19 prevalence is valuable for other reasons,
and is the only policy recommendation in this paper. This does not imply, how-
ever, that such data collection would enable implementation of the strategy in [5]
with a useful level of accuracy. An error analysis is required here—accounting
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Fig. 3.4. Model from [5], in the case R0 = 2.5, with 60% reduction from distancing.
First plot: no seasonality. Second plot: model with a typo, 55-week 30% seasonality.
Third plot: 52-week 30% seasonality. See text for further details.

for lags in testing, errors in testing, possible correlations between infectiousness
and non-compliance, etc.—but does not appear in [5].

Furthermore, no justification is provided in [5] for the claim that this data
collection is “necessary” for a distancing strategy to be “effective”. Imagine pol-
icymakers today implementing a simple one-month-on-one-month-off distancing
strategy to be adjusted later; this is effective in some of the scenarios covered by
the paper’s model, contradicting the blanket claim of ineffectivity. Perhaps this
simple strategy is unimplementable for cost reasons or political reasons, but this
does not justify the claim that the strategy is ineffective.

3.6. The effect of increased critical-care capacity. The obvious way to han-
dle the possibility of overruns in critical-care capacity is to increase the critical-
care capacity. This is not controversial.
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What is much more controversial is the idea of actively trying to exploit all
available critical-care capacity, tuning the amount of distancing to almost—but
not quite—overload this capacity. One reason this is controversial is that such
tuning is prone to error, whether the errors come from miscalculations within
models (as illustrated above) or from the models being wrong; see, e.g., [8].
Another, more fundamental, reason this is controversial is that less distancing
means more infections. The claim that these infections are inevitable might be
correct but (1) is not justifiable from the available data and (2) does not justify
policy decisions that make the infections happen now.

The paper [5] claims that increasing critical-care capacity “allows population
immunity to be accumulated more rapidly, reducing the overall duration of the
epidemic and the total length of social distancing measures”. It is not ethical to
say that exploiting increased critical-care capacity in this way is “allowed” with-
out mentioning that this has the side effect of more infections now—including
painful hospitalizations and deaths that would have been avoided by more dis-
tancing. Furthermore, the predictions made by the model of [5], in particular
regarding the epidemic duration and the amount of distancing, are not robust
against modifications to the model that account for more effective interventions
and the possibility of widespread mid-2021 vaccinations.

The paper [5] also claims, in its “Summary” at the top, that “Intermittent
efforts require greater hospital capacity”. This is contradicted by, e.g., [5, Figure
3(B)], which claims—for R0 = 2 with seasonality—that the capacity of 0.89
critical-care beds per 10000 adults would not be overrun with (roughly) half-
time intermittent distancing in 2020 and less distancing in subsequent years.
The second claim appears to be based on a miscalculation, as noted above, but
correcting this miscalculation and adding more distancing in subsequent years
would again contradict the “require” claim.

This criticism of various unjustified claims in [5] should not be interpreted as
opposition to the idea of increasing hospital capacity. Current news reports and
simple extrapolations are consistent with the theory that the United States will
already need more than 0.89 critical-care beds per 10000 adults in April, as a
direct result of inadequate initial interventions in March.

3.7. The possibility of interventions being more effective than assumed
in the model. The first sentence of the summary of [5] is as follows: “One-time
distancing results in a fall COVID-19 peak.” As for intermittent distancing, the
paper’s lead author [4] summarizes the paper’s main quantitative conclusion as
follows:

Intermittent social distancing can prevent critical care capacity from
being exceeded but such measures may be required for 12-18 months.
Depending on R0 and the amount of seasonality, social distancing must
be ‘on’ for as little as 25% but up to 70% of the time.

The paper itself says that staying below 0.89 requires “social distancing measures
to be in place between 25% . . . and 70% of that time” (into 2022). These claims
could be correct, but they go beyond what is shown in the paper.
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Fig. 3.8. Extension of the model from [5] to consider the possibility of interventions
further reducing R0. First plot: R0 = 2, 52-week 30% seasonality, 80% reduction from
distancing, stopped at 10.0/10000. Second plot: R0 = 2, 52-week 30% seasonality, 99%
reduction from distancing, stopped at 2.0/10000. Third plot: R0 = 1.5, 99% reduction
from distancing, 52-week 30% seasonality, stopped at 2.0/10000. See text for further
details.

Concretely, the paper shows within its model that a single month of distancing
now will not prevent mass infection by October; and that extending this to, say,
three months will not prevent mass infection by the end of the year. The paper
also shows within its model that a particular intermittent-distancing strategy,
applied between 25% and 70% of the time, comes close to 0.89/10000 critical-
care patients again and again. It is reasonable to conjecture that, within this
model, every intermittent-distancing strategy with fewer than 6 months of total
distancing will break the 1/10000 barrier.

However, all of these conclusions depend upon the exact values of R0 during
and after distancing. Perhaps the effect of distancing is stronger than assumed
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in [5]. Perhaps other interventions—increased hand-washing, increased wearing
of masks and mask substitutes, etc.; see [7] for many more possibilities—will
keep R0 below 1 after one-time distancing.

As examples of how heavily the results depend upon hypotheses regarding the
effectiveness of interventions, Figure 3.8 shows what happens with the following
strategies and extensions of the model: (1) distancing reduces R0 by 80%; (2)
distancing is turned off at 2.0/10000, and reduces R0 by 99%; (3) same but
with R0 starting at 1.5 instead of 2, as a model of non-distancing interventions
reducing transmission by 25%. The clear differences between the graphs again
highlight how important it is to understand the actual impact of interventions.

4 What the model predicts for actual China distancing

This section returns to the claim in [5] that a 60% reduction in R0 is “on par
with the reduction in R0 achieved in China through intense social distancing
measures”. As noted in Section 1, this claim is incorrectly attributed to [1], and
is not otherwise justified in [5]. Sections 2 and 3 have highlighted the importance
of understanding what R0 can actually be achieved.

4.1. Computations in the model. Figure 4.2 contains four more plots pro-
duced by the same Python script used in Section 3. Each plot stretches over a
4-month period, includes 52-week seasonal forcing, and includes “intense” dis-
tancing starting on 23 January 2020.

The second plot takes the wintertime R0 to be 2.0, the most optimistic possi-
bility allowed in [5]. “Intense” distancing is assumed to reduce R0 by 60%, again
the most optimistic possibility allowed in [5].

The first (less optimistic) plot takes the wintertime R0 to be 2.5. The third
(more optimistic) plot takes the wintertime R0 to be 2.0 and uses an extended
model where “intense” distancing has more of an effect, reducing R0 by 99%.
The fourth plot is like the third but takes the wintertime R0 to be 3.5.

In each plot, there is an initial 2-day pulse of exposure. This is chosen shorter
than the half-week pulse from [5] to limit the impact of the pulse time upon
the width of the resulting peaks. The pulse starts on 11 January, 5 January, 1
January, and 10 January respectively; these dates are chosen so that the red
curves have approximately the same peak heights, simplifying comparison of
other features of the curves.

4.3. Reported “severe cases” from China. https://cr.yp.to/2020/nhc-
20200329.py is a Python script that is intended to plot, for each day, the
number of cases reported by China’s NHC as being “severe” on that day. The
data incorporated into the script was extracted manually, with considerable help
from Google Translate, from http://www.nhc.gov.cn/yjb/pzhgli/new_list.

shtml, the primary source of China COVID-19 case counts cited by Wikipedia.
Double-checking the data, and other aspects of the script, would be useful. The
output of the script is shown in Figure 4.4.

The reason for selecting reports of “severe” cases, rather than (e.g.) reports of
“confirmed” cases, is the common-sense guess that more severe cases are more

https://cr.yp.to/2020/nhc-20200329.py
https://cr.yp.to/2020/nhc-20200329.py
http://www.nhc.gov.cn/yjb/pzhgli/new_list.shtml
http://www.nhc.gov.cn/yjb/pzhgli/new_list.shtml
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Fig. 4.2. What the model from [5] predicts regarding a lockdown in China starting 23
January 2020. First plot: R0 = 2.5, with 60% reduction from distancing, with initial
2-day pulse starting 11 January 2020. Second plot: R0 = 2, with 60% reduction from
distancing, with initial 2-day pulse starting 5 January 2020. Third plot: R0 = 2, in an
extended model with 99% reduction from distancing, with initial 2-day pulse starting
1 January 2020. Fourth plot: R0 = 3.5, in an extended model with 99% reduction from
distancing, with initial 2-day pulse starting 10 January 2020. See text for more details.
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Fig. 4.4. Red curve: Data from China’s NHC regarding “severe cases”. See text for
further details.

likely to be tested and reported, hopefully producing a curve close to reality.
However, there could still be biases in the testing or reporting procedures, and
the NHC reports do not state the exact definition of a “severe” case.

4.5. Comparing the model’s predictions to the reports. None of the red
curves in Figure 4.2 is a convincing fit to the reports in Figure 4.4. Specifically,
each of the curves in Figure 4.2 deviates from Figure 4.4 in at least one of the
following two metrics:

• Width of the peak: e.g., number of days during which the red curve is at
least half of its maximum. This width is 73.7, 53.4, 32.2, 30.2 in Figure 4.2,
and just 26 in Figure 4.4.

• Position of the maximum. This position is at day 55.1, 44.9, 35.6, 38.3 (count-
ing from 0 at the beginning of the year) in Figure 4.2, and at day 49 in
Figure 4.4.

This raises the question of how to build a model that is not obviously inconsistent
with the NHC reports—while at the same time avoiding the clear danger of
overfitting.

There are several contributing factors to the widths of the peaks in Figure 4.2.
In the first plot, wintertime R0 = 2.5 is reduced by distancing to 1, so the
epidemic is controlled primarily by seasonal forcing (plus a gradual increase in
1 − S, the green curve). This is not a large effect, so new infections continue
to occur for a long time. This phenomenon is smaller in the second plot, with
wintertime R0 = 2, and much smaller in the third and fourth plots.

The width of the E peak (not plotted) then produces a somewhat wider I
peak (the black curve), since E → I has a high variance. This in turn produces
a somewhat wider H peak (the orange curve) followed by a somewhat wider C
peak (the red curve).

As noted in Section 2, SEIR models are easily adjusted to match observations
of lower variance in an individual’s disease progression. For example, the analysis
of [6] indicates that the COVID-19 incubation time has standard deviation only
about half of its mean. Modifying the model of [5] to include more E stages
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(while preserving the mean) would reduce the width of the resulting I, H, and
C peaks, producing a sharper increase towards the maximum and the a sharper
decrease from the maximum. It is also easy to adjust the model of [5] to delay
the C peak.

However, a large part of the width of the peak in the first and second plots
in Figure 4.2 arises directly from the assumption that R0 is large even after
distancing. It is not obvious how to reconcile the model of [5] with the reports
from Figure 4.4 without dropping this assumption.

This analysis should not be interpreted as confidently concluding that [5] is
wrong in claiming that China achieved only a 60% reduction in R0. One can
imagine various ways that the claim could still be correct. However, [5] is not
justified in the level of confidence that it states in this claim, and is not justified
in the level of confidence that it states in the conclusions that rely on this claim.
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A Change log

Chronological order.
2020.03.29: First public version.
Corrected typo in parenthetical note regarding definition of “δC”: the note

said “HH → C” instead of the correct “HC → C”. (This typo did not appear in
this paper’s differential equations, and did not appear in this paper’s software,
but illustrates the importance of double-checking everything.)

Broadened “sensitivity analysis” to “error analysis”, for readers who expect
“sensitivity” to refer specifically to the sensitivity of a test. Also changed “are
sensitive to” to “depend upon”.

In the list of illustrations of SIR/SEIR oversimplifications, added note on one
way to model an incubation period longer than a latent period, and expanded
description of local models to include simpler models that do not vary in local
transmission rates.

Added S and R explicitly around E1 → E2 → I1 → I2 for clarity.
Replaced the wording “accurate fitting” with the wording “the problem of

computing parameters accurately from output data”, to make clear that the
accuracy metric here is the accuracy of the resulting parameters.

Added comment that the notation here does not include self-loops, for readers
familiar with state-transition diagrams for discrete automata.

Improved spacing for code excerpts.
2020.03.30: This version.
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