ENUMERATING AND COUNTING SMOOTH INTEGERS

Daniel J. Bernstein
950518 (draft T)

Abstract

We present a linear-time algorithm to list the y-smooth integers up to x, and an even faster algorithm to count the y-smooth integers up to x. We also show how all multiplications can be replaced by an equal number of additions.

1. Introduction

An integer is y-rough if it has a prime factor larger than y; otherwise it is y smooth. Let $P(x, y)$ be the set of y-smooth integers between 1 and x inclusive, and let $\Psi(x, y)=\# P(x, y)$ be the number of such integers.

In section 2 we present a straightforward algorithm that, with fewer than $2 \Psi(x, y)$ multiplications, lists the elements of $P(x, y)$. In section 3 we present a faster algorithm to compute $\Psi(x, y)$ without enumerating $P(x, y)$. In section 4 we show how to adapt these algorithms to use addition instead of multiplication.

For convenience we rely on the following nontraditional statement of unique factorization. Consider the set S of integers $p^{2^{k}}$, where p is a prime number and k is a nonnegative integer; the first few elements of S are $\{2,3,4,5,7,9,11,13,16\}$. For any finite subset T of S, the product of T-i.e., the product of the elements of T-is a positive integer. Unique factorization now says that every positive integer is the product of a unique finite subset of S.

Similarly, if $S=\left\{p^{2^{k}}: p \leq y\right\}$, the y-smooth integers are exactly the products of finite subsets of S.

In general we will consider any set S of positive integers such that distinct finite subsets of S have distinct products. We write $P(x, S)$ for the set of products, no larger than x, of finite subsets of S; and we write $\Psi(x, S)=\# P(x, S)$ for the number of such products.

Now the algorithm in section 2 enumerates $P(x, S)$ for any S, and the algorithm in section 3 computes $\Psi(x, S)$. The P algorithm is in fact a critical component of the Ψ algorithm.

Our algorithms could be applied in much greater generality. We use just two facts about positive integers: (1) if $p>x$ then $p s>x$; (2) if $p s>x$ and $s^{\prime}>s$ then $p s^{\prime}>x$.

See [1] for more information about Ψ.

[^0]
2. Enumerating smooth integers

Fix S, and fix an integer $x \geq 1$. One can enumerate $P(x, S)$ by starting from a single integer, 1 , and multiplying by elements of S every which way, tossing out results larger than x :

Algorithm 1. We compute $P(x, S)$.

1. Set $P \leftarrow\{1\}$.
2. For each $s \in S$:
3. \quad Set $Q \leftarrow\}$.
4. For each $p \in P$:
5. If $p s \leq x$: Add $p s$ to Q.
6. \quad Set $P \leftarrow P \cup Q$.
7. Stop. The answer is P.

To save time we consider the elements of S in order. Once we find $p s>x$, we need not multiply p by any later elements of S, since $s^{\prime}>s$ implies $p s^{\prime}>p s>x$. In this case we say that p is dead and we move it to a dead pile, D :

Algorithm 2. We compute $P(x, S)$, given S in order.

1. Set $P \leftarrow\{1\}, D \leftarrow\{ \}$.
2. For each $s \in S$, in increasing order:
3. (Now P is nonempty.) Set $Q \leftarrow\}$.
4. For each $p \in P$:
5. If $p s \leq x$: Add $p s$ to Q.
6. \quad Otherwise: Remove p from P. Add p to D.
7. S Set $P \leftarrow P \cup Q$.
8. If P is empty: Stop. The answer is D.
9. Stop. The answer is $P \cup D$.

Lemma 2.1. Let S be a set of positive integers such that distinct finite subsets of S have distinct products. Then Algorithm 2 enumerates $P(x, S)$ with fewer than $2 \Psi(x, S)$ multiplications.

Since P is nonempty in step 3, we always run through the inner loop of Algorithm 2 at least once for every iteration of the outer loop. Hence Algorithm 2 takes time linear in $\Psi(x, S)$. (It is easy to compute $P \cup Q$ and $P \cup D$ if we represent P and Q and D as linked lists.)

Proof. Note that, by hypothesis on S, each integer is added to Q at most once and to D at most once.

Write m for the exact number of multiplications so far. Then $m=2 \# D+\# P-1$ when we reach step 3 or step 8 , and $m=2 \# D+\#(P \cup Q)-1$ when we reach step 5 or step 7. Indeed, the first time we reach step 3 , we have $D=\{ \}$ and $P=\{1\}$, so $2 \# D+\# P-1=0$; and $m=0$. In steps 5 and 6 , we either add a new element to Q or we move an element from P to D. Either way we increase $2 \# D+\#(P \cup Q)-1$ by 1 ; and we also increase m by 1 . At the beginning of step 7 , we have $m=2 \# D+\#(P \cup Q)-1$. We replace P by $P \cup Q$, so $m=2 \# D+\# P-1$ at the beginning of step 8 .

Finally, when we stop in step 8 or step $9, m<2 \# D+\# P \leq 2 \#(D \cup P)=$ $2 \Psi(x, S)$.

It will be convenient in the next section to have the output of Algorithm 2 in order. This is not a problem, since one can sort in time linear in the number of output bits.

3. Counting smooth integers

To find $\Psi(x, S)$ one can compute $P(x, S)$ by Algorithm 2 above. We do better by splitting S into two pieces, T and U. Then each element of $P(x, S)$ is the product of an element of $P(x, T)$ and an element of $P(x, U)$.
Algorithm 3. We compute $\Psi(x, S)$. In advance select a subset $T \subseteq S$ and put $U=S-T$.

1. Compute the elements $p_{1}>p_{2}>\cdots>p_{m}$ of $P(x, T)$, by Algorithm 2.
2. Compute the elements $q_{1}<q_{2}<\cdots<q_{n}$ of $P(x, U)$, by Algorithm 2.
3. Set $j \leftarrow 1, \Psi \leftarrow 0$.
4. For $i=1,2, \ldots, m$:
5. If $j \leq n$ and $p_{i} q_{j} \leq x$: Increase j by 1 and repeat this step.
6. \quad Set $\Psi \leftarrow \Psi+j-1$.
7. Stop. The answer is Ψ.

Lemma 3.1. At the beginning of step 6 of Algorithm 3, $p_{i} q_{k} \leq x$ if and only if $k<j$, for $1 \leq k \leq n$.

So Algorithm 3 walks along the curve of approximate solutions (i, j) to $p_{i} q_{j}=x$.
Proof. Say $p_{i} q_{k} \leq x$. Since we passed step 5 we have either $j>n$ or $p_{i} q_{j}>x$. If $j>n$ then $j>k$. If $p_{i} q_{j}>x$ then $p_{i} q_{j}>p_{i} q_{k}$ so $j>k$.

Conversely, say $k<j$. How did j increase past k ? We must have found $p_{h} q_{k} \leq x$ for some $h \leq i$. But then $p_{i} \leq p_{h}$ so $p_{i} q_{k} \leq x$.

Lemma 3.2. Let S be a set of positive integers such that distinct finite subsets of S have distinct products. Then Algorithm 3 computes $\Psi(x, S)$ with fewer than $3(\Psi(x, T)+\Psi(x, U))$ multiplications.

In general $\Psi(x, T) \Psi(x, U) \geq \Psi(x, S)$ so $\Psi(x, T)+\Psi(x, U) \geq 2 \sqrt{\Psi(x, S)}$. On the other hand $\Psi(x, T)+\Psi(x, U) \leq 2 \Psi(x, S)$. So the bound in Lemma 3.2 is $6 \Psi(x, S)^{\alpha}$ for some α between $1 / 2$ and 1 .

Proof. First we show that Algorithm 3 works. By Lemma 3.1,

$$
\#\left\{k: p_{i} q_{k} \leq x\right\}=\#\{k: k<j\}=j-1
$$

By summing $j-1$ for all i, we count the number of (i, k) such that $p_{i} q_{k} \leq x$, i.e., the number of products $p_{i} q_{k}$ no larger than x, i.e., $\Psi(x, S)$.

In step 1 of Algorithm 3 we use fewer than $2 \Psi(x, T)$ multiplications, by Lemma 2.1. In step 2 we use fewer than $2 \Psi(x, U)$ multiplications. In step 5 we use at most $m+n=\Psi(x, T)+\Psi(x, U)$ multiplications, because the quantity $i+j$ starts at 2 , never exceeds $m+n+1$, and increases on each trip through step 5 .

How do we choose T and U ? It seems reasonable to toss elements of S alternately into T and U. If we are counting smooth numbers this means that the first few elements of T are $\{2,4,7,11,16\}$ and the first few elements of U are $\{3,5,9,13,17\}$. Perhaps this is close to optimal; it should be possible to use the structure of $P(x, S)$ to find a realistic lower bound on $\Psi(x, T)+\Psi(x, U)$.

4. Avoiding multiplications

In computing Ψ we multiply positive integers and check whether the products exceed x. We can survive without multiplication; the idea is to represent each positive integer by an integer approximation to its logarithm. Here are the details.

Select b such that $2^{b} \geq x+1$, and select $Z \geq 2^{b+2} b+2$. Let p be a positive integer; we say that represents p if $|r-Z \log p| \leq \lg p$. Here $\lg p=\log p / \log 2$.

For any positive integer p there is an integer r that represents p. For $p=1$ we take $r=0$. For $p \geq 2$ we select an integer r within 1 of $Z \log p$. (We may construct r from a precomputed table of $\log \left(2^{k} /\left(2^{k}-1\right)\right)$, by writing p as an approximate product of terms of the form $2^{k} /\left(2^{k}-1\right)$. See [2, exercise 1.2.2-25].)

Lemma 4.1. If represents p and r^{\prime} represents p^{\prime} then $r+r^{\prime}$ represents $p p^{\prime}$.
Proof. $\left|r+r^{\prime}-Z \log p p^{\prime}\right| \leq|r-Z \log p|+\left|r^{\prime}-Z \log p^{\prime}\right| \leq \lg p+\lg p^{\prime}=\lg p p^{\prime}$.
Lemma 4.2. Let s represent x, and let represent p. Then $p \leq x$ if and only if $r<s+2 b$.

Proof. If $p \leq x$ then
$r-s=r-Z \log p+Z \log p-s \leq r-Z \log p+Z \log x-s \leq \lg p+\lg x \leq 2 \lg x<2 b$
so $r<s+2 b$. If $p \geq x+1$ then

$$
\log p-\log x \geq \log \left(1+\frac{1}{x}\right) \geq \log \left(1+\frac{1}{2^{b}-1}\right)=-\log \left(1-\frac{1}{2^{b}}\right)>\frac{1}{2^{b}}
$$

so

$$
\begin{aligned}
r-s+2 b & >r-s+2 \lg x \geq(Z \log p-\lg p)-(Z \log x+\lg x)+2 \lg x \\
& =\left(Z-\frac{1}{\log 2}\right)(\log p-\log x)>\left(Z-\frac{1}{\log 2}\right) \frac{1}{2^{b}}>\frac{Z-2}{2^{b}} \geq 4 b
\end{aligned}
$$

so $r>s+2 b$.
We have thus replaced multiplication and comparison against x with addition and comparison against $s+2 b$. One final trick: We can store differences of adjacent logarithms in the arrays of Algorithms 2 and 3. These differences are (usually) relatively small, so we save some space and time.

References

1. E. R. Canfield, Pal Erdős, Carl Pomerance, On a problem of Oppenheim concerning "factorisatio numerorum", Journal of Number Theory 17 (1983), 1-28.
2. Donald E. Knuth, The Art of Computer Programming, volume 1: Fundamental Algorithms, 2nd edition, Addison-Wesley, Reading, Massachusetts, 1973.

5 Brewster Lane, Bellport, NY 11713

[^0]: 1991 Mathematics Subject Classification. Primary 11Y16.
 This paper was included in the author's thesis at the University of California at Berkeley. The author was supported in part by a National Science Foundation Graduate Fellowship.

