
ENUMERATING AND COUNTING SMOOTH INTEGERS

Daniel J. Bernstein

950518 (draft T)

Abstract. We present a linear-time algorithm to list the y-smooth integers up to

x, and an even faster algorithm to count the y-smooth integers up to x. We also
show how all multiplications can be replaced by an equal number of additions.

1. Introduction

An integer is y-rough if it has a prime factor larger than y; otherwise it is y-
smooth. Let P (x, y) be the set of y-smooth integers between 1 and x inclusive,
and let Ψ(x, y) = #P (x, y) be the number of such integers.

In section 2 we present a straightforward algorithm that, with fewer than 2Ψ(x, y)
multiplications, lists the elements of P (x, y). In section 3 we present a faster algo-
rithm to compute Ψ(x, y) without enumerating P (x, y). In section 4 we show how
to adapt these algorithms to use addition instead of multiplication.

For convenience we rely on the following nontraditional statement of unique
factorization. Consider the set S of integers p2

k

, where p is a prime number and
k is a nonnegative integer; the first few elements of S are {2, 3, 4, 5, 7, 9, 11, 13, 16}.
For any finite subset T of S, the product of T—i.e., the product of the elements of
T—is a positive integer. Unique factorization now says that every positive integer
is the product of a unique finite subset of S.

Similarly, if S = {p2k : p ≤ y}, the y-smooth integers are exactly the products of
finite subsets of S.

In general we will consider any set S of positive integers such that distinct finite
subsets of S have distinct products. We write P (x, S) for the set of products, no
larger than x, of finite subsets of S; and we write Ψ(x, S) = #P (x, S) for the
number of such products.

Now the algorithm in section 2 enumerates P (x, S) for any S, and the algorithm
in section 3 computes Ψ(x, S). The P algorithm is in fact a critical component of
the Ψ algorithm.

Our algorithms could be applied in much greater generality. We use just two
facts about positive integers: (1) if p > x then ps > x; (2) if ps > x and s′ > s
then ps′ > x.

See [1] for more information about Ψ.

1991 Mathematics Subject Classification. Primary 11Y16.
This paper was included in the author’s thesis at the University of California at Berkeley. The

author was supported in part by a National Science Foundation Graduate Fellowship.

Typeset by AMS-TEX

1

2 DANIEL J. BERNSTEIN

2. Enumerating smooth integers

Fix S, and fix an integer x ≥ 1. One can enumerate P (x, S) by starting from
a single integer, 1, and multiplying by elements of S every which way, tossing out
results larger than x:

Algorithm 1. We compute P (x, S).
1. Set P ← {1}.
2. For each s ∈ S:
3. Set Q← {}.
4. For each p ∈ P :
5. If ps ≤ x: Add ps to Q.
6. Set P ← P ∪Q.
7. Stop. The answer is P .

To save time we consider the elements of S in order. Once we find ps > x, we
need not multiply p by any later elements of S, since s′ > s implies ps′ > ps > x.
In this case we say that p is dead and we move it to a dead pile, D:

Algorithm 2. We compute P (x, S), given S in order.
1. Set P ← {1}, D ← {}.
2. For each s ∈ S, in increasing order:
3. (Now P is nonempty.) Set Q← {}.
4. For each p ∈ P :
5. If ps ≤ x: Add ps to Q.
6. Otherwise: Remove p from P . Add p to D.
7. Set P ← P ∪Q.
8. If P is empty: Stop. The answer is D.
9. Stop. The answer is P ∪D.

Lemma 2.1. Let S be a set of positive integers such that distinct finite subsets of
S have distinct products. Then Algorithm 2 enumerates P (x, S) with fewer than
2Ψ(x, S) multiplications.

Since P is nonempty in step 3, we always run through the inner loop of Algorithm
2 at least once for every iteration of the outer loop. Hence Algorithm 2 takes time
linear in Ψ(x, S). (It is easy to compute P ∪Q and P ∪D if we represent P and Q
and D as linked lists.)

Proof. Note that, by hypothesis on S, each integer is added to Q at most once and
to D at most once.

Write m for the exact number of multiplications so far. Then m = 2#D+#P−1
when we reach step 3 or step 8, and m = 2#D + #(P ∪ Q) − 1 when we reach
step 5 or step 7. Indeed, the first time we reach step 3, we have D = {} and
P = {1}, so 2#D + #P − 1 = 0; and m = 0. In steps 5 and 6, we either add a
new element to Q or we move an element from P to D. Either way we increase
2#D+ #(P ∪Q)−1 by 1; and we also increase m by 1. At the beginning of step 7,
we have m = 2#D+ #(P ∪Q)−1. We replace P by P ∪Q, so m = 2#D+ #P −1
at the beginning of step 8.

Finally, when we stop in step 8 or step 9, m < 2#D + #P ≤ 2#(D ∪ P) =
2Ψ(x, S). �

ENUMERATING AND COUNTING SMOOTH INTEGERS 3

It will be convenient in the next section to have the output of Algorithm 2 in
order. This is not a problem, since one can sort in time linear in the number of
output bits.

3. Counting smooth integers

To find Ψ(x, S) one can compute P (x, S) by Algorithm 2 above. We do better by
splitting S into two pieces, T and U . Then each element of P (x, S) is the product
of an element of P (x, T) and an element of P (x, U).

Algorithm 3. We compute Ψ(x, S). In advance select a subset T ⊆ S and put
U = S − T .
1. Compute the elements p1 > p2 > · · · > pm of P (x, T), by Algorithm 2.
2. Compute the elements q1 < q2 < · · · < qn of P (x, U), by Algorithm 2.
3. Set j ← 1, Ψ← 0.
4. For i = 1, 2, . . . ,m:
5. If j ≤ n and piqj ≤ x: Increase j by 1 and repeat this step.
6. Set Ψ← Ψ + j − 1.
7. Stop. The answer is Ψ.

Lemma 3.1. At the beginning of step 6 of Algorithm 3, piqk ≤ x if and only if
k < j, for 1 ≤ k ≤ n.

So Algorithm 3 walks along the curve of approximate solutions (i, j) to piqj = x.

Proof. Say piqk ≤ x. Since we passed step 5 we have either j > n or piqj > x. If
j > n then j > k. If piqj > x then piqj > piqk so j > k.

Conversely, say k < j. How did j increase past k? We must have found phqk ≤ x
for some h ≤ i. But then pi ≤ ph so piqk ≤ x. �

Lemma 3.2. Let S be a set of positive integers such that distinct finite subsets
of S have distinct products. Then Algorithm 3 computes Ψ(x, S) with fewer than
3(Ψ(x, T) + Ψ(x, U)) multiplications.

In general Ψ(x, T)Ψ(x, U) ≥ Ψ(x, S) so Ψ(x, T)+Ψ(x, U) ≥ 2
√

Ψ(x, S). On the
other hand Ψ(x, T)+Ψ(x, U) ≤ 2Ψ(x, S). So the bound in Lemma 3.2 is 6Ψ(x, S)α

for some α between 1/2 and 1.

Proof. First we show that Algorithm 3 works. By Lemma 3.1,

{k : piqk ≤ x} = # {k : k < j} = j − 1.

By summing j − 1 for all i, we count the number of (i, k) such that piqk ≤ x, i.e.,
the number of products piqk no larger than x, i.e., Ψ(x, S).

In step 1 of Algorithm 3 we use fewer than 2Ψ(x, T) multiplications, by Lemma
2.1. In step 2 we use fewer than 2Ψ(x, U) multiplications. In step 5 we use at most
m+ n = Ψ(x, T) + Ψ(x, U) multiplications, because the quantity i+ j starts at 2,
never exceeds m+ n+ 1, and increases on each trip through step 5. �

How do we choose T and U? It seems reasonable to toss elements of S alternately
into T and U . If we are counting smooth numbers this means that the first few
elements of T are {2, 4, 7, 11, 16} and the first few elements of U are {3, 5, 9, 13, 17}.
Perhaps this is close to optimal; it should be possible to use the structure of P (x, S)
to find a realistic lower bound on Ψ(x, T) + Ψ(x, U).

4 DANIEL J. BERNSTEIN

4. Avoiding multiplications

In computing Ψ we multiply positive integers and check whether the products
exceed x. We can survive without multiplication; the idea is to represent each
positive integer by an integer approximation to its logarithm. Here are the details.

Select b such that 2b ≥ x + 1, and select Z ≥ 2b+2b + 2. Let p be a positive
integer; we say that r represents p if |r − Z log p| ≤ lg p. Here lg p = log p/ log 2.

For any positive integer p there is an integer r that represents p. For p = 1 we
take r = 0. For p ≥ 2 we select an integer r within 1 of Z log p. (We may construct
r from a precomputed table of log(2k/(2k − 1)), by writing p as an approximate
product of terms of the form 2k/(2k − 1). See [2, exercise 1.2.2–25].)

Lemma 4.1. If r represents p and r′ represents p′ then r + r′ represents pp′.

Proof. |r + r′ − Z log pp′| ≤ |r − Z log p|+ |r′ − Z log p′| ≤ lg p+ lg p′ = lg pp′. �

Lemma 4.2. Let s represent x, and let r represent p. Then p ≤ x if and only if
r < s+ 2b.

Proof. If p ≤ x then

r− s = r−Z log p+Z log p− s ≤ r−Z log p+Z log x− s ≤ lg p+ lg x ≤ 2 lg x < 2b

so r < s+ 2b. If p ≥ x+ 1 then

log p− log x ≥ log

(
1 +

1

x

)
≥ log

(
1 +

1

2b − 1

)
= − log

(
1− 1

2b

)
>

1

2b

so

r − s+ 2b > r − s+ 2 lg x ≥ (Z log p− lg p)− (Z log x+ lg x) + 2 lg x

=

(
Z − 1

log 2

)
(log p− log x) >

(
Z − 1

log 2

)
1

2b
>
Z − 2

2b
≥ 4b

so r > s+ 2b. �

We have thus replaced multiplication and comparison against x with addition
and comparison against s+2b. One final trick: We can store differences of adjacent
logarithms in the arrays of Algorithms 2 and 3. These differences are (usually)
relatively small, so we save some space and time.

References

1. E. R. Canfield, Pal Erdős, Carl Pomerance, On a problem of Oppenheim concerning “factori-

satio numerorum”, Journal of Number Theory 17 (1983), 1–28.
2. Donald E. Knuth, The Art of Computer Programming, volume 1: Fundamental Algorithms,

2nd edition, Addison-Wesley, Reading, Massachusetts, 1973.

5 Brewster Lane, Bellport, NY 11713

