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Abstract. We present a linear-time algorithm to list the y-smooth integers up to

x, and an even faster algorithm to count the y-smooth integers up to x. We also
show how all multiplications can be replaced by an equal number of additions.

1. Introduction

An integer is y-rough if it has a prime factor larger than y; otherwise it is y-
smooth. Let P (x, y) be the set of y-smooth integers between 1 and x inclusive,
and let Ψ(x, y) = #P (x, y) be the number of such integers.

In section 2 we present a straightforward algorithm that, with fewer than 2Ψ(x, y)
multiplications, lists the elements of P (x, y). In section 3 we present a faster algo-
rithm to compute Ψ(x, y) without enumerating P (x, y). In section 4 we show how
to adapt these algorithms to use addition instead of multiplication.

For convenience we rely on the following nontraditional statement of unique
factorization. Consider the set S of integers p2

k

, where p is a prime number and
k is a nonnegative integer; the first few elements of S are {2, 3, 4, 5, 7, 9, 11, 13, 16}.
For any finite subset T of S, the product of T—i.e., the product of the elements of
T—is a positive integer. Unique factorization now says that every positive integer
is the product of a unique finite subset of S.

Similarly, if S = {p2k : p ≤ y}, the y-smooth integers are exactly the products of
finite subsets of S.

In general we will consider any set S of positive integers such that distinct finite
subsets of S have distinct products. We write P (x, S) for the set of products, no
larger than x, of finite subsets of S; and we write Ψ(x, S) = #P (x, S) for the
number of such products.

Now the algorithm in section 2 enumerates P (x, S) for any S, and the algorithm
in section 3 computes Ψ(x, S). The P algorithm is in fact a critical component of
the Ψ algorithm.

Our algorithms could be applied in much greater generality. We use just two
facts about positive integers: (1) if p > x then ps > x; (2) if ps > x and s′ > s
then ps′ > x.

See [1] for more information about Ψ.
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2. Enumerating smooth integers

Fix S, and fix an integer x ≥ 1. One can enumerate P (x, S) by starting from
a single integer, 1, and multiplying by elements of S every which way, tossing out
results larger than x:

Algorithm 1. We compute P (x, S).
1. Set P ← {1}.
2. For each s ∈ S:
3. Set Q← {}.
4. For each p ∈ P :
5. If ps ≤ x: Add ps to Q.
6. Set P ← P ∪Q.
7. Stop. The answer is P .

To save time we consider the elements of S in order. Once we find ps > x, we
need not multiply p by any later elements of S, since s′ > s implies ps′ > ps > x.
In this case we say that p is dead and we move it to a dead pile, D:

Algorithm 2. We compute P (x, S), given S in order.
1. Set P ← {1}, D ← {}.
2. For each s ∈ S, in increasing order:
3. (Now P is nonempty.) Set Q← {}.
4. For each p ∈ P :
5. If ps ≤ x: Add ps to Q.
6. Otherwise: Remove p from P . Add p to D.
7. Set P ← P ∪Q.
8. If P is empty: Stop. The answer is D.
9. Stop. The answer is P ∪D.

Lemma 2.1. Let S be a set of positive integers such that distinct finite subsets of
S have distinct products. Then Algorithm 2 enumerates P (x, S) with fewer than
2Ψ(x, S) multiplications.

Since P is nonempty in step 3, we always run through the inner loop of Algorithm
2 at least once for every iteration of the outer loop. Hence Algorithm 2 takes time
linear in Ψ(x, S). (It is easy to compute P ∪Q and P ∪D if we represent P and Q
and D as linked lists.)

Proof. Note that, by hypothesis on S, each integer is added to Q at most once and
to D at most once.

Write m for the exact number of multiplications so far. Then m = 2#D+#P−1
when we reach step 3 or step 8, and m = 2#D + #(P ∪ Q) − 1 when we reach
step 5 or step 7. Indeed, the first time we reach step 3, we have D = {} and
P = {1}, so 2#D + #P − 1 = 0; and m = 0. In steps 5 and 6, we either add a
new element to Q or we move an element from P to D. Either way we increase
2#D+ #(P ∪Q)−1 by 1; and we also increase m by 1. At the beginning of step 7,
we have m = 2#D+ #(P ∪Q)−1. We replace P by P ∪Q, so m = 2#D+ #P −1
at the beginning of step 8.

Finally, when we stop in step 8 or step 9, m < 2#D + #P ≤ 2#(D ∪ P ) =
2Ψ(x, S). �



ENUMERATING AND COUNTING SMOOTH INTEGERS 3

It will be convenient in the next section to have the output of Algorithm 2 in
order. This is not a problem, since one can sort in time linear in the number of
output bits.

3. Counting smooth integers

To find Ψ(x, S) one can compute P (x, S) by Algorithm 2 above. We do better by
splitting S into two pieces, T and U . Then each element of P (x, S) is the product
of an element of P (x, T ) and an element of P (x, U).

Algorithm 3. We compute Ψ(x, S). In advance select a subset T ⊆ S and put
U = S − T .
1. Compute the elements p1 > p2 > · · · > pm of P (x, T ), by Algorithm 2.
2. Compute the elements q1 < q2 < · · · < qn of P (x, U), by Algorithm 2.
3. Set j ← 1, Ψ← 0.
4. For i = 1, 2, . . . ,m:
5. If j ≤ n and piqj ≤ x: Increase j by 1 and repeat this step.
6. Set Ψ← Ψ + j − 1.
7. Stop. The answer is Ψ.

Lemma 3.1. At the beginning of step 6 of Algorithm 3, piqk ≤ x if and only if
k < j, for 1 ≤ k ≤ n.

So Algorithm 3 walks along the curve of approximate solutions (i, j) to piqj = x.

Proof. Say piqk ≤ x. Since we passed step 5 we have either j > n or piqj > x. If
j > n then j > k. If piqj > x then piqj > piqk so j > k.

Conversely, say k < j. How did j increase past k? We must have found phqk ≤ x
for some h ≤ i. But then pi ≤ ph so piqk ≤ x. �

Lemma 3.2. Let S be a set of positive integers such that distinct finite subsets
of S have distinct products. Then Algorithm 3 computes Ψ(x, S) with fewer than
3(Ψ(x, T ) + Ψ(x, U)) multiplications.

In general Ψ(x, T )Ψ(x, U) ≥ Ψ(x, S) so Ψ(x, T )+Ψ(x, U) ≥ 2
√

Ψ(x, S). On the
other hand Ψ(x, T )+Ψ(x, U) ≤ 2Ψ(x, S). So the bound in Lemma 3.2 is 6Ψ(x, S)α

for some α between 1/2 and 1.

Proof. First we show that Algorithm 3 works. By Lemma 3.1,

# {k : piqk ≤ x} = # {k : k < j} = j − 1.

By summing j − 1 for all i, we count the number of (i, k) such that piqk ≤ x, i.e.,
the number of products piqk no larger than x, i.e., Ψ(x, S).

In step 1 of Algorithm 3 we use fewer than 2Ψ(x, T ) multiplications, by Lemma
2.1. In step 2 we use fewer than 2Ψ(x, U) multiplications. In step 5 we use at most
m+ n = Ψ(x, T ) + Ψ(x, U) multiplications, because the quantity i+ j starts at 2,
never exceeds m+ n+ 1, and increases on each trip through step 5. �

How do we choose T and U? It seems reasonable to toss elements of S alternately
into T and U . If we are counting smooth numbers this means that the first few
elements of T are {2, 4, 7, 11, 16} and the first few elements of U are {3, 5, 9, 13, 17}.
Perhaps this is close to optimal; it should be possible to use the structure of P (x, S)
to find a realistic lower bound on Ψ(x, T ) + Ψ(x, U).
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4. Avoiding multiplications

In computing Ψ we multiply positive integers and check whether the products
exceed x. We can survive without multiplication; the idea is to represent each
positive integer by an integer approximation to its logarithm. Here are the details.

Select b such that 2b ≥ x + 1, and select Z ≥ 2b+2b + 2. Let p be a positive
integer; we say that r represents p if |r − Z log p| ≤ lg p. Here lg p = log p/ log 2.

For any positive integer p there is an integer r that represents p. For p = 1 we
take r = 0. For p ≥ 2 we select an integer r within 1 of Z log p. (We may construct
r from a precomputed table of log(2k/(2k − 1)), by writing p as an approximate
product of terms of the form 2k/(2k − 1). See [2, exercise 1.2.2–25].)

Lemma 4.1. If r represents p and r′ represents p′ then r + r′ represents pp′.

Proof. |r + r′ − Z log pp′| ≤ |r − Z log p|+ |r′ − Z log p′| ≤ lg p+ lg p′ = lg pp′. �

Lemma 4.2. Let s represent x, and let r represent p. Then p ≤ x if and only if
r < s+ 2b.

Proof. If p ≤ x then

r− s = r−Z log p+Z log p− s ≤ r−Z log p+Z log x− s ≤ lg p+ lg x ≤ 2 lg x < 2b

so r < s+ 2b. If p ≥ x+ 1 then

log p− log x ≥ log

(
1 +

1

x

)
≥ log

(
1 +

1

2b − 1

)
= − log

(
1− 1

2b

)
>

1

2b

so

r − s+ 2b > r − s+ 2 lg x ≥ (Z log p− lg p)− (Z log x+ lg x) + 2 lg x

=

(
Z − 1

log 2

)
(log p− log x) >

(
Z − 1

log 2

)
1

2b
>
Z − 2

2b
≥ 4b

so r > s+ 2b. �

We have thus replaced multiplication and comparison against x with addition
and comparison against s+2b. One final trick: We can store differences of adjacent
logarithms in the arrays of Algorithms 2 and 3. These differences are (usually)
relatively small, so we save some space and time.
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