Abstract. We present a linear-time algorithm to list the \(y \)-smooth integers up to \(x \), and an even faster algorithm to count the \(y \)-smooth integers up to \(x \). We also show how all multiplications can be replaced by an equal number of additions.

1. Introduction

An integer is \(y \)-rough if it has a prime factor larger than \(y \); otherwise it is \(y \)-smooth. Let \(P(x, y) \) be the set of \(y \)-smooth integers between 1 and \(x \) inclusive, and let \(\Psi(x, y) = \#P(x, y) \) be the number of such integers.

In section 2 we present a straightforward algorithm that, with fewer than \(2\Psi(x, y) \) multiplications, lists the elements of \(P(x, y) \). In section 3 we present a faster algorithm to compute \(\Psi(x, y) \) without enumerating \(P(x, y) \). In section 4 we show how to adapt these algorithms to use addition instead of multiplication.

For convenience we rely on the following nontraditional statement of unique factorization. Consider the set \(S \) of integers \(p^{2^k} \), where \(p \) is a prime number and \(k \) is a nonnegative integer; the first few elements of \(S \) are \(\{2, 3, 4, 5, 7, 9, 11, 13, 16\} \). For any finite subset \(T \) of \(S \), the product of \(T \)—i.e., the product of the elements of \(T \)—is a positive integer. Unique factorization now says that every positive integer is the product of a unique finite subset of \(S \).

Similarly, if \(S = \{p^{2^k} : p \leq y\} \), the \(y \)-smooth integers are exactly the products of finite subsets of \(S \).

In general we will consider any set \(S \) of positive integers such that distinct finite subsets of \(S \) have distinct products. We write \(P(x, S) \) for the set of products, no larger than \(x \), of finite subsets of \(S \); and we write \(\Psi(x, S) = \#P(x, S) \) for the number of such products.

Now the algorithm in section 2 enumerates \(P(x, S) \) for any \(S \), and the algorithm in section 3 computes \(\Psi(x, S) \). The \(P \) algorithm is in fact a critical component of the \(\Psi \) algorithm.

Our algorithms could be applied in much greater generality. We use just two facts about positive integers: (1) if \(p > x \) then \(ps > x \); (2) if \(ps > x \) and \(s' > s \) then \(ps' > x \).

See [1] for more information about \(\Psi \).

1991 Mathematics Subject Classification. Primary 11Y16.

This paper was included in the author’s thesis at the University of California at Berkeley. The author was supported in part by a National Science Foundation Graduate Fellowship.
2. Enumerating smooth integers

Fix S, and fix an integer $x \geq 1$. One can enumerate $P(x, S)$ by starting from a single integer, 1, and multiplying by elements of S every which way, tossing out results larger than x:

Algorithm 1. We compute $P(x, S)$.
1. Set $P \leftarrow \{1\}$.
2. For each $s \in S$:
 3. Set $Q \leftarrow \{\}$.
 4. For each $p \in P$:
 5. If $ps \leq x$: Add ps to Q.
 6. Set $P \leftarrow P \cup Q$.
7. Stop. The answer is P.

To save time we consider the elements of S in order. Once we find $ps > x$, we need not multiply p by any later elements of S, since $s' > s$ implies $ps' > ps > x$.

In this case we say that p is dead and we move it to a dead pile, D:

Algorithm 2. We compute $P(x, S)$, given S in order.
1. Set $P \leftarrow \{1\}$, $D \leftarrow \{\}$.
2. For each $s \in S$, in increasing order:
 3. (Now P is nonempty.) Set $Q \leftarrow \{\}$.
 4. For each $p \in P$:
 5. If $ps \leq x$: Add ps to Q.
 6. Otherwise: Remove p from P. Add p to D.
 7. Set $P \leftarrow P \cup Q$.
 8. If P is empty: Stop. The answer is D.
 9. Stop. The answer is $P \cup D$.

Lemma 2.1. Let S be a set of positive integers such that distinct finite subsets of S have distinct products. Then Algorithm 2 enumerates $P(x, S)$ with fewer than $2\Psi(x, S)$ multiplications.

Since P is nonempty in step 3, we always run through the inner loop of Algorithm 2 at least once for every iteration of the outer loop. Hence Algorithm 2 takes time linear in $\Psi(x, S)$. (It is easy to compute $P \cup Q$ and $P \cup D$ if we represent P and Q and D as linked lists.)

Proof. Note that, by hypothesis on S, each integer is added to Q at most once and to D at most once.

Write m for the exact number of multiplications so far. Then $m = 2\#D + \#P - 1$ when we reach step 3 or step 8, and $m = 2\#D + \#(P \cup Q) - 1$ when we reach step 5 or step 7. Indeed, the first time we reach step 3, we have $D = \{\}$ and $P = \{1\}$, so $2\#D + \#P - 1 = 0$; and $m = 0$. In steps 5 and 6, we either add a new element to Q or we move an element from P to D. Either way we increase $2\#D + \#(P \cup Q) - 1$ by 1; and we also increase m by 1. At the beginning of step 7, we have $m = 2\#D + \#(P \cup Q) - 1$. We replace P by $P \cup Q$, so $m = 2\#D + \#P - 1$ at the beginning of step 8.

Finally, when we stop in step 8 or step 9, $m < 2\#D + \#P \leq 2\#(D \cup P) = 2\Psi(x, S)$. □
It will be convenient in the next section to have the output of Algorithm 2 in order. This is not a problem, since one can sort in time linear in the number of output bits.

3. Counting smooth integers

To find $\Psi(x, S)$ one can compute $P(x, S)$ by Algorithm 2 above. We do better by splitting S into two pieces, T and U. Then each element of $P(x, S)$ is the product of an element of $P(x, T)$ and an element of $P(x, U)$.

Algorithm 3. We compute $\Psi(x, S)$. In advance select a subset $T \subseteq S$ and put $U = S - T$.

- 1. Compute the elements $p_1 > p_2 > \cdots > p_m$ of $P(x, T)$, by Algorithm 2.
- 2. Compute the elements $q_1 < q_2 < \cdots < q_n$ of $P(x, U)$, by Algorithm 2.
- 3. Set $j \leftarrow 1$, $\Psi \leftarrow 0$.
- 4. For $i = 1, 2, \ldots, m$:
- - 5. If $j \leq n$ and $p_i q_j \leq x$: Increase j by 1 and repeat this step.
- - 6. Set $\Psi \leftarrow \Psi + j - 1$.
- 7. Stop. The answer is Ψ.

Lemma 3.1. At the beginning of step 6 of Algorithm 3, $p_i q_k \leq x$ if and only if $k < j$, for $1 \leq k \leq n$.

So Algorithm 3 walks along the curve of approximate solutions (i, j) to $p_i q_j = x$.

Proof. Say $p_i q_k \leq x$. Since we passed step 5 we have either $j > n$ or $p_i q_j > x$. If $j > n$ then $j > k$. If $p_i q_j > x$ then $p_i q_j > p_i q_k$ so $j > k$.

Conversely, say $k < j$. How did j increase past k? We must have found $p_h q_k \leq x$ for some $h \leq i$. But then $p_i \leq p_h$ so $p_i q_k \leq x$. \square

Lemma 3.2. Let S be a set of positive integers such that distinct finite subsets of S have distinct products. Then Algorithm 3 computes $\Psi(x, S)$ with fewer than $3(\Psi(x, T) + \Psi(x, U))$ multiplications.

In general $\Psi(x, T) \Psi(x, U) \geq \Psi(x, S)$ so $\Psi(x, T) + \Psi(x, U) \geq 2\sqrt{\Psi(x, S)}$. On the other hand $\Psi(x, T) + \Psi(x, U) \leq 2\Psi(x, S)$. So the bound in Lemma 3.2 is $6\Psi(x, S)^\alpha$ for some α between 1/2 and 1.

Proof. First we show that Algorithm 3 works. By Lemma 3.1,

$$\# \left\{ k : p_i q_k \leq x \right\} = \# \left\{ k : k < j \right\} = j - 1.$$

By summing $j - 1$ for all i, we count the number of (i, k) such that $p_i q_k \leq x$, i.e., the number of products $p_i q_k$ no larger than x, i.e., $\Psi(x, S)$.

In step 1 of Algorithm 3 we use fewer than $2\Psi(x, T)$ multiplications, by Lemma 2.1. In step 2 we use fewer than $2\Psi(x, U)$ multiplications. In step 5 we use at most $m + n = \Psi(x, T) + \Psi(x, U)$ multiplications, because the quantity $i + j$ starts at 2, never exceeds $m + n + 1$, and increases on each trip through step 5. \square

How do we choose T and U? It seems reasonable to toss elements of S alternately into T and U. If we are counting smooth numbers this means that the first few elements of T are $\{2, 4, 7, 11, 16\}$ and the first few elements of U are $\{3, 5, 9, 13, 17\}$. Perhaps this is close to optimal; it should be possible to use the structure of $P(x, S)$ to find a realistic lower bound on $\Psi(x, T) + \Psi(x, U)$.
4. Avoiding multiplications

In computing Ψ we multiply positive integers and check whether the products exceed x. We can survive without multiplication; the idea is to represent each positive integer by an integer approximation to its logarithm. Here are the details.

Select b such that $2^b \geq x + 1$, and select $Z \geq 2^{b+2b} + 2$. Let p be a positive integer; we say that r represents p if $|r - Z \log p| \leq \lg p$. Here $\lg p = \log p / \log 2$.

For any positive integer p there is an integer r that represents p. For $p = 1$ we take $r = 0$. For $p \geq 2$ we select an integer r within 1 of $Z \log p$. (We may construct r from a precomputed table of $\log(2^k/(2^k - 1))$, by writing p as an approximate product of terms of the form $2^k/(2^k - 1)$.) See [2, exercise 1.2.2–25].

Lemma 4.1. If r represents p and r' represents p' then $r + r'$ represents pp'.

Proof. $|r + r' - Z \log pp'| \leq |r - Z \log p| + |r' - Z \log p'| \leq \lg p + \lg p' = \lg pp'$. □

Lemma 4.2. Let s represent x, and let r represent p. Then $p \leq x$ if and only if $r < s + 2b$.

Proof. If $p \leq x$ then $r - s = r - Z \log p + Z \log p - s \leq r - Z \log p + Z \log x - s \leq \lg p + \lg x \leq 2 \lg x < 2b$ so $r < s + 2b$. If $p \geq x + 1$ then

$$\log p - \log x \geq \log \left(1 + \frac{1}{x}\right) \geq \log \left(1 + \frac{1}{2^b - 1}\right) = -\log \left(1 - \frac{1}{2^b}\right) > \frac{1}{2^b}$$

so

$$r - s + 2b > r - s + 2 \lg x \geq (Z \log p - \lg p) - (Z \log x + \lg x) + 2 \lg x$$

$$= \left(Z - \frac{1}{\log 2}\right) (\log p - \log x) > \left(Z - \frac{1}{\log 2}\right) \frac{1}{2^b} > \frac{Z - 2}{2^b} \geq 4b$$

so $r > s + 2b$. □

We have thus replaced multiplication and comparison against x with addition and comparison against $s + 2b$. One final trick: We can store differences of adjacent logarithms in the arrays of Algorithms 2 and 3. These differences are (usually) relatively small, so we save some space and time.

References

5 Brewster Lane, Bellport, NY 11713