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1 Introduction

The CoV individual reports point out several shortcomings and
procedural weaknesses that led to the inclusion of the Dual EC DRBG
algorithm in SP 800-90 and propose several steps to remedy them. . . .
The VCAT strongly encourages standard development through open
competitions, where appropriate. —“NIST Cryptographic Standards
and Guidelines Development Process: Report and Recommendations
of the Visiting Committee on Advanced Technology of the National
Institute of Standards and Technology” [133], 2014

Cryptographic competitions are not a panacea. DES, the output of the first
cryptographic competition, had an exploitable key size (see [57], [73], [140], [36],
and [63]), had an exploitable block size (see [96] and [35]), and at the same time
had enough denials of exploitability (see, e.g., [74], [55, Section 7], [76], and [1])
to delay the deployment of stronger ciphers for decades. As another example,
AES performance on many platforms relies on table lookups with secret indices
(“S-table” or “T-table” lookups), and these table lookups were claimed to be “not
vulnerable to timing attacks” (see [54, Section 3.3] and [102, Section 3.6.2]), but
this claim was incorrect (see [17] and [129]), and this failure continues to cause
security problems today (see, e.g., [47]). As a third example, SHA-3 was forced
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to aim for a useless 2512 level of preimage security, and as a result is considerably
larger and slower than necessary, producing performance complaints and slowing
down deployment (see, e.g., [89])—which is a security failure if it means that
applications instead use something weak (see, e.g., [92]) or nothing at all.

I don’t mean to suggest that competitions are a bad idea. I can think of many
more failures of cryptographic algorithms selected without competitions. But it is
surprisingly difficult to find literature systematically analyzing the security risks
in various algorithm-selection processes, and systematically working on designing
processes that reduce these risks. Even if competitions are the best approach,
there are many different types of competitions, and we should understand how
these variations can avoid—or create—security risks.

This paper surveys, from the perspective of a skeptical security reviewer,
the procedures used in cryptographic competitions. Given my role in organizing
CAESAR, I have used CAESAR as a running example in the paper—among
other things, reporting how CAESAR started, how it was run, and what it
produced—but I have also used other cryptographic competitions as examples,
including the DES, AES, eSTREAM, SHA-3, and NISTLWC competitions
for symmetric algorithms, and the NISTPQC competition for asymmetric
(public-key) algorithms. I hope that the analysis here is of value for future
competitions.

1.1. Related work. For per-competition reports (at various levels of detail
and finality) on other competitions, see [55] for DES; [103] and [102] for AES;
[113] for eSTREAM; [111], [132], and [45] for SHA-3; [130] and [131] for
NISTLWC; and [8], [9], and [10] for NISTPQC. Beyond these reports, there is
a vast literature on the security and performance of various submissions to the
competitions.

The procedures used in cryptographic competitions are frequently mentioned
as introductory material, but not as a core topic of cryptographic risk analysis.
NIST’s description of its cryptographic standardization process [53] includes a
few paragraphs summarizing competition processes, saying that “competitions
can focus the attention of cryptographers around the world”. A deeper discussion
of security-evaluation and performance-evaluation procedures—providing many
reasons to wonder how effective competitions really are at reducing security
risks—had appeared in [109, Sections 2 and 4] as part of input to the AES
process from NESSIE, a joint project by European cryptography experts.

Security failures in cryptographic algorithms are traditionally blamed upon
the specific algorithms that failed, and not upon the processes that selected those
algorithms: cryptographers recommend against the algorithms while continuing
to use the same processes. However, there has been some attention to the idea of
protecting standardization processes against sabotage: see [133], [28], [34], [61],
and [26]. A standardization process can fail even when it is not under attack; in
[23, Appendix B] I called for a systematic study of how reliably a standardization
process produces secure standards. The idea that different processes can create
different levels of risks was already a prerequisite for the common belief that
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competitions are less risky than typical standardization processes. The same
idea is standard in the broader literature on risk analysis: see, e.g., [106].

2 Speed

A competition is defined by the Collins English Dictionary as “an event in which
many people take part in order to find out who is best at a particular activity”.

One of the traditional forms of competition is a speed competition—a race.
Who can swim the fastest? Who can run the fastest? Who can write a sorting
program that runs the fastest? Who can drive the fastest? Who can build the
fastest car? Who can write the fastest encryption program? Note that one can
suppress the role of the humans in some of these questions, thinking of the cars
as the competitors in a car race and thinking of the programs as the competitors
in a software competition.

Sometimes speed competitions have a clear utilitarian purpose. Ancient Greek
legend says that a runner ran 40 kilometers to Athens to report success in the
Battle of Marathon. In selecting a runner for such a task, the commander wants
to know, first, who can complete the task at all, and, second, who can complete
it in the required amount of time. It would not be surprising if the original
Marathon runner was selected as someone who did well enough in a previous
race. Note that managers who have no idea what the required amount of time
is will want to take specifically the winner of the competition, so as to reduce
the risk of being too slow; someone who knows more about the requirements will
tend to think that taking the winner is less important.

Sometimes people participate in or watch speed competitions simply for the
thrill. People participating in a marathon today can reasonably claim health
benefits, but people watching a marathon on the living-room television don’t
have this excuse. Nobody claims that we need to know the fastest runner so as
to decide who should be carrying a message to Athens.

If I set a speed record for some computation, am I doing it just for the thrill?
Does the speed record actually matter for users? Making software run faster is
a large part of my research; I want to believe that this is important, and I have
an incentive to exaggerate its importance. People who select my software for
its performance have a similar incentive to exaggerate the importance of this
performance as justification for their decisions. Perhaps there is clear evidence
that the performance is important, or perhaps not.

2.1. The machinery of cryptographic performance advertising, part 1:
measurements. In 2019, a Google blog post [52] (see also the accompanying
paper [51]) presented the following convincing story:

• Android had required storage encryption since 2015 except on “devices with
poor AES performance (50 MiB/s and below)”.

• For example, on an ARM Cortex-A7, storage encryption with AES is “so slow
that it would result in a poor user experience; apps would take much longer to
launch, and the device would generally feel much slower”. (According to [13],
the Cortex-A7 “has powered more than a billion smartphones”.)
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• Starting in 2019, Android Pie was enabling storage encryption for these
devices using Adiantum, a wide-block cipher built on top of ChaCha12.

• On a 1.19GHz Cortex-A7, AES-256-XTS decrypts at 20 MB/s. Adiantum
decrypts at 112 MB/s.

What follows is another example of one cryptographic system solving the
performance problems that caused another cryptographic system to be rejected.

Your Internet service provider used the Domain Name System (DNS) in
three steps to find the address of www.google.com. It learned the address of
www.google.com from the google.com servers; earlier it learned the address of
the google.com servers from the .com servers; earlier it learned the address of
the .com servers from the Internet’s central “root DNS servers”. Each address
is cached for some time, reducing the overall load on the root DNS servers to
120 billion queries per day (according to [120]), around 1.4 million queries per
second. These servers have 13 names (root server A, root server B, and so on
through root server M), but according to [116] there are actually “hundreds” of
physical computers; if “hundreds” means 200 then an average root server handles
around 7000 queries per second.

A 2021 statement [117] from the root operators indicates that these servers
will not deploy encryption for now. The primary reason stated is performance:

Due to the critical role that root name servers play, combined with
the fact that they are themselves often targets of DDoS attacks, Root
Server Operators have some concerns about supporting DNS encryption
for serving the root zone. It is well known that UDP has desirable
performance characteristics, due to its stateless nature. Increasing the
state-holding burden with the addition of connection-oriented protocols,
as well as encryption data, not only reduces the performance of name
servers, but also may raise new types of denial-of-service attacks.

It is certainly true that running DNS over a stateful HTTPS connection,
rather than over stateless UDP, opens up denial-of-service attacks; see, e.g., [33,
Section 2.2]. But it is simply not true that DNS encryption needs connections.
DNSCurve, a simple DNS transport layer that uses X25519 for encryption and
authentication, was already deployed by OpenDNS in 2010, according to [104];
there are faster DH proposals, but X25519 suffices for the following analysis.
DNSCurve runs over UDP in the same way that DNS normally does, rather than
requiring the server to accept connections and store state for each connection.

Regarding the impact of encryption on CPU load, the software from [98] takes
95437 Skylake cycles for X25519, and all other operations in DNSCurve are much
faster. The software performs more than 125000 X25519 operations per second
on a low-cost quad-core 3GHz Intel Xeon E3-1220 v5 CPU from 2015. If a root
server is using such a CPU to handle its 7000 DNS queries per second, and those
queries all upgrade tomorrow to DNSCurve, then X25519 will consume under
6% of the available CPU time. Presumably most root CPUs are more powerful
than this; on a newer, higher-cost server with two AMD EPYC 7742 CPUs from
2019, the same software performs more than 2.9 million operations per second.
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Regarding network traffic, a DNS query for .com today is 21 bytes plus 8 bytes
of UDP overhead, 20 bytes of IP overhead, and 38 bytes of Ethernet overhead;
the response is 509 bytes (without IPv6) plus the same overheads. DNSCurve
makes each query 68 bytes longer—there is an 8-byte protocol selector, a 32-byte
X25519 key, a 12-byte nonce, and a 16-byte MAC—and each response 48 bytes
longer. This 17.5% difference in traffic volume is barely noticeable compared
to the much larger network capacity already available in the root servers. To
quantify this, consider the 2015 denial-of-service attack described in [115], an
attack that “saturated network connections” for some of the root servers but still
did not take down root DNS service. This attack used “up to approximately 5
million queries per second, per DNS root name server letter receiving the traffic”,
and hit “most” of the 13 letters—tens of millions of queries per second overall.
Presumably the root servers have even more bandwidth today.

What happens if, instead of trying to deny service by flooding a network,
an attacker tries to deny service by flooding a CPU with X25519 operations?
The software mentioned above handles 750 megabits per second of X25519 keys
on the EPYC server. This corresponds to more than 3 gigabits per second of
DNS network traffic, given minimum packet overheads. Sites with larger Internet
connections can spread the load across multiple servers to guarantee that the
network running at full capacity cannot overload the CPUs with cryptographic
operations. Sites with smaller Internet connections can use smaller servers.

2.2. The machinery of cryptographic performance advertising, part
2: confirmation bias. Usually the factual basis for cryptographic performance
advertising is much less clear. Here’s a case study.

The 2020 paper “Post-quantum authentication in TLS 1.3: a performance
study” [124] states “Reports like [1] lead us to believe that hundreds of extra
milliseconds per handshake are not acceptable”. The cited document “[1]” is a
2017 Akamai press release “Akamai online retail performance report: milliseconds
are critical” [6], subtitled “Web performance analytics show even 100-millisecond
delays can impact customer engagement and online revenue”.

Akamai’s underlying report [7] says, as one of its “key insights”, that “just
a 100-millisecond delay in load time hurt conversion rates by up to 7%”. My
understanding is that “conversion” has the following meanings:

• in traditional sales terminology, converting a potential customer into a lead
(i.e., contact information for the potential customer) or a sale;

• in web sales terminology, converting a view of a product web page into a sale
of the product.

A reader who digs into the report finds a statement that “desktop pages” that
loaded “100 milliseconds slower” experienced a “2.4% decrease in conversion rate”;
and a statement that for smartphones 2.4% changes to 7.1%. Apparently these
statements are the source of the “key insight” stating “up to 7%”.

Let’s look at the underlying data more closely. Akamai hosts its customers’
web pages, caching copies of those pages on thousands of Akamai-run computers
around the world, the idea being that browsers will receive each page quickly
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How does load time correlate to conversion rate? (desktop)

How does load time correlate to conversion rate? (mobile)

How does load time correlate to conversion rate? (tablet)

Fig. 2.3. Screenshot from [7, page 8].
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from a nearby computer. The report says that Akamai collected metadata on
billions of web sessions from “leading retail sites” that are Akamai customers
(with permission from the sites). In Figure 2.3 here, a screenshot from [7, page
8], the yellow area shows the distribution of page-load times in converted web
sessions, the blue area shows the same for non-converted web sessions, and the
red curves show the percentage of web sessions that were converted.

For example, for desktop browsers (top graph), about 12% of sessions were
converted for page-load times around 1.8 seconds: at horizontal position 1.8, the
red curve is around 12%, and the top of the yellow is about 12% of the top of
the blue. The conversion rate drops off for larger page-load times: e.g., about 6%
of sessions were converted for page-load times around 4 seconds, meaning that
the conversion rate was 50% smaller. The report highlights the conversion rate
being 12.8% at 1.8 seconds, and 2.4% smaller (i.e., 12.5%) at 1.9 seconds, the
conclusion being that a 100-millisecond delay in load time is measurably bad.

Notice, however, that the conversion rate in the graph also drops off for smaller
page-load times. Compare the following numbers:

• ≈6% of sessions were converted for page-load times around 1.1 seconds.
• ≈8% of sessions were converted for page-load times around 1.2 seconds.
• ≈9% of sessions were converted for page-load times around 1.3 seconds.
• ≈12% of sessions were converted for page-load times around 1.8 seconds.

Why did Akamai’s report not conclude that a 100-millisecond delay in load time
is measurably good?

The report briefly addresses this question, saying “the faster end of the bell
curve is primarily comprised of 404 pages and other pages that, while fast, do
not fall on the conversion path”. But wait a minute. If different types of web
pages can fail to produce sales, explaining the low end of the graph, then can’t
such differences explain the entire graph? Maybe the situation is that there are

• “too simple” product pages (which tend to load quickly) that don’t have
enough pictures to convince the typical customer, and

• “too complex” product pages (which tend to load slowly) that scare the
typical customer away, and

• “just right” product pages (which tend to have load times in the middle) that
do the best job of attracting customers.

Could it be that what matters for sales isn’t actually the last bit of speed in
delivering the web page, but rather the content of the web page?

Another section of the same report says that “user sessions that converted
contained 48% more scripts than sessions that did not convert”. Perhaps a
three-dimensional analysis of conversion, scripts, and load times would show
that load times don’t matter when the number of scripts is the same. Perhaps
there are other confounding factors, such as lower-income customers buying fewer
products and also tending to have slower network connections.

Recall that Akamai’s report portrays a 100-millisecond delay as being worse
for smartphones than for desktops, losing 7.1% of the smartphone conversions.
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But the smartphone conversion rate in Figure 2.3 (middle red graph) drops off
more gently than the desktop conversion rate. For example, the smartphone
conversion rate is 3.3% at 2.7 seconds, and is half of 3.3% around 6 seconds.
Akamai’s report seems to be alluding to the first drop in the red graph after
its peak, but the red graph then jumps up a moment later, and in general the
small-scale wobbling in the red graph looks like random noise.

Maybe a properly designed study that adds 100 milliseconds of delay into web
pages for randomly selected users would produce a 2%, maybe even 7%, drop
in sales. But the study in [7] was not properly designed. There are many other
theories that would produce the graphs in [7]. The highlighting of one possible
theory is easily explained as a combination of confirmation bias and marketing.3
The same report briefly mentions that “Walmart saw up to a 2% increase in
conversions for every second of improvement in load time”, without noting that,
compared to 7% for 100 milliseconds, 2% for 1 second is 35× less important.

2.4. The machinery of cryptographic performance advertising, part 3:
systematic exaggeration. Let’s return to the belief in [124] that “hundreds of
extra milliseconds per handshake are not acceptable”. Most of the page loads in
Figure 2.3 are at least hundreds of milliseconds beyond the red peaks, and yet
these are, according to Akamai, deployed web pages from “leading retail sites”;
so how does [124] conclude that this extra time is “not acceptable”?

Even if hundreds of extra milliseconds per page load are unacceptable, it is
an error to conflate this with hundreds of extra milliseconds per handshake. A
TLS handshake sets up a session that can be, and often is, used to load many
pages without further handshakes. A page often collects content from multiple
servers, but presumably most latencies overlap. Perhaps users wouldn’t actually
notice the costs considered in [124]—or perhaps they would notice the costs but
would consider the costs acceptable if sufficient benefit is provided.

Google constantly makes changes to its Chrome browser. Sometimes these
changes improve performance. Sometimes they reduce performance. Google has
a statement [67] of procedures for deciding whether a performance regression
is acceptable. This statement spends several paragraphs listing “some common
justification scenarios”, such as the following:

What do we gain? It could be something like: . . . Additional security

Compare this to a November 2021 Cloudflare blog post [139] pointing to the
same statement of Google procedures and claiming that “only in exceptional
cases does Chrome allow a change that slows down any microbenchmark by
even a percent”. This claim plays a pivotal role in the advertising for [139],
which, like [124], studies the performance of signature systems.

All of the signature systems listed in [124, Table 1] have software available
that signs in under 20 milliseconds on a 3GHz Intel Haswell CPU core from 2013
3 I’m not trying to say that Akamai’s many customers are making a mistake. On
the contrary: my impression is that Akamai is providing robust web service to its
customers, and at the same time is doing a valuable public service in allocating
Internet links more efficiently.
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(never mind the possibility of parallelizing the computation across several cores).
The server signs a TLS handshake only once. The browser also verifies certificate
chains—the paper considers TLS sessions with 3 or 4 verification operations—but
all of these signature systems have software available that verifies in under 5
milliseconds. The total size of a public key and a signature in [124, Table 1] is
at most 58208 bytes, so a 100Mbps network connection (already common today,
never mind future trends) can transmit 4 public keys and 4 signatures in 20
milliseconds. For comparison, [75, “Total Kilobytes”] shows that the median web
page has grown beyond 2MB, and that the average is even larger.

Given the numbers, it is hard to see how TLS users will care which of these
signature systems is used, and it is hard to see why one should care about
a more detailed performance study. The paper [124] thus has an incentive to
paint a different picture. The paper starts from the “not acceptable” belief quoted
above; selects signature-system software that was “not optimized”; configures a
server-controlled networking parameter, initcwnd, to wait for a client reply
after sending just 15KB of data; and devotes a page to discussing long-distance
connections, such as a US-to-Singapore connection, where waiting for a client
reply costs a 225-millisecond round trip.4

The server’s initcwnd sheds light on the question of how important latency
is. In the original TCP congestion-control algorithms from the late 1980s [79],
a server with any amount of data to send begins by sending at most one packet
to the client. The server then waits for a client reply, then sends a burst of two
packets, then waits for a client reply, then sends a burst of four packets, etc. The
initial packet is allowed to be full size, which today typically means 1500 bytes.
The choice to start with one full-size packet, not more and not less, is a balance
between (1) the slowdown from delaying subsequent data and (2) concerns that
having everyone start with more data would overload the network.

In 1998, an “Experimental” RFC [11] proposed increasing the server’s “initial
congestion window” (initcwnd) from 1 packet to 2–4 packets. Today this is a
“Proposed Standard” [12]. In 2013, another “Experimental” RFC [46] proposed
increasing initcwnd to 10 packets. According to [44], Akamai was using 16
packets in 2014, and 32 packets in 2017. Five doublings of initcwnd, from 1 to 2
to 4 to 8 to 16 to 32, eliminate four or five round-trip times from any sufficiently
large file transfer.

Other major web servers in 2017 used initcwnd ranging from 10 through
46, according to [44]. All of these are still officially “experimental”, far above
the standard 1 and the proposed standard 2–4, but most Internet links have
grown to handle massive video traffic, and a relatively tiny burst of packets at
the beginning of a TCP connection does not cause problems. Meanwhile [124]
refuses to benchmark initcwnd above 10, and issues an ominous warning that
widespread deployment of a larger initcwnd “could have adverse effects on TCP
Congestion Control”, as if a larger initcwnd were not already widely deployed.
4 The blog post [139] instead measures Cloudflare’s usual short-distance connections.
Unsurprisingly, the observed times are much smaller than in [124].
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In the opposite direction, compared to a web server taking initcwnd as 46, a
web server taking initcwnd as just 10 is sacrificing two round trips, almost half
a second for a connection between the US and Singapore. If such a slowdown
is “not acceptable” then why are some major web servers doing it? Perhaps the
answer is that such long-distance connections are rare. Or perhaps the answer is
that occasional delays of hundreds of milliseconds aren’t actually so important.

2.5. Competitions for cryptographic performance. There is overwhelming
evidence of performance requirements—whether real or imagined—playing an
important, perhaps dominant, role in cryptographic competitions:

• At an NBS workshop in 1976, before DES was approved as a standard, Diffie
(in joint work with Hellman; see [57, page 77, “Cost of larger key”]) proposed
modifying the DES key schedule to use a longer key. Representatives of
Collins Radio and Motorola objected to this proposal, saying that DES is
“close to the maximum that could be implemented on a chip with present
technology” and that a manufacturing delay “of one to two years might be
encountered if a longer key were required”. See [97, page 20].5

• The AES call for submissions [87] listed “computational efficiency” as the
second evaluation factor after “security”. NIST’s final AES report [102, page
528] stated that “Rijndael appears to offer an adequate security margin” and
that “Serpent appears to offer a high security margin”, and the same report
claimed [102, page 516] that “security was the most important factor in the
evaluation”, but NIST selected Rijndael rather than Serpent as AES. NIST’s
only complaints about Serpent were performance complaints.

• eSTREAM called [62] for “stream ciphers for software applications with
high throughput requirements” and called for “stream ciphers for hardware
applications with restricted resources such as limited storage, gate count,
or power consumption”. The eSTREAM committee selected several ciphers
for the final eSTREAM portfolio [15]—for example, selecting my Salsa20
cipher with 12 rounds, “combining a very nice performance profile with what
appears to be a comfortable margin for security”. I had recommended, and
continue to recommend, 20 rounds; I had proposed reduced-round options
only “to save time” for users “who value speed more highly than confidence”.

• The SHA-3 call for submissions [84] said that “NIST expects SHA-3 to have
a security strength that is at least as good as the hash algorithms currently
specified in FIPS 180–2, and that this security strength will be achieved with
significantly improved efficiency”. When NIST selected Keccak as SHA-3, it
wrote [45] that Keccak “offers exceptional performance in areas where SHA-2

5 NBS wrote in 1977 [55, page 10] that DES was “satisfactory for the next ten to
fifteen years as a cryptographic standard”. NIST did not end up withdrawing DES
as a standard until 2005. Almost all of the DES benefits claimed in [90] appeared in
1980 or later, as did 93% of the implementations listed in [90, page 31]. Why was a
claimed manufacturing delay from 1976 to 1977 or 1978 treated as important? See
Section 3.6 for a possible answer. It is also far from clear that the claim was correct:
[90, page 16] reports that IBM “had developed a commercially viable VLSI chip that
could incorporate the encryption algorithm efficiently” already before March 1975.
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does not”, and that Keccak “received a significant amount of cryptanalysis,
although not quite the depth of analysis applied to BLAKE, Grøstl, or Skein”.
On the other hand, NIST’s prioritization of efficiency over security was not as
clear for SHA-3 as for AES: [45] also said that Keccak “relies on completely
different architectural principles from those of SHA-2 for its security”.

• CAESAR called [19] for “authenticated ciphers that (1) offer advantages over
AES-GCM and (2) are suitable for widespread adoption”. Proposals varied
in whether they emphasized security advantages or efficiency advantages.
The CAESAR committee later identified three “use cases” [21]: “lightweight
applications” requiring “small hardware area and/or small code for 8-bit
CPUs”; “high-performance applications” requiring “efficiency on 64-bit CPUs
(servers) and/or dedicated hardware”; and, deviating from the speed theme,
“defense in depth” providing “authenticity despite nonce misuse”. Ultimately
the CAESAR committee selected Ascon (first choice) and ACORN (second
choice) for use case 1, AEGIS-128 and OCB (without an order) for use case
2, and Deoxys-II (first choice) and COLM (second choice) for use case 3.

• The NISTPQC reports referred repeatedly to performance as a basis for
decisions. For example, [9] said that NIST’s “first priority for standardization
is a KEM that would have acceptable performance in widely used
applications overall. As such, possible standardization for FrodoKEM can
likely wait”. What is not “acceptable” in Frodo’s performance? NIST wrote
that a TLS server using Frodo uses “close to 2 million cycles” and “receives a
public key and a ciphertext (around 20,000 bytes in total) for every fresh key
exchange”.6 Similarly, the report [10] on the first batch of NISTPQC winners
(Dilithium, Falcon, Kyber, and SPHINCS+) praised Frodo’s “conservative
design choices” but claimed that Frodo “is clearly not an immediate drop-in
general-purpose scheme”.

• NISTLWC called [100] for submissions of hash functions and authenticated
ciphers “tailored for resource-constrained devices”, since “many conventional
cryptographic standards” are “difficult or impossible to implement” in such
devices, at least with the constraint of acceptable performance. NISTLWC is
the most recent competition in this list, with an initial submission deadline
in 2019; NISTLWC selected Ascon in 2023.

Almost all of these competitions are for symmetric cryptography: block ciphers,
hash functions, authenticated ciphers, etc. Symmetric cryptography is applied to
every byte of communicated data, authenticating every byte and encrypting every
potentially confidential byte. The Android storage-encryption example (almost)
fits this pattern, with every byte encrypted (but currently not authenticated)
before being communicated to the untrusted storage device. As another example,
the fastest signature systems involve

• hashing all the data being signed;
6 One side would send a 9616-byte public key, and the other side would send back
a 9720-byte ciphertext, so “receive” is not true. It’s true that, with the software
available at that time, each side would use close to 2 million Haswell cycles: i.e.,
close to a full millisecond on a 2GHz CPU core.
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• some asymmetric work independent of the data length.

Similarly, a TLS session applies an authenticated cipher to every byte of data,
after an asymmetric handshake independent of the data length. Trends towards
larger data volumes, supported by faster CPUs and faster networks, mean that
a larger and larger fraction of overall cryptographic cost comes from symmetric
cryptography, providing one reason for having more symmetric competitions
than asymmetric competitions.

Perhaps more advanced cryptographic operations will dominate cryptographic
costs someday. The yearly iDASH “secure genome analysis competition” [128]
measures performance of homomorphic encryption, multiparty computation,
etc. As another example, to the extent that post-quantum cryptography is
more expensive than pre-quantum cryptography, it changes the balance of
costs—which, again, does not imply that its costs matter to the end users; this
is something that needs analysis.

Comparing the symmetric competitions shows trends towards larger and more
complex inputs and outputs in the cryptographic algorithm interfaces. DES has
a 64-bit block size; AES has a 128-bit block size. Stream ciphers encrypt longer
messages. Hash functions hash longer messages. Authenticated ciphers include
authentication tags in ciphertexts, and optionally authenticate another input.
Many NISTLWC submissions support hashing and authenticated encryption,
sharing resources between these functions. The main driver of these trends is
that symmetric algorithms with larger interfaces often reach levels of efficiency
that seem hard to achieve with smaller interfaces, although there are also some
security arguments for larger interfaces. See generally [22, Section 2].

2.6. How AES performance was compared. During the AES competition,
Biham [37, Table 3] reported that “the speed of the candidate ciphers on Pentium
133MHz MMX” was 1254 cycles for Twofish, 1276 cycles for Rijndael, 1282 cycles
for CRYPTON, 1436 cycles for RC6, 1600 cycles for MARS, 1800 cycles for
Serpent, etc. for encrypting a 128-bit block under a 128-bit key.

Serpent, generally viewed as the AES runner-up, had (and has) a much larger
security margin than Rijndael, the eventual AES winner. Biham also reported
speeds scaled to “proposed minimal rounds”: 956 cycles for Serpent (17 rounds
rather than 32), 1000 cycles for MARS (20 rounds rather than 32), 1021 cycles
for Rijndael (8 rounds rather than 10), etc.

Let’s focus on Biham’s reported 1276 cycles for full 10-round Rijndael, almost
80 cycles per byte. The Pentium (with or without MMX) could run at most 2
instructions per cycle, and obviously it didn’t have AES instructions, but did
it really need 1276 cycles for 160 table lookups and some auxiliary work? No,
it didn’t. Schneier, Kelsey, Whiting, Wagner, Hall, and Ferguson [121, Table 2]
reported Rijndael taking 320 Pentium cycles, just 20 cycles per byte. They also
estimated that Serpent would take 1100 Pentium cycles—but then Osvik [105,
page 8] reported an implementation taking just 800 cycles.

Compared to Biham’s reports, Serpent was more than 2× faster, and Rijndael
was 4× faster. Overall these speedups seem to favor Rijndael, for example putting
Rijndael ahead of Serpent in the “proposed minimal rounds” speed. On the other
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hand, overall these speedups compress the difference in costs between Serpent
and Rijndael, from 1800−1276 = 524 cycles to 800−320 = 480 cycles; and these
speedups make it more likely that both ciphers will meet the users’ performance
requirements.

Why did these reports end up with such different numbers? And why did
NIST’s AES efficiency testing [99] feature CRYPTON as the fastest candidate
in its tables and its graphs, 669 Pentium Pro cycles to encrypt, with Rijndael
needing 809 Pentium Pro cycles to encrypt? The Pentium Pro is generally faster
than the Pentium (and Pentium MMX); [121] reported 345 Pentium Pro cycles
for CRYPTON and 291 Pentium Pro cycles for Rijndael.

2.7. The process of comparing cryptographic speeds. All of these speed
numbers arise from the general process shown in Figure 2.8. The first column
has a cryptographic algorithm: for example, the Rijndael encryption algorithm
mapping a 128-bit plaintext and a 128-bit key to a 128-bit ciphertext. The second
column has a programmer writing software for this algorithm—or for another
algorithm computing the same mathematical function. The third column has a
benchmarking mechanism that measures the speed of the software, for example
the number of cycles that the software uses on a 133MHz Pentium MMX CPU.
The fourth column has an advertisement mechanism that might or might not
bring the resulting cycle count to the attention of readers.

There are several reasons that the outputs of this process vary:

• The cryptographic functions vary: e.g., Rijndael and Serpent have different
speeds. The whole point of a speed competition is to compare the speeds of
different functions.

• The CPUs vary. This complicates comparisons. If function F is faster than
function G on one CPU, but slower on another, then which function wins
the competition? What happens if F is slower than G on today’s CPUs, but
faster than G in hardware, perhaps hardware built into future CPUs?

• The software varies. A programmer often fails to achieve the best speed for a
cryptographic function on a CPU. The slowdown depends on many details of
the function, the CPU, the programmer’s experience, and the programmer’s
level of enthusiasm for the function. There are many counterexamples to
the notion that the slowdown is independent of the function: for example,
compared to [121], NIST’s study [99] slowed down CRYPTON by a factor
1.94, slowed down Rijndael by a factor 2.78, and reversed the comparison
between the algorithms.

• The benchmarking mechanism varies, for example in the handling
of per-input timing variations, initial code-cache-miss slowdowns,
operating-system interrupts, clock-frequency variations, and cycle-counting
overheads.

• The advertisement mechanism varies. As an example, measurements that are
slower than previous work are likely to be suppressed if the advertisement
mechanism is a paper claiming to set new speed records, but less likely to be
suppressed if the advertisement mechanism is a paper claiming to compare
multiple options.
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Fig. 2.8. The process of producing performance data for cryptographic software.

Both 1276 cycles from [37] and 320 cycles from [121] are reported to be Rijndael
measurements on the Pentium, so the first and second effects cannot explain the
gap. The easiest explanation is the third effect, although it is easy to imagine
some contributions from the fourth and fifth effects.

The situation is different when cryptographic functions are deployed. The
CPUs still vary, but, for each CPU, slower software is systematically suppressed
in favor of faster software (as measured by a unified benchmarking mechanism),
because users who care about speed don’t want the slower software. For example,
the OpenSSL cryptographic library contains 26 AES implementations, almost all
in assembly language, in a few cases weaving AES computations together with
common hash-function computations. The library checks the target platform and
selects an implementation accordingly.

When different implementations run at different speeds for the same function
on the same CPU, what speed does a speed competition assign to that function?
Here are two strategies for answering this question:

• The “fair and balanced” strategy gives equal weight to the speeds of all
implementations.

• The real-world strategy takes the fastest available implementation, the
same way that a cryptographic library does, while suppressing the speeds of
slower implementations.

As soon as there are two implementations running at different speeds, the “fair
and balanced” strategy reports worse speed than the real-world strategy, speed
farther from what the users will see (assuming the users care about speed). The
real-world strategy creates a healthy incentive for implementors to look for and
eliminate slowdowns in their own implementations, while the “fair and balanced”
strategy creates an unhealthy incentive for implementors to “accidentally” create
slow implementations of competing functions.

The standard argument for the “fair and balanced” strategy is to say that
reducing CPU time is rarely worth the software-development time. Knuth [86,
page 268] famously expressed the tradeoff as follows:

Programmers waste enormous amounts of time thinking about, or
worrying about, the speed of noncritical parts of their programs, and
these attempts at efficiency actually have a strong negative impact when
debugging and maintenance are considered. We should forget about small
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efficiencies, say about 97% of the time; premature optimization is the
root of all evil.

But Knuth’s complaint here is about optimizing “noncritical parts” of programs.
Knuth continued as follows:

Yet we should not pass up our opportunities in that critical 3%. A good
programmer will not be lulled into complacency by such reasoning, he
will be wise to look carefully at the critical code; but only after that code
has been identified.

Today there are tens of millions of lines of code in a web browser, and many more
lines of code in a complete computer system. Almost all of this code disappears if
one asks which code has a noticeable impact on performance. A few “hot spots”
are so important that implementors look carefully at making them run as quickly
as possible. If a cryptographic operation is not one of these “hot spots”, then why
is it the topic of a speed competition?

2.9. How AES speeds were compared, part 2. Say someone publishes a
faster implementation of a cipher, 500 lines of software, two years after a cipher
competition begins. Does this mean that the software took 24 person-months
of work, and that similarly optimizing for the 20 most important platforms
would take 480 person-months of work? Or could it be that the same person was
busy with multiple projects, spending only two months of work on this project,
and could it be that a new platform shares 75% of the optimization work with
previous platforms, so optimizing for the 20 most important platforms would take
under 12 person-months of work? Even if it’s really 480 person-months, wouldn’t
the community invest this effort in any widely deployed cipher? Compare [91],
which estimates that AES produced $250 billion in worldwide economic benefits
between 1996 and 2017.

NIST’s AES report [102] did not measure AES code-development time but
claimed that this time was often important:

In some environments, the speed at which the code runs is perceived
as a paramount consideration in evaluating efficiency, overriding cost
considerations. In other cases, the time and/or cost of code development
is a more important consideration.

NIST deviated slightly from the “fair and balanced” strategy, and in particular
refused to list speeds of the fast Serpent implementations from [105] and [65],
since those implementations had been constructed by “1000 hours of execution
of search programs” and “do not necessarily port to different platforms”.

Around that time the Internet was reported to be communicating roughly
258 bytes per year, more than doubling every year. The load was spread across
millions of CPUs. It is hard to see how a few dozen CPUs spending a day on
“execution of search programs” can be a cost to worry about, even if one repeats
those hours for dozens of different target platforms. Furthermore, it is easy to
see that the optimizations from [105] and [65] work reasonably well on a wide
range of platforms, even if further searching would do better on some platforms.
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It is important to realize the mismatch between the resources available for
widely deployed algorithms and the resources available during a competition.
The costs of cryptographic optimization—in human time or computer time—can
be huge obstacles for submitters without serious optimization experience. The
submitters ask for help from people with experience, but the only people paying
attention at this point are crypto junkies, and there are many submissions. Any
particular algorithm struggles to gain attention. It is easy to see how this struggle
could be misinterpreted as a reflection of the deployment environment, rather
than as a problem created by the competition process.

Think about the cryptographic function that would win a speed competition if
it were properly optimized. There is a risk that this function loses the competition
because the necessary optimizations are not demonstrated in time. Ways to
reduce this risk include

• specifying a small number of target platforms as the arenas for competition,
to better focus optimization work during the competition (although there
is then a risk that these platforms are inadequate representatives of other
platforms);

• tracking expert assessments of the unexplored avenues for speedups in each
submission; and

• extending the competition time until the performance picture has settled
down.

The “fair and balanced” strategy exacerbates this risk by assigning a low weight
to speedups found later in the competition, whereas the real-world strategy
ignores all worse speeds the moment that better speeds have been demonstrated.

One might think that Rijndael was much faster than Serpent even after
the speedups, so assigning higher weights to the speedups could not have
changed the AES selection. But the speed picture was not this simple. The
hardware data surveyed in [102] suggested that the most efficient proposal for
hardware encryption was pipelined counter-mode encryption using Serpent.7
Equalizing security margins would have made Serpent much faster. Rijndael
was faster in software because its 256-entry table lookups reused existing CPU
instructions—but hardware implementations have to pay for table lookups. The
optimizations from [105] and [65] should have increased Serpent’s hardware
advantage while decreasing its software disadvantage. If I’ve counted correctly
then [65] uses 201 bit operations per plaintext bit for full 32-round Serpent
(plus 1 bit operation per plaintext bit for counter-mode xor and a small cost for
counter maintenance), very much like the best operation count known today for
10-round Rijndael.

2.10. Better benchmarking mechanisms. NESSIE, mentioned in Section 1,
was a 2000–2003 EU project “New European Schemes for Signatures, Integrity,
and Encryption”. I’m not sure NESSIE qualifies as a competition—it selected
7 There were complaints about Serpent using extra hardware for the inverse function,
but counter-mode encryption does not need the inverse.



Cryptographic competitions 17

17 algorithms—but in any case it took important steps towards matching its
performance evaluations with the reality of what cryptographic users would see.
NESSIE published a software API supporting secret-key encryption, public-key
signatures, etc.; collected C implementations of many cryptographic functions,
with all implementations using the same API; tuned the C implementations for
speed; wrote a benchmarking toolkit to measure speed; ran the benchmarking
toolkit on many computers; and published the results. See [110].

As part of the eSTREAM competition, Christophe De Cannière developed a
new API for stream-cipher software, and wrote a new benchmarking toolkit [40]
to measure implementations supporting the API. This toolkit was limited to
stream ciphers but had several advantages over the NESSIE toolkit. Notably,
it tried more compiler options; it supported assembly-language software; and it
was published. Implementors could run the toolkit to quickly and reliably see
how fast their own software was, and to guide improvements to the software.
Third parties could run the toolkit to contribute and verify public benchmark
results. The quick feedback to implementors—from running the toolkit on their
own machines and from seeing results announced by third parties—led to
many implementation improvements during eSTREAM. The toolkit followed
the real-world strategy, automatically reporting a list of ciphers with the speed
of the fastest implementation of each cipher; see [40, Section 6].

In its final AES report [102, Section 2.5], NIST had complained that
requests to consider a different number of rounds for an AES submission
“would impact the large amount of performance analysis” that had already
been done, since “performance data for the modified algorithm would need to
be either estimated or performed again”. It wasn’t realistic to expect all the
authors of performance-comparison papers to integrate new functions into their
private benchmarking procedures and update their papers accordingly. This
complaint goes away when the benchmarks come from an easily extensible
public benchmarking toolkit: anyone can tweak the number of rounds in the
implementations and run the toolkit again.

In 2006, Tanja Lange and I started eBATS, a new benchmarking
project for public-key systems. Together with Christof Paar, Lange was
the leader of the Virtual Application and Implementation Research Lab,
VAMPIRE, within a European network, ECRYPT; the name “eBATS” stands
for “ECRYPT Benchmarking of Asymmetric Systems”. STVL, ECRYPT’s
Symmetric Techniques Virtual Lab, was running eSTREAM.

Lange and I designed a simple new cryptographic API to handle the needs of
benchmarking and the needs of cryptographic libraries, so writing software for
benchmarking was no longer inherently a separate task from writing software
for real-world use. This increased the incentive for implementors to support the
benchmarking API, and decreased the extra implementation effort. We analyzed
and improved the end-to-end benchmarking process that turned new software
into the public presentation of measurements. Extra feedback to implementors
added extra incentives to contribute implementations.
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In 2008, eSTREAM was drawing to a close, and the SHA-3 competition had
been announced. Lange and I started eBACS, a unified benchmarking project
that includes eBASC for continued benchmarking of stream ciphers, eBASH
for benchmarking of hash functions, and eBATS. We replaced BATMAN, the
original benchmarking toolkit for eBATS, with a new benchmarking toolkit,
SUPERCOP. By late 2009, eBASH had collected 180 implementations of
66 hash functions in 30 families.8 eBASH became the primary source of
software-performance information for the SHA-3 competition. See [45].

eBACS has continued since then, adding more cryptographic functions, more
implementations of those functions, and newer CPUs—while continuing to run
benchmarks on years of older CPUs for comparability. The SUPERCOP API was
carefully extended to handle more operations, such as authenticated encryption.
CAESAR, NISTPQC, and NISTLWC required submissions to provide software
using the SUPERCOP API. SUPERCOP now includes 4350 implementations of
1369 cryptographic functions in hundreds of families. See [32].

This is not the end of the story. SUPERCOP measures cryptographic speeds
on CPUs large enough to run Linux, but what about microcontrollers? FPGAs?
ASICs? Performance metrics other than speed, such as energy usage? Notable
efforts to improve benchmarking processes include the ongoing ATHENa project
for FPGAs and ASICs, and the XBX, FELICS, XXBX, FELICS-AEAD, and
pqm4 projects for microcontrollers. See generally [64], [136], [137], [58], [42],
[60], [83], and [82].

3 Security

Here we are, halfway through a paper that claims to be analyzing the extent
to which competition procedures reduce security risks, and all I’ve been talking
about is speed competitions. This section closes the gap.

3.1. The complex relationship between speed and security. Let’s begin
with the obvious argument that a cryptographic speed competition is a security
competition.

Risk #1 of cryptography is that the cryptography isn’t used. One reason that
cryptography isn’t used, as mentioned in Section 1 and illustrated by the 4-year
delay in Android encryption reviewed in Section 2.1, is that the cryptography
doesn’t meet the user’s speed requirements. Perhaps the requirements are driven
by reality—something with worse efficiency would, if deployed, be a problem—or
perhaps they are driven by fear that there will be a problem. Either way,
something that doesn’t meet the requirements won’t be deployed, and if nothing
meets these requirements then nothing will be deployed. A cryptographic speed
competition identifies the functions that have the best chance of meeting the
user’s speed requirements.
8 I don’t mean to suggest that “family” has a clear definition here. Is SHA-1 in the same
family as SHA-224, SHA-256, SHA-384, and SHA-512? The benchmarking process
measures each function separately.
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There is, however, an equally obvious argument in the opposite direction,
namely that a cryptographic speed competition naturally identifies the weakest
functions. RSA-1024 is more efficient than RSA-2048, and RSA-512 is more
efficient than RSA-1024, so RSA-512 will beat RSA-1024 and RSA-2048 in a
speed competition—but RSA-512 is breakable. AES candidates were slower with
256-bit keys than with 128-bit keys. Rijndael proposed not just multiple key sizes
but also multiple block sizes, with top speed requiring the minimum block size.
DES had just one version, but Diffie and Hellman proposed a longer-key variant,
and people complained that this was more expensive; see Section 2.5.

If each family of algorithms claims a tradeoff between security and efficiency,
then it is unsurprising that graphing the claimed security and efficiency of many
different proposals will also show such a tradeoff; see, e.g., the general slant of
the graphs in [24]. How, then, is a competition for top speed not the same as
a competition for minimum security? The users will have something that meets
their performance requirements—something breakable.

Most competitions respond by specifying a minimum allowed security
level. A more subtle extension of this response is to say that users should take
the maximum security margin. This works as follows:

• Identify the most efficient cryptographic function that seems to meet or
exceed the minimum allowed security level. This is a speed competition, but
subject to a security requirement.

• Within the family containing the most efficient function, take the largest
function that meets the users’ performance requirements.

The idea here is that the speed competition gives users the maximum room for
larger keys, more cipher rounds, and other forms of security margins that—we
hope—provide a buffer against attack improvements.

For example, say the efficiency metric is bit operations per bit of plaintext
to encrypt a long stream; and say the minimum allowed security level is 2128.
My understanding of current attacks is that Serpent reaches this security level
with 12 rounds, using about 75 operations per bit; Rijndael reaches this security
level with 8 rounds, using about 160 operations per bit; and Salsa20 reaches
this security level with 8 rounds, using 54 operations per bit. If these are the
competitors then Salsa20 wins the speed competition.9 A user who can afford,
say, 80 operations per bit then takes 12 rounds of Salsa20 (78 operations per
bit). The same user would also be able to afford 12 rounds of Serpent, but 12
rounds of Salsa20 provide a larger security margin, presumably translating into
a lower risk of attack.

The reality, however, is that cryptographic designers are overconfident, and see
negligible value in large security margins (“I can’t have missed something so big”),
even when history shows one example after another of attacks that would have
9 This is an unfair comparison. Salsa20 was designed years later, taking advantage
of lessons learned from Serpent and many other designs. Salsa20 also benefits from
spreading differences through a 512-bit block, while the AES competition required
128-bit blocks and discarded Rijndael’s 256-bit-block options.
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been stopped by large security margins. Meanwhile the same designers see that
proposing something with a large security margin is risky. Serpent proposed more
than twice as many rounds as necessary and had the whole proposal dismissed
as being too slow.

I knew that Salsa20 had far more rounds than I could break, correctly guessed
that it had far more rounds than anyone else could break, correctly guessed that
it would be competitive in speed anyway, and concluded that it would be able
to get away with a large security margin. At the same time, knowing what had
happened with Serpent, I didn’t want to go beyond 20 rounds. I held off on
proposing reduced-round versions: an initial proposal with (say) 12-round and
20-round options would have been interpreted as indicating a lack of confidence
in 12 rounds, whereas an initial proposal of 20 rounds followed by “Look, people
can’t break 12 rounds, and can’t even break 8 rounds” sounded purely positive.
There was an eSTREAM requirement to support 128-bit keys, but I proposed
as many rounds for 128-bit keys as for 256-bit keys, so that users wouldn’t have
a speed incentive to take smaller keys.

All of this was converting a presumed software-speed advantage into extra
security margin—but if someone else had designed a similar stream cipher with
a smaller round-count parameter then Salsa20 would have been eliminated. In the
opposite direction, there is a long history of submissions being eliminated from
competitions because they chose parameters slightly too small for security—even
if larger parameters would have been competitive. Is a competition supposed to
be evaluating the best tradeoffs available between speed and security, or is it
supposed to be evaluating the designer’s luck in initial parameter selection?

Submitters see what happened in previous competitions. This feedback loop
keeps most security margins in a narrow range. Designers and implementors
don’t want to risk making mistakes in providing larger options. In the end, users
aren’t being given the choice to take the largest security margin they can afford.
I did convince the relevant people that TLS would be just fine in performance
using 20 rounds of ChaCha rather than 12, but most deployed security margins
are much smaller than this, and competitions follow suit.

3.2. The complex relationship between speed and security, part 2:
later discovery of attacks. If we’ve correctly evaluated the security level of
a cryptographic algorithm, and if that security level is high enough compared
to the resources available to the attacker, then we shouldn’t need a security
margin—the algorithm is secure. The basic problem here is that we don’t have
procedures to reliably evaluate the security level of a cryptographic algorithm.
Sometimes breaking an algorithm takes years or even decades of public attack
development. This does not mean that the algorithm was secure in the meantime:
the algorithm was never secure, and large-scale attackers could have found the
break long before the public did.

MD5 was published in 1992 [112] with a conjecture of 264 collision security.
There were alarm bells from cryptanalysts, such as [59] (“it is anticipated that
these techniques can be used to produce collisions for MD5”), but the conjecture
was not publicly broken until 12 years later, when the results of [134] were
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announced. Followup work culminating in [126] exploited MD5 chosen-prefix
collisions to efficiently forge certificates for arbitrary web sites. It was announced
in 2012 that malware called “Flame” had been exploiting MD5 collisions since
at least 2010; the analysis of [125] concluded that the Flame attackers had used
an “entirely new and unknown” variant of [126] (meaning new from the public
perspective), that the Flame design “required world-class cryptanalysis”, and
that it was “not unreasonable to assume” that this cryptanalysis predated [126].

As another example, SIDH appeared in 2011 [80] with a claim to improve
upon “all previous isogeny-based schemes by orders of magnitude in performance
at conventional security levels”. SIDH became the foundation of the SIKE
submission to NISTPQC, and its performance attracted interest. SIKE was used
in a large-scale experiment [88] by Cloudflare and Google, was advertised in [49]
as “a decade unscathed”, and was one of just four algorithms that [10] selected
for consideration in the fourth round of NISTPQC (“SIKE remains an attractive
candidate for standardization because of its small key and ciphertext sizes”), on
top of the four algorithms selected for standardization at the end of the third
round. SIKE was then broken by [43] and, independently, [94]. (For earlier
security warnings, see [31, minute 48:25] and [27].) The largest proposed SIKE
parameters, designed for 2256 security, were broken in [56] in 11 seconds. The
same attacks do not seem to apply to the older isogeny-based system from [118].

Think of a cryptographic proposal as a random variable, with some probability
p(M) of being publicly broken within M months (i.e., p(M) is defined as the
probability that a break is published ≤M months after the proposal). Assume for
simplicity that these probabilities are independent across proposals. Let’s also
optimistically assume that p(∞), the limit of p(M) as M increases, captures all
attacks that the attacker will find—the public will eventually find everything;
and that the same probabilities apply specifically to submissions to competitions,
rather than competitions tending to encourage weak submissions.

By collecting enough data, we can retrospectively estimate p(M) for small
values of M , and perhaps the curve would let us guess p(∞). For example, one
can start by estimating p(12) ≈ 1/3 given that 5 of the 15 AES submissions
were publicly broken within 12 months, although obviously this selection of data
should be replaced by much more data.

Consider a competition that chooses a random winner among the submissions
not publicly broken within 36 months (assuming there is one). A submission has

• probability p(36) of being publicly broken within 36 months,
• probability p(∞)− p(36) of being breakable but not publicly broken within

36 months, and
• probability 1− p(∞) of being secure.

The winner is thus breakable with probability (p(∞)− p(36))/(1− p(36)).
If, for example, data collection shows that there have been 1000 cryptographic

proposals, with just 100 publicly broken within 36 months, and just 10 (like
MD5) publicly broken between 36 months and 180 months, then 1− p(36) = 0.9
and

p(∞)− p(36) ≥ p(180)− p(36) = 0.01,
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so the winner is breakable with probability at least 0.01/0.9. Does it make sense
for cryptographers to worry about a user choosing a weak key with probability
2−64, while not obviously worrying about each new cryptographic competition
choosing a breakable winner with probability above 1%?

Now let’s partition the proposals into two types, 50% faster proposals and 50%
slower proposals. Let’s define p1(M) as the conditional probability of a faster
proposal being publicly broken within M months, and p2(M) as the conditional
probability of a slower proposal being publicly broken within M months. By
definition p(M) = 0.5p1(M) + 0.5p2(M). Assume for simplicity that there are
no further correlations between efficiency and brokenness.

Consider a competition that receives F faster submissions, receives infinitely
many slower submissions, and chooses the most efficient submission not publicly
broken within 36 months. The probability that all of the faster submissions
are publicly broken within 36 months is p1(36)

F , so the competition winner is
breakable with probability

p1(36)
F p2(∞)− p2(36)

1− p2(36)
+ (1− p1(36)

F )
p1(∞)− p1(36)

1− p1(36)
.

If p1(36) isn’t too close to 1 and F isn’t too small then p1(36)
F is close to 0, so

the winner is breakable with probability close to (p1(∞)− p1(36))/(1− p1(36)).
This probability could be even larger than (p(∞)−p(36))/(1−p(36)), meaning

that taking the most efficient unbroken submission is increasing risk compared
to taking a random unbroken submission. It’s easy to imagine reasons for faster
proposals to be more likely to be broken than slower proposals—and more likely
to be publicly broken after 36 months, as in the case of MD5. On the other
hand, perhaps data collection will show that for some reason faster proposals are
actually less risky overall. Even if they’re more risky, perhaps this is outweighed
by the benefit that they produce for users taking the maximum security margin.
Similar comments apply when there are more than 2 different levels of efficiency.

Perhaps p(M) and p1(M) should be stratified into p(M,Y ) and p1(M,Y ),
where Y is the year when a proposal was made. Optimists might hope that
p(M,Y ) has been decreasing with Y . But many submissions to the most recent
competitions have been broken (see, e.g., [25, PDF page 91]), showing that
p(M,Y ) remains far above 0 for small M . Why shouldn’t we think that p(∞, Y )
is even larger than p(36, Y ), and that p1(∞, Y ) is even larger than p1(36, Y )?

3.3. The overworked cryptanalyst. One way to argue that competitions
reduce security risks is to argue that they focus the community’s attention on
finding all possible attacks. But does a competition provide enough time for this?

F-FCSR, one of the eight ciphers selected for the eSTREAM portfolio, was
then shown in [72] to be very efficiently broken from 13 megabytes of output.
As another example, the Rijndael designers and NIST claimed that Rijndael
was “not vulnerable to timing attacks”, but this was then disproven; as noted in
Section 1, timing attacks continue to cause AES security problems today. These
attacks work for any number of AES rounds, illustrating that security margins
don’t necessarily eliminate the security risks that remain after competitions.
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If an attack takes years to develop, perhaps the reason is that it is the end of
a long sequential chain of thoughts adding up to years of latency, but a simpler
explanation is throughput. The world has a limited number of cryptographic
experts capable of carrying out, and willing to carry out, public security analysis.
This valuable time is divided across a huge number of proposals. This problem
is more severe for competitions having more submissions—and for competitions
having more complicated submissions. A competition might attract cryptanalyst
time that would otherwise have been spent elsewhere, but the existence of a
competition also creates submissions, cryptographic proposals that would not
have existed otherwise, so it is far from clear that the amount of analysis per
year per submission is larger than the amount of analysis per year per proposal
outside competitions.

Perhaps having a critical mass of cryptanalysts focusing on one topic at the
same time leads to breakthroughs that would not otherwise happen. Or perhaps
the focus is wasting valuable cryptanalytic time on redundant parallel work, and
cryptanalysts work more efficiently when they are roaming free through a larger
field of targets.

Competitions normally run through multiple phases, each phase narrowing
the list of submissions. See Figure 3.4. A shorter and shorter list makes it more
and more reasonable to believe that cryptanalysts are focusing on each remaining
proposal more than what would have happened without a competition. AES, for
example, narrowed the 15 initial submissions to 5 finalists, and presumably those
were the top targets for security analysis at that point. On the other hand, final
comments were due just 9 months later, and NIST announced the winner just
5 months after that. Concerns about not having enough time were expressed
in [109, Section 2.1]:

We believe that the effort spent on evaluating the security of the five AES
finalists has been very limited, certainly compared to the 17 man-years
spent by IBM on DES in the 1970s.

Sometimes competitions ask cryptanalysts to focus on particular submissions,
while not necessarily excluding other submissions:

• eSTREAM’s second phase selected 27 submissions, designating 10 as “focus”
submissions: “These are designs that eSTREAM finds of particular interest.
We particularly encourage more cryptanalysis and performance evaluation
on these primitives.” The others were “designs that eSTREAM wishes to
move to the second phase of the eSTREAM project”. (Two of the others,
F-FCSR and Rabbit, ended up being in the eSTREAM portfolio.)

• NISTPQC’s third phase selected 15 submissions, designating 7 as finalists:
“NIST intends to select a small number of the finalists for standardization
at the end of the third round. In addition, NIST expects to standardize a
small number of the alternate candidates (most likely at a later date).”

Cryptanalysts can also decide on their own to focus on the fastest submissions,
guessing that those are the easiest submissions to break, and the most likely to



24 Daniel J. Bernstein

competition years
DES: the Data Encryption Standard 1974–1976
AES: the Advanced Encryption Standard 1998–2000
eSTREAM: the ECRYPT Stream Cipher Project 2005–2008
SHA-3: a Secure Hash Algorithm 2008–2012
CAESAR: Competition for Authenticated Encryption: 2014–2019Security, Applicability, and Robustness
NISTPQC: NIST Post-Quantum Cryptography Standardization Project 2017–?
NISTLWC: NIST Lightweight Cryptography Standardization Project 2019–2023

competition start submissions
DES M−13 M0: 1 → M26: 1 • •
AES M−17 M0: 15 → M14: 5 → M28: 1 • • •
eSTREAM M−5 M0: 34 → M11: 27 → M24: 16 → M36: 8 •• ••
SHA-3 M−21 M0: 51 → M9: 14 → M26: 5 → M48: 1 •• • •
CAESAR M−14 M0: 56 → M16: 29 → M29: 15 → M48: 7 → M59: 6 • • • ••
NISTPQC M−20 M0: 69 → M13: 26 → M31: 15 → M55: 4+4 → ?

• • • •
NISTLWC M−30 M0: 56 → M6: 32 → M25: 10 → M48: 1 •• • •

Fig. 3.4. Number of submissions remaining in each phase of various competitions. M0
is the calendar month when initial submissions were due. The first boldface number
is the number of submissions allowed into the first phase. This is often smaller than
the total number of submissions; e.g., DES disallowed most submissions, according
to [55, Section 6]. Each subsequent M is the calendar month when submissions were
announced for a subsequent phase, and the boldface number is the number of those
submissions. For DES, AES, eSTREAM, SHA-3, CAESAR, and NISTLWC, the final
boldface number is the number selected for the portfolio as output of the competition,
ending the competition. eSTREAM then updated its portfolio 5 months later to
remove a broken portfolio member. NISTPQC is ongoing, with 4+4 meaning that
4 candidates were announced as being selected for the portfolio and 4 candidates were
announced as being under continued consideration for the portfolio. Second column is
when competition was announced. Range of years in the top table starts when initial
submissions were due and ends when the portfolio was announced.

be selected if they are not broken. This might seem to be a successful strategy
if the focus produces an attack—but why should we think that enough time has
been spent analyzing the remaining submissions?

Section 2.9 considered ways to reduce the risk of the fastest function not
being recognized as the fastest. One can analogously try to reduce the risk of a
breakable function not being recognized as being breakable:

• Limit the complexity of the security goals for the competition, to better focus
security-analysis work during the competition (although there is then a risk
that these security goals are inadequate representatives of other security
goals).

• Track expert assessments of the unexplored avenues of attack against each
submission.

• Extend the competition time until the attack picture has settled down.
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I suspect that collecting historical data will show that the security risks from later
attack improvements have been quantitatively more severe, in probability and
in impact, than the security risks arising from later performance improvements.

At the beginning of 2012, the SHA-3 competition was almost over, and the
consensus of the cryptanalysts and designers I talked to was that it would be
useful to have a new competition. Authenticated encryption was an obvious
target—compared to stream ciphers and hash functions, authenticated ciphers
are a step closer to the typical user’s needs—and group discussions didn’t identify
any better targets. Interfaces even closer to the user’s needs were identified (for
example, secure sessions) but raised concerns of being too big a jump, needing
too much new security analysis.

When I announced CAESAR at the beginning of 2013, I posted a “Timeline
(tentative)” stretching five years into the future, with a submission deadline a
year later and then four years of analysis ending with a portfolio. The actual
schedule ended up lasting a year longer than the tentative schedule: submitters
were asking for more time already from the outset (e.g., “the extra 2 months
is a small price to pay if it increases the quality of submission pool (which
I’m sure it will)”), cryptanalysts were asking for more time, etc. In the end
CAESAR selected a portfolio of authenticated ciphers with exciting performance
features and security features—see Section 2.5 for the list of ciphers—and in the
subsequent 52 months nothing has publicly gone wrong with any of them.

The italicized phrase is important. There is still no guarantee that enough time
has been taken to find the best attacks against these ciphers. It is concerning to
see, e.g., the breaks in [77] and [93] of various versions of OCB (OCB2 for [77],
and OCB3 with nonces shorter than 6 bits for [93]), even though those are not
exactly the versions of OCB submitted to CAESAR.

3.5. Cryptographic risk management beyond timing. Public advances in
attack algorithms generally begin with experts recognizing dangerous structure
in the functions being attacked. Typically this structure can be described as an
analogy to another broken function.

This doesn’t mean that an expert recognizing dangerous structure is always
able to find an attack. Often one cryptanalyst extends an attack on function F to
an attack on function G, and then another cryptanalyst extends the attack on G
to an attack on function H, where the first cryptanalyst already recognized the
analogy between F and H and figured out the attack on G as one step from F
towards H. Sometimes the first cryptanalyst already issues a warning regarding
H, such as the MD5 alarm bells from [59] mentioned in Section 3.2.

A competition doesn’t have to select the most efficient unbroken submission.
It can try to reduce security risks by paying attention to extra information,
namely the concerns that experts have regarding submissions. Factoring this
information into decisions is complementary to giving cryptanalysts more time,
the approach of Section 3.3.

I’m not saying that analogies always turn into attacks. It’s easy to draw a
chain of analogies from any cryptographic function to a broken function, so if
analogies always turned into attacks then everything would be broken, which we
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hope isn’t the case. There is also a procedural problem with simply downgrading
any submission for which someone claims that there’s a dangerous structure: this
invites superficial claims from competing submissions.

I established a general policy of public evaluations for CAESAR:

CAESAR selection decisions will be made on the basis of published
analyses. If submitters disagree with published analyses then they are
expected to promptly and publicly respond to those analyses. Any
attempt to privately lobby the selection-committee members is contrary
to the principles of public evaluation and should be expected to lead to
disqualification.

Perhaps we can find clear rules reducing cryptographic risks, improving upon the
baseline rule of eliminating publicly broken algorithms. Those rules can then be
published, shown through analyses to be beneficial, and applied by everybody.
But what happens when experts are spotting risks in a way that isn’t captured
by any known rules? Do we ignore those risks, or do we try to take them into
account?

One answer is to put the experts onto the selection committee. I tried hard to
fill the CAESAR selection committee with top symmetric cryptographers, people
having the experience and judgment to see risks in advance. I promised, as part
of inviting people to join the committee and as part of the public procedures for
CAESAR, that the committee would simply select algorithms and cite public
analyses, rather than publishing its own analyses. Forcing the committee to
publish analyses would have discouraged participation,10 taking resources away
from the core job of making judgment calls beyond published analyses.

Almost everyone I invited said yes. A few later ran out of time, but all of
the following continued through the end (affiliations listed here are from when
CAESAR began):

• Steve Babbage (Vodafone Group, UK)
• Alex Biryukov (University of Luxembourg, Luxembourg)
• Anne Canteaut (Inria Paris-Rocquencourt, France)
• Carlos Cid (Royal Holloway, University of London, UK)
• Joan Daemen (STMicroelectronics, Belgium)
• Orr Dunkelman (University of Haifa, Israel)
• Henri Gilbert (ANSSI, France)
• Tetsu Iwata (Nagoya University, Japan)
• Stefan Lucks (Bauhaus-Universität Weimar, Germany)
• Willi Meier (FHNW, Switzerland)
• Bart Preneel (COSIC, KU Leuven, Belgium)

10 Consider an expert whose mental model says that unbroken algorithms A, B, C, D,
and E have, respectively, chance 90%, 20%, 10%, 80%, and 60% of being secure, and
consider a process that factors this information into decisions. The same expert sees
ample evidence of the general public’s limited understanding of what probabilities
mean, and does not want to be subjected to complaints such as “E was broken after
you said it was probably secure!”.
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• Vincent Rijmen (KU Leuven, Belgium)
• Matt Robshaw (Impinj, USA)
• Phillip Rogaway (University of California at Davis, USA)
• Greg Rose (Qualcomm, USA)
• Serge Vaudenay (EPFL, Switzerland)
• Hongjun Wu (Nanyang Technological University, Singapore)

I served on the committee as non-voting secretary, tracking the discussions and
decisions and handling public communication.

I don’t know how to prove that factoring in expert judgments is more reliable
than simply taking the fastest unbroken algorithm. Maybe it isn’t—or maybe
there’s a better approach. It would be beneficial for the cryptographic community
to put more effort into analyzing and optimizing risk-management techniques.

3.6. The goal of limiting security. Performance pressures and limited time
for security analysis are not the only sources of security risks in cryptographic
competitions, as the history of DES illustrates.

According to a 1978 interview [85], DES product leader Walter Tuchman
described DES as “the culmination of six years of research and development
at IBM”, a “three-pronged effort” involving his data-security-products group at
IBM, the “mathematics department at IBM’s Yorktown Heights research center”,
and “university consultants”. IBM was then “ready to respond” when the National
Bureau of Standards (NBS, later renamed NIST) “issued its request for data
encryption algorithm proposals”. Regarding accusations that IBM and NSA had
“conspired”, Tuchman said “We developed the DES algorithm entirely within
IBM using IBMers. The NSA did not dictate a single wire!”

In 1979, NSA director Bobby Inman gave a public speech [76] including
the following comments: “First, let me set the record straight on some recent
history. NSA has been accused of intervening in the development of the DES
and of tampering with the standard so as to weaken it cryptographically. This
allegation is totally false.” Inman continued with the following quote from a
public 1978 Senate report [123]: “NSA did not tamper with the design of the
algorithm in any way. IBM invented and designed the algorithm, made all
pertinent decisions regarding it, and concurred that the agreed upon key size
was more than adequate for all commercial applications for which the DES was
intended.” This report was also mentioned in [85], which said that according to
Tuchman the report had concluded “that there had been no collusion between
IBM and the NSA”.

However, an internal NSA history book “American cryptology during the cold
war” tells a story [81, pages 232–233] of much heavier NSA involvement in DES:

• NBS began to investigate encryption in 1968. NBS “went to NSA for help”.
• NSA’s “decision to get involved” with NBS on this was “hardly unanimous”.

A “competent industry standard” could “spread into undesirable areas” such
as “Third World government communications” and drugs and terrorism. On
the other hand, “NSA had only recently discovered the large-scale Soviet
pilfering of information from U.S. government and defense industry telephone
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communications. This argued the opposite case—that, as Frank Rowlett had
contended since World War II, in the long run it was more important to
secure one’s own communications than to exploit those of the enemy”.

• “Once that decision had been made, the debate turned to the issue of
minimizing the damage. Narrowing the encryption problem to a
single, influential algorithm might drive out competitors, and that
would reduce the field that NSA had to be concerned about.
Could a public encryption standard be made secure enough to
protect against everything but a massive brute force attack, but
weak enough to still permit an attack of some nature using very
sophisticated (and expensive) techniques?” (Emphasis added. It is
interesting to note the lack of any consideration of the possibility that any
cryptosystem weak enough to be breakable by NSA would also be breakable
by the Soviets.)

• Back to NBS: It “was decided” that NBS would “use the Federal Register
to solicit the commercial sector for an encryption algorithm”. NSA would
“evaluate the quality, and if nothing acceptable appeared, would devise one
itself”.

• The response to NBS’s 1973 call for proposals “was disappointing, so NSA
began working on its own algorithm”. NSA then “discovered that Walter
Tuchman of IBM was working on a modification to Lucifer for general use.
NSA gave Tuchman a clearance and brought him in to work jointly
with the Agency on his Lucifer modification”. (Emphasis added.)

• Regarding the goal of making sure DES was “strong enough” but also “weak
enough”: “NSA worked closely with IBM to strengthen the algorithm against
all except brute force attacks and to strengthen substitution tables, called
S-boxes. Conversely, NSA tried to convince IBM to reduce the length of the
key from 64 to 48 bits. Ultimately, they compromised on a 56-bit key.” (For
comparison, the Senate report had stated that “NSA convinced IBM that a
reduced key size was sufficient” and that NSA had “indirectly assisted in the
development of the S box structures”.)

• “The relationship between NSA and NBS was very close. NSA scientists
working the problem crossed back and forth between the two agencies, and
NSA unquestionably exercised an influential role in the algorithm.”
(Emphasis added.)

The relevant portions of this book became public because, starting in 2006, the
non-profit National Security Archive (abbreviated “The Archive”, not “NSA”)
filed a series of declassification requests and appeals [101] regarding the book.
This forced portions of the book to be released in 2008, and further portions
to be released in 2013—officially documenting, for example, NSA surveillance
of Martin Luther King, Jr., journalist Tom Wicker, and senator Frank Church.
There were also some intermediate releases from the book in response to a FOIA
request filed by John Young in 2009; see [142].

To summarize, NSA worked with NBS on the DES competition before the
competition was announced, and worked jointly with IBM on the design of DES
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before the final design was submitted to the competition. NSA’s actual goals for
the competition—goals that it acted upon, with considerable success—included
(1) making sure that DES was “weak enough” to be breakable by NSA and (2)
having DES be “influential” enough to “drive out competitors”. The first goal
directly threatens security, and the second goal extends the security damage.

3.7. The difficulty of recognizing attackers. An obvious response to the
type of attack described in Section 3.6 is to set up competition procedures that
exclude NSA—and other known attackers—from participation. However, NSA
can secretly hire consultants to participate in the competitions and to try to
weaken security in the same way that NSA would have. These consultants can
deny NSA involvement, the same way Tuchman did.

The core problem is that it is not easy to recognize attackers. It is instructive
to look back at the extent to which the cryptographic community has failed to
recognize NSA as an attacker, never mind the harder problem of recognizing
others working with NSA as attackers.

After differential cryptanalysis was published but was shown to have less
impact on DES than on many DES variants, Coppersmith revealed [48] that
the DES design team had already known about differential cryptanalysis and
had designed DES accordingly. This differential-cryptanalysis story contributed
to a pervasive “good guys” narrative claiming that NSA had strengthened IBM’s
DES design. Here are two examples of this narrative appearing in response to
concerns regarding NSA influence:

• NIST’s standard elliptic curves were designed by NSA, and were claimed to
be “verifiably random”. Scott [122] pointed out that if NSA knew a weakness
in one curve in a million then the claimed “verifiable randomness” would
not have stopped NSA from selecting a weak curve; see also [29], [28], and
[30]. For a “good guys” response, see [68], which, in reply to [29], stated
the following: “Flipside: What if NIST/NSA know a weakness in 1/10000000
curves? NIST searches space for curves that *aren’t* vulnerable.” (The same
author later stated [69] that this comment was from when he was “younger
and more naive”.)

• NSA budget documents leaked in September 2013 listed 0.25 billion dollars
per year for a “SIGINT Enabling Project” that “actively engages the U.S. and
foreign IT industries to covertly influence and/or overtly leverage their
commercial products’ designs” to make them “exploitable” [107], including a
goal to “influence policies, standards and specifications for commercial public
key technologies”. This is what one would expect from an agency whose
primary mission has always been signals intelligence; and it is consistent
with NSA’s early-1970s goal, quoted above, of ensuring that DES was “weak
enough to still permit an attack of some nature”. For a “good guys” response,
see [39], which portrays the “SIGINT Enabling Project” as something new:
[39] has subtitle “Leaked documents say that the NSA has compromised
encryption specs. It wasn’t always this way”; claims that NSA’s “secretive
work on DES” had “made the algorithm better”; and asks if there was a
“change in mission”.
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See also [78], [143], and [138].
The disclosures in 2013 did not stop NSA from participating in processes to

select cryptographic algorithms. See, e.g., [14], describing NSA’s efforts between
2014 and 2018 to convince ISO to standardize Simon and Speck. One can only
guess how many more algorithm-selection processes NSA was influencing through
proxies in the meantime.

CAESAR began before those disclosures, but I was already well aware of
NSA’s role as an attacker; see, e.g., [18]. I hoped that having as much as possible
done in public would, beyond its basic advantages in correcting errors, also stop
NSA and other attackers from sabotaging the process. Obviously attackers could
still submit algorithms, but one of the required sections of each submission was
the following:

Design rationale: An explanation of the choices made in the cipher
design. This section is expected to include an analysis of how a weakness
could be hidden in the cipher. This section must include the following
statement: “The designer/designers have not hidden any weaknesses in
this cipher.”

An attacker can easily lie about the existence of weaknesses, but being forced to
explain the choices made in the design gives the community and the committee
a chance to catch inadequate explanations.

Would an attacker be able to sneak a weak algorithm through a committee full
of experts? Would it be able to sneak a weak algorithm through a competition
that simply takes the fastest unbroken algorithm? These are interesting questions
to analyze.

3.8. The goal of producing publications. I’ll close this paper by describing
one more incentive that creates security risks in cryptographic competitions, an
incentive that also explains many phenomena described earlier in this paper.

As academic cryptographers, we’re paid primarily to produce publications,
specifically papers. Most—although not all—deployed systems come from papers
written by academic cryptographers, after passing through a long supply chain
involving people paid to produce cryptographic standards, and people paid to
produce cryptographic libraries, and so on.

When a cryptographic system fails, we blame that system for failing, as noted
in Section 1. We then use the failure as motivation to write papers proposing
and analyzing new systems. If the broken system is important enough then this
also means new versions of standards, new versions of libraries, etc.

We all have a perverse incentive to stay in this situation, collectively creating a
neverending series of cryptosystems failing in supposedly new and exciting ways,
so that we can continue writing papers designing and analyzing the next systems.
Papers and grant proposals on improved attacks and improved cryptosystems
and security proofs habitually explain their importance by citing recent failures.
If we instead give the users “boring crypto” [20]—“crypto that simply works,
solidly resists attacks, never needs any upgrades”—then will our readers and
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funding agencies still be interested in our subsequent papers? Perhaps, but do
we really want to take this chance?

If we have boring block ciphers then as a community we could move on to, say,
stream ciphers, and if we have boring stream ciphers then we could move on to
authenticated ciphers, and if we have boring authenticated ciphers then we could
move on to secure sessions. But won’t the users say at some point that they have
exactly the right cryptographic operations and don’t need further input from us?
It’s safer for us if our core cryptography keeps failing.

The cryptographic community as a whole systematically flunks Taleb’s “skin
in the game” requirement [127] for risk management. As cryptographers, how
often do we think that the damage caused by cryptographic failures will make us
suffer? The designers of a system don’t expect it to be broken in the first place.
If it is broken then hey, look, the designers have another citation, and now
we can all write followup papers. It’s against community standards to blame
the designers rather than blaming the broken system. At worst there’s a brief
moment of embarrassment if the attack was “too easy”.

We put some sort of requirements on cryptosystems to control the size of
the literature and maintain the prestige of publications—e.g., any new block
cipher must identify some performance metric where the cipher outperforms
previous ciphers, and must include certain types of cryptanalysis—but we have
little incentive to match these requirements to what the users want. What the
users want, most importantly, is for us to be super-careful about security, but we
have personal and community incentives against this. Being more careful than
whatever is required for a publication is taking time away from writing more
papers, and as a community we want a sufficiently steady stream of broken
cryptosystems as continued fuel for the fire.

Imagine a competition requiring every cipher to have twice as many rounds
as it seems to need. This would make typical attack improvements less scary,
and would eliminate most—although not all—cipher breaks. This would make
papers harder to publish. The community thus has an incentive to argue against
such a requirement, claiming that it’s overkill and claiming that a 2× slowdown
is a problem. To support such arguments, we generate even more papers, such
as performance-analysis papers saying that Serpent is slower than Rijndael.

More broadly, performance seems to be the most powerful weapon we have in
the fight against ideas for reducing security risks. Performance constantly drives
us towards the edge of disaster, and that’s what we want. The edge is interesting.
The edge produces papers. This also produces an incentive for us to continually
claim that performance matters, and an incentive for us to avoid investigating
the extent to which this is true. See Section 2.

A traditional report on the CAESAR competition would say that it produced
many papers, advancing researchers’ understanding of security and performance,
building a foundation for the next generation of papers on symmetric cryptology.
All of these things are true. DES was already a success in these metrics, and
subsequent competitions have been even more successful. The challenge for the
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community is to figure out whether we can maintain success in what we’re paid
to do without a neverending series of security failures.
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