
BasicBlocker: Redesigning ISAs to Eliminate Speculative-Execution Attacks

Jan Philipp Thoma
Ruhr-University Bochum, Germany

Jakob Feldtkeller
Ruhr-University Bochum, Germany

Markus Krausz
Ruhr-University Bochum, Germany

Tim Güneysu
Ruhr-University Bochum, Germany

Daniel J. Bernstein
University of Illinois at Chicago, USA, and Ruhr-University Bochum, Germany

Abstract
Recent research has revealed an ever-growing class of mi-
croarchitectural attacks that exploit speculative execution,
a standard feature in modern processors. Proposed and de-
ployed countermeasures involve a variety of compiler updates,
firmware updates, and hardware updates. None of the de-
ployed countermeasures have convincing security arguments,
and many of them have already been broken.

The obvious way to simplify the analysis of speculative-
execution attacks is to eliminate speculative execution. This is
normally dismissed as being unacceptably expensive, but the
underlying cost analyses consider only software written for
current instruction-set architectures, so they do not rule out
the possibility of a new instruction-set architecture providing
acceptable performance without speculative execution. A new
ISA requires compiler updates and hardware updates, but
those are happening in any case.

This paper introduces BasicBlocker, a generic ISA mod-
ification that works for all common ISAs and that removes
most of the performance benefit of speculative execution. To
demonstrate feasibility of BasicBlocker, this paper defines a
BBRISC-V variant of the RISC-V ISA, reports implementa-
tions of a BBRISC-V soft core and an associated compiler,
and presents a performance comparison for a variety of bench-
mark programs.

1 Introduction

The IBM Stretch computer in 1961 automatically speculated
that a conditional branch would not be taken: it began execut-
ing instructions after the conditional branch, and rolled the
instructions back if it turned out that the conditional branch
was taken. More sophisticated branch predictors appeared in
several CPUs in the 1980s, and in Intel’s first Pentium CPU
in 1993.

Software analyses in the 1980s such as [12] reported
that programs branched every 4–6 instructions. Each branch
needed 3 extra cycles on the Pentium, a significant cost on top

of 4–6 instructions, especially given that the Pentium could
often execute 2 instructions per cycle. However, speculative
execution removed this cost whenever the branch was pre-
dicted correctly.

Subsequent Intel CPUs split instructions into more pipeline
stages to support out-of-order execution and to allow higher
clock speeds. The penalty for mispredictions grew past 10 cy-
cles. Meanwhile the average number of instructions per cycle
grew past two, so the cost of each mispredicted branch was
more than 20 instructions. Intel further improved its branch
predictors to reduce the frequency of mispredictions; see [18].

Today the performance argument for branch prediction is
standard textbook material. Accurate branch predictors are
normally described as “critical” for performance, “essential”,
etc. Deployed CPUs vary in pipeline lengths, but speculative
execution is common even on tiny CPUs with just a few
pipeline stages, and is universal on larger CPUs.

This pleasant story of performance improvements was then
rudely interrupted by Spectre [26], which exploited specula-
tive behavior in various state-of-the-art CPUs to bypass criti-
cal security mechanisms such as memory protection, stealing
confidential information via hardware-specific footprints left
by speculatively executed instructions. This kicked off an
avalanche of emergency software security patches, firmware
updates, CPU modifications, papers proposing additional
countermeasures targeting various software and hardware
components in the execution flow, and papers presenting new
attacks. Some countermeasures have been broken, and it is
difficult to analyze whether the unbroken countermeasures
are secure.

1.1 Our Contributions

At this point the security auditor asks “Can’t we just get rid
of speculative execution?”—and is immediately told that this
would be a performance disaster. Every branch would cost P
cycles where P is close to the full pipeline length, and would
thus cost the equivalent of P× I instructions where I is the
number of instructions per cycle. This extra P× I-instruction

1

ar
X

iv
:2

00
7.

15
91

9v
1 

 [
cs

.C
R

] 
 3

1 
Ju

l 2
02

0



cost would be incurred every 4–6 instructions. The emergency
security patches described above also sacrificed performance,
but clearly were nowhere near this bad.

We observe, however, that this performance analysis makes
an implicit assumption regarding the instruction-set architec-
ture. We introduce an ISA feature, BasicBlocker, that under-
mines this assumption. BasicBlocker is simple and can be
efficiently implemented in hardware. We show how compiler
modifications to use BasicBlocker, on top of a CPU without
speculative execution, obtain most of the performance ben-
efit that would have been obtained by speculative execution.
Eliminating speculative execution from CPUs removes one
of the most complicated aspects of an audit of CPU security.

To evaluate performance and demonstrate feasibility of Ba-
sicBlocker, we start with an existing compiler and an existing
CPU for an existing ISA; we modify all of these to support
BasicBlocker; and we compare the performance of the modi-
fied CPU to the performance of the original CPU. We selected
the RISC-V ISA [4] given its openness, and we selected a
soft core (a CPU simulated by an FPGA) to allow evaluations
without manufacturing a chip. Full details of our BBRISC-V
ISA appear later in the paper.

Our performance results rely on a synergy between changes
to the CPU and changes to the compiler, mediated by
changes to the ISA. Given that other countermeasures against
speculative-execution attacks have also involved modifica-
tions to compilers, firmware, and chips, there is no reason to
avoid considering changes to the ISA. To improve deploya-
bility, we explain how a CPU supporting BasicBlocker can
also run code compiled for the old ISA.

1.2 The BasicBlocker Concept in a Nutshell

The P-cycle branch-misprediction cost is the time from early
in the pipeline, when instructions are fetched, to late in the
pipeline, when a branch instruction computes the next pro-
gram counter. If a branch passes through the fetch stage and is
mispredicted, then the misprediction will not be known until
P cycles later, when the next program counter is computed.
Every instruction fetched in the meantime then needs to be
rolled back.

The implicit assumption is that the ISA defines the branch
instruction to take effect starting immediately with the next in-
struction. This assumption was already challenged by “branch
delay slots” on the first RISC architecture in the 1980s; see
generally [16]. A branch delay slot means that a branch takes
effect only after the next instruction. The compiler compen-
sates by moving the branch up by one instruction, if there is
an independent previous instruction in the basic block, the
contiguous sequence of instructions preceding the branch. A
branch delay slot reduces the cost of a branch misprediction
by 1 instruction, and the first RISC CPU pipeline was short
enough that this removed any need for branch prediction.

A few subsequent CPUs used double branch delay slots,

reducing the branch-misprediction cost by 2 instructions. Ob-
viously one can define an architecture with P×I delay slots af-
ter each branch, but this raises two issues. First, the compiled
code depends on CPU pipeline details that change frequently.
Second, a typical program has many short basic blocks that
are rarely executed, and each one needs to expand to P× I
instructions, which can raise serious code-size concerns.

In a BasicBlocker ISA, there is a “basic block N” instruc-
tion guaranteeing that the next N instructions1 will all be
executed. These instructions include, optionally, a branch in-
struction, which takes effect after the N instructions, no matter
where the branch is located within the N instructions. The
same ISA supports many values of N.

1.3 Organization of the Paper
Section 2 discusses related work, especially alternative coun-
termeasures against microarchitectural attacks. Section 3 in-
troduces the fundamentals of speculation, and establishes defi-
nitions and notations that lay the foundation of a formal speci-
fication of our concept, which is presented in detail in Section
4. Section 5 explains the implementation of BasicBlocker in
the RISC-V ISA and elaborates the support on hardware and
software side. Section 6 evaluates performance, and Section 7
concludes.

2 Related Work

Transient-execution attacks, including speculative-execution
attacks and faulty-execution attacks, gained widespread atten-
tion after the disclosure of Spectre [26] and Meltdown [29].
The attacks in [9, 11, 26, 27, 29, 30, 34, 42–44, 48] have shown
many ways that transient execution can undermine “memory
protection” and violate basic security assurances. Attacks of-
ten target particular CPUs but the general attack ideas apply
to most CPUs; for example, [21] demonstrates the traditional
Spectre attack on a RISC-V CPU. See [10,25,38] for surveys
of attack vectors and countermeasures.

A typical speculative-execution attack arranges for mispre-
dicted instructions to see sensitive data. The instructions are
eventually rolled back but still leave footprints in the microar-
chitectural state. The attack inspects the timing of memory
accesses to detect these footprints and extract the sensitive
data.

One can try to hide the footprints of security-critical appli-
cations by regularly flushing caches [3, 8, 45, 49, 52]. How-
ever, [47] shows that microarchitectural traces can sometimes
be detected in cache timings even after a cache flush. Fur-
thermore, memory timing is only one of many covert chan-
nels [38] that need to be analyzed.

One can also try to limit the attacker’s ability to target
useful instructions for speculative execution. For example,

1A variant specifying N bytes of instructions could be better for architec-
tures with variable-length instructions.

2



Retpoline [41] prevents branch-target injection for indirect
calls; however, this stops only a few Spectre variants. By
randomizing the branch predictor state, [53] aims to pre-
vent out-of-place mistraining of branch instructions; however,
speculative-execution attacks using in-place mistraining or
even random mispredictions are still feasible.

2.1 Designing ISAs for Security

There is a long history of security features in ISAs. The most
obvious example is memory protection. Memory protection
is traditionally viewed as being managed by a few operating-
system components, while normal compilers ignore security
issues and focus on “user-level” instructions, and higher-level
security problems are the responsibility of applications.

This model does not seem to have produced secure systems.
Efforts to improve security have often included proposals,
and sometimes deployments, of ISA modifications beyond
memory protection. For example, when Intel introduced its
AES-NI instructions [23], it wrote that the instructions “help
in eliminating the major timing and cache-based attacks that
threaten table-based software implementations of AES” and
“make AES simple to implement, with reduced code size,
which helps reducing the risk of inadvertent introduction of
security flaws”. Various proposals for ISAs to guarantee some
aspects of timing behavior [6, 7, 20], rather than just input-
output behavior, are designed to support analyses of security
against timing attacks. The recent paper [49] introduces a
RISC-V extension to flush microarchitectural state and shows
that the extension stops several covert channels.

It is also not a new idea to propose recompiling normal
applications to use a modified ISA that enforces security con-
straints. In the literature on Control Flow Integrity (CFI) [2],
HAFIX [14] introduces new call and return instructions to let
the CPU enforce a certain type of CFI (subsequently analyzed
in [40]), provided that the compiler modifies call instructions
and return instructions.

BasicBlocker is similar to AES-NI in that it aims to re-
duce the performance incentives for a complicated behavior
with security risks, i.e., speculative execution in one case and
table-based AES implementations in the other case. This is
in contrast to memory protection and CFI, which aim to stop
various steps of known attacks.

This paper focuses on speculative-execution attacks. It
should be possible to similarly address faulty-execution at-
tacks by “preponing” fault detection, removing most of the
performance benefit of transient execution after faults, but
further investigation of this idea is left to future work.

Another approach to ISA modifications against transient-
execution attacks is to explicitly tell the CPU which values are
secret, and to limit the microarchitectural operations that can
be carried out on secret values [35, 50, 51]. The benchmarks
in [50] (also using a modified RISC-V) are not encouraging
but the benchmarks in [35] are more encouraging. These ISA

modifications are orthogonal to BasicBlocker.

3 Speculation in Processors

In a pipelined processor, each instruction passes through mul-
tiple pipeline stages before eventually retiring. A textbook
series of stages is Instruction Fetch (IF), Instruction Decode
(ID), Execution (EX), Memory Access (MEM) and Write Back
(WB) [39]. More complex CPUs can have many more stages.

If each stage takes one cycle then a branch instruction will
be fetched on cycle n in IF, decoded on cycle n+ 1 in ID,
and executed on cycle n+ 2 in EX, so at the end of cycle
n+ 2 the CPU knows whether the branch is taken or not.
Without branch prediction, IF stalls on cycles n+1 and n+2,
because it does not know yet which instructions to fetch after
the branch. With branch prediction, IF speculatively fetches
instructions on cycles n+1 and n+2, and ID speculatively
decodes the first of those instructions on cycle n+2. If the
prediction turns out to be wrong then the speculatively ex-
ecuted instructions are rolled back: all of their intermediate
results are removed from the pipeline.

The functional effects of instructions are visible only when
the instructions retire, but side channels sometimes reveal
microarchitectural effects of instructions that have been rolled
back. As Spectre illustrates, this complicates the security
analysis: one can no longer trust a branch to stop the wrong
instructions from being visibly partially executed.

The standard separation of fetch from decode also means
that every instruction is being speculatively fetched. An in-
struction fetched in cycle n could be a branch (or other control-
flow instruction), but the CPU knows this only after ID de-
codes the instruction in cycle n+ 1, so IF is speculatively
fetching an instruction in cycle n+1. We emphasize that this
behavior is present even on CPUs without branch prediction:
the CPU cannot know whether the instruction changes the
control flow before decoding it.

Disabling all speculative execution thus means that every
branch must stall fetching until it is executed, and, perhaps
even more importantly, that every instruction must stall fetch-
ing until it is decoded. BasicBlocker addresses both of these
performance problems, as shown below.

3.1 Definitions and Notations

In this section we will introduce some terminology and nota-
tion that we will use in the subsequent sections. To formally
grasp the notion of speculative execution, we define microar-
chitectural effects and retired instructions. Other efforts on for-
malizing transient execution have been made in [5,13,22,46].

Definition 1 (Microarchitectural Effects). Let C be a proces-
sor with stateful resources RC. We denote the state of r∈RC as
sr. An instruction i has microarchitectural effects iff i changes

3



the state of a resource r ∈ RC to a state s′r so that sr 6= s′r.
We denote this as i→ r.

Definition 2 (Retired Instructions). The list of retired instruc-
tions Wp,C for a program p on a processor C holds all instruc-
tions i ∈ P that passed all pipeline stages of C during the
execution of p2.

We further define the instruction stream, that holds all the
instructions that caused changes to the state of a processor
resource, regardless of their final existence in the program ex-
ecution. We also give a definition of control flow instructions.

Definition 3 (Instruction Stream). Let C be a processor with
program space P : {(i1, ..., in)|ix ∈ I,x ∈ N} where I is the
set of instructions supported by C. We define the instruction
stream of p ∈ P as an ordered list of instructions of p that
caused microarchitectural effects

−→
Ip = [i1, ..., il ], l ∈ N.

Definition 4 (Control Flow Instructions). Let i j be an instruc-
tion and P the program space. We define i j as a control flow
instruction if there is a program p∈ P, p = (i1, ..., in) in which
the semantics of i j cause the next retired instruction r ∈ p to
be r 6= i j+1.

Hence, control flow instructions are all kind of jumps and
branches. We further introduce the notation

−→
Ip \ ik as an in-

struction stream, where the k-th instruction has been removed
from the instruction stream.

Program code can be divided into basic blocks. To do so,
all possible control flow paths are mapped into a directed
graph called Control Flow Graph (CFG) so that each edge of
the CFG represents a control flow from one instruction to the
next. If two vertices A and B are connected by a single edge
(A→ B) with A having only a single outbound edge and B
having only a single inbound edge, the vertices are merged if
the two instructions are sequential in memory. This is iden-
tical to the textbook definition of CFG, with the difference
that we require a basic block (a vertice of the CFG) to be
located sequentially in memory, resulting in the termination
of a basic block after an unconditional jump or call. Therefore,
our definition guarantees that within a basic block, the next
instruction can be found at PC+ |i|, where |i| is the instruction
length in bytes.

Furthermore, we define a sequential basic block as a basic
block that does not contain a control-flow instruction and
therefore has only one possible successor which is at the
address Addrbb_end + |i|. Such a block can occur, for example,
if a basic block has multiple input edges but only one output
edge and the following basic block has multiple input edges.

Definition 5 (Basic Block). Let p be a program with p =
(i1, ..., in), where i j ∈ I, j ∈ N and I is the instruction set. A
basic block b j is a vertex of the (CFG) of p.
A basic block is called sequential iff b j has exactly one outgo-
ing edge (b j,bk) and bk lies directly behind b j in memory.

2Processors without pipeline are treated as single stage pipelined.

4 Concept

In this section, we outline the rationale behind our approach as
well as the modifications to the ISA that allow the elimination
of speculative execution within the microarchitecture. Though
we use the RISC-V instruction set in the following examples,
our solution is generally applicable to any ISA or processor
as motivated in Section 4.6.

4.1 Security Rationale
Our general CPU-design objective follows the “strong t-
security” Definition (see Definition 6) and can be summarized
as:

The microarchitectural state of a CPU is affected
only by instructions that will eventually be re-
tired.

As noted earlier, this paper focuses on speculative-
execution attacks, leaving faulty-execution attacks to future
work. The goal in this paper is then to ensure that the microar-
chitectural state is affected only by instructions that will even-
tually be retired or that raise exceptions. This is “t-security”
in Definition 6, parameterized by the set of exceptions.

The most important implication of this goal is that the CPU
must abandon any speculative behavior. This eliminates a
major source of complexity inside the security analysis of
modern CPUs.

Abandoning speculative behavior includes abandoning
speculative fetching, as fetching affects the state of the in-
struction cache. We do not want to decide whether speculation
in the CPU frontend is exploitable (see [5, 24, 32]); instead
we want to remove all speculation so that we do not have to
analyze its exploitability.

Definition 6 (t-security). Let C be a processor with stateful
resources RC and program space P : {(i1, ..., in)|ix ∈ I,x ∈N}
where I the set of instructions supported by C. We call a
program p ∈ P strong-t-secure if the instruction stream

−→
Ip

of p holds: @i ∈ −→Ip : i→ r∧ i /∈W where r ∈ RC. We further
define p as t-secure on C if any instruction of p that violates
the strong-t-security property raises an exception.

Observation 1. Speculative fetching is not t-secure on a
processor with instruction cache.

More precisely, let C be a pipelined processor with cache-
like, stateful instruction memory M, deterministic speculative
fetching at PC + |i| and program space P : {(i1, ..., in)|i ∈
I,n ∈ N} where I the set of instructions supported by C. As-
sume that I includes a conditional branch instruction. Choose
a p ∈ P such that i ∈ p : i ∈ IB ∧ t 6= PC+ |i| where t is the
branch target, and assume that p is executed without raising
an exception. The CPU fetches i′ from PC+ |i| 6= t and hence
i′→M but i′ /∈W , contradicting the definition of t-security.

4



We emphasize that the violation of t-security does not solely
rely on the presence of an instruction cache but rather any
resource whose state is affected during speculative fetching.
Examples may be memory controllers and CPU internal coun-
ters.

Another important aspect of our concept is that the hard-
ware guarantees the secure execution of any program, inde-
pendently of measures taken at compile time. We therefore
release the software developer from the burden to add cum-
bersome mitigation techniques. The compiler, however, needs
to be enhanced to take advantage of our ISA modifications
to improve the performance of programs on the strictly non-
speculative hardware. This design principle of hardware se-
curity enforcement is defined in Definition 7, which directly
leads to Observation 2.

Definition 7 (Hardware secure processor). Let C be a proces-
sor with program space P : {(i1, ..., in)|ix ∈ I,x ∈ N} where I
the set of instructions supported by C. We call C a hardware
secure processor if ∀p ∈ P : p is t-secure.

Observation 2. A hardware-secure processor is secure
against speculation based transient attacks.

4.2 Performance Rationale
Disabling speculative fetching and branch prediction, to gener-
ically thwart the security issues arising from speculative be-
havior, is conceptually simple, but is generally believed to
incur a severe loss in performance, as explained in Section 1.
BasicBlocker addresses this by providing metadata through
an ISA modification to assist non-speculative hardware with
efficient execution of software programs.

The CPU has a limited view of programs, accessing only a
limited number of instructions at a time. With current ISAs,
control-flow instructions appear without advance notice, and
their result is available only after multiple pipeline stages,
even though this result is needed immediately to infer the
next instruction.

BasicBlocker takes the concept of basic blocks to the hard-
ware level using custom instructions. At compile time a holis-
tic view of the program is available in form of a control-
flow graph, providing the code structure as basic blocks
and control-flow changes. BasicBlocker uses the information
available at compile time, specifically the length of individ-
ual basic blocks, and makes it available to the CPU during
execution. This allows a non-speculative CPU to avoid most
pipeline stalls, through the advance notice of control flow
changes.

4.3 Basic Block Instruction
We introduce a new instruction, called basic block instruction
(bb), which lays the foundation for BasicBlocker. Enabling

fast but non-speculative fetching requires additional informa-
tion for the CPU, since normally we know that we can fetch
the next instruction only after the prior instruction was de-
coded and it is ensured that the control flow does not deviate.
Hence, normally the fetch unit would have to be stalled until
the previous instruction was decoded. To avoid that delay,
we define a new invariant that requires each basic block to
start with a bb instruction that encodes the size of the basic
block. Within this basic block, the CPU is allowed to fast-
fetch instructions, knowing that upcoming instructions can be
found in a sequential order in memory and will definitely be
executed. That is, since per definition, within the basic block,
no control flow changes can occur. The instruction further
provides information whether the basic block is sequential,
stating that the control flow continues with the next basic
block in the sequence in memory. If a basic block does not
contain a control-flow instruction it is therefore sequential.
Figure 1 shows the transformation of traditional code (left) to
code with bb instruction (right). The fetch unit of the CPU is
responsible for counting the remaining instructions in a given
block and only (fast)-fetch until the end of the basic block.
From there, the program continues executing the next basic
block which itself starts with a bb instruction.

We also modified the behavior of existing control-flow
instructions, such as bne, j and jlre. The goal is to give
advance notice of upcoming control-flow changes to the CPU.
Since the processor knows the number of remaining instruc-
tions per basic block, we can schedule control-flow instruc-
tions within basic blocks as early as data dependencies allow,
and perform the change the control flow at the end of the basic
block. This key feature allows the CPU to correctly determine
the control flow before the end of the basic block, and renders
branch prediction in many cases obsolete.

As a result, the only time that the CPU needs to fetch slowly
is at the transition of two basic blocks, because the following
bb instruction needs to be executed before knowing the size
and, hence, being able to continue fast-fetching. To avoid
this delay, it is sufficient to add the capability of representing
one additional set of basic block information internally and
request this information as early as possible. This means that
the CPU interposes the bb instruction of the next basic block
as soon as the next basic block is known, regardless whether
there are instructions left in the current basic block or not.

In Figure 2, this principle is illustrated for the code of
Figure 1 (right side). The bb instruction of the second basic
block is fetched as soon as the branch target of bne is known.
Afterwards, the execution of the first basic block continues.
Execution of the second basic block can start as soon as the
first basic block is consumed and the size of the second basic
block is known (after EX of bb). If the current basic block
does not contain a control-flow instruction, which is indicated
by the sequential flag of the bb instruction, the CPU can
fetch the next bb instruction directly. Otherwise, the next bb
instruction will be fetched after the control-flow instruction

5



; Start of first basic block
add a5,a0,a4
add t4,a3,a4
addi a4,a4,8
mul a1,t3,t2
lh t2 ,0(a5)
bne a4,a6 ,80... ; compute branch and

change PC
; Start of 2nd basic block
lh a7 ,0(a1)
li a4,0
; Start of 3rd basic block
sh a1 ,0(a0)
...

bb 6, 0 ; first bb, size = 6, not seq
add a5,a0,a4
add t4,a3,a4
addi a4,a4,8
bne a4,a6 ,80... ; compute branch result
mul a1,t3,t2
lh t2 ,0(a5) ; change PC after this instr.
bb 2, 1 ; 2nd bb, size = 2, seq
lh a7 ,0(a1)
li a4,0
bb 16, 0 ; 3rd bb, size = 16, not seq
sh a1 ,0(a0)
...

Figure 1: Example code for the new bb instruction. Left: Traditional RISC-V code does not contain information about the size of
upcoming basic blocks. The bne instruction terminates the first block and conditionally branches. Right: The bb instruction
gives information about upcoming code parts. The first basic block is terminated by the size given in the line 1 and performs a
conditional branch based on the outcome of the bne instruction, whose result is already determined earlier.

IF ID EX MEM WBbne

IF ID EX MEM WBmul

IF ID EX MEM WBlh

IF ID EX MEM WBbb

IF ID EX MEM WBaddi

IF ID EX MEM WBmul

New Basic Block
IF ID EX MEMlh

Figure 2: Pipeline diagram for optimal code. The bb instruc-
tion of the next basic block is fetched as soon as the branch
was executed. The branch only takes effect at the end of
the current basic block. When the branch instruction is suffi-
ciently early rescheduled, the next basic block can be fetched
without stalls.

passes the execution stage.
While the early fetching of the bb instruction changes the

execution order, it does not affect security or correctness since
the instruction is only fetched after the execution path is
known for certain.

Even with these changes it is necessary to stall the CPU
at the transition of two basic blocks until the size of the new
basic block is known. Therefore, this concept works best
with software that contains many large basic blocks with
multiple opportunities to reschedule control-flow instructions
at compile time. Software with a large number of small basic

IF ID EX MEM WBbne

IF ID EX MEM WBmul

IF ID EX MEM WBlh

IF ID EX MEM WBbb

New Basic Block
IF ID EX MEMlh

Figure 3: Pipeline diagram for code with non-optimal
rescheduling of branch instructions. The next bb instruction is
not finished with execution when the new basic block begins.
The CPU needs to stall until the basic block size is known
which is generally after the execution stage.

blocks is therefore less efficient, leading to pipeline stalls as
shown in Figure 3.

The worst case is a control-flow instruction that could not
be rescheduled, since then the CPU needs to be stalled both
for the information from the control-flow instruction as well
as from the bb instructions. This case is depicted in Figure
4. Note, however, that code with a high number of small ba-
sic blocks is also not ideal for traditional speculative CPUs,
as a high number of closely spaced branch instructions will
inevitably lead to mispredictions and pipeline stalls.

Overall, the rescheduling concept can be imagined as a
variably-sized branch delay slot. The advantages of our con-
cept over traditional branch delay slots are twofold:

• The CPU does not need special constructs for the branch
delay instructions. At the end of a basic block, the CPU

6



can simply fetch the instruction at the target address,
regardless of the type of instructions that were executed
prior. If the basic block was sequential, the target register
defaults to PC+4. If any control-flow operations were
executed, the target register points to the target address.

• By having a variably-sized branch delay mechanism,
the code is compatible to all hardware architectures that
support the bb instruction. Since the control-flow instruc-
tions were rescheduled as early as possible, the code is
optimal for those hardware architectures. For fixed size
branch delay slots, CPUs with smaller pipelines may
introduce unnecessary nop instructions.

IF ID EX MEM WBbne

New Basic Block

IF ID EX MEM WBbb

IF ID EX MEMlh

Figure 4: The worst case scenario has a branch instruction at
the end of a basic block.

We now define the changes required by BasicBlocker in a
more specific way. A processor supporting the bb instruction
is required to have an instruction counter IC, a target register
T , a branch flag B, and an exception flag E, all initialized
to 0 on processor reset and used only as defined below. The
functional behavior of the bb instruction is given in Definition
8, the changes to the control flow in Definition 9 and the
behavior that raises an exception in Definition 10.

Definition 8 (BB Instruction). The bb instruction takes a size
parameter n > 0 and a sequential flag seq, and is executed
as follows. If IC 6= 0, then IC← 0 and E ← 1. Otherwise
IC← n; if seq = 0 then B← 1; if seq = 1 then B← 0 and T
is set to the address of the n+1-th instruction following the
bb instruction.

Thus, on a functional level, Definition 8 only sets IC, T , B,
and E but has no further effect on the execution of a program.
The subsequent definitions have further effects.

Definition 9 (BB Delayed Branches). The execution of non-
bb instructions is modified as follows:

• Before every non-bb instruction: if IC > 0 then IC←
IC−1.

• During every control-flow instruction: any write to PC
is instead written to T if B > 0, and is ignored if B = 0.

• After every control-flow instruction: if B = 0 then E← 1;
otherwise B← B−1.

• Subsequently, after every non-bb instruction: if IC = 0
then PC← T ; and if IC = 0 and B > 0 then E← 1.

BasicBlocker raises an exception whenever the bb instruc-
tion is used in an illegal way.

Definition 10 (BB Exceptions). After every instruction, an
exception is raised if IC = 0 and E 6= 0.

In other words, after the n instructions covered by a bb
instruction, an exception is raised if any of the following
occurred:

• seq = 0 and there was no control-flow instruction in the
n instructions;

• seq = 0 and there was more than one control-flow in-
struction in the n instructions;

• seq = 1 and there was a control-flow instruction in the n
instructions.

Also, another bb instruction within the n instructions immedi-
ately raises an exception.

All three definitions are required, in order to add Ba-
sicBlocker to an arbitrary ISA. The following extra require-
ment, a requirement to use bb instructions, slightly simplifies
the implementation of BasicBlocker, although later we con-
sider dropping this requirement for compatibility.

Definition 11 (BB Required). In a BasicBlocker CPU with
required BB: Before every non-bb instruction (and before IC
is decremented), an exception is raised if IC = 0.

To achieve an increased performance, an implementation
of BasicBlocker can pre-execute bb instructions (cf. Figure
2) as defined in Definition 12. This pre-execution affects the
microarchitecture and timing but not the ISA semantics.

Definition 12 (BB Prefetching). A BasicBlocker CPU with
prefetching pre-executes a bb instruction bbi+1 during the
execution of a block, indicated by the bb instruction bbi, as
soon as any of the following occur:

• bbi is resolved if bbi is sequential.

• the first control flow instruction of the block is resolved
if bbi is not sequential.

This requires an additional register P which holds the values
n and seq until execution reaches the instruction following
the prefetched bb instruction.

If the prefetch address is invalid, or if the prefetch address
is valid but the prefetched instruction is not a bb instruction,
then pre-execution is skipped and does not raise an exception.

7



4.4 Further optimizations
The above presented concept can be further optimized by pro-
viding the information contained in the bb instruction as soon
as possible using pipeline forwarding. By construction, none
of the information contained in the bb instructions affects
any other element of the CPU than the fetch unit. Hence, it
is possible to wire these bits back to the fetch unit directly
after the decode stage without further changes to the design.
Another clock cycle can be saved by using a bit mask to fast-
decode the output of the instruction memory directly, with
only marginal overhead.

A significant boost for performance can be achieved by
introducing an additional interface to the instruction memory
(or cache) that is used to access bb instructions. This would
allow the fetch unit to request and process bb instructions in
parallel with the normal instructions and, therefore, eliminate
the entire performance overhead that is introduced though the
addition of these instructions. Since a basic block contains
always at least one instruction additional to the bb instruction,
this instruction can be fetched before knowing the size of the
basic block, without violating the above stated principles.

The worst case scenario with optimizations in place is
depicted in Figure 5.

X

IF ID EX MEM WBbne

IFbb

New Basic Block

@2nd Mem. Port

IF ID EX MEM WBlh

IF ID EX MEM WBli

Figure 5: Worst case scenario with optimizations in place.
The bb instruction is fetched from a second memory port and
can therefore be parallelized.

Further optimizations are possible with additional changes
to the ISA. For example, the 1-bit sequential flag can be
replaced by a multi-bit counter of the number of control-flow
instructions in the upcoming block, so (e.g.) if(a&&b&&c)
can be expressed as three branches out of a single block. This
also changes the branch flag B to a multi-bit branch counter.

The idea to announce upcoming control-flow changes early
on is also the foundation of hardware loop counters, as al-
ready discussed in the literature [17, 33]. Here, the software
announces a loop to the hardware, which then takes responsi-
bility for the correct execution.

We can seamlessly support hardware loop counters in our
design concept. One new instruction (lcnt) is necessary to
store the number of loop iterations into a dedicated register.
The start and end address of a loop can be encoded into the bb
instruction, by indicating with two separate flags whether the

corresponding basic block is the start (s-flag) or end (e-flag)
block of the loop. This allows the hardware to know the next
basic block, as soon as the bb instruction of the end block gets
executed. The fast execution of nested loops can be supported
by adding multiple start and end flags to the bb instruction
as well as adding multiple registers for the number of loop
iterations. A more detailed description of the loop counter
integration to our concept can be found in Appendix A.

4.5 Security Considerations
Our strictly non-speculative pipeline design prevents
speculative-execution attacks by design as the absence of
speculative execution inhibits such leakage through caches
and other side channels. As the security against speculative-
execution attacks is guaranteed in hardware, the responsibility
to defend against these attacks is taken away from the soft-
ware developer.

We now claim that a processor supporting the bb instruction
in general does not violate our t-security definition.

Observation 3. Let C be a hardware secure processor where
every instruction has a microarchitectural effect and Cbb be
the same processor with bb instruction as defined in Defi-
nitions 8, 9, 10, 11 and 12. Then Cbb is a hardware secure
processor.

We support this claim by iteratively adding features from
the definitions to the hardware secure processor C and show-
ing that it maintains the hardware security property by show-
ing, that the t-security is not affected.
i) First, let C′ be C with functional implementation of bb in-
structions which adds the registers IC, T , B, and E to C and
sets them according to Definition 8. Adding this functionality
has no influence on retired instructions and does hence not
violate the t-security property.
ii) Next, let C′′ be C′ with the BasicBlocker control flow as
defined in Definition 9, raising exceptions according to Defi-
nitions 10 and 11. Decrementing the instruction counter IC
during every instruction does not violate the t-security prop-
erty, because even as the decrementation adds a microachitec-
tural effect to the execution of every instruction, it does not
affect the set of retired instructions. Since every instruction
of C′ already has a microarchitectural effect, t-security is not
violated. Similarly, the modified behavior of branches does
not violate t-security, as the microarchitectural effect i→ PC
is transformed to i→ T and T → PC which by the rules of
transitivity yields i→ PC. The definition of t-security is time
invariant and thus, the delay does not affect t-security. All
undefined cases raise an exception which is not relevant for
t-security.
iii) Let Cbb be C′′ with prefetching of bb instructions as de-
fined in Definition 12. Due to the requirements for prefetching,
it is known at this point, that the instruction flow eventually
continues at T . The time invariance argument used in (ii)

8



yields that t-security is maintained. Similarly, the addition of
the register P does not violate t-security by the arguments of
(i). This concludes the argument for Observation 3.

The requirement for every instruction to have a microarchi-
tectural effect is no real restriction, as any state change is a
microarchitectural effect (e.g. PC update).

BasicBlocker can also be used as a form of coarse-grained
CFI [1,2], as it only allows control flow changes to beginnings
of basic blocks, indicated by a bb instruction. This reduces
the prospects of success for (JIT-)ROP [36, 37] attacks, as
the variety of potential gadgets is reduced. However, it has
been shown, that (JIT-)ROP attacks can still be launched with
coarse-grained CFI in place [15], even with a reduced amount
of gadgets. To support fine-grained CFI the bb instruction
could easily be extended with a tag.

4.6 Compatibility
For simplicity and comprehension we showed our ISA modi-
fication for an in-order, single issue processor with a generic
five stage RISC pipeline. One could easily extend our design
to larger, more complex CPUs.

Adding support for out-of-order processors is trivial as
per design, every instruction that is fetched by the processor
will be retired—that is, if none of the instructions raise an
exception. Once the CPU fetches the instruction, reordering is
permitted as far as functional correctness is ensured. Utilizing
the two counter sets, reordering can be done beyond basic
block borders if the bb instruction of the following basic block
has been executed.

Similarly, support for multi-issue pipelines is easy to
achieve. Once the bb instruction is executed, the CPU may
fetch all instructions within the current basic block in an arbi-
trary amount of cycles. If the successor basic block is known
the CPU may fetch instructions from both basic blocks in one
cycle. Secondary pipelines may also be useful to pre-execute
bb instructions for the following basic block in parallel as
described earlier. The more parallel pipelines a CPU has,
the more important it gets to build software with large basic
blocks, as small basic blocks with branch dependent instruc-
tions cause a higher performance loss on a multi-issue CPU
compared to a single-issue CPU.

Generally, the pipeline length can be flexibly chosen. How-
ever, as the CPU needs to wait for results of branch and bb
instructions, it is desirable to make the results of these instruc-
tions available as early as possible.

A major feature of modern systems is the support of inter-
rupts and context switches. We note that our concept does not
impede such features; it merely increases the necessary CPU
state that needs to be saved in such an event. More specifically,
it is necessary to save the already gathered information about
the current and upcoming basic blocks as well as the state of
the loop counter, in addition to all information usually saved
during a context switch.

Our proposal includes one new instruction and a modifica-
tion to existing control-flow instructions. For easier deploya-
bility, it is desirable for a BasicBlocker CPU to be backwards-
compatible. One could define new BasicBlocker control-flow
instructions separate from the previous control-flow instruc-
tions. However, it suffices to interpret a control-flow instruc-
tion as having the new semantics if it is within the range of
a bb instruction, and otherwise as having the old semantics,
dropping Definition 11. Legacy code compiled for the non-
BasicBlocker ISA will then run correctly, and code recom-
piled to use bb will run correctly with higher performance.

It would also be possible to integrate our solution into a
secure enclave by providing a modified fetch unit for the
enclave. Security critical applications could be run in the
protected enclave while legacy software can be executed on
the main processor without performance losses.

5 Implementation

We now give a specific example of BasicBlocker applied to
an ISA, by defining BBRISC-V, a BasicBlocker modification
of the RISC-V ISA. We further, present a proof-of-concept
implementation3 of a BBRISC-V capable soft core and com-
piler. Our modified ISA further specifies support for hardware
loop counters, as proposed in Section 4.4, but the optimal
placement of hardware loop counters during compilation is
not in the scope of this paper, and therefore not supported by
our compiler.

5.1 BBRISC-V ISA

The BasicBlocker modification requires the definition of the
bb instruction as well as semantic changes to all control flow
instructions.

The bb instruction does not fit into any of the existing
RISC-V instruction types so that we define a new instruction
type to achieve an optimal utilization of the instruction bits
(Figure 6). This instruction does not take any registers as input
but rather parses the information directly from the bitstring.
The size is encoded as a 16-bit immediate, enabling basic
blocks with up to 65536 instructions. One can split a larger
basic block into multiple sequential blocks if necessary. The
sequential flag is a one-bit immediate value. The behavior of
all RISC-V control-flow instructions (JAL, JALR, BEQ, BNE,
BLT, BGE, BLTU, BGEU) is changed so that they alter the control
flow at the end of the current basic block.

We also include hardware loop counters in the BBRISC-V
ISA. The lcnt instruction sets the number of loop iterations
(Figure 6). This I-Type instruction requires a 12 bit immediate
value as well as a source and a target register. The counter
value is then computed as cnt = imm+ rs.value and saved to

3The code is currently under preparation for publication.

9



LCNTcounter imm.[11:0] rs 000 rd 1011011

BBsize[15:0] s-flags[3:0] e-flags[3:0] s
q 0101011

31 20 16 15 12 8 7 0

Figure 6: Bitmap of the new RISC-V instructions.

the loop counter set defined in rd. To fully support loop coun-
ters we also add four start and end flags to the bb instructions,
to support a maximum of four loop counter sets.

5.2 Hardware Implementation

The hardware of our proof-of-concept implementation is
based on the VexRiscv softcore [31], written in SpinalHDL.
This soft core has a configurable setup, based on plugins, that
can be easily extended to include new functionalities. We used
a configuration with five stages (IF, ID, EX, MEM, WB) and
4096 byte, one-way instruction- and data cache. The result of
control flow instructions is available after the memory stage.

For our changes, we added a new plugin (BasicBlockInfo-
Plugin), which is responsible for the decoding and handling
of the new instructions. The bb instruction hands back all
containing information to the fetch unit during the decode
stage with a simple callback function. The lcnt instruction
does its computation during the execution stage and uses a
callback to report the results to the fetch unit immediately
after that.

The main modifications were done in the fetch unit
(Fetcher.scala), and more specifically in the computation of
the next PC. We use three registers to store different instruc-
tion pointers. The first one is used to store the current PC and
to request the corresponding instruction from the cache. The
second register (TargetRegister) stores the address of the
basic block, that will be executed after the current basic block
is completed. This value is either set by the branch unit, by
the loop counter or by the sequential flag of a basic block.
The last register (SaveRegister) is needed to temporarily
save the current PC whenever a bb instruction is requested
out-of-order.

The VexRiscv processor handles cache misses though a
redo signal that instructs the fetch unit to execute every-
thing again from a specific address, while everything that was
fetched later than this instruction is flushed from the pipeline.
We added BasicBlocker’s basic-block information sets, in-
struction counter and loop counter into the previous state
restored by redo. With or without BasicBlocker, it should be
more efficient to modify VexRiscv to handle cache misses
by stalling the pipeline, avoiding the need to save and restore
previous states and re-execute instructions. We decided to
keep the redo mechanism to allow direct comparison of our
cycle counts to unmodified VexRiscv cycle counts.

5.3 Compiler Modification

To be able to evaluate the performance of our concept with
well known benchmark programs we developed a compiler
supporting and optimizing towards our instructions. Our com-
piler is based on the LLVM [28] Compiler Framework version
10.0.0, where we modified the RISC-V backend by introduc-
ing our ISA extension and inserting new compilation passes
at the very end of the compilation pipeline to not interfere
with other passes that do not support our new instructions.

First of all we split basic blocks for all occurrences of call
instructions since they break the consecutive fetching and
execution of instructions. As a next step we insert the bb in-
structions at the beginning of each basic block that include
the number of instructions in the block. This is done directly
before code emission to ensure that the number of instruc-
tions does not change due to optimizations. Linker relaxation,
however, is one optimization that could reduce the number
of instructions by substituting calls with a short jumping dis-
tance by a single jump instruction instead of two instructions
(aupic and jalr). Since linker relaxation is not a major opti-
mization, we simply disabled it, but it would also be possible
to modify the linker to implement BasicBlocker-aware relax-
ation.

Our modifications to the semantics of terminating instruc-
tions (branches, calls, returns and jumps) allow them to be
scheduled before the end of a basic-block and rescheduling
them earlier is also crucial to the performance of the code.
This is done in a top-down list scheduler that is placed af-
ter register allocation and prioritizes terminating instructions.
Additionally, we run another pass afterwards that relocates
the terminating instructions to earlier positions in the basic
blocks if this is supported by register dependencies.

For utilization of our hardware loops we build on LLVM’s
generic hardware loop support that is tailored to the concepts
of ARM and PowerPC but can be adapted to fit our needs.
For now, the usage of hardware loops by the compiler is only
limited and was therefore not activated during compilation of
the benchmarks we used for evaluation. We aim for a more
sophisticated implementation in the future.

The modified semantics of terminators are not compatible
with the intermediate code representation in LLVM, where
basic blocks are enforced to end with a terminating instruction
and calls are not considered as terminators. For this proof-of-
concept implementation we modified the compilation pipeline

10



Name Description
Baseline Standard version without modifications.
BB Info As in Baseline, but every basic block starts

with a bb instruction.
BB Resched As in BB Info, but with high-priority

rescheduling of terminator instructions.

Table 1: Compiled versions used for benchmarking.

Name BB SF Branch Prediction
Simplest no no none
Baseline no yes none
Static no yes backwards taken
Dynamic no yes 2-bit BHT
Dyn. Target no yes additional BTB
BasicBlocker (new) yes no none

Table 2: VexRiscv hardware instantiation options. BB: sup-
ports bb instruction. SF: speculative fetching.

by low-level code transformations just before code emission.

6 Evaluation

To evaluate the performance of BBRISC-V we used Coremark
and the Embench IOT [19] benchmark suite. The latter con-
sists of a number of small benchmark programs corresponding
to representative real-world workloads.

We compiled three versions of each benchmark program,
as listed in Table 1: one without BasicBlocker, one with a
new compile flag enabling the insertion of bb instructions,
and one with bb plus rescheduling of terminator instructions.
Except for these differences, the compiler and compile flags
are identical. The compile flags can be found in Appendix B.

We then ran these programs on several variants of VexRiscv,
as listed in Table 2. Section 6.1 reports non-BasicBlocker per-
formance on four existing VexRiscv variants with speculative
fetching and different branch-prediction strategies, and on a
purely non-speculative VexRiscv variant. Section 6.2 reports
BasicBlocker performance, with and without rescheduling,
on our new VexRiscv variant supporting BasicBlocker.

Figure 8 compares all of these results. To compensate for
different runtimes of the benchmarks, all results are normal-
ized to a baseline run of the respective benchmark using
the original VexRiscv core with speculative fetching but no
branch prediction. The raw benchmark results including the
upper and lower quartiles for runtime deviations over 100 exe-
cutions can be found in Appendix C. As we evaluate the bare
metal system, the noise during the measurements is minimal,
i.e. the standard deviation is below 1% for all measurements.

Section 6.3 covers various ways to further improve Ba-

Coremark edn minver nettle-aes
0

0.2

0.4

0.6

0.8

1

1 1 1 10.
96

0.
94 0.
99

10.
95

0.
94 0.
98

0.
99

0.
87 0.
89

0.
77

0.
99

Baseline Static Dynamic Dyn. Target

Figure 7: Performance of VexRiscv Branch Predictors for
selected programs in cycles, normalized to the no-prediction
case.

sicBlocker performance beyond the blue line shown in Fig-
ure 8.

6.1 Non-BasicBlocker Performance

We first evaluated the effectiveness of each branch predic-
tor, by using the unmodified code of each benchmark and
executing it for each of the four branch prediction strategies.
In Figure 7, scores for Coremark and selected programs of
the Embench suite are plotted in relation to a run with no
branch prediction enabled. By means of illustration, we se-
lected the well known Coremark benchmark, edn, a vector
multiplication program, as an average case, minver, a floating
point matrix inversion program, as a branch heavy example
and nettle-aes as a high-performance case.

The performance benefit of branch prediction ranges be-
tween 0 and 23%. The best results were obtained by the
most complex dynamic target branch predictor, with an aver-
age of 14% speedup over all tested benchmarks. The highest
speedup is achieved by unoptimized code that relies heavily
on branches. Highly optimized code, such as cryptographic
libraries, are barely affected by branch prediction at all.

The green area in Figure 8 shows the branch-prediction
speedup for all of our benchmark programs. The dashed gray
line is the time for the baseline, no branch prediction. The bot-
tom of the green area is the time for the best branch predictor.
Times are normalized so that the baseline is 1.

We then executed the unmodified code on a strictly non-
speculative version of VexRiscv: not just without branch pre-
diction but also without speculative fetching. The result is the
red line in Figure 8 (“Simplest”), on average 2.6 times slower
than the baseline.

11



ah
a-

m
on

t

cr
c3

2

cu
bi

c
ed

n

hu
ffb

en
ch

m
at

m
ul

t-
in

t

m
in

ve
r

nb
od

y

ne
tt
le
-a

es

ne
tt
le
-s
ha

pi
co

jp
eg

qr
du

in
o st

st
at

em
at

e ud

C
or

em
ar

k
0

0.5

1

1.5

2

2.5

3

P
er

fo
rm

a
n
ce

re
la

ti
ve

to
V

ex
R

is
cv

w
/
o

B
ra

n
ch

P
re

d
ic

ti
o
n

No Spec BB Info Rescheduling No BP Branch Prediction

Figure 8: Performance evaluation of BasicBlocker for various benchmarks on VexRiscv. The red line depicts a strictly non-
speculative CPU without bb instructions. The dashed gray line depicts the baseline processor (VexRiscv - speculative fetching,
no branch prediction). The green area visualizes the performance range of the VexRiscv branch predictors.

6.2 BasicBlocker Performance
We then switched to our modified version of VexRiscv, still
strictly non-speculative but adding the bb instruction. We
measured the benchmark programs in two ways: the gray line
in Figure 8 (“BB Info”) uses our modified compiler to add
bb instructions, and the blue line in Figure 8 (“BB Resched”)
also uses our modified compiler to reschedule the terminator
instruction in each basic block as early as possible.

Most of the non-speculation penalty, compared to the base-
line (or to the baseline with branch prediction), is eliminated
by switching from Simplest to BB Info. Note that the speedup
from Simplest to BB Info varies throughout the different
benchmark programs. Generally speaking, this speedup is
higher for optimized code, such as nettle-aes and nettle-sha,
than for unoptimized code. The overhead for BB Info com-
pared to the baseline is only 3% for nettle-sha whereas it is
82% for minver.

We predicted that the size of the executed basic blocks
would be a good predictor of performance in this setting, as
the fetch unit needs to stall after all basic blocks until the
next bb instruction is loaded. To check this hypothesis, we
conducted a hotspot analysis of the benchmarks to discover
the most frequented basic blocks in each program. The dis-
tribution of basic block sizes, weighted by the frequency of
each block, is shown in Figure 9. It can be seen that well-
performing benchmarks have a higher average block size
compared to weaker-performing ones. The figures also show
that already a few very large basic blocks can lead to decent

performance. As an example, for nettle-sha the mean basic
block size is 68 instructions even if the median is at only 5
instructions, indicating a wide dispersion. Nevertheless, nettle-
sha outperforms crc32 which has a much higher median but
lower arithmetic mean.

Switching from BB Info to BB Resched reschedules the
terminator instruction in each basic block as early as possible,
achieving further performance benefits (blue line in Figure
8). According to our benchmarks, rescheduling improves the
performance by 15% on average compared to the version
without rescheduling.

For highly branch-dependent code, such as minver, we still
observe a performance overhead of 56% compared to the
baseline CPU. However, less branch-dependent code achieves
much better results. Interestingly, some benchmarks surpass
the baseline CPU. Most notably, for nettle-aes and nettle-sha,
our BasicBlocker-enabled CPU outperforms the best branch
predictor in VexRiscv: it achieves a 3% and 5% speedup re-
spectively, compared to the dynamic target predictor. One
should not think that it is impossible for a non-speculative
CPU to outperform a speculative CPU: if BasicBlocker allows
a branch to be scheduled far enough in advance then it elimi-
nates all pipeline stalls for that branch, whereas without Ba-
sicBlocker the same branch will sometimes be mispredicted
even by a state-of-the-art branch predictor.

To analyze performance in more detail, we collected the av-
erage rescheduling parameter per basic block, defined by the
average number of instructions following the terminator in-

12



0 5 10 15 20 25
ud

statemate
st

qrduino
picojpeg

nettle-sha
nettle-aes

nbody
minver

matmult-int
huffbench

edn
cubic
crc32

aha-mont

Þ
Þ

Þ

median arithmetic mean

Figure 9: Distribution of basic block sizes (measured in in-
structions), weighted by the number of invocations derived
from the hotspot analysis.

struction in a basic block and weighted it by the frequency of
each block according to the hotspot analysis. Its distribution
is depicted in Figure 10. Unsurprisingly, the benchmarks with
the highest average rescheduling parameter achieved the best
speedup. The results show that an average rescheduling by 4-5
instructions is sufficient for performance results that are com-
parable to the baseline CPU. We emphasize that this number
is not the average rescheduling parameter but weighted by the
number of invocations of the basic block. As most programs
perform some kind of computations in their core functions,
rescheduling is usually more easily feasible in these functions
than in preamble and IO functions as basic block sizes are
normally smaller in the latter. As shown in Figure 10, the
minver benchmark reschedules terminator instructions in the
core basic blocks by an average of 1.8 instructions. As this is
not sufficient for seamless execution (at least, when specula-
tive fetching is disabled), the observed performance overhead
occurs. At the same time, the edn benchmark reschedules ter-
minator instructions by an average of 5.5 instructions, hence
achieving close-to-optimal performance.

Obviously, BasicBlocker slightly increases the code size
as every basic block is extended by an additional instruction.
The overhead directly depends on the average basic block size
of a given program. Throughout our benchmarks, the average
code size overhead was 17%.

Overall, the performance of Basic Blocker heavily depends
on the executed program. We demonstrated that, for suffi-
ciently optimized code, BasicBlocker enabled CPUs can yield
performance comparable to traditional CPUs while dismiss-
ing any form of speculation. In some cases, BasicBlocker
even outperforms sophisticated branch predictors.

0 5 10 15 20
ud

statemate
st

qrduino
picojpeg

nettle-sha
nettle-aes

nbody
minver

matmult-int
huffbench

edn
cubic
crc32

aha-mont

Þ

Þ

median arithmetic mean

Figure 10: Distribution of instruction rescheduling per basic
block, weighted by the number of invocations derived from
the hotspot analysis.

6.3 Further Optimizations

We also evaluated some optimization techniques as described
in the following sections.

6.3.1 Loop Counters

The BBRISC-V ISA, as defined earlier, supports the use of
hardware loop counters. We experimented with a very re-
stricted loop-placement policy in our proof-of-concept com-
piler. The restricted loop placement works well for the edn and
ud benchmarks and the results demonstrate potential of loop
counters as extension to ISAs modified with BasicBlocker.

The edn benchmark achieves a 21% speedup compared to
the baseline CPU (simple rescheduling led to a 8% speedup;
see Figure 8). This is equivalent to a 7% speedup compared to
the best branch predictor of VexRiscv (dynamic target). The
ud benchmark improves with a benchmark score 3% better
than the baseline CPU, matching the dynamic target branch
predictor.

For other benchmarks, the compiler either could not im-
plement hardware loops or the introduction did not improve
the score. For a few benchmarks, the introduction of hard-
ware loops decreased the performance. We suspect that this
especially happens for loops with very few iterations that oc-
cur within loops with a high number of iterations. Adverse
instruction-cache alignment also contributes to cases where
the hardware loop counter was not effective. We leave the
ideal placement of hardware loops by the compiler as a prob-
lem for future work.

13



6.3.2 Early Branch

The VexRiscv core can be configured to forward the branch
result after the execution stage (early branch) compared to
the memory stage, thus requiring fewer stall cycles for non-
rescheduled control flow instructions. This forwarding tech-
nique is already common on many CPUs but especially inter-
esting when it comes to BasicBlocker. Our evaluation revealed
that the early branch feature especially improves performance
for programs that did not obtain top performance in our pre-
vious benchmarks. The reasons are obvious: these programs
need to be stalled more frequently, and thus forwarding branch
results reduces the amount of stall cycles.

The performance overhead of the minver benchmark re-
duces from 56% to 42% compared to the baseline CPU. The
picojpeg benchmark improves from 24% to 19% overhead
whereas the already well performing nettle-aes benchmark
achieves only a minimal advantage of less than 1%.

6.3.3 Application-Level Optimizations

We changed the CPU, ISA, and compiler, but we did not
change the applications. Some applications run at full speed
on BasicBlocker CPUs, and an obvious question for future
work is the extent to which other applications can be opti-
mized for the execution paradigm of BasicBlocker CPUs. For
example, quicksort has many branches, but it can be replaced
by Batcher sort (or radix sort), which has predictable control
flow and can be unrolled to use larger basic blocks.

7 Conclusion

Despite the consensus that speculation is inevitable, we
demonstrate in this work that a reasonable alternative is pos-
sible. With BasicBlocker we propose a novel concept to trans-
port control-flow information from the software to the hard-
ware, enabling practical implementations of non-speculative
CPUs. For high-performance code this leads to an increased
execution speed compared to execution with the traditional
concept of branch prediction, while fully eliminating any
speculative-execution attacks.

We showcase our concept by specifying the BBRISC-V
ISA, including a concrete implementation of that ISA based
on the VexRiscv soft core, accompanied by an optimizing
compiler that rests on the LLVM Compiler Framework. We
stress, however, that BasicBlocker is a general solution that
can be applied to other ISAs as well.

Our prototype implementation shows that our solution
yields performance impacts that are similar to existing pro-
posed countermeasures and moreover erases speculative at-
tacks at their root, while alternative solutions often close only
individual side channels.

We pointed out additional extensions to our concept and
reasons to expect that further work will further improve per-

formance. Notably, hardware loop counters can be seamlessly
integrated into our concept as explained in Appendix A, and
are even more beneficial than in conventional architectures.

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strat-
egy - EXC 2092 CASA - 390781972; by the Cisco University
Research Program; and by the U.S. National Science Foun-
dation under grant 1913167. “Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation” (or other funding
agencies). Date of this document: 31 July 2020.

References

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-flow integrity. In Proceedings of the
12th ACM Conference on Computer and Communica-
tions Security, CCS ’05, page 340–353, New York, NY,
USA, 2005. Association for Computing Machinery.

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-flow integrity principles, implementa-
tions, and applications. ACM Transactions on Informa-
tion and System Security (TISSEC), 13(1):1–40, 2009.

[3] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grab-
her. New results on instruction cache attacks. In In-
ternational Workshop on Cryptographic Hardware and
Embedded Systems, pages 110–124. Springer, 2010.

[4] Krste Asanović and David A. Patterson. In-
struction sets should be free: The case for RISC-
V, 2014. https://people.eecs.berkeley.edu/
~krste/papers/EECS-2014-146.pdf.

[5] Musard Balliu, Mads Dam, and Roberto Guanciale. In-
spectre: Breaking and fixing microarchitectural vul-
nerabilities by formal analysis. arXiv preprint
arXiv:1911.00868, 2019.

[6] Daniel J. Bernstein. Cache-timing attacks on AES, 2005.
https://cr.yp.to/papers.html#cachetiming.

[7] Daniel J. Bernstein. Some small suggestions for the
Intel instruction set, 2014. https://blog.cr.yp.to/
20140517-insns.html.

[8] Benjamin A Braun, Suman Jana, and Dan Boneh. Ro-
bust and efficient elimination of cache and timing side
channels. arXiv preprint arXiv:1506.00189, 2015.

14

https://people.eecs.berkeley.edu/~krste/papers/EECS-2014-146.pdf
https://people.eecs.berkeley.edu/~krste/papers/EECS-2014-146.pdf
https://cr.yp.to/papers.html#cachetiming
https://blog.cr.yp.to/20140517-insns.html
https://blog.cr.yp.to/20140517-insns.html


[9] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel
Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar, et al. Fall-
out: Leaking data on meltdown-resistant CPUs. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 769–784,
2019.

[10] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A sys-
tematic evaluation of transient execution attacks and
defenses. In USENIX Security Symposium, 2019. ex-
tended classification tree at https://transient.fail/.

[11] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian
Zhang, Zhiqiang Lin, and Ten H Lai. SgxPectre: Steal-
ing intel secrets from SGX enclaves via speculative exe-
cution. In 2019 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 142–157. IEEE, 2019.

[12] Douglas W. Clark and Henry M. Levy. Measure-
ment and analysis of instruction use in the VAX-
11/780, 1982. https://dl.acm.org/doi/pdf/10.
1145/1067649.801709.

[13] Robert J Colvin and Kirsten Winter. An abstract seman-
tics of speculative execution for reasoning about security
vulnerabilities. arXiv preprint arXiv:2004.00577, 2020.

[14] Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-
Reza Sadeghi, Patrick Koeberl, Dean Sullivan, Orlando
Arias, and Yier Jin. Hafix: Hardware-assisted flow in-
tegrity extension. In 2015 52nd ACM/EDAC/IEEE De-
sign Automation Conference (DAC), pages 1–6. IEEE,
2015.

[15] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann,
and Fabian Monrose. Stitching the gadgets: On the inef-
fectiveness of coarse-grained control-flow integrity pro-
tection. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 401–416, 2014.

[16] John A. DeRosa and Henry M. Levy. An evaluation of
branch architectures. In Daniel C. St. Clair, editor, Pro-
ceedings of the 14th Annual International Symposium
on Computer Architecture. Pittsburgh, PA, USA, June
1987, pages 10–16, 1987.

[17] Scott DiPasquale, Khaled Elmeleegy, CJ Ganier, and
Erik Swanson. Hardware loop buffering, 2003.

[18] Agner Fog. The microarchitecture of Intel, AMD and
VIA CPUs: An optimization guide for assembly pro-
grammers and compiler makers, 2020. https://www.
agner.org/optimize/.

[19] Free and Open Source Silicon Foundation. Embench
IOT. https://www.embench.org/. Accessed: 2020-
05-29.

[20] Qian Ge, Yuval Yarom, and Gernot Heiser. No secu-
rity without time protection: We need a new hardware-
software contract. In Proceedings of the 9th Asia-Pacific
Workshop on Systems, pages 1–9, 2018.

[21] Abraham Gonzalez, Ben Korpan, Ed Younis, and Jerry
Zhao. Spectrum: Classifying, replicating and mitigating
spectre attacks on a speculating RISC-V microarchitec-
ture. ., 2018.

[22] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe
Vila. Hardware-software contracts for secure specula-
tion. arXiv preprint arXiv:2006.03841, 2020.

[23] Shay Gueron. Intel Advanced Encryption Stan-
dard (AES) new instructions set, 2010. https:
//www.intel.com/content/dam/doc/white-
paper/advanced-encryption-standard-new-
instructions-set-paper.pdf.

[24] Khaled N. Khasawneh, Esmaeil Mohammadian Ko-
ruyeh, Chengyu Song, Dmitry Evtyushkin, Dmitry Pono-
marev, and Nael B. Abu-Ghazaleh. SafeSpec: Banishing
the spectre of a meltdown with leakage-free speculation.
CoRR, abs/1806.05179, 2018.

[25] Vladimir Kiriansky and Carl Waldspurger. Speculative
buffer overflows: Attacks and defenses. arXiv preprint
arXiv:1807.03757, 2018.

[26] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre
attacks: Exploiting speculative execution. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 1–19.
IEEE, 2019.

[27] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh,
Chengyu Song, and Nael Abu-Ghazaleh. Spectre re-
turns! speculation attacks using the return stack buffer.
In 12th USENIX Workshop on Offensive Technologies
(WOOT 18), 2018.

[28] Chris Lattner and Vikram Adve. LLVM: A compilation
framework for lifelong program analysis & transfor-
mation. In International Symposium on Code Genera-
tion and Optimization, 2004. CGO 2004., pages 75–86.
IEEE, 2004.

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Ste-
fan Mangard, Paul Kocher, Daniel Genkin, et al. Melt-
down: Reading kernel memory from user space. In 27th
USENIX Security Symposium (USENIX Security 18),
pages 973–990, 2018.

15

https://dl.acm.org/doi/pdf/10.1145/1067649.801709
https://dl.acm.org/doi/pdf/10.1145/1067649.801709
https://www.agner.org/optimize/
https://www.agner.org/optimize/
https://www.embench.org/
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf


[30] Giorgi Maisuradze and Christian Rossow. ret2spec:
Speculative execution using return stack buffers. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 2109–
2122, 2018.

[31] Charles Papon. VexRiscv. https://github.com/
SpinalHDL/VexRiscv. Accessed: 2020-05-28.

[32] Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan
Capkun. Frontal attack:leaking control-flow in SGX via
the CPU frontend. arXiv preprint arXiv:2005.11516,
2020.

[33] Praveen Raghavan, Andy Lambrechts, Murali Jayapala,
Francky Catthoor, and Diederik Verkest. Distributed
loop controller for multithreading in unithreaded ILP
architectures. IEEE Transactions on Computers,
58(3):311–321, 2008.

[34] Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. Zombieload: Cross-privilege-boundary
data sampling. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security,
pages 753–768, 2019.

[35] Michael Schwarz, Robert Schilling, Florian Kargl,
Moritz Lipp, Claudio Canella, and Daniel Gruss. Con-
text: Leakage-free transient execution. arXiv preprint
arXiv:1905.09100, 2019.

[36] Hovav Shacham. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on the
x86). In Proceedings of the 14th ACM conference on
Computer and communications security, pages 552–561,
2007.

[37] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra
Dmitrienko, Christopher Liebchen, and Ahmad-Reza
Sadeghi. Just-in-time code reuse: On the effectiveness
of fine-grained address space layout randomization. In
2013 IEEE Symposium on Security and Privacy, pages
574–588. IEEE, 2013.

[38] Jakub Szefer. Survey of microarchitectural side and
covert channels, attacks, and defenses. Journal of Hard-
ware and Systems Security, 3(3):219–234, 2019.

[39] Andrew S Tanenbaum. Structured computer organiza-
tion. Pearson Education India, 2016.

[40] Michael Theodorides and David A. Wagner. Breaking
active-set backward-edge CFI. In 2017 IEEE Interna-
tional Symposium on Hardware Oriented Security and
Trust, HOST 2017, McLean, VA, USA, May 1-5, 2017,
pages 85–89. IEEE Computer Society, 2017.

[41] Paul Turner. Retpoline: A software construct for pre-
venting branch-target-injection. URL https://support.
google. com/faqs/answer/7625886, 2018.

[42] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel SGX king-
dom with transient out-of-order execution. In 27th
USENIX Security Symposium (USENIX Security 18),
pages 991–1008, 2018.

[43] Stephan van Schaik, Alyssa Milburn, Sebastian Oster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. Addendum
to RIDL: Rogue in-flight data load. https://
mdsattacks.com/, 2019.

[44] Stephan Van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue in-
flight data load. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 88–105. IEEE, 2019.

[45] Venkatanathan Varadarajan, Thomas Ristenpart, and
Michael Swift. Scheduler-based defenses against cross-
VM side-channels. In 23rd USENIX Security Sympo-
sium (USENIX Security 14), pages 687–702, 2014.

[46] Marco Vassena, Klaus V Gleissenthall, Rami Gökhan
Kici, Deian Stefan, and Ranjit Jhala. Automatically
eliminating speculative leaks with blade. arXiv preprint
arXiv:2005.00294, 2020.

[47] Pepe Vila, Andreas Abel, Guarnieri, Boris Köpf, and
Jan Reineke. Flushgeist: Cache leaks from beyond the
flush. arXiv preprint arXiv:2005.13853, 2020.

[48] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom.
Foreshadow-NG: Breaking the virtual memory abstrac-
tion with transient out-of-order execution. Technical
report, 2018. See also USENIX Security paper Fore-
shadow.

[49] Nils Wistoff, Moritz Schneider, Frank K. Gürkaynak,
Luca Benini, and Gernot Heiser. Prevention of microar-
chitectural covert channels on an open-source 64-bit
RISC-V core. arXiv preprint arXiv:2005.02193, 2020.

[50] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and
Christopher W Fletcher. Data oblivious ISA extensions
for side channel-resistant and high performance comput-
ing. In NDSS, 2019.

16

https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv
https://mdsattacks.com/
https://mdsattacks.com/


[51] Drew Zagieboylo, G Edward Suh, and Andrew C Myers.
Using information flow to design an isa that controls
timing channels. In 2019 IEEE 32nd Computer Secu-
rity Foundations Symposium (CSF), pages 272–27215.
IEEE, 2019.

[52] Yinqian Zhang and Michael K Reiter. Düppel:
Retrofitting commodity operating systems to mitigate
cache side channels in the cloud. In Proceedings of the
2013 ACM SIGSAC conference on Computer & commu-
nications security, pages 827–838, 2013.

[53] Lutan Zhao, Peinan Li, Rui Hou, Jiazhen Li, Michael C
Huang, Lixin Zhang, Xuehai Qian, and Dan Meng. A
lightweight isolation mechanism for secure branch pre-
dictors. arXiv preprint arXiv:2005.08183, 2020.

A Loop Counter

Loops are often the execution hotspots in programs and con-
tribute considerably to diverging control flow. Therefore the
concept of hardware supported loops can be profitable as al-
ready discussed in the literature [17, 33] and implemented in
various architectures.

In general, hardware loop counters are realized by a hard-
ware counter which is set by a dedicated instruction with a
value representing the maximum trip count for the loop. The
trip count must be computable at compile time to be inserted
by an immediate value or available in a register at run-time be-
fore entering the loop. Information about which instructions
are included in the loop is expressed via labels or additional
specific instructions. The hardware loop counter decrements
the start value after each iteration and induces a branch back
to the start of the loop as long as the counter is unequal to
zero. This can be done implicitly at the end of the loop or
explicitly with an instruction.

Performance improvements by the usage of hardware loops
result from reduced instruction size and dedicated loop control
logic that does not have to be calculated by the ALU. For our
BasicBlocker concept, hardware loops are actually much more
valuable for performance when only applied to loops that will
not terminate early, because in this case the control flow for
all loop iterations is known when entering the loop.

We can seamlessly support hardware loop counters in our
design concept, by introducing a new instruction and adding
two arguments to the bb instruction. The lcnt sets the number
of loop iterations by storing a specified value into a dedicated
register. The start and end address of the loop are encoded
into the bb instruction, by indicating with two separate flags
whether the corresponding basic block is the start or end block
of the loop. These two flags in the bb instruction are necessary
for each loop counter set, which means that the bb instruction
needs 2n bits to support n loop counter sets.

1bb 2, 1, 00, 00 ; len = 2, seq = 1

2add a0, a0, a1

3lcnt 3, lc1 ; 3 iterations, set 1

4bb 2, 0, 01, 01 ; loop start/end

5add a1, a2, a2

6mul a2, a1, a2

7bb 7, 0, 00, 00 ; after loop

Listing 1: Single basic block loop with 3 iterations in counter
set 1; Colors correspond to the execution trace in 2

Listing 1 shows the exemplary use of the hardware loop
counter. In line 3, the counter in loop set ls1 is initialized
to 3. The following bb instruction has the start- and end flag
for loop set 1 enabled which indicates a loop that starts at
the beginning of this basic block and stretches until the end
of the same basic block. Each bit in the flags represents one
loop counter set, allowing nested loops with the same start-
or end address and nested loops sharing the same basic block
as start or end. It is possible to model loops that stretch across
multiple basic blocks by setting the start and end flags in the
respective basic blocks accordingly. When the bb instruction
with the start flag is executed, the current PC is saved as start
address in the corresponding loop counter set. Simultaneously,
the counter value of that set is decremented by one. When the
execution reaches the bb instruction with the corresponding
end flag, the target address (which determines where the CPU
continues execution) is set to the corresponding start address
if the counter is not zero. Otherwise, the basic block is handled
like a normal sequential basic block and the loop will exit.

bb 2, 1, 00, 00 ; len = 2, seq. block

bb 2, 0, 01, 01 ; loop: start L1, end L1

add a0, a0, a1

lcnt 2, lc1 ; 2 iterations, set 1

bb 2, 0, 01, 01 ; loop: start L1, end L1

add a1, a2, a2

mul a2, a1, a2

bb 2, 0, 01, 01 ; loop: start L1, end L1

add a1, a2, a2

mul a2, a1, a2

bb 7, 0, 00, 00 ; after loop

add a1, a2, a2

mul a2, a1, a2

Listing 2: Execution trace of CPU with color matched
instructions to the code sequence in 1.

In Listing 2, the instruction trace of the program snippet
from Listing 1 is shown as it is executed by the CPU. Since
the first bb instruction indicates a sequential basic block, the
CPU immediately fetches the bb instruction of the next basic
block which notifies the fetch unit that the second basic block
is the start and end block of the loop. After that, the remaining
add and lcnt instructions are executed to finish the first basic

17



block. From now on the loop counter determines the execution
flow. Since the second basic block is the only basic block of
the loop, the bb instruction of this block is fetched again,
to prepare the second loop round, before the basic block is
executed to complete the first round. This happens again
until the loop counter is zero, resulting in fetching the last bb
instruction, to exit the loop, before the last round of the loop
is executed. Afterwards the execution continues outside of
the loop with the normal instruction flow.

B Compile Flags

The compile flags for the Coremark benchmark are listed in
fig. 11 (omitting includes, debug, macros, toolchain paths and
flags enabling bb instructions).

Flag Description
O3 Optimization Level 3
march=rv32im 32-Bit RISC-V with IM exten-

sions
mabi=ilp32 Calling convention and memory

layout
target=riscv32-
unknown-elf

Select target architecture

mno-relax No linker relexation
lgcc Link gcc library
lc Link C library
nostartfiles Do not use standard system

startup files when linking.
ffreestanding Only use features available in

freestanding environment.

Figure 11: Coremark compile flags.

The compile flags for the Embench benchmarks are listed
in fig. 12 (omitting includes, debug, macros, toolchain paths
and flags enabling bb instructions).

C Raw Benchmark Results

The following tables (figs. 13 to 19) list the mean result of
each benchmark as well as the upper and lower quartiles.

Flag Description
O3 Optimization Level 3
march=rv32im 32-Bit RISC-V with IM exten-

sions
mabi=ilp32 Calling convention and memory

layout
target=riscv32-
unknown-elf

Select target architecture

mno-relax No linker relexation
fno-inline No function inlining
fno-common Individual zero-initialized defini-

tions for tentative definitions
fno-strict-aliasing Disable strict aliasing.

Figure 12: Embench IOT compile flags.

Dynamic Target BP Benchmark
Benchmark Quartile Median Quartile
Coremark 5175115.75 5175286.50 5175482.00
aha-mont 3638630.50 3638673.00 3638725.25
crc32 3906593.25 3906655.00 3906736.75
cubic 140243.50 140319.50 140398.50
edn 5115438.00 5115498.50 5115674.00
huffbench 3370380.00 3370577.50 3370782.50
matmult-int 4188588.75 4188830.00 4189087.75
minver 355841.75 355906.00 355974.00
nbody 237888.75 237924.00 237950.25
nettle-aes 4838928.00 4839159.00 4839439.25
nettle-sha 5953509.50 5953784.00 5954277.50
picojpeg 5810301.00 5810784.50 5811234.25
qrduino 4952491.75 4952667.50 4952831.00
st 420650.75 420692.50 420752.75
statemate 6987615.00 6988031.00 6988543.50
ud 3302171.00 3302301.50 3302425.25

Figure 13: Benchmark results for the dynamic target branch
predictor.

18



Dynamic BP Benchmark
Benchmark Quartile Median Quartile
Coremark 5512553.50 5512829.00 5513042.00
aha-mont 3767784.75 3767849.00 3767901.00
crc32 4947929.50 4948035.50 4948146.25
cubic 158541.50 158607.00 158678.00
edn 5424041.50 5424202.00 5424308.00
huffbench 3591732.00 3591902.00 3592047.25
matmult-int 4246322.75 4246702.50 4246892.00
minver 489098.25 489180.50 489250.25
nbody 293125.00 293147.50 293177.50
nettle-aes 4877322.00 4877759.00 4878034.25
nettle-sha 5975359.25 5975804.00 5976259.75
picojpeg 6742694.50 6743166.50 6743513.25
qrduino 5227886.25 5228250.50 5228634.00
st 581956.50 582017.00 582060.50
statemate 7155070.00 7164739.00 7166616.25
ud 3357320.25 3357548.00 3357647.00

Figure 14: Benchmark results for the dynamic branch predic-
tor.

Static BP Benchmark
Benchmark Quartile Median Quartile
Coremark 5707389.50 5707595.00 5707812.00
aha-mont 4011169.50 4011228.50 4011292.25
crc32 4947964.25 4948049.50 4948129.25
cubic 158730.75 158829.50 158909.25
edn 5424664.00 5424760.50 5424861.50
huffbench 3984886.75 3985119.00 3985295.50
matmult-int 4246659.50 4246880.00 4247029.25
minver 496345.75 496406.50 496461.00
nbody 293848.75 293872.50 293893.00
nettle-aes 4900023.75 4900246.00 4900655.75
nettle-sha 5985669.75 5985929.00 5986112.75
picojpeg 7145492.00 7145872.00 7146270.25
qrduino 5622921.50 5623074.00 5623194.75
st 581947.50 581997.50 582049.00
statemate 7446324.25 7446531.50 7446876.50
ud 3372643.50 3372814.50 3372945.00

Figure 15: Benchmark results for the static target branch
predictor.

No BP Benchmark
Benchmark Quartile Median Quartile
Coremark 6153095.50 6153312.50 6153476.50
aha-mont 4029828.75 4029910.00 4029959.00
crc32 5244182.00 5244251.50 5244416.50
cubic 159655.00 159716.50 159812.50
edn 6016278.50 6016387.50 6016540.50
huffbench 4064054.50 4064262.50 4064423.75
matmult-int 4369878.50 4370210.00 4370477.75
minver 521680.50 521731.00 521779.50
nbody 294201.75 294227.50 294250.50
nettle-aes 4949798.00 4950089.00 4950382.00
nettle-sha 6015353.00 6015439.00 6015511.00
picojpeg 7374206.75 7374653.50 7375019.75
qrduino 5494554.75 5494723.00 5494916.25
st 596986.00 597026.50 597088.00
statemate 7521163.75 7521259.00 7521349.25
ud 3413756.75 3413887.00 3413999.25

Figure 16: Benchmark results for original VexRiscv without
branch predictor.

Simplest Benchmark
Benchmark Quartile Median Quartile
Coremark 15707821.00 15708006.00 15708178.50
aha-mont 13845826.00 13845890.00 13845940.25
crc32 15351114.75 15351222.00 15351352.50
cubic 416312.50 416381.00 416454.25
edn 14654086.00 14654206.00 14654305.50
huffbench 11388765.00 11388930.00 11389122.75
matmult-int 9705278.00 9705636.00 9706117.25
minver 1376270.00 1376335.00 1376398.50
nbody 764324.75 764348.00 764380.00
nettle-aes 13521771.00 13522278.50 13522697.25
nettle-sha 15022300.25 15022661.00 15022907.00
picojpeg 18013845.75 18014134.00 18014463.25
qrduino 15566296.00 15566433.00 15566590.00
st 1458251.75 1458300.00 1458369.00
statemate 17975289.75 17975633.00 17975993.00
ud 7836332.25 7836479.50 7836621.00

Figure 17: Benchmark results for strictly non-speculative
VexRiscv processor.

19



BB Info Benchmark
Benchmark Quartile Median Quartile
Coremark 10623034.75 10623287.50 10623461.75
aha-mont 7071002.00 7071046.00 7071099.25
crc32 7029190.50 7029325.50 7029424.50
cubic 235699.25 235767.00 235862.50
edn 7308679.50 7308801.50 7308896.50
huffbench 6815852.00 6816058.00 6816280.00
matmult-int 4594765.00 4595057.00 4595333.00
minver 946888.25 946931.00 947003.75
nbody 436978.00 437002.50 437019.25
nettle-aes 5269032.75 5269299.00 5269614.50
nettle-sha 6212643.75 6212790.00 6213101.25
picojpeg 10633148.00 10633705.50 10634233.75
qrduino 8990960.00 8991134.00 8991317.75
st 892666.75 892714.50 892770.00
statemate 7716999.00 7717064.00 7717157.00
ud 4417475.25 4417626.50 4417795.75

Figure 18: Benchmark results for BasicBlocker VexRiscv
with BB instructions.

Rescheduling Benchmark
Benchmark Quartile Median Quartile
Coremark 9595350.25 9595544.00 9595852.00
aha-mont 6050459.75 6050514.50 6050567.25
crc32 5544510.25 5544697.50 5544828.75
cubic 184084.50 184177.00 184288.00
edn 5592789.75 5592957.50 5593105.00
huffbench 6088287.00 6088417.00 6088584.25
matmult-int 4348148.25 4348394.50 4348617.75
minver 816160.50 816273.00 816365.25
nbody 317853.25 317880.00 317907.00
nettle-aes 4737261.25 4737534.50 4737896.75
nettle-sha 5978782.25 5978992.50 5979122.00
picojpeg 9178532.00 9178841.00 9179823.00
qrduino 8396670.00 8396835.00 8396984.25
st 709112.00 709165.00 709209.50
statemate 7334966.00 7335053.50 7335164.75
ud 3438196.00 3438279.50 3438411.00

Figure 19: Benchmark results for BasicBlocker VexRiscv
with BB instructions and rescheduling of branches.

20


	1 Introduction
	1.1 Our Contributions
	1.2 The BasicBlocker Concept in a Nutshell
	1.3 Organization of the Paper

	2 Related Work
	2.1 Designing ISAs for Security

	3 Speculation in Processors
	3.1 Definitions and Notations

	4 Concept
	4.1 Security Rationale
	4.2 Performance Rationale
	4.3 Basic Block Instruction
	4.4 Further optimizations
	4.5 Security Considerations
	4.6 Compatibility

	5 Implementation
	5.1 BBRISC-V ISA
	5.2 Hardware Implementation
	5.3 Compiler Modification

	6 Evaluation
	6.1 Non-BasicBlocker Performance
	6.2 BasicBlocker Performance
	6.3 Further Optimizations
	6.3.1 Loop Counters
	6.3.2 Early Branch
	6.3.3 Application-Level Optimizations


	7 Conclusion
	A Loop Counter
	B Compile Flags
	C Raw Benchmark Results

