THE $3 x+1$ CONJUGACY MAP

Daniel J. Bernstein, Jeffrey C. Lagarias
19960215

Abstract

The $3 x+1$ map T and the shift map S are defined by $T(x)=(3 x+1) / 2$ for x odd, $T(x)=x / 2$ for x even, while $S(x)=(x-1) / 2$ for x odd, $S(x)=x / 2$ for x even. The $3 x+1$ conjugacy map Φ on the 2-adic integers \mathbf{Z}_{2} conjugates S to T, i.e., $\Phi \circ S \circ \Phi^{-1}=T$. The $\operatorname{map} \Phi \bmod 2^{n}$ induces a permutation Φ_{n} on $\mathbf{Z} / 2^{n} \mathbf{Z}$. We study the cycle structure of Φ_{n}. In particular we show that it has order 2^{n-4} for $n \geq 6$. We also count 1-cycles of Φ_{n} for n up to 1000 ; the results suggest that Φ has exactly two odd fixed points. The results generalize to the $a x+b$ map, where $a b$ is odd.

1. Introduction

The $3 x+1$ problem concerns iteration of the $3 x+1$ function

$$
T(x)= \begin{cases}(3 x+1) / 2 & \text { if } x \equiv 1(\bmod 2) \tag{1.1}\\ x / 2 & \text { if } x \equiv 0(\bmod 2)\end{cases}
$$

on the integers \mathbf{Z}. The well-known $3 x+1$ Conjecture asserts that, for each positive integer n, some iterate $T^{k}(n)$ equals 1, i.e., all orbits on the positive integers eventually reach the cycle $\{1,2\}$.

The $3 x+1$ function (1.1) is defined on the larger domain \mathbf{Z}_{2} of 2-adic integers. It is a measure-preserving map on \mathbf{Z}_{2} with respect to the 2-adic measure, and it is strongly mixing, so it is ergodic; see [8]. More is true. Let $S: \mathbf{Z}_{2} \rightarrow \mathbf{Z}_{2}$ be the 2-adic shift map defined by

$$
S(x)= \begin{cases}(x-1) / 2 & \text { if } x \equiv 1(\bmod 2) \tag{1.2}\\ x / 2 & \text { if } x \equiv 0(\bmod 2)\end{cases}
$$

i.e., $S\left(\sum_{i=0}^{\infty} b_{i} 2^{i}\right)=\sum_{i=0}^{\infty} b_{i+1} 2^{i}$, if each b_{i} is 0 or 1 . Then T is topologically conjugate to S : there is a homeomorphism $\Phi: \mathbf{Z}_{2} \rightarrow \mathbf{Z}_{2}$ with

$$
\begin{equation*}
\Phi \circ S \circ \Phi^{-1}=T . \tag{1.3}
\end{equation*}
$$

In fact T is metrically conjugate to S : one map Φ satisfying (1.3) preserves the 2 -adic measure. Thus T is Bernoulli.

The map Φ is determined by (1.3) up to multiplication on the right by an automorphism of the shift S. It is known that the automorphism group of S is

[^0]isomorphic to $\mathbf{Z} / 2 \mathbf{Z}$, with nontrivial element $V(x)=-1-x$. (See [6, Theorem 6.9] and the introduction to [3].) We obtain a unique function Φ by adding to (1.3) the side condition $\Phi(0)=0$. We call Φ the $3 x+1$ conjugacy map. This function has been constructed several times, apparently first in [8], where Φ^{-1} is denoted Q_{∞}, and also in [1], [2].

An important property of Φ is that it is solenoidal. Here we say that a function f on \mathbf{Z}_{2} is solenoidal if, for every n, it induces a function $\bmod 2^{n}$, i.e.,

$$
x \equiv y\left(\bmod 2^{n}\right) \Longrightarrow f(x) \equiv f(y)\left(\bmod 2^{n}\right) .
$$

This solenoidal property, together with $\Phi(0)=0$, implies that

$$
\begin{equation*}
\Phi(x) \equiv x(\bmod 2) . \tag{1.4}
\end{equation*}
$$

For completeness, we give a self-contained proof that Φ is unique. Let Φ and Φ^{\prime} be two invertible functions satisfying (1.3) and (1.4). Write Q and Q^{\prime} for their inverses. Then $S \circ Q=Q \circ T$ and $S \circ Q^{\prime}=Q^{\prime} \circ T$, and (1.4) gives $Q \equiv Q^{\prime}(\bmod 2)$. If $Q \equiv Q^{\prime}\left(\bmod 2^{k}\right)$ then $Q \circ T=Q^{\prime} \circ T\left(\bmod 2^{k}\right)$, so $S \circ Q \equiv S \circ Q^{\prime}\left(\bmod 2^{k}\right)$. Now $S \circ Q$ and $S \circ Q^{\prime}$ agree in the bottom k bits, and Q and Q^{\prime} agree in the bottom bit, so Q and Q^{\prime} agree in the bottom $k+1$ bits. Hence $Q \equiv Q^{\prime}\left(\bmod 2^{k+1}\right)$. By induction $Q \equiv Q^{\prime}\left(\bmod 2^{k}\right)$ for every k, so $Q=Q^{\prime}$, so $\Phi=\Phi^{\prime}$.

There is an explicit formula for $\Phi^{-1}([8])$. Let T^{m} denote the m th iterate of T. Then

$$
\begin{equation*}
\Phi^{-1}(x)=\sum_{i=0}^{\infty}\left(T^{i}(x) \bmod 2\right) 2^{i} \tag{1.5}
\end{equation*}
$$

This implies (1.3) and (1.4), and also shows that Φ^{-1} is solenoidal.
There is also an explicit formula for $\Phi([2])$. For $x \in \mathbf{Z}_{2}$, expand x as

$$
x=\sum_{l} 2^{d_{l}},
$$

in which $\left\{d_{l}\right\}$ is a finite or infinite sequence with $0 \leq d_{1}<d_{2}<\cdots$. Then

$$
\begin{equation*}
\Phi(x)=-\sum_{l} 3^{-l} 2^{d_{l}} . \tag{1.6}
\end{equation*}
$$

This also implies (1.3) and (1.4), and shows that Φ is solenoidal.
Various properties of the $3 x+1$ map under iteration can be formulated in terms of properties of Φ. The $3 x+1$ Conjecture is reformulated as follows ([2], [8]). Here \mathbf{Z}^{+}denotes the positive integers.
$3 x+1$ Conjecture. $\mathbf{Z}^{+} \subseteq \Phi\left(\frac{1}{3} \mathbf{Z}\right)$.
Furthermore, it is known that $\Phi\left(\mathbf{Q} \cap \mathbf{Z}_{2}\right) \subseteq \mathbf{Q} \cap \mathbf{Z}_{2}$. (This is easily proven from (1.6); see [2].) The following conjecture is proposed in [8].

Periodicity Conjecture. $\Phi\left(\mathbf{Q} \cap \mathbf{Z}_{2}\right)=\mathbf{Q} \cap \mathbf{Z}_{2}$.
This would imply that the $3 x+1$ function T has no divergent trajectories on Z. Recall that a trajectory $\left\{T^{k}(n): k \geq 1\right\}$ is divergent if it contains an infinite number of distinct elements, so that $\left|T^{k}(n)\right| \rightarrow \infty$ as $k \rightarrow \infty$. In fact, if

$$
T_{3, k}(x)= \begin{cases}(3 x+k) / 2 & \text { if } x \equiv 1(\bmod 2), \\ x / 2 & \text { if } x \equiv 0(\bmod 2),\end{cases}
$$

then the Periodicity Conjecture is equivalent to the assertion that, for all $k \equiv$ $\pm 1(\bmod 6)$, the $3 x+k$ function has no divergent trajectories on \mathbf{Z}. (This follows from [9, Corollary 2.1b].)

This paper studies the $3 x+1$ conjugacy map Φ for its own sake. The function Φ is a solenoidal bijection; it induces permutations Φ_{n} of $\mathbf{Z} / 2^{n} \mathbf{Z}$. Our object is to determine properties of the cycle structure of the permutations Φ_{n}. In effect, our results give information about the iterates Φ^{k} of Φ. We prove in particular that Φ_{n} contains three "long" cycles of length 2^{n-4}, for all $n \geq 6$.

We remark that the results we prove are not related to the $3 x+1$ Conjecture in any immediate way; indeed for the iterates T^{k} the conjugacy (1.3) gives $\Phi \circ$ $S^{k} \circ \Phi^{-1}=T^{k}$, a relation which does not involve Φ^{k} for any $k \geq 2$. We do note that the Periodicity Conjecture is equivalent, for any $k \geq 1$, to the assertion that $\Phi^{k}\left(\mathbf{Q} \cap \mathbf{Z}_{2}\right)=\mathbf{Q} \cap \mathbf{Z}_{2}$. Consequently information about $\bar{\Phi}^{k}$ may conceivably prove useful in resolving the Periodicity Conjecture.

The contents of the paper are as follows. In $\S 2$ we give a table of the cycle lengths of Φ_{n} for $n \leq 20$. This table motivated our results. We also give data on 1 -cycles of Φ_{n} for $n \leq 1000$. We conjecture that Φ has exactly two odd fixed points. In $\S 3$ we formulate results on the progressive stabilization of the "long" cycles of Φ_{n}. In $\S 4$ we generalize these results to the conjugacy map for the $a x+b$ function

$$
T_{a, b}(x)= \begin{cases}(a x+b) / 2 & \text { if } x \equiv 1(\bmod 2) \\ x / 2 & \text { if } x \equiv 0(\bmod 2),\end{cases}
$$

where $a b$ is odd. We prove all these results in $\S 5$. The proofs are based on Theorem 5.1, which keeps track of the highest-order significant bit in the orbit of $x \bmod 2^{n+2}$. In §6 we reconsider "short" cycles of Φ_{n}, and present a heuristic argument that relates their asymptotics to the number of global periodic points. This heuristic is consistent with the data on 1 -cycles presented in $\S 2$.

There are two appendices on solenoidal maps. Appendix A shows the equivalence of "solenoidal bijection," "solenoidal homeomorphism," and "2-adic isometry." Appendix B shows that a wide class of functions U generalizing the $3 x+1$ map T are conjugate to the 2 -adic shift S by a solenoidal conjugacy map Φ_{U}.

Finally, we note that, for odd k, the map $Q(x)=k x$ conjugates the $3 x+1$ function to the $3 x+k$ function; i.e., $Q \circ T \circ Q^{-1}=T_{3, k}$. Thus the cycle structure of the permutations mod 2^{n} of all the conjugacy maps $\Phi_{3, k}$ are identical. Other properties of the $3 x+1$ conjugacy map appear in [2], [10], [11]. In particular, Φ and Φ^{-1} are nowhere differentiable on \mathbf{Z}_{2}; see [10], [2].

We thank Mike Boyle and Doug Lind for supplying references concerning the automorphism group of the one-sided shift, and the referee for helpful comments.

2. Empirical Data and Two Conjectures

By (1.4), Φ_{n} takes odd numbers to odd numbers. Let $\hat{\Phi}_{n}:\left(\mathbf{Z} / 2^{n} \mathbf{Z}\right)^{*} \rightarrow$ $\left(\mathbf{Z} / 2^{n} \mathbf{Z}\right)^{*}$ denote its restriction. The properties of Φ_{n} are completely determined by $\hat{\Phi}_{n}$. Indeed, $\Phi\left(2^{j} x\right)=2^{j} \Phi(x)$ by (1.6), so the action of $\hat{\Phi}_{n-j}$ describes the action of Φ_{n} on odd numbers times 2^{j}.

Each $\hat{\Phi}_{n}$ consists of cycles of various lengths, all of which are powers of 2. (See $\S 3$ for a proof.) The exact form of $\hat{\Phi}_{n}$ for $n \leq 6$ appears in Table 2.1.

n	$\hat{\Phi}_{n}$	$\operatorname{order}\left(\hat{\Phi}_{n}\right)$
2	identity	1
3	$\{1,5\}$	2
4	$\{1,5\}\{9,13\}$	2
5	$\{1,21\}\{5,17\}\{7,23\}\{9,29,25,13\}$	4
6	$\{1,21\}\{3,35\}\{5,17,37,49\}\{7,23\}\{9,29,25,13\}$	
	$\{19,51\}\{27,59\}\{33,53\}\{39,55\}\{41,61,57,45\}$	4

TABLE 2.1. Cycle structure of $\hat{\Phi}_{n}, n \leq 6$. 1-cycles are omitted.

Table 2.2 below lists the number of cycles of various lengths in $\hat{\Phi}_{n}$ for $n \leq 20$. Let $X_{n, j}$ denote the set of cycles of $\hat{\Phi}_{n}$ of period 2^{j}, and let $\left|X_{n, j}\right|$ be the number of such cycles. From Table 2.2 we see, empirically, that

$$
\begin{equation*}
\operatorname{order}\left(\hat{\Phi}_{n}\right)=2^{n-4}, \quad n \geq 6 \tag{2.1}
\end{equation*}
$$

We also see a progressive stabilization of the number of "long" cycles in $\hat{\Phi}_{n}$. In $\S 3-\S 5$ we prove both these facts.

How does $\left|X_{n, j}\right|$, the number of cycles of $\hat{\Phi}_{n}$ of size 2^{j}, behave as $n \rightarrow \infty$, for fixed j ? We give data for the simplest case $\left|X_{n, 0}\right|$ of 1-cycles. Table 2.3 gives all values of $\left|X_{n, 0}\right|$ for $n \leq 100$, and Table 2.4 gives values of $\left|X_{n, 0}\right|$ at intervals of 10 for $n \leq 1000$. We computed the values $\left|X_{n, 0}\right|$ recursively for increasing n by tracking each 1-cycle individually.

(k, j)	0	1	2	3	4	5	6	7	8	9
1		12	32	52	80	116	106	152	124	110
2	2	16	38	54	82	122	112	144	124	108
3	2	26	36	56	96	124	110	120	130	108
4	4	22	38	54	106	124	112	108	128	92
5	6	18	36	54	116	114	106	114	128	96
6	6	20	36	54	90	128	92	132	136	96
7	8	18	50	68	82	118	106	140	124	102
8	14	12	60	68	92	94	116	144	118	108
9	14	16	62	84	102	92	122	144	104	88
10	10	26	50	92	108	100	132	144	98	90

Table 2.3. Number of 1-cycles in $\hat{\Phi}_{10 j+k}$.

(n, j)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	2																
3	2	1															
4	4	2															
5	6	3	1														
6	6	7	3														
7	8	10	3	3													
8	14	17	8	0	3												
9	14	21	18	4	0	3											
10	10	35	24	14	2	0	3										
11	12	40	37	18	12	2	0	3									
12	16	48	70	23	16	10	2	0	3								
13	26	53	79	60	24	11	10	2	0	3							
14	22	63	111	98	50	14	11	10	2	0	3						
15	18	81	129	153	84	40	11	11	10	2	0	3					
16	20	96	179	186	137	78	31	11	11	10	2	0	3				
17	18	91	242	236	207	131	61	29	11	11	10	2	0	3			
18	12	104	305	308	312	192	105	56	29	11	11	10	2	0	3		
19	16	86	375	401	432	307	152	99	54	29	11	11	10	2	0	3	3
20	26	95	424	573	564	445	281	133	91	54	29	11	11	10	2	0	3

TABLE 2.2. Number of cycles $\left|X_{n, j}\right|$ of $\hat{\Phi}_{n}$ of order $2^{j}, 0 \leq j \leq n$.

(k, j)	0	1	2	3	4	5	6	7	8	9
1	10	96	380	700	844	1278	1078	1330	1944	2030
2	26	90	458	788	840	1176	1130	1142	2180	2162
3	50	116	452	916	1134	1000	1212	1170	2194	2230
4	92	156	544	780	942	914	1270	1240	2226	2128
5	108	240	574	678	874	998	1462	1346	2130	2206
6	100	278	588	908	910	1110	1476	1538	2294	2362
7	132	282	628	818	866	1172	1360	1562	2204	2354
8	144	320	634	784	932	1172	1358	1778	2184	2362
9	98	378	784	870	1060	1072	1190	1974	2114	2242
10	90	404	714	892	1150	1086	1208	1808	2056	2308

Table 2.4. Number of 1 -cycles in $\hat{\Phi}_{100 j+10 k}$.
The tables show that $\left|X_{n, 0}\right|$ behaves irregularly, but has a general tendency to increase. In $\S 6$ we present a heuristic model which suggests that

$$
\begin{equation*}
\left|X_{n, 0}\right| \sim F_{0} n \quad \text { as } \quad n \rightarrow \infty \tag{2.2}
\end{equation*}
$$

where F_{0} is the number of odd fixed points of Φ. Comparison with Table 2.4 suggests the following conjecture.
Fixed Point Conjecture. The $3 x+1$ conjugacy map Φ has exactly two odd fixed points.

We searched for odd rational fixed points, and immediately found two: $x=-1$ and $x=1 / 3$. The conjecture thus asserts that these are the only odd fixed points
of Φ. We do not know of any approach to determine the existence or non-existence of non-rational odd fixed points.

More generally we propose the following conjecture.
$3 x+1$ Conjugacy Finiteness Conjecture. For each $j \geq 0$, the $3 x+1$ conjugacy map Φ has finitely many odd periodic points of period 2^{j}.

We have no idea whether the $3 x+1$ conjugacy map Φ has finitely many odd periodic points in total. There are examples of $a x+b$ conjugacy maps that have no odd periodic points; see $\S 4$.

3. Cycle structure of Φ_{n} : Inert Cycles and Stable Cycles

There is a simple relation between the cycles of Φ_{n} and those of Φ_{n+1} : For $x \in \mathbf{Z}_{2}$, the cycle $\sigma_{n+1}(x)$ that x belongs to in Φ_{n+1} has length $\left|\sigma_{n+1}(x)\right|$ either equal to or double the length of the cycle $\sigma_{n}(x)$ that x belongs to in Φ_{n}.

This follows from a more general fact. Call a function $f_{n+1}: \mathbf{Z} / m^{n+1} \mathbf{Z} \rightarrow$ $\mathbf{Z} / m^{n+1} \mathbf{Z}$ consistent $\bmod m^{n}$ if it induces a function f_{n} from $\mathbf{Z} / m^{n} \mathbf{Z}$ to $\mathbf{Z} / m^{n} \mathbf{Z}$, i.e., if

$$
\begin{equation*}
x_{1} \equiv x_{2}\left(\bmod m^{n}\right) \Longrightarrow f_{n+1}\left(x_{1}\right) \equiv f_{n+1}\left(x_{2}\right)\left(\bmod m^{n}\right) \tag{3.1}
\end{equation*}
$$

Lemma 3.1. Let $f_{n+1}: \mathbf{Z} / m^{n+1} \mathbf{Z} \rightarrow \mathbf{Z} / m^{n+1} \mathbf{Z}$ be a function which is consistent mod m^{n}. If x is a purely periodic point of f_{n+1} then x is a purely periodic point of f_{n} and

$$
\left|\sigma_{n+1}(x)\right|=k\left|\sigma_{n}(x)\right|
$$

for some integer k with $1 \leq k \leq m$.
Proof. The image of $\sigma_{n+1}(x)$ under projection mod m^{n} consists of k copies of a purely periodic orbit $\sigma_{n}(x)$, for some $k \geq 1$. The bound $k \leq m$ follows because any element of $\mathbf{Z} / m^{n} \mathbf{Z}$ has only m distinct preimages in $\mathbf{Z} / m^{n+1} \mathbf{Z}$.

Lemma 3.1 applies to Φ_{n+1}, because Φ is solenoidal. Since $m=2$ we have

$$
\left|\sigma_{n+1}(x)\right|=k\left|\sigma_{n}(x)\right| \quad \text { with } \quad k=1 \text { or } 2
$$

We call a cycle $\sigma_{n+1}(x)$ split if $\left|\sigma_{n+1}(x)\right|=\left|\sigma_{n}(x)\right|$, because $\sigma_{n}(x)$ lifts to two cycles $\bmod 2^{n+1}$, namely $\sigma_{n+1}(x)$ and $\sigma_{n+1}(x)+2^{n}$. If $\left|\sigma_{n+1}(x)\right|=2\left|\sigma_{n}(x)\right|$ we call $\sigma_{n+1}(x)$ inert, because $\sigma_{n}(x)$ has lifted to a single cycle. If $\sigma_{n+1}(x)$ is an inert cycle, and $\left|\sigma_{n}(x)\right|=p$, then $\left|\sigma_{n+1}(x)\right|=2 p$ and

$$
\begin{equation*}
\Phi_{n+1}^{p}(x) \equiv x+2^{n}\left(\bmod 2^{n+1}\right) \tag{3.2}
\end{equation*}
$$

By induction on n, the length of any cycle $\left|\sigma_{n}(x)\right|$ is a power of 2 .
We call a cycle $\sigma_{n}(x)$ stable if $\sigma_{m}(x)$ is an inert cycle for all $m \geq n$. If $\sigma_{n}(x)$ is a stable cycle, then

$$
\left|\sigma_{m}(x)\right|=2^{m-n+1}\left|\sigma_{n-1}(x)\right|, \quad m \geq n
$$

For a stable cycle $\sigma_{n}(x)$, Lemma 3.1 guarantees that the map Φ restricted to

$$
\left\{y \in \mathbf{Z}_{2}: y \equiv x_{i}\left(\bmod 2^{n}\right) \text { for some } x_{i} \in \sigma_{n}(x)\right\}
$$

has no periodic points.
Our main result concerning Φ is as follows.

Theorem 3.1. For the $3 x+1$ conjugacy map Φ, suppose that $\left|\sigma_{n}(x)\right| \geq 4$ and that $\sigma_{n}(x)$ and $\sigma_{n+1}(x)$ are both inert cycles. Then $\sigma_{n+2}(x)$ is also an inert cycle. Consequently $\sigma_{n}(x)$ is a stable cycle.

Theorem 3.1 follows from Corollary 5.1 at the end of $\S 5$.
The hypothesis $\left|\sigma_{n}(x)\right| \geq 4$ is necessary in Theorem 3.1. For example, $\sigma_{5}(3)=$ $\{3\}$, so both $\sigma_{6}(3)=\{3,35\}$ and $\sigma_{7}(3)=\{3,99,67,35\}$ are inert, but $\sigma_{8}(3)=$ $\{3,227,195,163\}$ is split.

Corollary 3.1a. $\operatorname{order}\left(\hat{\Phi}_{n}\right)=\operatorname{order}\left(\Phi_{n}\right)=2^{n-4}$, for $n \geq 6$.
Proof. $\sigma_{6}(5)=\{5,17,37,49\}$ is stable.
We next consider Table 2.2 in light of Theorem 3.1. Again let $X_{n, j}$ denote the set of cycles of $\hat{\Phi}_{n}$ of period 2^{j}. Call $X_{n, j}$ stabilized if it consists entirely of stable cycles.

Corollary 3.1b. Assume that all $X_{n, n-j}$ are stabilized for $0 \leq j \leq k-1$, and that $\left|X_{n, n-k}\right|=\left|X_{n+1, n+1-k}\right|=\left|X_{n+2, n+2-k}\right|$. Then $X_{m, m-k}$ is stabilized for $m \geq n$, and $\left|X_{m, m-k}\right|=\left|X_{n, n-k}\right|$.

This criterion gives the stabilized region indicated in Table 2.2. For $n=20$ over 90% of all elements in $\left(\mathbf{Z} / 2^{n} \mathbf{Z}\right)^{*}$ are in stable cycles.

4. The $a x+b$ Conjugacy Map

Consider now the $a x+b$ function

$$
T_{a, b}(x)= \begin{cases}(a x+b) / 2 & \text { if } x \equiv 1(\bmod 2) \tag{4.1}\\ x / 2 & \text { if } x \equiv 0(\bmod 2)\end{cases}
$$

where $a b$ is odd. See [4], [5], [7], and [12] for various properties of $T_{a, b}$ under iteration on \mathbf{Z}.

The 2-adic shift map S is conjugate to the general $a x+b$ function $T_{a, b}$ by the $a x+b$ conjugacy map $\Phi_{a, b}: \mathbf{Z}_{2} \rightarrow \mathbf{Z}_{2}$; i.e., $\Phi_{a, b} \circ S \circ \Phi_{a, b}^{-1}=T_{a, b}$. If $x=\sum_{l} 2^{d_{l}}$, where $\left\{d_{l}\right\}$ is a finite or infinite sequence with $0 \leq d_{1}<d_{2}<\cdots$, then

$$
\begin{equation*}
\Phi_{a, b}(x)=-b \sum_{l} a^{-l} 2^{d_{l}} \tag{4.2}
\end{equation*}
$$

see [2]. Associated to $\Phi_{a, b}$ are the permutations $\Phi_{a, b, n}$ on $\mathbf{Z} / 2^{n} \mathbf{Z}$ obtained by reducing $\Phi_{a, b} \bmod 2^{n}$. The following result generalizes Theorem 3.1.

Theorem 4.1. For the $a x+b$ conjugacy map $\Phi_{a, b}$, suppose that a cycle $\sigma_{n}(x)$ of $\Phi_{a, b, n}$ has $\left|\sigma_{n}(x)\right| \geq 4$. (i) If $a \equiv 1(\bmod 4)$, and $\sigma_{n}(x)$ is an inert cycle, then $\sigma_{n+1}(x)$ is an inert cycle. (ii) If $a \equiv 3(\bmod 4)$, and $\sigma_{n}(x)$ and $\sigma_{n+1}(x)$ are both inert cycles, then $\sigma_{n+2}(x)$ is an inert cycle.

This theorem follows from Corollary 5.1 in $\S 5$. The proof actually shows that in case (i) the weaker hypothesis $\left|\sigma_{n}(x)\right| \geq 2$ suffices, when $b \equiv 3(\bmod 4)$.

There are examples of $a x+b$ conjugacy maps $\Phi_{a, b}$ for which all cycles eventually become stable. Such $\Phi_{a, b}$ then have no odd periodic points. Using Theorem 4.1 we easily check that the $25 x-3$ conjugacy map when taken mod 32 has an odd part consisting of two stable cycles of period 8 .

5. The Highest Order Bit

Throughout this section, $\Phi=\Phi_{a, b}$ is a general $a x+b$ conjugacy map, where a and b are odd. We analyze the high bit of the iterates of $\Phi \bmod 2^{n+2}$. All earlier results follow from Theorem 5.1 below.

For $x \in \mathbf{Z}_{2}$, expand x as

$$
\begin{equation*}
x=\sum_{k=0}^{\infty} \operatorname{bit}_{k}(x) 2^{k} \tag{5.1}
\end{equation*}
$$

where $\operatorname{bit}_{k}(x)$ is either 0 or 1 . Define the bit sums

$$
\begin{equation*}
\operatorname{pop}_{k}(x):=\sum_{j=0}^{k} \operatorname{bit}_{j}(x) \tag{5.2}
\end{equation*}
$$

The $a x+b$ conjugacy map is then given by

$$
\begin{equation*}
\Phi_{a, b}(x)=\sum_{k=0}^{\infty} \frac{-b}{a^{\operatorname{pop}_{k}(x)}} \operatorname{bit}_{k}(x) 2^{k} \tag{5.3}
\end{equation*}
$$

by (4.2).
Lemma 5.1. If $y, z \in \mathbf{Z}_{2}$ with $z \equiv y\left(\bmod 2^{n}\right)$, then

$$
\begin{align*}
& \Phi(z)-\Phi(y)-(z-y) \\
& \equiv 2^{n+1}\left(\frac{a b+1}{2}+\frac{b(a-1)}{2} \operatorname{pop}_{n-1}(y)\right)\left(\operatorname{bit}_{n}(y)+\operatorname{bit}_{n}(z)\right)\left(\bmod 2^{n+2}\right) \tag{5.4}
\end{align*}
$$

Proof. Expand $\Phi(z)-\Phi(y)\left(\bmod 2^{n+2}\right)$ using (5.3). We have $\operatorname{bit}_{k}(z)=\operatorname{bit}_{k}(y)$ and $\operatorname{pop}_{k}(z)=\operatorname{pop}_{k}(y)$ for $0 \leq k \leq n-1$, so the first n terms in $\Phi(z)-\Phi(y)$ cancel. Thus

$$
\begin{aligned}
\Phi(z)-\Phi(y) \equiv 2^{n} & \left(\left(\frac{-b}{a^{\operatorname{pop}_{n}(z)}}\right) \operatorname{bit}_{n}(z)-\left(\frac{-b}{a^{\operatorname{pop}_{n}(y)}}\right) \operatorname{bit}_{n}(y)\right) \\
& +2^{n+1}\left(\left(\frac{-b}{a^{\operatorname{pop}_{n+1}(z)}}\right) \operatorname{bit}_{n+1}(z)-\left(\frac{-b}{a^{\operatorname{pop}_{n+1}(y)}}\right) \operatorname{bit}_{n+1}(y)\right)
\end{aligned}
$$

Substitute $a^{-1} \equiv a(\bmod 4)$ in the coefficient of 2^{n}, and $b \equiv a^{-1} \equiv 1(\bmod 2)$ in the coefficient of 2^{n+1} :

$$
\begin{align*}
\Phi(z)-\Phi(y) \equiv & 2^{n}\left(b a^{\operatorname{pop}_{n}(y)} \operatorname{bit}_{n}(y)-b a^{\operatorname{pop}_{n}(z)} \operatorname{bit}_{n}(z)\right) \tag{5.5}\\
& +2^{n+1}\left(\operatorname{bit}_{n+1}(z)-\operatorname{bit}_{n+1}(y)\right)\left(\bmod 2^{n+2}\right)
\end{align*}
$$

On the other hand

$$
\begin{equation*}
z-y \equiv 2^{n}\left(\operatorname{bit}_{n}(z)-\operatorname{bit}_{n}(y)\right)+2^{n+1}\left(\operatorname{bit}_{n+1}(z)-\operatorname{bit}_{n+1}(y)\right)\left(\bmod 2^{n+2}\right) \tag{5.6}
\end{equation*}
$$

Subtract (5.6) from (5.5):
$\Phi(z)-\Phi(y)-(z-y) \equiv 2^{n}\left(\left(b a^{\operatorname{pop}_{n}(y)}+1\right) \operatorname{bit}_{n}(y)-\left(b a^{\operatorname{pop}_{n}(z)}+1\right) \operatorname{bit}_{n}(z)\right)\left(\bmod 2^{n+2}\right)$.

Substitute $a^{k} \equiv 1+(a-1) k(\bmod 4), \operatorname{pop}_{k}(x) \operatorname{bit}_{k}(x)=\left(1+\operatorname{pop}_{k-1}(x)\right) \operatorname{bit}_{k}(x)$, and then $\operatorname{pop}_{n-1}(z)=\operatorname{pop}_{n-1}(y)$:

$$
\begin{aligned}
\Phi(z)- & \Phi(y)-(z-y) \\
\equiv & 2^{n}\left(\left(b\left(1+(a-1) \operatorname{pop}_{n}(y)\right)+1\right) \operatorname{bit}_{n}(y)\right. \\
& \left.\quad-\left(b\left(1+(a-1) \operatorname{pop}_{n}(z)\right)+1\right) \operatorname{bit}_{n}(z)\right) \\
\equiv & 2^{n}\left(\left(a b+1+b(a-1) \operatorname{pop}_{n-1}(y)\right) \operatorname{bit}_{n}(y)\right. \\
& \left.\quad-\left(a b+1+b(a-1) \operatorname{pop}_{n-1}(z)\right) \operatorname{bit}_{n}(z)\right) \\
\equiv & 2^{n}\left(\left(a b+1+b(a-1) \operatorname{pop}_{n-1}(y)\right)\left(\operatorname{bit}_{n}(y)-\operatorname{bit}_{n}(z)\right)\right. \\
\equiv & 2^{n+1}\left(\frac{a b+1}{2}+\frac{b(a-1)}{2} \operatorname{pop}_{n-1}(y)\right)\left(\operatorname{bit}_{n}(y)-\operatorname{bit}_{n}(z)\right)\left(\bmod 2^{n+2}\right) .
\end{aligned}
$$

This is equivalent to (5.4).
Now fix $x \in \mathbf{Z}_{2}$, and fix $n \geq 0$. Set $\left|\sigma_{n}(x)\right|=2^{j}$ and assume from now on that

$$
\begin{equation*}
\sigma_{n+1}(x) \text { is inert } \tag{5.7}
\end{equation*}
$$

so that $\left|\sigma_{n+1}(x)\right|=2^{j+1}$. We wish to determine whether or not $\sigma_{n+2}(x)$ is inert. According to (3.2) this occurs if and only if

$$
\begin{equation*}
\Phi^{2^{j+1}}(x) \equiv x+2^{n+1}\left(\bmod 2^{n+2}\right) \tag{5.8}
\end{equation*}
$$

We now introduce the quantities

$$
e_{k}[i]:=\operatorname{bit}_{k}\left(\Phi^{i}(x)\right)
$$

In terms of the $e_{k}[i]$, we have

$$
\begin{equation*}
\sigma_{n+2}(x) \text { is inert } \Longleftrightarrow e_{n+1}[0] \neq e_{n+1}\left[2^{j+1}\right] \tag{5.9}
\end{equation*}
$$

by (5.8). We proceed to evaluate $e_{n+1}\left[2^{j+1}\right]-e_{n+1}[0] \bmod 2$. The main theorems of this paper are deduced from the following formula.
Theorem 5.1. If $\left|\sigma_{n}(x)\right|=2^{j}$ and $\sigma_{n+1}(x)$ is an inert cycle, then

$$
\begin{equation*}
e_{n+1}\left[2^{j+1}\right]-e_{n+1}[0] \equiv 1+\frac{a b+1}{2} 2^{j}+\frac{b(a-1)}{2} N(\bmod 2), \tag{5.10}
\end{equation*}
$$

where

$$
\begin{equation*}
N=\sum_{i=0}^{2^{j}-1} \operatorname{pop}_{n-1}\left(\Phi^{i}(x)\right) \tag{5.11}
\end{equation*}
$$

Proof. First we define $X_{i}=\left(\Phi^{i+1+2^{j}}(x)-\Phi^{i+1}(x)\right)-\left(\Phi^{i+2^{j}}(x)-\Phi^{i}(x)\right)$. Since $\sigma_{n+1}(x)$ is an inert cycle, $\Phi^{i+2^{j}}(x) \equiv \Phi^{i}(x)+2^{n}\left(\bmod 2^{n+1}\right)$, so, by Lemma 5.1,

$$
X_{i} \equiv 2^{n+1}\left(\frac{a b+1}{2}+\frac{b(a-1)}{2} \operatorname{pop}_{n-1}\left(\Phi^{i}(x)\right)\right)\left(\bmod 2^{n+2}\right)
$$

Adding up the X_{i} gives

$$
\begin{equation*}
\sum_{i=0}^{2^{j}-1} X_{i} \equiv 2^{n+1}\left(\frac{a b+1}{2} 2^{j}+\frac{b(a-1)}{2} N\right)\left(\bmod 2^{n+2}\right) \tag{5.12}
\end{equation*}
$$

Next define $Y_{i}=2^{n}\left(\left(e_{n}\left[i+1+2^{j}\right]-e_{n}[i+1]\right)-\left(e_{n}\left[i+2^{j}\right]-e_{n}[i]\right)\right)$. The sum of the Y_{i} telescopes:

$$
\sum_{i=0}^{2^{j}-1} Y_{i}=2^{n}\left(e_{n}\left[2^{j+1}\right]-e_{n}\left[2^{j}\right]-e_{n}\left[2^{j}\right]+e_{n}[0]\right)
$$

Since $\sigma_{n+1}(x)$ is an inert cycle, $e_{n}[0]=e_{n}\left[2^{j+1}\right] \neq e_{n}\left[2^{j}\right]$, so

$$
\begin{equation*}
\sum_{i=0}^{2^{j}-1} Y_{i}=2^{n}\left(2 e_{n}[0]-2 e_{n}\left[2^{j}\right]\right) \equiv 2^{n+1}\left(\bmod 2^{n+2}\right) \tag{5.13}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
X_{i}-Y_{i} & \equiv 2^{n+1}\left(e_{n+1}\left[i+1+2^{j}\right]-e_{n+1}[i+1]-e_{n+1}\left[i+2^{j}\right]+e_{n+1}[i]\right) \\
& \equiv 2^{n+1}\left(e_{n+1}\left[i+1+2^{j}\right]+e_{n+1}[i+1]-e_{n+1}\left[i+2^{j}\right]-e_{n+1}[i]\right)
\end{aligned}
$$

In this form the sum of $X_{i}-Y_{i}$ also telescopes:

$$
\sum_{i=0}^{2^{j}-1}\left(X_{i}-Y_{i}\right) \equiv 2^{n+1}\left(e_{n+1}\left[2^{j+1}\right]-e_{n+1}[0]\right)\left(\bmod 2^{n+2}\right)
$$

Comparing this sum with (5.12) and (5.13), we get

$$
2^{n+1}\left(e_{n+1}\left[2^{j+1}\right]-e_{n+1}[0]\right) \equiv 2^{n+1}\left(\frac{a b+1}{2} 2^{j}+\frac{b(a-1)}{2} N\right)-2^{n+1}\left(\bmod 2^{n+2}\right)
$$

which implies (5.10).
Corollary 5.1. (i) If $a \equiv 1(\bmod 4)$, then

$$
e_{n+1}\left[2^{j+1}\right]-e_{n+1}[0] \equiv\left\{\begin{array}{l}
1(\bmod 2) \text { if } b \equiv 3(\bmod 4) \text { or } j \geq 1 \\
0(\bmod 2) \text { otherwise } .
\end{array}\right.
$$

(ii) If $a \equiv 3(\bmod 4)$, and $\sigma_{n}(x)$ is inert, then

$$
e_{n+1}\left[2^{j+1}\right]-e_{n+1}[0] \equiv\left\{\begin{array}{l}
1(\bmod 2) \text { if } j \geq 2 \\
0(\bmod 2) \text { if } j=1
\end{array}\right.
$$

Note that (i) proves Theorem 4.1(i), and (ii) proves Theorem 4.1(ii), using (5.9). Theorem 3.1 then follows as a special case of Theorem 4.1(ii).

Proof. (i) Here $a \equiv 1(\bmod 4)$, so the term involving N in (5.10) drops out.
(ii) Here $a \equiv 3(\bmod 4)$, and $j \geq 1$, so (5.10) simplifies to

$$
e_{n+1}\left[2^{j+1}\right]-e_{n+1}[0] \equiv 1+N(\bmod 2)
$$

The inertness of $\sigma_{n}(x)$ gives

$$
\operatorname{bit}_{n-1}\left(\Phi^{i+2^{j-1}}(x)\right)=1-\operatorname{bit}_{n-1}\left(\Phi^{i}(x)\right)
$$

so

$$
\operatorname{pop}_{n-1}\left(\Phi^{i+2^{j-1}}(x)\right)+\operatorname{pop}_{n-1}\left(\Phi^{i}(x)\right) \equiv 1(\bmod 2)
$$

Thus

$$
N=\sum_{i=0}^{2^{j-1}-1}\left(\operatorname{pop}_{n-1}\left(\Phi^{i+2^{j-1}}(x)\right)+\operatorname{pop}_{n-1}\left(\Phi^{i}(x)\right)\right) \equiv \sum_{i=0}^{2^{j-1}-1} 1=2^{j-1}(\bmod 2)
$$

Now (ii) follows.

6. Cycle Structure of $\hat{\Phi}_{n}$: Short Cycles

We consider the behavior of "short" cycles of the $3 x+1$ conjugacy map; i.e., the behavior of $\left|X_{n, j}\right|$ as $n \rightarrow \infty$ for fixed j. We describe a heuristic model which relates the asymptotics of $\left|X_{n, j}\right|$ to the number of global odd periodic points of Φ.

We first note that the odd periodic points $\operatorname{Per}^{*}(\Phi)$ of Φ determine the entire set $\operatorname{Per}(\Phi)$ of periodic points of Φ. The relation

$$
\begin{equation*}
\Phi(2 x)=2 \Phi(x) \tag{6.1}
\end{equation*}
$$

implies that x has period 2^{j} if and only if $2 x$ has period 2^{j}. Thus

$$
\begin{equation*}
\operatorname{Per}(\Phi)=\left\{2^{k} x: k \geq 0 \text { and } x \in \operatorname{Per}^{*}(\Phi)\right\} \tag{6.2}
\end{equation*}
$$

Let F_{j} be the number of orbits of Φ containing an odd periodic point of minimal period 2^{j}. The $3 x+1$ Conjugacy Finiteness Conjecture of $\S 2$ asserts that all F_{j} are finite.

We obtain a simple heuristic model for the 1-cycles $X_{n, 1}$ of $\hat{\Phi}_{n}$ by classifying them into two types: those arising by reduction mod 2^{n} from an odd fixed point of Φ, and all the rest. Call these "immortal" and "mortal" 1-cycles, respectively. Our heuristic model is to assume that each "mortal" 1-cycle has equal probability of splitting or remaining inert, independently of all other 1-cycles. When a "mortal" 1-cycle splits, both its progeny in $X_{n+1,1}$ are "mortal." An "immortal" 1-cycle in $X_{n, 1}$ always splits, and gives rise to two 1 -cycles in $X_{n+1,1}$, at least one of which is "immortal." We also assume that only F_{0} "immortal" 1-cycles appear in total, i.e., for all large enough n each "immortal" 1-cycle splits into one "immortal" 1-cycle and one "mortal" 1-cycle.

This model is a branching process model with two types of individuals. The expected number of individuals $Z_{n, 1}$ at step n is

$$
\begin{equation*}
E\left[Z_{n, 1}\right]=F_{0} n+c_{0} \tag{6.3}
\end{equation*}
$$

where c_{0} is a constant depending on the levels of the initial occurrences of the F_{0} "immortal" 1-cycles. The empirical data in Tables 6.3 and 6.4 seem consistent with this model, with $F_{0}=2$. We know that $F_{0} \geq 2$ in any case. The two "immortal" 1 -cycles that we know of both appear at $n=1$, so that if $F_{0}=2$, then $c_{0}=0$ in (6.3).

To obtain a heuristic model for $\left|X_{n, j}\right|$ when $j \geq 1$, we use a refined classification of cycles of $\hat{\Phi}_{n}$. A step consists of passing from $\hat{\Phi}_{n-1}$ to $\hat{\Phi}_{n}$. For $0 \leq d \leq j \leq n$ let $X_{n, j, d}$ denote the set of cycles of $\hat{\Phi}_{n}$ of size 2^{j} which have remained inert for exactly d steps. Let $Y_{n, j, d}$ denote the subset of $X_{n, j, d}$ that consists of cycles that split in going to $\hat{\Phi}_{n+1}$. Then we have

$$
\left|X_{n+1, j, 0}\right|=2 \sum_{d=0}^{n}\left|Y_{n, j, d}\right|
$$

and

$$
\left|X_{n+1, j+1, d+1}\right|=\left|X_{n, j, d}\right|-\left|Y_{n, j, d}\right|
$$

We know the following facts about these quantities:
(1) If a cycle of length at least 8 has been inert for $d \geq 2$ steps, it remains inert. Thus $\left|Y_{n, j, d}\right|=0$ if $j \geq 3$ and $d \geq 2$.
(2) Any cycle of length 4 which has been inert for $d=2$ steps must split; i.e., $\left|X_{n, 2,2}\right|=\left|Y_{n, 2,2}\right|$.
(3) Any odd periodic point x of Φ of period 2^{j} gives rise to a cycle of period 2^{j} of $\hat{\Phi}_{n}$ for all sufficiently large n. This cycle always splits. Such cycles are in both $X_{n, j, 0}$ and $Y_{n, j, 0}$.
The quantity we are interested in is

$$
\left|X_{n, j}\right|=\sum_{d=0}^{n}\left|X_{n, j, d}\right|
$$

The facts above imply that $\left|X_{n, j}\right|$ is entirely determined by knowledge of $\left|X_{m, j, 0}\right|$, $\left|Y_{m, j, 0}\right|$, and $\left|Y_{m, j, 1}\right|$, for all $m \leq n$.

Our heuristic model is then to suppose the following:
(1) Each cycle in $X_{n, j, 1}$ has (independently) probability $1 / 2$ of falling in $Y_{n, j, 1}$.
(2) Each "mortal" cycle in $X_{n, j, 0}$ has (independently) probability $1 / 2$ of falling in $Y_{n, j, 0}$, and if so its two progeny in $X_{n+1, j, 0}$ are "mortal."
(3) Each "immortal" cycle in $X_{n, j, 0}$ lies in $Y_{n, j, 0}$, and one of its progeny in $X_{n+1, j, 0}$ is "immortal" and the other is "mortal," with finitely many exceptions.
This is a multi-type branching process model. If $Z_{n, j}$ denotes the total number of individuals in such a process, then one may calculate that, for large n,

$$
\begin{equation*}
E\left[Z_{n, 1}\right]=\frac{1}{4} F_{0} n^{2}+\left(F_{1}+\frac{1}{4} F_{0}\right) n-F_{1}+\frac{1}{2} F_{0}+c_{1}, \tag{6.4}
\end{equation*}
$$

in which c_{1} is a constant depending on the initial occurrence of "immortal" cycles. (We assume that $c_{0}=0$.) For $j \geq 2$, where stable cycles may occur, the formula for $E\left[Z_{n, j}\right]$ becomes quite complicated.

It might be interesting to further compare predictions of this model for $j \geq 1$ with actual data for Φ. We know of one odd periodic cycle of Φ of length 2 , namely $\{1,-1 / 3\}$; i.e., $\Phi(1)=-1 / 3$ and $\Phi(-1 / 3)=1$. Thus $F_{1} \geq 1$.

Appendix A. Solenoidal Maps

Call a map $F: \mathbf{Z}_{2} \rightarrow \mathbf{Z}_{2}$ solenoidal if, for all n,

$$
\begin{equation*}
x \equiv y\left(\bmod 2^{n}\right) \Longrightarrow F(x) \equiv F(y)\left(\bmod 2^{n}\right) . \tag{A.1}
\end{equation*}
$$

An equivalent condition in terms of the 2 -adic metric $|\cdot|_{2}$ is that F is nonexpanding; i.e.,

$$
\begin{equation*}
|F(x)-F(y)|_{2} \leq|x-y|_{2}, \quad \text { all } x, y \in \mathbf{Z}_{2} . \tag{A.2}
\end{equation*}
$$

If F_{1} and F_{2} are solenoidal maps, then so is $F_{1} \circ F_{2}$.
Call a family of functions $F_{n}: \mathbf{Z} / 2^{n} \mathbf{Z} \rightarrow \mathbf{Z} / 2^{n} \mathbf{Z}$ compatible if F_{n} agrees with F_{n-1} under projection $\pi_{n}: \mathbf{Z} / 2^{n} \mathbf{Z} \rightarrow \mathbf{Z} / 2^{n-1} \mathbf{Z}$; i.e., if $\pi_{n} \circ F_{n}=F_{n-1} \circ \pi_{n}$. A compatible family $\left\{F_{n}\right\}$ has an inverse limit $F: \mathbf{Z}_{2} \rightarrow \mathbf{Z}_{2}$ defined by

$$
\begin{equation*}
F(x) \equiv F_{n}(x)\left(\bmod 2^{n}\right), \quad \text { for all } n . \tag{A.3}
\end{equation*}
$$

The term "solenoidal" is justified by the following lemma.
Lemma A.1. F is solenoidal if and only if F is the inverse limit of a compatible family $\left\{F_{n}\right\}$.
Proof. If F is solenoidal, then $F \bmod 2^{n}$ induces a function $F_{n}: \mathbf{Z} / 2^{n} \mathbf{Z} \rightarrow \mathbf{Z} / 2^{n} \mathbf{Z}$, for each n; and $\left\{F_{n}\right\}$ is a compatible family. The reverse implication follows from (A.3).

Lemma A.2. Let U be the inverse limit of a compatible family $\left\{U_{n}\right\}$. Then the following are equivalent. (i) U is a bijection. (ii) For each n, U_{n} is a permutation. (iii) For each n, if $U(x) \equiv U(y)\left(\bmod 2^{n}\right)$ then $x \equiv y\left(\bmod 2^{n}\right)$.

Proof. (i) \Longrightarrow (ii). U is surjective, so U_{n} is surjective.
(ii) \Longrightarrow (i). Write $V_{n}=U_{n}^{-1}$. Then $\left\{V_{n}\right\}$ is a compatible family. Let V be its inverse limit. By construction $U \circ V$ is the inverse limit of identity functions, so $U \circ V$ is the identity. Similarly $V \circ U$ is the identity. Hence U is a bijection.
(ii) \Longrightarrow (iii). If $U(x) \equiv U(y)\left(\bmod 2^{n}\right)$ then $U_{n}\left(x \bmod 2^{n}\right)=U_{n}\left(y \bmod 2^{n}\right)$ so $x \bmod 2^{n}=y \bmod 2^{n}$.
(iii) \Longrightarrow (ii). Suppose that $U_{n}(a)=U_{n}(b)$. Select x and y in \mathbf{Z}_{2} such that $a=x \bmod 2^{n}, b=y \bmod 2^{n}$. Then $U_{n}\left(x \bmod 2^{n}\right)=U_{n}\left(y \bmod 2^{n}\right)$, so $U(x) \equiv$ $U(y)\left(\bmod 2^{n}\right)$, so $x \equiv y\left(\bmod 2^{n}\right)$, so $a=b$.
Corollary A.3. The following are equivalent. (i) U is a solenoidal bijection. (ii) U is a solenoidal homeomorphism. (iii) U is a 2-adic isometry.
U is a 2-adic isometry if $|U(x)-U(y)|_{2}=|x-y|_{2}$.
Proof. (i) \Longrightarrow (iii). U is solenoidal so $|U(x)-U(y)|_{2} \leq|x-y|_{2}$. On the other hand, by Lemma A.1, U is an inverse limit; and U is a bijection, so $|U(x)-U(y)|_{2} \geq$ $|x-y|_{2}$ by Lemma A.2(i $\left.\Longrightarrow \mathrm{iii}\right)$.
(iii) \Longrightarrow (ii). Since $|U(x)-U(y)|_{2} \leq|x-y|_{2}, U$ is solenoidal. By Lemma A.1, U is an inverse limit; by Lemma A.2(iii $\Longrightarrow \mathrm{i}$), U is a bijection. Since $|U(x)-U(y)|_{2} \geq|x-y|_{2}, U^{-1}$ is solenoidal. Finally, solenoidal implies continuous.
(ii) \Longrightarrow (i). Immediate.

Appendix B. Functions Solenoidally Conjugate to the Shift

For any two solenoidal bijections V_{0}, V_{1} define $U_{V_{0}, V_{1}}: \mathbf{Z}_{2} \rightarrow \mathbf{Z}_{2}$ by

$$
U(x)= \begin{cases}V_{0}(x / 2) & \text { if } x \equiv 0(\bmod 2), \\ V_{1}((x-1) / 2) & \text { if } x \equiv 1(\bmod 2) .\end{cases}
$$

For example, take $V_{0}(x)=x$ and $V_{1}(x)=a x+(a+b) / 2$; then $U_{V_{0}, V_{1}}$ is the $a x+b$ function.

In this appendix we show that a map is solenoidally conjugate to the 2 -adic shift map S-i.e., conjugate to S by a solenoidal bijection-if and only if it is of the form $U_{V_{0}, V_{1}}$.
Lemma B.1. Let V be a solenoidal bijection. If $z \equiv w\left(\bmod 2^{m-1}\right)$ then $V(z) \equiv$ $V(w)+z-w\left(\bmod 2^{m}\right)$.

Proof. If $z \equiv w\left(\bmod 2^{m}\right)$ then $V(z) \equiv V(w)\left(\bmod 2^{m}\right)$.
If $z \equiv w+2^{m-1}\left(\bmod 2^{m}\right)$ then still $V(z) \equiv V(w)\left(\bmod 2^{m-1}\right)$. By Corollary A.3, V is an isometry, so if $V(z) \equiv V(w)\left(\bmod 2^{m}\right)$ then $z \equiv w\left(\bmod 2^{m}\right)$, contradiction. Thus $V(z) \equiv V(w)+2^{m-1}\left(\bmod 2^{m}\right)$.
Lemma B.2. Set $U=U_{V_{0}, V_{1}}$. Fix $m \geq 1$. If $y \equiv x+2^{m} e\left(\bmod 2^{m+1}\right)$ then $U(y) \equiv U(x)+2^{m-1} e\left(\bmod 2^{m}\right)$.
Proof. Put $b=x \bmod 2$; then $U(x)=V_{b}(S(x))$. Also $U(y)=V_{b}(S(y))$, since $y \equiv$ $x(\bmod 2)$. We have $S(y) \equiv S(x)+2^{m-1} e\left(\bmod 2^{m}\right)$; by Lemma B.1, $V_{b}(S(y)) \equiv$ $V_{b}(S(x))+2^{m-1} e\left(\bmod 2^{m}\right)$.
Lemma B.3. Set $U=U_{V_{0}, V_{1}}$. Fix $m \geq j \geq 1$. If $y \equiv x+2^{m} e\left(\bmod 2^{m+1}\right)$ then
$U^{j}(y) \equiv U^{j}(x)+2^{m-j} e\left(\bmod 2^{m-j+1}\right)$.
Proof. Lemma B. 2 and induction on j.
Lemma B.4. Set $U=U_{V_{0}, V_{1}}$. Fix $m \geq 1$. If $y \equiv x+2^{m} e\left(\bmod 2^{m+1}\right)$ then $U^{m}(y) \equiv U^{m}(x)+e(\bmod 2)$.

Proof. Lemma B. 3 with $j=m$.
Lemma B.5. Set $U=U_{V_{0}, V_{1}}$. Fix $b_{0}, b_{1}, b_{2}, \ldots \in\{0,1\}$. Define $x_{0}=0$ and $x_{m+1}=x_{m}+2^{m}\left(b_{m}-U^{m}\left(x_{m}\right)\right)$. Then $y \equiv x_{m}\left(\bmod 2^{m}\right)$ if and only if $U^{i}(y) \equiv$ $b_{i}(\bmod 2)$ for $0 \leq i<m$.

Proof. We induct on m. For $m=0$ there is nothing to prove.
Say $y \equiv x_{m+1}\left(\bmod 2^{m+1}\right)$. Then $y \equiv x_{m}+2^{m}\left(b_{m}-U^{m}\left(x_{m}\right)\right)\left(\bmod 2^{m+1}\right)$; by Lemma B. $4, U^{m}(y) \equiv U^{m}\left(x_{m}\right)+b_{m}-U^{m}\left(x_{m}\right)=b_{m}(\bmod 2)$. Also $y \equiv$ $x_{m}\left(\bmod 2^{m}\right)$, so by the inductive hypothesis $U^{i}(y) \equiv b_{i}(\bmod 2)$ for $0 \leq i<m$.

Conversely, say $U^{i}(y) \equiv b_{i}(\bmod 2)$ for $0 \leq i \leq m$. By the inductive hypothesis $y \equiv x_{m}\left(\bmod 2^{m}\right)$. Write $y=x_{m}+2^{m} e$. Then $b_{m} \equiv U^{m}(y) \equiv U^{m}\left(x_{m}\right)+e(\bmod 2)$ by Lemma B.4. Thus $y \equiv x_{m}+2^{m}\left(b_{m}-U^{m}\left(x_{m}\right)\right)=x_{m+1}\left(\bmod 2^{m+1}\right)$.

Theorem B.1. Set $U=U_{V_{0}, V_{1}}$. Define $Q(x)=\sum_{m=0}^{\infty}\left(U^{m}(x) \bmod 2\right) 2^{m}$. Then Q is a solenoidal bijection, and $U=Q^{-1} \circ S \circ Q$.

Thus any map of the form $U_{V_{0}, V_{1}}$ is solenoidally conjugate to S. (See Theorem B. 2 below for the converse.) Q^{-1} generalizes the $a x+b$ conjugacy map.

Proof. Injective: Say $Q(y)=Q(x)$. Define $b_{m}=U^{m}(x) \bmod 2$; then $U^{m}(y) \equiv$ $U^{m}(x) \equiv b_{m}(\bmod 2)$. Next define $x_{0}=0$ and $x_{m+1}=x_{m}+2^{m}\left(b_{m}-U^{m}\left(x_{m}\right)\right)$. By Lemma B.5, $y \equiv x_{m}\left(\bmod 2^{m}\right)$ and $x \equiv x_{m}\left(\bmod 2^{m}\right)$. Thus $y \equiv x\left(\bmod 2^{m}\right)$ for every m; i.e., $y=x$.

Solenoidal: Say $y \equiv x\left(\bmod 2^{n}\right)$. Define $b_{m}=U^{m}(x) \bmod 2, x_{0}=0$, and $x_{m+1}=x_{m}+2^{m}\left(b_{m}-U^{m}\left(x_{m}\right)\right)$. Then $x \equiv x_{n}\left(\bmod 2^{n}\right)$ by Lemma B.5, so $y \equiv x_{n}\left(\bmod 2^{n}\right)$; by Lemma B. 5 again, $U^{m}(y) \equiv b_{m}(\bmod 2)$ for $0 \leq m<n$. Thus $Q(y) \equiv Q(x)\left(\bmod 2^{n}\right)$.

Surjective: Given $b=\sum_{i=0}^{\infty} b_{i} 2^{i}$ with $b_{i} \in\{0,1\}$, define $x_{0}=0$ and $x_{m+1}=x_{m}+$ $2^{m}\left(b_{m}-U^{m}\left(x_{m}\right)\right)$. Since $x_{m+1} \equiv x_{m}\left(\bmod 2^{m}\right)$ the sequence x_{1}, x_{2}, \ldots converges to a 2-adic limit y, with $y \equiv x_{m}\left(\bmod 2^{m}\right)$. By Lemma B.5, $U^{m}(y) \equiv b_{m}(\bmod 2)$ for all m. Thus $Q(y)=b$.

Finally, it is immediate from the definition of Q that $Q \circ U=S \circ Q$.
Theorem B.2. Let Q be a solenoidal bijection. Define $U=Q^{-1} \circ S \circ Q$. Then $U=U_{V_{0}, V_{1}}$ for some solenoidal bijections V_{0}, V_{1}.
Proof. If $Q(0)$ is even then $Q^{-1}(x) \equiv x(\bmod 2)$ for all x; so write

$$
Q^{-1}(x)= \begin{cases}2 W_{0}(x / 2) & \text { if } x \equiv 0(\bmod 2) \\ 1+2 W_{1}((x-1) / 2) & \text { if } x \equiv 1(\bmod 2)\end{cases}
$$

Then W_{0}, W_{1} are solenoidal bijections, and $U=U_{V_{0}, V_{1}}$ where $V_{i}=Q \circ W_{i}$.
Similarly, if $Q(0)$ is odd then $Q^{-1}(x) \equiv-1-x(\bmod 2)$ for all x; so write

$$
Q^{-1}(x)= \begin{cases}1+2 W_{0}(x / 2) & \text { if } x \equiv 0(\bmod 2) \\ 2 W_{1}((x-1) / 2) & \text { if } x \equiv 1(\bmod 2)\end{cases}
$$

Again W_{0}, W_{1} are solenoidal bijections, and $U=U_{V_{0}, V_{1}}$ where $V_{i}=Q \circ W_{i}$.

References

1. E. Akin, Why is the $3 x+1$ problem so hard?, to appear, Math. Magazine.
2. D. J. Bernstein, A non-iterative 2-adic statement of the $3 x+1$ conjecture, Proc. Amer. Math. Soc. 121 (1994), 405-408.
3. M. Boyle, J. Franks, B. Kitchens, Automorphisms of one-sided subshifts of finite type, Ergod. Th. Dyn. Sys. 10 (1990), 421-449.
4. R. E. Crandall, On the ' $3 x+1$ ' problem, Math. Comp. 32 (1978), 1281-1292.
5. Z. Franco, C. Pomerance, On a conjecture of Crandall concerning the $Q X+1$ problem, to appear, Math. Comp. 49 (1995).
6. G. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320-375.
7. E. Heppner, Eine Bemerkung zum Hasse-Syracuse Algorithmus, Arch. Math. 31 (1978), 317320.
8. J. C. Lagarias, The $3 x+1$ problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23.
9. J. C. Lagarias, The set of rational cycles for the $3 x+1$ problem, Acta Arithmetica 56 (1990), 33-53.
10. H. Müller, Das ' $3 n+1$ ' Problem, Mitteilungen der Math. Ges. Hamburg 12 (1991), 231-251.
11. H. Müller, Über eine Klasse 2-adischer Funktionen im Zussamenhang mit dem " $3 x+1$ "Problem, Abh. Math. Sem. Univ. Hamburg 64 (1994), 293-302.
12. R. P. Steiner, On the " $Q X+1$ problem," Q odd, I, II, Fibonacci Quart. 19 (1981), 285-288, 293-296.

Department of Mathematics, University of California, Berkeley, CA 94720
Current address: Department of Mathematics, Statistics, and Computer Science, The University of Illinois at Chicago, Chicago, IL 60607-7045

E-mail address: djb@math.uic.edu

AT\&T Bell Laboratories, Murray Hill, NJ 07974
E-mail address: jcl@research.att.com

[^0]: 1991 Mathematics Subject Classification. Primary 11B75.

