Non-uniform cracks in the concrete:
the power of free precomputation

Daniel J. Bernstein! and Tanja Lange?

! Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607-7053, USA
djb@cr.yp.to
2 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
tanjaGhyperelliptic.org

Abstract. There is a flaw in the standard security definitions used in the literature on provable
concrete security. The definitions are frequently conjectured to assign a security level of 2'2% to
AES, the NIST P-256 elliptic curve, DSA-3072, RSA-3072, and various higher-level protocols, but
they actually assign a far lower security level to each of these primitives and protocols. This flaw
undermines security evaluations and comparisons throughout the literature. This paper analyzes
the magnitude of the flaw in detail, showing how it varies across cryptosystems and across cost
metrics, and discusses several strategies for fixing the definitions.

Keywords: provable security, concrete security, non-uniform algorithms, algorithm cost metrics

1 Introduction

Why do we believe that AES-CBC-MAC is secure? More precisely: Why do we believe that an
attacker limited to 2'%0 bit operations, and 2°° message blocks, cannot break AES-CBC-MAC
with probability more than 27207

The standard answer to this question has three parts. The first part is a concrete definition
of what it means for a cipher or a MAC to be secure. We quote from the classic paper [4,
Section 1.3] by Bellare, Kilian, and Rogaway: the PRP-insecurity of a cipher such as AES
(denoted “AdviEs(¢/,t')”) is defined as the “maximum, over all adversaries restricted to ¢
input-output examples and execution time ¢, of the ‘advantage’ that the adversary has in the
game of distinguishing [the cipher for a secret key| from a random permutation.” The PRF-
insecurity of m-block AES-CBC-MAC (denoted “Advgrécm_ AEs(@,1)7) is defined similarly, using
a uniform random function rather than a uniform random permutation. These definitions have
become completely standard, except for a minor change in notation: “the (g, t)-insecurity of AES
is at most €” is usually abbreviated “AES is (g, t, €)-secure”.

The second part of the answer is a concrete security theorem bounding the insecurity of AES-
CBC-MAC in terms of the insecurity of AES, or more generally the insecurity of F-CBC-MAC
in terms of the insecurity of F' for any ¢-bit block cipher F'. Specifically, here is the main theorem
of [4]: “for any integers q,t,m > 1,

Adv%récm_p(q,t) < AdvRP(d) + 511
where ¢’ = mq and ¢’ = t+ O(mgl).” One can object that the O constant is unspecified, making
this theorem meaningless as stated for any specific ¢, ¢, m values; but it is easy to imagine a
truly concrete theorem replacing O(mgql) with the time for mgql specified operations.

The third part of the answer is a concrete conjecture regarding the security of AES. NIST’s
call for AES submissions [1, Section 4] identified “the extent to which the algorithm output
is indistinguishable from [the output of] a [uniform] random permutation” as one of the “most

This work was supported by the National Science Foundation under grant 1018836, and by the Eu-
ropean Commission under Contract [ICT-2007-216676 ECRYPT II. Permanent ID of this document:
7e044£2408c599254414615c72b3adbf. Date: 2012.12.22.

2 Daniel J. Bernstein and Tanja Lange

important” factors in evaluating candidates; cryptanalysts have extensively studied AES without
finding any worrisome PRP-attacks; it seems reasonable to conjecture that no dramatically
better attacks exist. Of course, this part of the story depends on the details of AES; analogous
conjectures regarding, e.g., DES would have to be much weaker. For example, Bellare and
Rogaway in [7, Section 3.6] wrote the following:

“For example we might conjecture something like:

Advppg™ (Arg) < -

... In other words, we are conjecturing that the best attacks are either exhaustive key
search or linear cryptanalysis. We might be bolder with regard to AES and conjecture

something like

t/Taxs q
Co - —=.
9128 9128

Adviipg™ (Brg) < o1

One can again object that the ¢; and cp are unspecified here, making these conjectures non-
concrete and unfalsifiable as stated. A proper concrete conjecture would specify, e.g., ¢y = co = 3.
One can also quibble that the Tprs and Tags factors do not properly account for inner-loop
speedups in exhaustive key search (see, e.g., [16]), that ¢/20 is a rather crude model of the
success probability of linear cryptanalysis, etc., but aside from such minor algorithm-analysis
details the conjectures seem quite reasonable.

This AES security conjecture (with small specified ¢; and c¢g) says, in particular, that the
attacker cannot PRP-break AES with probability more than 272! after 2°° cipher outputs and
2190 it operations. The CBC-MAC security theorem (with small specified O) then says that
the same attacker cannot PRF-break AES-CBC-MAC with probability more than 2720,

Of course, this answer does not prove that AES-CBC-MAC is secure; it relies on a conjecture
regarding AES security. Why not simply conjecture that AES-CBC-MAC is secure? The answer
is scalability. It is reasonable to ask cryptanalysts to intensively study AES, eventually providing
confidence in the security of AES, while it is much less reasonable to ask cryptanalysts to inten-
sively study AES-CBC-MAC, AES-OMAC, AES-CCM, AES-GCM, AES-OCB, and hundreds
of other AES-based protocols. Partitioning the AES-CBC-MAC security conjecture into an AES
security conjecture and a CBC-MAC security proof drastically simplifies the cryptanalyst’s job.

The same pattern can be found throughout the literature. Concrete “provable security” the-
orems state that the insecurity of a complicated object is bounded in terms of the insecurity of
a simpler object; for example, Bellare and Rogaway in [5] showed that RSA-OAEP has simi-
lar security to RSA against generic-hash attacks (attacks in the “random-oracle model”). The
insecurity of a well-studied primitive such as AES or RSA-1024 is then conjectured to match
the success probability of the best attack known. For example, Bellare and Rogaway in [6, Sec-
tion 1.4], evaluating the concrete-security of RSA-FDH and RSA-PSS, hypothesized that “it
takes time Cel-923(log N)'/?(loglog N)*/% ¢ ipyyert RSA”; Bellare in [2, Section 3.2], evaluating the
concrete security of NMAC-h and HMAC-h, hypothesized that “the best attack against h as
a PRF is exhaustive key search”. These conjectures seem to precisely capture the idea that
cryptanalysts will not make significant further progress in attacking these primitives.

1.1. Contributions of this paper. Our primary goal in this paper is to convincingly undermine
all of the standard security conjectures discussed above. Specifically, Sections 3, 4, 5, and 6
show —assuming standard, amply tested heuristics —that there exist high-probability attacks
against AES, the NIST P-256 elliptic curve, DSA-3072, and RSA-3072 taking considerably less
than 2'2® time. In other words, the insecurity of AES, NIST P-256, DSA-3072, and RSA-3072,
according to the standard concrete-security definitions, reaches essentially 100% for a time bound
considerably below 2!28. The conjectures by Bellare, Kilian, and Rogaway in [6, Section 1.4],
[7, Section 3.6], [2, Section 3.2], etc. are false for every reasonable assignment of the unspecified
constants.

Non-uniform cracks in the concrete: the power of free precomputation 3

The same ideas show that there exist high-probability attacks against AES-CBC-MAC, RSA-
PSS, RSA-OAEP, and thousands of other “provably secure” protocols, in each case taking con-
siderably less than 2128 time. It is not clear that similar attacks exist against every such protocol
in the literature, since in some cases the security reductions are unidirectional, but undermin-
ing these conjectures also means undermining all of the security arguments that have those
conjectures as hypotheses.

We do not claim that this reflects any actual security problem with AES, NIST P-256, DSA-
3072, and RSA-3072, or with the higher-level protocols built on top of these primitives. On the
contrary! It is clear that these attacks exist, but we conjecture that any fast construction of
these attacks has negligible probability of success. Users have nothing to worry about.

However, the standard metrics count only the cost of running the attack, not the cost of
finding the attack in the first place. This means that there is a very large gap between the
actual insecurity of these primitives and their insecurity according to the standard metrics.

Our secondary goal in this paper is to articulate a recommended rescue strategy. Appendix B
analyzes several possible responses to the existence of these attacks:

— Circle the wagons: abandon the conjectures but preserve the definitions.
— Switch the definitions to the NAND metric.

— Switch the definitions to the AT metric.

— Add effectivity to the definitions.

— Add uniformity to the definitions.

We recommend switching to the AT metric, adding effectivity, and refactoring theorems to sim-
plify further changes. Stating and proving new definitions and theorems will require considerable
effort, but we think that the attacks amply justify this effort.

Appendix Q is a frequently-asked-questions list, serving a role for this paper comparable to
the role that a traditional index serves for a book.

1.2. Priority dates and credits. On 20 March 2012 we publicly announced the trouble with
the standard AES conjectures; on 17 April 2012 we publicly announced the trouble with the
standard NIST P-256, DSA-3072, and RSA-3072 conjectures. The low-probability case of the
AES trouble was observed independently by Koblitz and Menezes and announced earlier in
March 2012; further credits to Koblitz and Menezes appear below. We are not aware of previous
publications disputing the standard concrete-security conjectures.

Our attacks on AES, NIST P-256, DSA-3072, and RSA-3072 use many standard cryptanalytic
techniques cited in Sections 3, 4, 5, and 6. We introduce new cost analyses in all four sections,
and new algorithm improvements in Sections 4, 5, and 6; our improvements are critical for
beating 2'?® in Section 6. In Sections 3, 4, and 5 the standard techniques were already adequate
to (heuristically) disprove the standard 2!?® concrete-security conjectures, but as far as we know
we were the first to point out these contradictions. We do not think the contradictions were
obvious; in many cases the standard techniques were published decades before the conjectures!

This paper was triggered by a 23 February 2012 paper [32], in which Koblitz and Menezes
objected to the non-constructive nature of Bellare’s security proof [2] for NMAC. The security
theorem states a quantitative relationship between the standard-definition-insecurity of NMAC-
h and the standard-definition-insecurity of h: the existence of a fast attack on NMAC-h implies
the existence of a fast attack on h. The objection is that the proof does not reveal a fast method
to compute the second attack from the first: the proof left open the possibility that the fastest
algorithm that can be found to attack NMAC-h is much faster than the fastest algorithm that
can be found to attack h.

An early-March update of [32] added weight to this objection by pointing out the (heuristic)
existence of a never-to-be-found fast algorithm to attack any 128-bit function h. The success
probability of the algorithm was only about 274, but this was still enough to disprove Bellare’s
security conjectures. Koblitz and Menezes commented on “how difficult it is to appreciate all the

4 Daniel J. Bernstein and Tanja Lange

security implications of assuming that a function has prf-security even against unconstructible
adversaries”.

Compared to [32], we analyze a much wider range of attacks, including higher-probability
PRF attacks and attacks against various public-key systems, showing that the difficulties here
go far beyond PRF security. We also show quantitative variations of the difficulties between one
algorithm cost metric and another, and we raise the possibility of eliminating the difficulties by
carefully selecting a cost metric.

2 Cost metrics for algorithms

The insecurity of X — where X is a primitive such as AES or RSA, or a higher-level protocol such
as AES-CBC-MAC or RSA-PSS — is defined as the maximum, over all algorithms A (“attacks”)
that cost at most C, of the probability that A succeeds in breaking X. This insecurity is explicitly
a function of the cost limit C'; typically C' is separated into (1) a time limit ¢ and (2) a limit ¢
on the number of oracle queries.

This function depends implicitly on how the “cost” of an algorithm is defined. This section
reviews three cost metrics: the RAM metric used in [4]; the NAND metric, an “alternative”
mentioned in [4]; and the AT metric defined by Brent and Kung in [17] in 1981. There are of
course many other possibilities, such as the VT metric studied by Preparata in [45].

2.1. The RAM metric. Bellare, Kilian, and Rogaway in [4, Section 2.2] fix “some particular
Random Access Machine (RAM)” as a model of computation. They define the running time of
an algorithm A as “A’s actual execution time plus the length of A’s description”.

There are well-known difficulties in giving a reasonable definition of “execution time” for
RAM programs. However, standard workarounds (see, e.g., [15]) limit these difficulties to a
much smaller scale than the gaps considered in this paper, so we suppress discussion of the
details. We make an exception in Section 6, where the gap is relatively small.

Bellare, Kilian, and Rogaway say that adding the length of the algorithm “eliminates patholo-
gies caused if one can embed arbitrarily large lookup tables in A’s description”. The obvious
example is an algorithm that includes a giant sorted table of pairs (AES;(0), k) for all 228 AES
keys k, and simply looks up AES,(0) in the table to find k; the RAM metric forces this algorithm
to pay for the length of the table, not merely the time taken for the table lookup.

The more advanced attacks discussed later in this paper can be viewed as similar “pathologies”
that, contrary to the claim in [4], are not eliminated by merely adding the length of the algorithm.
This view raises the question of whether further changes to the cost metric could stop those
attacks.

2.2. The NAND metric. Bellare, Kilian, and Rogaway also consider an “alternative” definition
of an algorithm as a circuit “over some fixed basis of gates, like 2-input NAND gates”. The cost
of an algorithm then “simply means the circuit size”.

Counting NAND gates is refreshingly precise and easy to define. Readers might wonder why
this NAND metric is an “alternative” rather than the standard definition of algorithm cost.
The only answer given in [4] is that the NAND metric is “rather less intuitive” than the RAM
metric.

We emphasize that the NAND metric often assigns far larger costs to algorithms than the
RAM metric does. In some cases an algorithm taking time 7" in the RAM metric costs more than
T? NAND gates. The most important difference is in the cost of random access to a large table,
a very fast operation in the RAM metric but a very slow operation in the NAND metric. A batch
of n independent random accesses to the same table of size n has similar cost in both metrics
(since it can be simulated by sorting), but many algorithms require serial random accesses.

This difference can cause trouble: there are many theorems regarding “time” that are true
for the RAM metric but unproven, and presumably false, for the NAND metric. This trouble
is discussed further in Appendix B.2. However, for the same reason, one can hope that any

Non-uniform cracks in the concrete: the power of free precomputation 5

“pathologies” in the RAM metric are fixed by the NAND metric. This hope is analyzed in
Sections 3, 4, 5, and 6.

2.3. The AT metric. In hardware design it is common to model computation in a completely
different way. Computation is performed by a chip, i.e., a rectangular mesh of transistors con-
nected by wires, with at most a few layers of wires at each point in the mesh. Transistors and
wires all operate in parallel. It is not difficult to give a formal definition of this model of com-
putation; see, e.g., [17]. This definition has the virtue of being obviously quite close to physical
reality.

Our third cost metric for algorithms is the price-performance ratio of a chip: i.e., the product
AT of the area A of the chip and the time T taken by the chip. Hardware designers often
consider more general functions of (A, T), but the classic product AT remains the default choice
of cost metric because it preserves the following two forms of linearity: performing n time-T'
computations in serial on one area-A chip costs n times as much as performing 1 computation;
performing n time-7" computations in parallel on n area-A chips (formally, one area-nA chip)
also costs n times as much as performing 1 computation.

Brent and Kung showed in [17] that n-bit multiplication costs n'**°(1) in the AT metric; for
comparison, n-bit multiplication costs only n'T°(1) in the RAM metric and in the NAND metric.
Similar comments apply to sorting and to various other high-communication computations. We
consider the AT metric in subsequent sections for the same reason that we consider the NAND
metric: it is a source of trouble but also a possible solution to “pathologies”.

3 Breaking AES

This section analyzes the cost of various attacks against AES. All of the attacks readily generalize
to other block ciphers; none of the attacks exploit any particular weakness of AES. We focus on
AES because of its relevance in practice and to have concrete numbers to illustrate the attacks.

All of the (single-target) attacks here are “PRP” attacks: i.e., attacks that distinguish the
cipher outputs for a uniform random key (on attacker-selected inputs) from outputs of a uniform
random permutation. Some of the attacks go further, recovering the cipher key, but this is not
a requirement for a distinguishing attack.

3.1. Breaking AES with MD5. We begin with a low-probability attack that does not use
any precomputations.

Let P be a uniform random permutation of the set {0,1}'*®. The pair (P(0), P(1)) is nearly
a uniform random 256-bit string: it avoids 2'?® strings of the form (z,) but is uniformly dis-
tributed among the remaining 22°6 — 2128 strings.

If k£ is a uniform random 128-bit string then the pair (AES;(0), AES,(1)) is a highly nonuni-
form random 256-bit string. One can reasonably guess that an easy way to distinguish this from
(P(0), P(1)) is to feed it through MD5 and inspect the first bit of the result. The success prob-
ability of this attack is far below 1, but it is almost certainly above 278, and therefore many
orders of magnitude above 27128,

To understand why this works, imagine replacing the first bit of MD5 with a uniform random
function from {0,1}*°° to {0,1}, and assume for simplicity that the 2'2% keys k produce 228
distinct strings (AESg(0), AESk(1)). Each key k then has a 50% chance of choosing 0 and a
50% chance of choosing 1, and these choices are independent, so the probability that 2'27 + §
keys k choose 1 is exactly (2122172i 6) / 22128; the probability that at least 2'27 + § keys k choose 1 is

2128

exactly > ;55 (2127+i) /22128; the probability that at most 227 — § keys k choose 1 is the same.
The other 2256 — 2129 possibilities for (P(0), P(1)) are practically guaranteed to have far smaller
bias. This attack thus has success probability at least ~J/2'2® with probability approximately

2128

2> iss (2127+i) /22128 ~ 1 —erf(6/v/2127) ~ exp(—62/2'27), where erf is the standard error func-

6 Daniel J. Bernstein and Tanja Lange

tion. For example, the attack has success probability at least ~276% with probability above 30%,
and has success probability at least ~2789 with probability above 99.997%.

Of course, MD5 is not actually a uniform random function, but it would be astonishing for
MD5 to interact with AES in such a way as to spoil this attack. More likely is that there are
some collisions in k — (AES;(0), AESk(1)); but any such collisions will tend to push § away
from 0, helping the attack.

3.2. Precomputing larger success probabilities. The same analysis applies to a modified
attack Dy that appends a short string s to the AES outputs (AES;(0), AES,(1)) before hashing
them: for each s, D, has success probability at least ~2§/2'?® with probability = exp(—d2/2'27).
If s is long enough to push the hash inputs beyond one block of MD5 input then the iterated
structure of MD5 seems likely to spoil the attack, so we define Dy using “capacity-1024 Keccak”
rather than MD5.

Consider, for example, § = 257: for each s, this attack D, has success probability at least
~2761 with probability ~ 1 — erf(23%) ~ 27189, There are 2!92 choices of 192-bit strings s, so
presumably at least one of them will have D, having success probability at least ~27%1. Of
course, actually finding such an s would require inconceivable amounts of computation by the
best methods known (searching 2'%% choices of s, and computing 2'2® hashes for each choice);
but this is not relevant to the definition of insecurity, which considers only the time taken by
D.

More generally, for any n € {0,1,2,...,64}, D, has success probability at least ~2"~% with
probability &~ 1 — erf(2719%) &~ exp(—22"+1). There are 232°" choices of (3 - 227)-bit strings s,
and 232" is considerably larger than exp(22"1), so presumably at least one of these values of
s will have D, has success probability at least ~2764,

Similar comments apply to essentially any short-key cipher. There almost certainly exists a
(3 - 22")-bit string s such that the following simple attack achieves insecurity ~2"~%/2 where
K is the number of bits in the cipher key: query 2K bits of ciphertext, append s, and hash the
result to 1 bit.

As n increases, the cost of hashing 3-22" +2K bits grows almost linearly with 227 in the RAM
metric and the NAND metric. It grows more quickly in the AT metric: storing the 3 - 22" bits of
s uses area at least 3 - 22", and even a heavily parallelizable hash function will take time ©(2")
simply to communicate across this area, for a total cost proportional to 23”. In each metric there
are also lower-order terms reflecting the cost of hashing per bit; we suppress these lower-order
terms since our concern is with much larger gaps.

3.3. Iteration. High levels of insecurity are more efficiently achieved by a different type of
attack that iterates, e.g., the function f7 : {0,1}'*® = {0,1}'?® defined by f-(k) = AES,(0) &7,
where 7 is represented in little-endian binary form.

Choose an attack parameter n. Starting from f7(k), compute the sequence of iterates f7(k),
f2(k), f2(k),..., f2"(k). Look up each of these iterates in a table containing the precomputed
quantities f2"(0), f2"(1),..., f2(2" - 1). If f?(k:) matches f2"(i), recompute f?n_‘j(i) as a guess
for k, and verify this guess by checking AESg(1).

This computation finds k if k¥ matches any of the following keys: 0, f7(0),. .., 72"_1(0); 1, f7(1),

o 7271*1(1); etc. If n is not too large (see the next paragraph) then there are close to 22"
different keys here. The computation involves <2" initial iterations; 2" table lookups; and, in
case of a match, <2" iterations to recompute f?nij (7). The precomputation performs many
more iterations, but this precomputation is only the cost of finding the algorithm, not the cost
of running the algorithm.

This heuristic analysis begins to break down as 3n approaches the key size K. The central
problem is that a chain f7(i), f2(i),... could collide with one of the other 2" — 1 chains; this
occurs with probability /23" /2K since there are 2" keys in this chain and almost 22" keys in
the other chains. The colliding chains will then merge, reducing the coverage of keys and at the

Non-uniform cracks in the concrete: the power of free precomputation 7

same time requiring extra iterations to check more than one value of 7. This phenomenon loses
a small constant factor in the algorithm performance for n ~ K/3 and much more for larger n.

Assume from now on that n is chosen to be close to K/3. The algorithm then has success
chance ~2~%/3_ The algorithm cost is on the scale of 25/% in both the RAM metric and the
NAND metric; for the NAND metric one computes the 2" independent table lookups by sorting
and merging.

This attack might not sound better than the earlier attack Dy, which achieves success chance
~2-K/3 for some string s with ~2%/3 bits. The critical advantage of this attack is that it
recognizes its successes. If the attack fails to find k& then one can change 7 to another number
and try again, almost doubling the success chance of the algorithm at the expense of doubling its
cost; for comparison, doubling the success chance of Dy requires quadrupling its cost. Repeating
this attack 25/3 times reaches success chance ~1 at cost 225/3,

In the AT metric this attack is much more expensive. The table of precomputed quantities
f2(0), £2'(1),..., f2"(2" — 1) uses area on the scale of 2", and computing f?"(k) takes time on
the scale of 2", for a total cost on the scale of 227 for an attack that finds ~ 22" keys. One can
compute f2°(0), f#(1),..., f#(2"—1) in parallel within essentially the same bounds on time and
area, replacing each precomputed key with a small circuit that computes the key from scratch;
precomputation does not change the exponent of the attack. One can, more straightforwardly,
compute any reasonable sequence of 22" guesses for k within essentially the same cost bound.
Achieving success probability p costs essentially 25 p.

3.4. Multiple targets. Iteration becomes more efficient when there are multiple targets: U ci-
phertexts AESy, (0), AESy, (0), ..., AES, (0) for U independent uniform random keys k1, . .., ky.
Assume for simplicity that U is much smaller than 2%; the hypothesis U < 25/ suffices for all
heuristics used below.

Compute the iterates f7(k1), f2(k1),. .., f2 (k1), and similarly for each of ks, . .., ky; this takes
2™U iterations. Look up each iterate in a table of 2"U precomputed keys. Handle any match as
above.

In the RAM metric or the NAND metric this attack has cost on the scale of 2"U, just like
applying the previous attack to the U keys separately. The advantage of this attack is that
it uses a larger table, producing a larger success probability for each key: the precomputation
covers 22"U keys instead of just 22" keys. To avoid excessive chain collisions one must limit 2" to
2K/3U=1/3; the attack then finds each key with probability 2= 5/3U/3, with a cost of 2K/3y~1/3
per key, a factor of U?/3 better than handling each key separately. Finding each key with high
probability costs 225/3U~2/3 per key.

As before, the AT metric assigns a much larger cost than the RAM and NAND metrics. The
computation of f2'(ky), % (ka),..., f# (ky) is trivially parallelized, taking time on the scale of
27, but the 2"U precomputed keys occupy area 2"U, for a total cost on the scale of 227U, i.e.,
22" per key. Precomputation again has only a small benefit. There is still a benefit in success
probability from handling U keys together: finding at least one of the U keys with success
probability p costs essentially (2% /U)p.

3.5. Comparison. We summarize the insecurity established by the best attacks discussed above.
Achieving success probability p against U keys costs

— RAM metric: ~2Kp? for p < 27K/3U=2/3; ~(22K/3 /U%/3)p for larger p.
— NAND metric: same.
— AT metric: ~235/2p3 for p < 2= K/Ay—1/2; x2KU—1p for larger p.

Figure A.1 graphs these approximations for U = 1, along with the cost of exhaustive search.

3.6. Previous work. All of the attacks described here have appeared before. In fact, when the
conjectures in [7, Section 3.6] and [2, Section 3.2] were made, they were already inconsistent
with known attacks.

8 Daniel J. Bernstein and Tanja Lange

The iteration idea was introduced by Hellman in [29] for the special case U = 1. Many
subsequent papers have explored variants and refinements of Hellman’s attack, including the easy
generalization to larger U. Hellman’s goal was to attack many keys for a lower cost than attacking
cach key separately; Hellman advertised a “cost per solution” of 225/3 using a precomputed table
of size 22K/3_ The generalization to larger U achieves the same goal at lower cost, but the special
case U = 1 remains of interest as a non-uniform single-key attack.

Koblitz and Menezes in [32] recently considered the family of attacks Ds. They explained that
there should be a short string s where Dy has success probability at least ~ 2~5/2 and analyzed
the consequences for provable concrete secret-key security. However, they did not analyze higher
levels of insecurity.

Replacing D with a more structured family of attacks, namely linear cryptanalysis, can be
proven to achieve insecurity 2-5/2 at low cost. (See, for example, [25, Section 7], which says that
this is “well known in complexity theory”.) De, Trevisan, and Tulsiani in [22] proved cost ~2Kp?,
for both the RAM metric and the NAND metric, for any insecurity level p. A lucid discussion
of the gap between these attacks and exhaustive search appears in [22, Section 1], but without
any discussion of the resulting trouble for the literature on provable concrete secret-key security,
and without any discussion of possible fixes.

Biham, Goren, and Ishai in [14, Section 1.1] pointed out that Hellman’s attack causes prob-
lems for defining strong one-way functions. The only solution that they proposed was adding
uniformity. Note that this solution abandons the goal of giving a definition for, e.g., the strength
of AES as a one-way function, or the strength of protocols built on top of AES. We analyze this
solution in detail in Appendix B.5.

Our AT analysis appears to be new. In particular, we are not aware of previous literature con-
cluding that switching to the AT metric removes essentially all of the benefit of precomputation
for large p, specifically p > 2~ K/4y—1/2,

4 Breaking the NIST P-256 elliptic curve

This section analyzes the cost of an attack against NIST P-256 [40], an elliptic curve of 256-
bit prime order ¢ over a 256-bit prime field F,,. The attack computes discrete logarithms on
this curve, recovering the secret key from the public key and thus completely breaking typical
protocols that use NIST P-256.

The attack does not exploit any particular weakness of NIST P-256. Switching from NIST
P-256 to another group of the same size (another curve over the same field, a curve over another
field, a hyperelliptic curve, a torus, etc.) does not stop the attack. We focus on NIST P-256 for
both concreteness and practical relevance, as in the previous section.

4.1. The standard attack without precomputation. Let P be the specified base point on
the NIST P-256 curve. The discrete-logarithm problem on this curve is to find, given another
point @ on this curve, the unique integer k modulo ¢ such that () = kP. The standard attack
against the discrete-logarithm problem is the parallelization by van Oorschot and Wiener [43]
of Pollard’s rho method [44], described in the following paragraphs.

This attack uses a pseudorandom walk on the curve points. To obtain the (i 4+ 1)-st point
Pit1, apply a hash function & : F), — I to the z-coordinate of P;, select a step Sy, (p,)) from
a sequence of precomputed steps S; = r; P (with random scalars r; for j € I), and compute
Pit1 = P; + Sp(a(p,))- The size of [is chosen large enough to have the walk simulate a uniform
random walk; a common choice, recommended in [50], is |I| = 20. The walk continues until it
hits a distinguished point: a point P; where the last ¢ bits of x(P;) are equal to zero. Here t is
an attack parameter.

The starting point of the bth walk is of the form aP + b(@) where a is chosen randomly. Each
step increases the multiple of P, so the distinguished point has the form a’'P + bQ for known
a’,b. The triple (a’P + bQ,d’,b) is stored and a new walk is started from a different starting

Non-uniform cracks in the concrete: the power of free precomputation 9

point. If two walks hit the same distinguished point then a’P + bQ = P + d(@ which gives
(@' —)P = (d — b)Q; by construction d Z b mod ¢, revealing k = (a’ — ¢/)/(d — b) mod .

After /¢ ~ 2'?8 additions (in approximately 2128~ walks, using storage 2'28~%), there is a high
chance that the same point has been obtained in two different walks. This collision is recognized
from a repeated distinguished point within approximately 2¢ additional steps.

4.2. Precomputed distinguished points. To use precomputations in this attack, build a
database of triples of the form (a'P, d’,0), i.e., starting each walk at a multiple of P. The attack
algorithm takes this database and starts a new walk at a P+ b@ for random a and b. If this walk
ends in a distinguished point present in the database, the DLP is solved. If the walk continues
for more than 2!*! steps (perhaps because it is in a cycle) or reaches a distinguished point not
present in the database, the attack starts again from a new pair (a,b).

The parameter ¢ is critical for RAM cost here, whereas it did not significantly affect RAM cost
in Section 4.1. Choose t as [(logy £)/3]. One can see from the following analysis that significantly
smaller values of ¢ are much less effective, and that significantly larger values of ¢ are much more
expensive without being much more effective.

Construct the database to have exactly 2¢ distinct triples, each obtained from a walk of length
at least 2, representing a total of at least 22 (and almost certainly O(22")) points. Achieving
this requires searching for starting points in the precomputation (and optionally also varying
the steps S; and the hash function) as follows. A point that enters a cycle without reaching
a distinguished point is discarded. A point that reaches a distinguished point in fewer than 2¢
steps is discarded; each point survives this with probability approximately (1 — 1/ 2t)2t ~ 1/e.
A point that produces a distinguished point already in the database is discarded; to see that
a point survives this with constant probability, observe that each new step has chance 27! of
reaching a distinguished point, and chance O(2%/f) = O(27!) of reaching one of the previous
O(22") points represented by the database.

Now consider a walk starting from aP + bQ. This walk has chance approximately 1/e of
continuing for at least 2¢ steps. If this occurs then those 2! steps have chance approximately
1—(1-22/0)2" ~ 1—exp(—23/f) > 1—1/e of reaching one of the 22 points in the precomputed
walks that were within 2¢ of the distinguished points in the database. If this occurs then the
walk is guaranteed to reach a distinguished point in the database within a total of 2!+1 steps.
The algorithm thus succeeds (in this way) with probability at least (1 — 1/e)/e ~ 0.23. This
is actually an underestimate, since the algorithm can also succeed with an early distinguished
point or a late collision.

To summarize, the attack uses a database of approximately /¢ distinguished points; one run
of the attack uses approximately 2v/¢ curve additions and succeeds with rather high probability.
The overall attack cost in the RAM metric is a small constant times v/¢. The security of NIST
P-256 in this metric has thus dropped to approximately 286. Note that the precomputation here
is on the scale of 217, much larger than the precomputation in Section 3.3 but much smaller
than the precomputation in Section 3.2.

In the NAND metric it is simplest to run each walk for exactly 2! steps, keeping track of
the first distinguished point found by that walk and then comparing that distinguished point to
the 2¢ points in the database. The overall attack cost is still on the scale of /2.

In the AT metric the attack cost is proportional to WQ, larger than the standard /2. In this
metric one does better by running many walks in parallel: if Z points are precomputed, one
should run approximately Z walks in parallel with inputs depending on (). The precomputation
then covers 2'Z points, and the computations involving () cover approximately 2!Z points,
leading to a high probability of success when 2¢Z reaches v/¢. The AT cost is also 2!Z. This
attack has the same cost as the standard Pollard rho method, except for small constants; there
is no advantage in the precomputations.

4.3. Related work. Kuhn and Struik in [33] and Hitchcock, Montague, Carter, and Dawson in
[30] considered the problem of solving multiple DLPs at once. They obtain a speedup of VU per

10 Daniel J. Bernstein and Tanja Lange

DLP for solving U DLPs at once. Their algorithm reuses the distinguished points found in the
attack on Q1 to attack Q)o, reuses the distinguished points found for @)1 and Q2 to attack Qs,
etc. However, their results do not seem to imply our v/¢ result: they do not change the average
walk length and distinguished-point probabilities, and they explicitly limit U to ¢v/¢ with ¢ < 1.
See also the recent paper [35] by Lee, Cheon, and Hong, which considered solving DLPs with
massive precomputation for trapdoor DL-groups. None of these papers noticed any implications
for provable security, and none of them went beyond the RAM metric.

Our followup paper [13] experimentally verified the algorithm stated above, improved it to
1.77- /¢ additions using v/¢ distinguished points, extended it to DLPs in intervals (using slightly
more additions), and showed constructive applications in various protocols.

5 Breaking DSA-3072

This section briefly analyzes the cost of an attack against the DSA-3072 signature system. The
attack computes discrete logarithms in the DSA-3072 group, completely breaking the signature
system.

DSA uses the unique order-g subgroup of the multiplicative group Fj, where p and g are
primes with ¢ (and not ¢?) dividing p — 1. DSA-3072 uses a 3072-bit prime p and is claimed
to achieve 2128 security. The standard parameter choices for DSA-3072 specify a 256-bit prime
q, allowing the 230 attack explained in Section 4, but this section assumes that the user has
stopped this attack by increasing ¢ to 384 bits (at a performance penalty).

5.1. The attack. Take y = 210, and precompute log, zP=1/4 for every prime number z < y,
where g is the specified subgroup generator. There are almost exactly y/logy ~ 2'937 such
primes, and each log, =1/ fits into 48 bytes, for a total of 210933 hytes.

To compute log, h, first try to write i as a quotient hi/hg in Fj with hs € {1, 2,3,..., 21535},
hy € {—21535, 50,1, 21535}, and gcd{h, he} = 1; and then try to factor hy, hy into primes
< y. If this succeeds then log, h(P=1)/4 i a known combination of known quantities log, =1/,
revealing log, h. If this fails, try again with hg, hg?, etc.

One can write h as hi/hs with high probability, approximately (6/7%)2397! /p, since there
are approximately (6/72)2397! pairs (hq, he) and two distinct such pairs have distinct quotients.
Finding the decomposition of h as hy/hs is a very fast extended-Euclid computation.

The probability that hy is y-smooth (i.e., has no prime divisors larger than y) is very close to
u™" ~ 279396 where u = 1535/110. The same is true for hg; overall the attack requires between
210785 and 219885 jterations, depending on 2307!/p. Batch trial division, discussed in detail in
Section 6, finds the y-smooth values among many choices of h; at very low cost in both the
RAM metric and the NAND metric. This attack is much slower in the AT metric.

5.2. Previous work. Standard attacks against DSA-3072 do not rely on precomputation and
cost more than 2!?8 in the RAM metric. These attacks have two stages: the first stage computes
discrete logarithms of all primes < y, and the second stage computes log, h. Normally y is chosen
to minimize the cost of the first stage, whereas we replace the first stage by precomputation and
choose y to minimize the cost of the second stage.

The simple algorithm reviewed here is not the state-of-the-art algorithm for the second stage;
see, e.g., the “special-q descent” algorithms in [31] and [20]. The gap between known algorithms
and existing algorithms is thus even larger than indicated in this section. We expect that re-
optimizing these algorithms to minimize the cost of the second stage will produce even better
results. We emphasize, however, that none of the algorithms perform well in the AT metric.

Non-uniform cracks in the concrete: the power of free precomputation 11

6 Breaking RSA-3072

This section analyzes the cost of an attack against RSA-3072. The attack completely breaks RSA-
3072, factoring any given 3072-bit public key into its prime factors, so it also breaks protocols
such as RSA-3072-FDH and RSA-3072-OAEP.

This section begins by stating a generalization of the attack to any RSA key size, and analyzing
the asymptotic cost exponents of the generalized attack. It then analyzes the cost more precisely
for 3072-bit keys.

6.1. NFS with precomputation. This attack is a variant of NF'S, the standard attack against
RSA. For simplicity this description omits several NF'S optimizations. See [18] for an introduction
to NFS.

The attack is determined by four parameters: a “polynomial degree” d; a “radix” m; a “height
bound” H; and a “smoothness bound” y. Each of these parameters is a positive integer. The
attack also includes a precomputed “factory”

~H<a<H;0<b<H; }

F= {(a, beZxZ: ged{a,b} = 1; and a — bm is y-smooth

The standard estimate is that F has (12/72)H?/u* elements where u = (log Hm)/logy. This
estimate combines three approximations: first, there are about 12H? /72 pairs (a,b) € Z x Z
such that —H < a < H,0 < b < H, and ged{a,b} = 1; second, a — bm has approximately
the same smoothness chance as a uniform random integer in [1, Hm]; third, the latter chance is
approximately 1/u".

The integers N factored by the attack will be between m¢ and m%t!'. For example, with
parameters m = 226 d =7, H = 25 and y = 2%, the attack factors integers between 21792
and 22048 Parameter selection is discussed later in more detail. The following three paragraphs
explain how the attack handles N.

Write N in radix m: i.e., find ng,n1,...,nq € {0,1,...,m — 1} such that N = ngm? +
ng—1m4t + -+ ng. Compute the “set of relations”

R= {(a, b) € F:nga® +ng_1a b+ - + nob? is y—smooth}

using Bernstein’s batch trial-division algorithm [10]. The standard estimate is that R has
(12/72)H? /(u"v®) elements where v = (log((d + 1)H%m))/logy.

We pause the attack description to emphasize two important ways that this attack differs
from conventional NF'S: first, conventional NF'S chooses m as a function of N, while this attack
does not; second, conventional NFS computes R by sieving all pairs (a,b) to detect smoothness
of a — bm and nga® + --- 4+ nob? simultaneously, while this attack computes R by batch trial
division of nga® + - - - 4+ ngb? for the limited set of pairs (a,b) € F.

The rest of the attack proceeds in the same way as conventional NFS. There is a standard
construction of a sparse vector modulo 2 for each (a,b) € R, and there is a standard way
to convert several linear dependencies between the vectors into several congruences of squares
modulo N, producing the complete prime factorization of N; see [18] for details. The number of
components of each vector is approximately 2y / log y, and standard sparse-matrix techniques find
linear dependencies using about 4y/ log y simple operations on dense vectors of length 2y /logy.
If the number of elements of R is larger than the number of components of each vector then
linear dependencies are guaranteed to exist.

6.2. Asymptotic exponents. Write L = exp((log N)/3(loglog N)%/?). For the RAM metric
it is best to choose

de (1.1047... + o(1
logm € (0.9051 ...+ o(1
logy € (0.8193. ..+ of
log H € (1.0034... + o(1

))13,

log N)?/3(loglog N)*/3,
)13 (loglog N)?/3 = (0.8193... + o(1)) log L,
))

1/3(loglog N)*? = (1.0034. .. + o(1)) log L.

12 Daniel J. Bernstein and Tanja Lange

so that

u € (1.1047. .. + o(1))(log N)*/3(log log N) /3 ulogu = (0.3682. .. + o(1)) log L,
dlog H € (1.1085. .. + o(1))(log N)?/(log log N)'/3,
v e (24578 ...+ o(1))(log N)/3(loglog N)~'/3 vlogv = (0.8193... + o(1)) log L.

Out of the [,2-0068...+o(1) pairs (a,b) with —H < a < H and 0 < b < H, there are [1.6385...4+0(1)
pairs in the factory F', and L0-8193-.+0(1) pelations in R, just enough to produce linear depen-
dencies if the o(1) terms are chosen appropriately. Linear algebra uses y>to(l) — [1.6385..+o(1)
bit operations.

The total RAM cost of this factorization algorithm is thus L!6385-+o(1) For comparison,
factorization is normally claimed to cost L!-9018--+o(1) (in the RAM metric) with state-of-the-art
variants of NFS. Similar comments apply to the NAND metric.

This algorithm runs into trouble in the AT metric. The algorithm needs space to store all the
elements of F', and can compute R in time L°}) using a chip of that size (applying ECM to each
input in parallel rather than using batch trial division), but even the most heavily parallelized
sparse-matrix techniques need much more than L°®) time, raising the AT cost of the algorithm
far above the size of F'. A quantitative analysis shows that one obtains a better cost exponent
by skipping the precomputation of F' and instead computing the elements of F' one by one on a
smaller circuit, for AT cost L1-9760--+o(1)

6.3. RAM cost for RSA-3072. This attack breaks RSA-3072 with RAM cost considerably
below the 2'%2% security level usually claimed for RSA-3072. Of course, justifying this estimate
requires replacing the above o(1) terms with more precise cost analyses.

For concreteness, assume that the RAM supports 128-bit pointers, unit-cost 256-bit vector
operations, and unit-cost 256-bit floating-point multiplications. As justification for these as-
sumptions, observe that real computers ten years ago supported 32-bit pointers, unit-cost 64-bit
vector operations, and unit-cost 64-bit floating-point multiplications; that the RAM model re-
quires operations to scale logarithmically with the machine size; and that previous NFS cost
analyses implicitly make similar assumptions.

Takem = 238 d =7, H = 26242614 957 and y = 2664265 There are about 12H? /7% ~ 212551
pairs (a,b) with —H < a < H,0 < b < H, and gcd{a,b} = 1, and the integers a — bm have
smoothness chance approximately u=% ~ 271842 where u = (log Hm)/logy =~ 6.707, so there
are about 219799 pairs in the factory F. Each pair in F is small, easily encoded as just 16 bytes.

The quantities nga®+mng_1a% 1b+- - -+ngb? are bounded by (d+ 1)de ~ 28253 If they were
uniformly distributed up to this bound then they would have smoothness chance approximately
v & 27401 where v = (log((d + 1)mH?))/logy ~ 12.395, so there would be approximately
(12H? /7%)u=%™" ~ 26208 relations, safely above 2y/logy ~ 26206, The quantities nqa +
ng—16%1b+- - -+nob? are actually biased towards smaller values and thus have larger smoothness
chance, but this refinement is unnecessary here.

Batch trial division checks smoothness of 2°® of these quantities simultaneously; here 2°8 is
chosen so that the product of those quantities is larger (about 2675 bits) than the product of all
the primes < y (about 267! bits). The main steps in batch trial division are computing a product
tree of these quantities and then computing a scaled remainder tree. Bernstein’s cost analysis
in [11, Section 3| shows that the overall cost of these two steps, for T' inputs having a B-bit
product, is approximately (5/6)logy T times the cost of a single multiplication of two (B/2)-bit
integers. For us T = 2% and B ~ 2679 and the cost of batch trial division is approximately
2559 times the cost of multiplying two (B/2)-bit integers; the total cost of smoothness detection
for all (a,b) € F is approximately 25498 times the cost of multiplying two (B/2)-bit integers.

It is easiest to follow a standard floating-point multiplication strategy, dividing each (B/2)-
bit input into B/(2w) words for some word size w € (2(logy B) and then performing three
real floating-point FFTs of length B/w. Each FFT uses approximately (17/9)(B/w) logy(B/w)

Non-uniform cracks in the concrete: the power of free precomputation 13

arithmetic operations (additions, subtractions, and multiplications) on words of slightly more
than 2w bits, for a total of (17/3)(B/w) logy(B/w) arithmetic operations. A classic observation of
Schonhage is that the RAM metric allows constant-time multiplication of ©(log, B)-bit integers
in this context even if the machine model is not assumed to be equipped with a multiplier, since
one can afford to build large multiplication tables; but it is simpler to take advantage of the
hypothesized 256-bit multiplier, which comfortably allows w = 69 and B/w < 26! + 2% for a
total multiplication cost of 2703, Computing R then costs approximately 212471,

Linear algebra involves 26396 simple operations on vectors of length 26296, Each operation
produces each output bit by xoring together a small number of input bits, on average fewer
than 32 bits. A standard block-Wiedemann computation merges 256 xors of bits into a single
256-bit xor with negligible overhead, for a total linear-algebra cost of 212212, All other steps in
the algorithm have negligible cost, so the final factorization cost is 212493,

6.4. Previous work. There are two frequently quoted cost exponents for NF'S without precom-
putation. Buhler, Lenstra, and Pomerance in [18] obtained RAM cost L19229..+0(1) Coppersmith
in [21] introduced a “multiple number fields” tweak and obtained RAM cost L!-9018-+o(1),

Coppersmith also introduced NFS with precomputation in [21], using ECM for smoothness
detection. Coppersmith called his algorithm a “factorization factory”, emphasizing the distinc-
tion between precomputation time (building the factory) and computation time (running the
factory). Coppersmith computed the same RAM exponent 1.6385... shown above for the cost
of one factorization using the factory.

We save a subexponential factor in the RAM cost of Coppersmith’s algorithm by switching
from ECM to batch trial division. This is not visible in the asymptotic exponent 1.6385. .. but
is important for RSA-3072. Our concrete analysis of RSA-3072 security is new, and as far as we
know is the first concrete analysis of Coppersmith’s algorithm.

Bernstein in [9] obtained AT exponent 1.9760. .. for NFS without precomputation, and em-
phasized the gap between this exponent and the RAM exponent 1.9018.... Our AT analysis of
NFS with precomputation, and in particular our conclusion that this precomputation increases
the AT cost of NFS, appears to be new.

References

[1] — (no editor), Announcing request for candidate algorithm nominations for the Advanced Encryption Stan-
dard (AES) (1997). URL: http://www.gpo.gov/fdsys/pkg/FR-1997-09-12/pdf/97-24214.pdf. Citations
in this document: §1.

[2] Mihir Bellare, New proofs for NMAC and HMAC: security without collision-resistance, in Crypto 2006 [26]
(2006), 602-619. URL: http://cseweb.ucsd.edu/ "mihir/papers/hmac-new.html. Citations in this docu-
ment: §1, §1.1, §1.2, §3.6, §B.1, §Q.13.

[3] Mihir Bellare, Joe Kilian, Phillip Rogaway, The security of cipher block chaining, in Crypto 1994 [24] (1994),
341-358; see also newer version [4].

[4] Mihir Bellare, Joe Kilian, Phillip Rogaway, The security of the cipher block chaining message authentication
code, Journal of Computer and System Sciences 61 (2000), 362-399; see also older version [3]. ISSN 0022-
0000. URL: http://www-cse.ucsd.edu/ " mihir/papers/cbc.html. Citations in this document: §1, §1, §2,
§2, §2.1, §2.1, §2.2, §B.2, §B.5, §B.6.

[5] Mihir Bellare, Phillip Rogaway, Optimal asymmetric encryption — how to encrypt with RSA, in Eurocrypt
1994 [23] (1995), 92-111. URL: http://cseweb.ucsd.edu/ "mihir/papers/oaep.html. Citations in this doc-
ument: §1.

[6] Mihir Bellare, Phillip Rogaway, The exact security of digital signatures: how to sign with RSA and Rabin, in
Eurocrypt 1996 [38] (1996), 399-416. URL: http://www-cse.ucsd.edu/ mihir/papers/exactsigs.html.
Citations in this document: §1, §1.1, §B.1, §Q.13.

[7] Mihir Bellare, Phillip Rogaway, Introduction to modern cryptography, 2005. URL: http://cseweb.ucsd.
edu/"mihir/cse207/classnotes.html. Citations in this document: §1, §1.1, §3.6, §B.1, §Q.13.

[8] Daniel J. Bernstein, How to stretch random functions: the security of protected counter sums, Journal of
Cryptology 12 (1999), 185-192. URL: http://cr.yp.to/papers.html#stretch. Citations in this document:
§B.6.

[9] Daniel J. Bernstein, Circuits for integer factorization: a proposal (2001). URL: http://cr.yp.to/papers.
html#nfscircuit. Citations in this document: §6.4, §Q.5.

http://www.gpo.gov/fdsys/pkg/FR-1997-09-12/pdf/97-24214.pdf
http://cseweb.ucsd.edu/~mihir/papers/hmac-new.html
http://www-cse.ucsd.edu/~mihir/papers/cbc.html
http://cseweb.ucsd.edu/~mihir/papers/oaep.html
http://www-cse.ucsd.edu/~mihir/papers/exactsigs.html
http://cseweb.ucsd.edu/~mihir/cse207/classnotes.html
http://cseweb.ucsd.edu/~mihir/cse207/classnotes.html
http://cr.yp.to/papers.html#stretch
http://cr.yp.to/papers.html#nfscircuit
http://cr.yp.to/papers.html#nfscircuit

14
[10]
[11]
[12]
[13)
[14]
[15]

(16]

(17]

(18]

(19]

20]
(21]
22]

(23]

24]

(25]

(26]

27]

28]

29]

(30]

(31]

32]

(33]

(34]

Daniel J. Bernstein and Tanja Lange

Daniel J. Bernstein, How to find smooth parts of integers (2004). URL: http://cr.yp.to/papers.
html#smoothparts. Citations in this document: §6.1.

Daniel J. Bernstein, Scaled remainder trees (2004). URL: http://cr.yp.to/papers.html#scaledmod. Cita-
tions in this document: §6.3.

Daniel J. Bernstein, Proving tight security for Rabin—Williams signatures, in Eurocrypt 2008 [48] (2008),
70-87. URL: http://cr.yp.to/papers.html#rwtight. Citations in this document: §B.6.

Daniel J. Bernstein, Tanja Lange, Computing small discrete logarithms faster, in Indocrypt 2012 [27] (2012),
317-338. URL: http://cr.yp.to/papers.html#cuberoot. Citations in this document: §4.3.

Eli Biham, Yaron J. Goren, Yuval Ishai, Basing weak public-key cryptography on strong one-way functions,
in TCC 2008 [19] (2008), 55-72. Citations in this document: §3.6.

Peter van Emde Boas, Machine models and simulation, in [36] (1990), 1-66. Citations in this document:
§2.1.

Andrey Bogdanov, Dmitry Khovratovich, Christian Rechberger, Biclique cryptanalysis of the full AES, in
Asiacrypt 2011 [34] (2011), 344-371. URL: http://eprint.iacr.org/2011/449. Citations in this document:
§1.

Richard P. Brent, H. T. Kung, The area-time complexity of binary multiplication, Journal of the ACM
28 (1981), 521-534. URL: http://wwwmaths.anu.edu.au/ brent/pub/pub055.html. Citations in this doc-
ument: §2, §2.3, §2.3, §Q.5.

Joe P. Buhler, Hendrik W. Lenstra, Jr., Carl Pomerance, Factoring integers with the number field sieve, in
[37] (1993), 50-94. Citations in this document: §6.1, §6.1, §6.4.

Ran Canetti (editor), Theory of cryptography, fifth theory of cryptography conference, TCC 2008, New York,
USA, March 19-21, 2008, Lecture Notes in Computer Science, 4948, Springer, 2008. ISBN 978-3-540-78523-
1. See [14].

An Commeine, Igor Semaev, An algorithm to solve the discrete logarithm problem with the number field
steve, in PKC 2006 [52] (2006), 174-190. Citations in this document: §5.2.

Don Coppersmith, Modifications to the number field sieve, Journal of Cryptology 6 (1993), 169-180. Citations
in this document: §6.4, §6.4.

Anindya De, Luca Trevisan, Madhur Tulsiani, Non-uniform attacks against one-way functions and PRGs,
Electronic Colloquium on Computational Complexity 113 (2009). Citations in this document: §3.6, §3.6.
Alfredo De Santis (editor), Advances in cryptology — EUROCRYPT ’94, workshop on the theory and appli-
cation of cryptographic techniques, Perugia, Italy, May 9-12, 199/, proceedings, Lecture Notes in Computer
Science, 950, Springer, 1995. ISBN 3-540-60176-7. MR 98h:94001. See [5].

Yvo Desmedt (editor), Advances in cryptology — CRYPTO 94, 14th annual international cryptology confer-
ence, Santa Barbara, California, USA, August 21-25, 1994, proceedings, Lecture Notes in Computer Science,
839, Springer, 1994. ISBN 3-540-58333-5. See [3].

Yevgeniy Dodis, John Steinberger, Message authentication codes from unpredictable block ciphers, in Crypto
2009 [28] (2009), 267-285. URL: http://cs.nyu.edu/"dodis/ps/tight-mac.pdf. Citations in this docu-
ment: §3.6.

Cynthia Dwork (editor), Advances in cryptology — CRYPTO 2006, 26th annual international cryptology
conference, Santa Barbara, California, USA, August 20-24, 2006, proceedings, Lecture Notes in Computer
Science, 4117, Springer, 2006. ISBN 3-540-37432-9. See [2].

Steven Galbraith, Mridul Nandi (editors), Indocrypt 2012, Lecture Notes in Computer Science, 7668,
Springer, 2012. See [13].

Shai Halevi (editor), Advances in cryptology — CRYPTO 2009, 29th annual international cryptology confer-
ence, Santa Barbara, CA, USA, August 16-20, 2009, proceedings, Lecture Notes in Computer Science, 5677,
Springer, 2009. See [25].

Martin E. Hellman, A cryptanalytic time-memory tradeoff, IEEE Transactions on Information Theory 26
(1980), 401-406. Citations in this document: §3.6.

Yvonne Hitchcock, Paul Montague, Gary Carter, Ed Dawson, The efficiency of solving multiple discrete
logarithm problems and the implications for the security of fized elliptic curves, International Journal of
Information Security 3 (2004), 86-98. Citations in this document: §4.3.

Antoine Joux, Reynald Lercier, Improvements to the general number field sieve for discrete logarithms in
prime fields. A comparison with the Gaussian integer method, Mathematics of Computation 72 (2003),
953-967. Citations in this document: §5.2.

Neal Koblitz, Alfred Menezes, Another look at HMAC (2012). URL: http://eprint.iacr.org/2012/074.
Citations in this document: §1.2, §1.2, §1.2, §3.6, §B.5, §Q.14.

Fabian Kuhn, Rene Struik, Random walks revisited: extensions of Pollard’s rho algorithm for computing
multiple discrete logarithms, in SAC 2001 [51] (2001), 212-229. URL: http://www.distcomp.ethz.ch/
publications.html. Citations in this document: §4.3.

Dong Hoon Lee, Xiaoyun Wang (editors), Advances in cryptology — ASIACRYPT 2011, 17th international
conference on the theory and application of cryptology and information security, Seoul, South Korea, De-
cember 48, 2011, proceedings, Lecture Notes in Computer Science, 7073, Springer, 2011. ISBN 978-3-642-
25384-3. See [16].

http://cr.yp.to/papers.html#smoothparts
http://cr.yp.to/papers.html#smoothparts
http://cr.yp.to/papers.html#scaledmod
http://cr.yp.to/papers.html#rwtight
http://cr.yp.to/papers.html#cuberoot
http://eprint.iacr.org/2011/449
http://wwwmaths.anu.edu.au/~brent/pub/pub055.html
http://cs.nyu.edu/~dodis/ps/tight-mac.pdf
http://eprint.iacr.org/2012/074
http://www.distcomp.ethz.ch/publications.html
http://www.distcomp.ethz.ch/publications.html

(35]

(36]
37]

(38]

39]
(40]

(41]

(42]

(43]

(44]

(45]
(46]
(47]

(48]

(49]

[50]

[51]

[52]

A

Non-uniform cracks in the concrete: the power of free precomputation 15

Hyung Tae Lee, Jung Hee Cheon, Jin Hong, Accelerating ID-based encryption based on trapdoor DL using
pre-computation, 11 Jan 2012 (2012). URL: http://eprint.iacr.org/2011/187. Citations in this document:
§4.3.

Jan van Leeuwen (editor), Handbook of theoretical computer science, volume A: algorithms and complexity,
MIT Press, 1990. ISBN 0-262-22038-5. See [15].

Arjen K. Lenstra, Hendrik W. Lenstra, Jr. (editors), The development of the number field sieve, Lecture
Notes in Mathematics, 1554, Springer-Verlag, 1993. ISBN 3-540-57013-6. MR 96m:11116. See [18].

Ueli M. Maurer (editor), Advances in cryptology — EUROCRYPT ’96: proceedings of the fifteenth interna-
tional conference on the theory and application of cryptographic techniques held in Saragossa, May 12-16,
1996, Lecture Notes in Computer Science, 1070, Springer, 1996. ISBN 3-540-61186-X. MR 97g:94002. See
[6].

Alfred Menezes, Edlyn Teske, Annegret Weng, Weak fields for ECC, in CT-RSA 2004 [42] (2004), 366—386.
URL: http://eprint.iacr.org/2003/128. Citations in this document: §B.1, §B.1.

National Instititue for Standards and Technology, Digital signature standard, Federal Information Processing
Standards Publication 186-2 (2000). URL: http://csrc.nist.gov. Citations in this document: §4.

Phong Q. Nguyen (editor), Progress in cryptology — VIETCRYPT 2006, first international conference on
cryptology in Vietnam, Hanoi, Vietnam, September 25-28, 2006, revised selected papers, Lecture Notes in
Computer Science, 4341, Springer, 2006. ISBN 3-540-68799-8. See [46].

Tatsuaki Okamoto, Topics in cryptology — CT-RSA 2004, the cryptographers’ track at the RSA Conference
2004, San Francisco, CA, USA, February 23-27, 2004, proceedings, Lecture Notes in Computer Science,
2964, Springer, 2004. ISBN 3-540-20996-4. See [39].

Paul C. van Oorschot, Michael Wiener, Parallel collision search with cryptanalytic applications, Journal
of Cryptology 12 (1999), 1-28. ISSN 0933-2790. URL: http://members.rogers.com/paulv/papers/pubs.
html. Citations in this document: §4.1.

John M. Pollard, Monte Carlo methods for index computation mod p, Mathematics of Computation 32
(1978), 918-924. ISSN 0025-5718. MR 58:10684. URL: http://www.ams.org/journals/mcom/1978-32-143/
50025-5718-1978-0491431-9/50025-5718-1978-0491431-9.pdf. Citations in this document: §4.1.

Franco P. Preparata, Optimal three-dimensional VLSI layouts, Mathematical Systems Theory 16 (1983),
1-8. Citations in this document: §2, §Q.5.

Phillip Rogaway, Formalizing human ignorance, in VIETCRYPT 2006 [41] (2006), 211-228. URL: http://
www.cs.ucdavis.edu/ rogaway/papers/. Citations in this document: §B.6.

Peter W. Shor, Introduction to quantum algorithms (2001). URL: http://arxiv.org/abs/quant-ph/
0005003. Citations in this document: §Q.11.

Nigel P. Smart (editor), Advances in cryptology — EUROCRYPT 2008, 27th annual international conference
on the theory and applications of cryptographic techniques, Istanbul, Turkey, April 18—17, 2008, proceedings,
Lecture Notes in Computer Science, 4965, Springer, 2008. ISBN 978-3-540-78966-6. See [12].

Douglas R. Stinson, Some observations on the theory of cryptographic hash functions (2001). URL: http://
eprint.iacr.org/2001/020. Citations in this document: §B.6.

Edlyn Teske, On random walks for Pollard’s rho method, Mathematics of Computation 70
(2001), 809-825. URL: http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01213-8/
50025-5718-00-01213-8.pdf. Citations in this document: §4.1.

Serge Vaudenay, Amr M. Youssef (editors), Selected areas in cryptography: 8th annual international work-
shop, SAC 2001, Toronto, Ontario, Canada, August 16-17, 2001, revised papers, Lecture Notes in Computer
Science, 2259, Springer, 2001. ISBN 3-540-43066—-0. MR 2004k:94066. See [33].

Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin (editors), 9th international conference on theory
and practice in public-key cryptography, New York, NY, USA, April 24-26, 2006, proceedings, Lecture Notes
in Computer Science, 3958, Springer, 2006. ISBN 978-3-540-33851-2. See [20].

Appendix: Graphs

http://eprint.iacr.org/2011/187
http://eprint.iacr.org/2003/128
http://csrc.nist.gov
http://members.rogers.com/paulv/papers/pubs.html
http://members.rogers.com/paulv/papers/pubs.html
http://www.ams.org/journals/mcom/1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf
http://www.ams.org/journals/mcom/1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/
http://www.cs.ucdavis.edu/~rogaway/papers/
http://arxiv.org/abs/quant-ph/0005003
http://arxiv.org/abs/quant-ph/0005003
http://eprint.iacr.org/2001/020
http://eprint.iacr.org/2001/020
http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf
http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf

16 Daniel J. Bernstein and Tanja Lange

2K

Cost

1

1/2% Success probability 1

Fig. A.1. Cost summary of PRP attacks against one K-bit key. Horizontal axis: Attack success probability p,
from 1/2% to 1, on a logarithmic scale. Vertical axis: Attack cost, from 1 to 2, again on a logarithmic scale.
Top curve (green): Cost 2% p, approximating cost of simple exhaustive search. Bottom curve (red): Cost 2%p? for
p < 27573 and 225/3p for larger p, approximating RAM/NAND cost of best attack known. Middle curve (blue,
merging with green): Cost 2357203 for p < 275/* and 2%p for larger p, approximating AT cost of best attack
known.

\/Z —~
~
~
~
-
// //
_
Cost P
- ///
////
-
1 L=

1/¢ Success probability 1

Fig. A.2. Cost summary of discrete-logarithm attacks for a group of size ¢. Horizontal axis: Attack success
probability p, from 1/¢ to 1, on a logarithmic scale. Vertical axis: Attack cost, from 1 to V¢, again on a logarithmic
scale. Bottom curve (red): Cost (pf)'/3, approximating RAM/NAND cost of best attack known. Top curve (blue):
Cost (p@)l/ 2 approximating AT cost of best attack known.

B Appendix: Trying to salvage the insecurity metric

This appendix analyzes the merits of five possible responses to the gap between standard-
definition insecurity and actual insecurity. None of the responses are completely satisfactory,
but some of them are arguably better than others.

B.1. Response 1: circle the wagons. One possible response is to defend the metric, arguing
that the attacks described in Sections 3, 4, 5, and 6 actually should be viewed as assigning
security levels far below 2'2% to AES, NIST P-256, DSA-3072, and RSA-3072. In other words,
this response is that standard-definition insecurity is actual insecurity, and that taking the cost
of precomputation into account would be understating actual insecurity.

This response has the virtue of minimizing the number of changes required to the literature.
The other responses considered below require revisiting every proof to see whether the theorem
can still be proven in a new metric; this response preserves the metric. Of course, the conjectures
made in [6, Section 1.4], [7, Section 3.6], [2, Section 3.2], etc. would still have to be withdrawn.

There are, however, several obvious problems with this response. First, real-world attackers
have no choice but to pay for precomputation time, contrary to the standard definition. Why
should cryptographers be more concerned about a time-260 attack that takes time 23 to find
than about a time-270 attack requiring no effort to find? Users aiming for the best possible
security, subject to performance constraints, should prefer a system where the best attack is of
the first type over a system where the best attack is of the second type; underestimating attack
cost by ignoring precomputation cost will lead those users to select the wrong system, hurting
their own security.

Non-uniform cracks in the concrete: the power of free precomputation 17

As a concrete example, consider the result of Menezes, Teske, and Weng in [39] that many
composite fields are “weak fields for ECC”. For example, every curve over Fy210 has “a security
level of at most 91 bits” rather than the expected “104 bits”. Every ECC researcher will agree
that it is much safer to use the field Fy21:. However, the standard definition of insecurity paints
a quite different picture. The standard definition says that Fy210 has security level only 279; it
ignores the fact that finding this 270 attack costs 2'4%; it says that the explicit 2°! attack of [39]
is useless, since 271 > 270: and it says that Fa211 offers only a tiny security benefit.

Furthermore, almost every cryptanalytic paper includes the cost of precomputation, contrary
to the standard definition. The standard security conjectures would be perfectly reasonable if
the cost of precomputation were included but are false according to the standard definition. In
short, there is a perfect alignment between what the conjectures say, what the cryptanalysts are
looking at, and what real-world attacks can actually do; what is out of whack with this picture
is the standard definition.

The core argument for confidence in security conjectures about (e.g.) RSA-3072 is that RSA-
3072 has survived extensive cryptanalysis. The standard definition makes this argument un-
tenable. There has not been extensive study of attacks against RSA-3072 that exploit free
precomputation. Our new RSA-3072 attack in Section 6.3 is considerably faster than Copper-
smith’s original attack, and we would not be surprised to see substantial further speedups; any
conjecture in this model would be built upon quicksand.

B.1.1. The amortization-eliminates-precomputation fallacy. One might argue that pre-
computation should be ignored because it can be amortized across many targets. However, this
argument confuses two different concepts. Non-uniform attacks and multiple-target attacks (and
non-uniform multiple-target attacks) are often quantitatively and qualitatively different: non-
uniform attacks often benefit from vastly larger precomputation (as illustrated by the doubly
exponential cost exp(22"t1) to find the attack Dy in Section 3.2), while multiple-target attacks
often benefit from batching (as illustrated by Section 3.4).

As a concrete example, consider a time-2'7" precomputation of a time-2%° attack (such as the
ECC attack in Section 4), which is then applied to 24" targets. The total attack cost is 2!2° (i.e.,
285 per target), but this is completely unnoticeable compared to the precomputation cost of 217
(i.e., 2130 per target). Highlighting the 2!2° rather than the 2”0 makes no sense. The picture
does not change for 250 or even 289 targets. Note that it is easy to imagine real-world attack
power growing to 28° curve operations (for comparison, standard technology would carry out
287 bit operations per year using the 65-megawatt power supply of NSA’s reported new Utah
data center), while it is far more difficult to imagine how the number of real-world targets could
grow to 289,

B.1.2. The more-conservative-is-better fallacy. One might also argue that ignoring pre-
computation is “more conservative” than taking precomputation into account, and in general
that underestimating the cost of an attack is perfectly safe, since it simply leads users to choose
larger parameters.

In fact, “conservative” underestimates can cause users to lose security. There are three im-
portant effects ignored in the “more conservative is better” argument: first, users are subject to
cost constraints, and cannot simply choose larger parameters; second, users can choose different
systems, and in fact take advantage of this flexibility with the goal of maximizing security sub-
ject to the cost constraints; third, underestimates in general vary from one system to another,
and in particular the gaps considered in this paper vary from one system to another.

The following example illustrates all of these effects. Consider a DSA user who can just barely
afford p =~ 23972 and ¢ ~ 22°6. Both p and ¢ are important for speed: DSA cost is approximately
linear in log ¢ and worse than linear in logp. These parameters are commonly recommended as
providing about 2!?® security, but this recommendation takes precomputation into account, in
violation of the standard definition. The standard definition says that the ¢ attack described in
Section 4 reduces security to about 28°. A user deceived by this underestimate will increase ¢ to

18 Daniel J. Bernstein and Tanja Lange

gain security against this attack, but is then forced by cost limitations to reduce p, and at some
point the p attack described in Section 5 becomes more worrisome. A detailed analysis suggests
that p ~ 2279 and ¢ ~ 2330 is optimal, balancing the standard-definition cost of these attacks
at about 219, However, taking precomputation into account shows that the user has now lost
several bits of security.

Improvements in either Section 4 or Section 5 would change all the details of this example.
For example, moderate improvements in Section 5 might bring 23972 and 2256 back into balance,
eliminating the security loss, but further improvements in Section 5 would then mislead the user
into decreasing q below 22°6, again losing security.

B.2. Response 2: switch to the NAND metric. Another possible response is to change the
algorithm cost model from the RAM metric to the NAND metric.

This response would cause trouble for the literature on provable concrete security. (All of the
responses below would also cause various levels of trouble.) Proofs would have to be reviewed
for RAM-dependent cost analyses, and many theorems would have to change, because many
reductions would become much more expensive. For example, eliminating repeated queries to
an oracle is a very common step in security proofs; it is practically free in the RAM metric (add
each query into a fast associative array) but much slower in the NAND metric. In other words,
even though the NAND metric was mentioned as an “alternative” in [4], the literature did not
develop in a way consistent with this alternative.

The motivation for this response, as mentioned in Section 2, is the hope that this response
would fix the “pathologies” in the RAM metric: i.e., that the gap between actual security and
the standard definition of insecurity is an artifact of the low-cost random access provided by the
RAM metric. However, the analyses in Sections 3, 4, 5, and 6 do not provide any support for
this idea. All necessary random accesses appear in large batches, allowing reasonably efficient
NAND computations.

B.3. Response 3: switch to the AT metric. Another possible response, analogous to the
previous response but different in one critical detail, is to change algorithm cost model from the
RAM metric to the AT metric.

Our cost analyses provide reason to hope that this response does fix essentially all of the
pathologies in the RAM metric. There is an exception in one corner case — precomputation
appears to help PRP attacks for probabilities below 27 5/4U~1/2 where K is the key length
and U is the number of targets — but one can argue that such low-probability attacks are of no
concern for cryptographic users.

This response causes trouble for the literature on provable concrete security, similar to the
previous response but even more pervasive: even more theorems would have to change. Like the
NAND metric, the AT metric makes serial random access much more expensive than the RAM
metric; unlike the NAND metric, the AT metric makes a large batch of table accesses much
more expensive than the RAM metric.

B.4. Response 4: add effectivity. In provable security (and in complexity theory more
broadly) it is standard to formalize “one can find a cost-C' algorithm A that breaks X" as
“there exists a cost-C' algorithm A that breaks X”. This formalization ignores the question of
how difficult it is to find A. Another possible response is to switch to another formalization that
explicitly quantifies this difficulty.

The obvious way to quantify the findability of A is as the minimum cost required by all
algorithms B that print A. The obvious objection is that there is always a cost-approximately-
C algorithm to print A: namely, an algorithm that simply includes, and prints, a copy of A.
However, one can easily exclude this trivial algorithm by allowing only small algorithms B.

Consider, for example, a large chip containing billions of standard AES key-search units. This
chip breaks AES with AT cost roughly 2'2%. The chip has a regular structure and area far below
2128 50 it is printed at moderate cost by an even smaller chip B. Similar comments apply to

Non-uniform cracks in the concrete: the power of free precomputation 19

the standard chips to attack NIST P-256, DSA-3072, and RSA-3072 at cost roughly 2!28: all of
them are printed at moderate cost by small chips B.

Consider, as another example, the hard-to-find attack A of Section 3.3, which finds an AES
key with high probability using 2%® tables, each of size 243, for a total RAM cost on the scale of
286 The description of A in Section 3.3 is a small algorithm B that prints A, but B has RAM
cost on the scale of 2!?8. One can trade some space for time by embedding part of A into B,
but as far as we know every algorithm B significantly smaller than A has negligible chance of
printing A with RAM cost significantly below 228,

Consider, as a third example, the hard-to-find chip A of Section 3.2, with AT cost about 237
area about 22" and time about 2". As far as we know, every significantly smaller chip B has
negligible chance of printing A in any tolerable amount of time. This example suggests that it
is possible to eliminate some corner pathologies that were not eliminated by merely switching
to the AT metric.

Note that it is important to limit the cost of B in some reasonable cost metric, not merely
the size of B. All of the precomputations considered in this paper can be carried out by rather
small RAM algorithms; in other words, the outputs have low Kolmogorov complexity. For the
same reason, the NAND metric is useless for measuring the cost of B.

In general, it seems reasonable to redefine the insecurity of X as the maximum, over all size-
limited cost-limited algorithms B that print cost-limited algorithms A, of the probability that A
succeeds in breaking X. (We emphasize that probability here considers not just the randomness
in X and in A, but also the randomness in B; otherwise the best choice of B is a tiny algorithm
that prints out random bits.) This definition is explicitly parametrized by three numerical limits,
and implicitly parametrized by the metrics used to specify those limits.

This response stops all of the precomputations considered in this paper, although it still allows
the attack considered in Section 3.1. Presumably this response will not exclude any attacks that
humans have a reasonable chance to find: except for minor implementation details, humans
are simply chips, and rather small chips by cryptanalytic standards. Of course, one can imagine
humans building larger chips that in turn find algorithms that the humans would not have found
directly, and to model this one can consider longer chains such as algorithms that print larger
algorithms that in turn print larger algorithms; but it seems reasonable to insist that the chain
start with a small algorithm (small enough for humans to find) and to put a time limit on each
algorithm.

This response, like the previous two responses, causes trouble for the literature on provable
concrete security. Each theorem must be restated to track not only the cost of A but also the
size and cost of B.

B.5. Response 5: add uniformity. The final response we consider is to eliminate non-uniform
security definitions: to prevent precomputation by requiring a single attack algorithm to work
against many different cryptographic systems.

The classic form of uniformity considered in the computational-complexity literature is size-
uniformity. One considers, for example, an attack against the entire RSA family (a single al-
gorithm that takes as input an RSA key of any length), not just RSA-3072. One defines the
insecurity of RSA as the maximum success probability e of any attack taking time at most ¢;
here both € and ¢ are functions of the length of the RSA modulus.

Observe that this approach abandons the goal of defining, e.g., the insecurity of RSA-3072.
Substituting 3072 into € and ¢ does not work: it allows exactly the same precomputations as in
Section 6.

An alternative, already used in common definitions of collision resistance, is to consider uni-
formity across wider families of functions. There is no longer a definition of the security of AES;
instead there is a definition of the security of a family of 2'2® variants of AES. This security
depends on the choice of family. One might try to define a family of functions “similar” to
AES, hoping that the uniform security of this family reflects the actual security of AES; but

20 Daniel J. Bernstein and Tanja Lange

cryptanalysts have little motivation to study the family, so building confidence is difficult. For
RSA-3072 the situation is even worse: any reasonable family of 3072-bit functions arguably shar-
ing the security of RSA-3072 seems to be vulnerable to the same precomputations as RSA-3072.
For elliptic-curve cryptography the situation is somewhat better, since one can reasonably ask
questions about the security of (e.g.) a random curve meeting the IEEE P1363 criteria over a
randomly chosen 256-bit prime field; however, this is of no help in understanding the security
of the NIST P-256 curve.

It is clear that insisting on enough uniformity, taking enough steps away from specific crypto-
graphic primitives towards sufficiently diverse families of cryptographic primitives, would elim-
inate the gap analyzed in this paper. The gap relies on non-uniformity, and we have chosen to
highlight non-uniformity in the title of this paper.

The fundamental problem with this response is that it disconnects provable security from
cryptographic reality. For almost twenty years the literature on provable concrete security has
promised to formally define and study the security of specific cryptographic systems of interest
to cryptographic users and cryptanalysts, such as AES and AES-CBC-MAC and RSA-3072.
Adding uniformity would abandon this promise. Without these definitions it is unclear how to
make meaningful statements comparing the security of two different ciphers, or two different
curves, or any two cryptographic protocols that are specific enough to actually be used in
practice.

A second problem with this response is that it forces syntactic changes to most theorems.
For example, instead of proving a theorem comparing the security of a block cipher F' to the
security of CBC™-F as in [4], one would have to prove a theorem comparing the security of a
family of block ciphers to the security of the corresponding CBC family. This change requires
abandoning some of the proofs in the literature, as pointed out by Koblitz and Menezes in [32],
and might even require abandoning some theorems.

B.6. Recommendations. We believe that accurately modeling reality is more important than
minimizing the number of changes required to the literature. We recommend switching to the
AT metric (response 3), capturing real limitations on communication cost that are ignored by
the RAM metric and the NAND metric. We also recommend adding effectivity (response 4),
capturing the fact that attackers are limited in precomputation cost. We recommend against
adding uniformity (response 5); users are in fact using AES and NIST P-256 and RSA-3072, not
large families of variants of AES and NIST P-256 and RSA-3072.

We recommend stating provable-security theorems in a way that minimizes the hassle of
switching to a new cost metric. For example, consider again the main theorem of [4], comparing
the security of a block cipher F' to the security of CBC™-F'. To prove this theorem one compares
R(A) to A in cost and in success probability, where A is any attack against CBC-F and R is a
particular reduction producing an attack R(A) against F'. The comparison of success probability
is independent of the cost metric, and we recommend stating it as a separate theorem that can
be reused for different cost metrics. The following theorem from [12] illustrates how simple such
statements can be:

“Theorem 3.1. PrFactor(RandSquare(A)) > (1/2) PrInvBlind(A).”

The reduction RandSquare is defined before the theorem, and PrFactor and PrInvBlind are two
types of success probabilities. This theorem is independent of cost metric, and is easy to reuse
in various higher-level theorems that compare the insecurity of the objects attacked by A and
RandSquare(A) in various cost metrics: the proof of a higher-level theorem analyzes the relative
costs of A and RandSquare(A) and appeals to this theorem for the relative success probabilities.

This type of modularization of provable-security theorems can be traced back to at least
1999 (see [8, Theorem 4.1]), if not earlier, but at that point was not claimed to have any
particular advantages. In 2001, Stinson proposed studying explicit hash-function reductions as
a workaround for the separation between non-uniform collision resistance (which is negligible)

Non-uniform cracks in the concrete: the power of free precomputation 21

and uniform collision resistance (which often appears to be very high); but Stinson’s collision-
resistance theorems (e.g., [49, Theorem 3.1]) do not actually make these reductions explicit
and are trivialities as stated. Rogaway in [46] analyzed the same proposal much more carefully,
and gave examples of nontrivial theorems about black-box and non-black-box reductions; but
these theorems were still monolithic, handling probability together with a particular cost metric
and encapsulating the reductions inside the proofs, so changing the cost metric is unnecessarily
difficult.

Our analyses suggest that effectivity and the AT metric provide two levels of defense against
the unrealistic attacks considered in this paper. However, we would not be surprised if further
cost-model changes turn out to be desirable for other reasons, and we think that a modular
style for provable-security theorems will reduce the effort required to make such changes in the
future.

Q Appendix: Frequently asked questions

This appendix answers several questions that we have been asked regarding this paper.

Q.1. In the real world, an attack is applied to many targets. Doesn’t this make the
precomputation effectively free? No, not in general. The fallacy here is addressed in Section
B.1.1.

Q.2. Aren’t we simply making the user safer if we underestimate attack cost by
ignoring precomputation? No. The fallacy here is addressed in Section B.1.2.

Q.3. Why are you analyzing the cost of precomputation in these attacks? Didn’t you
just say that this cost is irrelevant to the security definitions? The security definitions
are flawed. Seeing the cost of precomputation (e.g., 2'?® for the AES attack and 2'7° for the
NIST P-256 attack) is critical for understanding the real-world inapplicability of the attacks.
We recommend fixing the security definitions to take this cost into account; see Sections B.4
and B.6.

Q.4. If one special precomputation is enough to completely break AES, isn’t that
serious enough that the metric should capture it? Of course. Success probability is
important, and the number of targets is important. But the difficulty of carrying out the pre-
computation is also important, and is ignored in the standard security definitions. We propose
taking all of these features into account. See Section B.6.

Q.5. Isn’t your AT metric simply a reinvention of Wiener’s full-cost metric? It’s not
our AT metric. The AT metric has decades of history in algorithm analysis, and more than
a decade of history in cryptanalytic algorithm analysis; see, e.g., [17] and [9]. Wiener’s 2004
full-cost metric appears to be equivalent to the VI" metric analyzed in, e.g., Preparata’s 1983
paper [45].

Q.6. The world is three-dimensional! Isn’t VT a more realistic metric than AT? The
world is three-dimensional, but power consumption and heat dissipation are two-dimensional. A
modern billion-transistor CPU is much more like a 32000 x 32000 square than a 1024 x 1024 x 1024
cube; “three-dimensional” manufacturing technology is limited to a small number of layers.
Similarly, a “three-dimensional” computer cluster actually provides orders of magnitude faster
communication within two-dimensional chips than it does between chips. At a larger scale, each
square meter of the earth’s atmosphere receives at most 1361 watts from the sun, so one cannot
hope to sustain an A-square-meter computer that consumes more than 1361 A watts, no matter
what the computer technology is. Shifting energy through time, as illustrated by oil drilling, can
temporarily violate this maximum but evidently is not sustainable; similar comments apply to
shifting energy around the earth’s surface.

22 Daniel J. Bernstein and Tanja Lange

Q.7. What. .. is the air-speed velocity of an unladen swallow? What do you mean? An
African or European swallow?

Q.8. Have you considered constructivity? Yes. Constructivity is another name for effec-
tivity, which is analyzed in Section B.4. We recommend a specific strategy for incorporating
effectivity into security definitions.

Q.9. When you say that the algorithms are non-uniform, aren’t you really trying
to say that the algorithms are non-constructive? Almost all of the algorithms we discuss
are non-uniform: they require different precomputations for different targets. Almost all of the
algorithms we discuss are also non-constructive. These are not the same concept.

Q.10. Isn’t “non-uniformity” a purely asymptotic concept? No. Consider, for example,
a theorem proving that for each 512-bit string s there is a fast algorithm A that, given a 512-bit
string ¢ as input, prints collisions in the 512-bit-to-128-bit function = — MD5(s, ¢,). Consider
a stronger theorem proving that there is a fast algorithm A that, given 512-bit strings s and
t as input, prints collisions in the 512-bit-to-128-bit function = — MD5(s, ¢, x). The difference
between these theorems is precisely in the amount of uniformity imposed on A. There are no
asymptotics here.

Q.11. I see books defining “non-uniform” algorithms specifically as families of cir-
cuits, one circuit for each input size. Isn’t this definition completely standard? This
is one type of non-uniformity but not the only type; one can partition inputs by size but one
can also partition inputs in many other ways. Consider, for example, Shor’s discussion in [47,
Section 2] of the “additional uniformity condition” required to define the complexity class BQP.

Q.12. Isn’t the hashing attack in Section 3 outperformed by the linear-cryptanalysis
approach of De, Trevisan, and Tulsiani? No. The speeds are identical at the level of detail
of our analysis. The linear-cryptanalysis approach is cited in Section 3 for the advantage of
provability, but the hashing approach is amply tested and has the advantage of simplicity.

Q.13. Isn’t it already well known that there’s a gap between attack algorithms
that exist and attack algorithms that can be constructed? For one important problem,
the problem of finding hash-function collisions, it is indeed very well known that “the best
algorithm that exists” is not a reasonable model of “the best algorithm that can be found”. For
example, there is a fast algorithm that outputs collisions in SHA-512, but actually finding such
an algorithm seems hopeless.

However, hash-function collisions seem to be viewed as an exceptional case. The same model is
widely viewed as reasonable for AES security, RSA security, etc., as illustrated by the conjectures
from [6, Section 1.4], [7, Section 3.6], [2, Section 3.2], etc.

Q.14. Are you seriously suggesting redoing all the security definitions and proofs
in the literature to use effectivity and the AT metric? Yes. A few theorems are already
factored in the way we recommend in Section B.6, but the vast majority of definitions and
theorems require new work. Tightness will often change dramatically (see, e.g., the repeated-
queries discussion in Section B.2), and it is important to actually do the work for each theorem
so that users know what security guarantees they are actually being provided. Some proofs, such
as the “coin-fixing” proofs criticized in [32], will not survive the transition.

Q.15. Isn’t it inappropriate to switch definitions and start writing papers using the
new definitions? There are ample precedents for this. For example, Newtonian physics was
replaced when it was discovered to be a poor model of reality. We briefly discuss a much closer
example from mathematics.

In the 19th century, Kronecker questioned the significance of proofs of existence that are not
effective, i.e., proofs that do not explain how to find the object that allegedly exists.

The classic example is the Bolzano—Weierstrass theorem, which states that an infinite sequence
of real numbers zg, 1, ... € [0, 1] (more generally, a sequence of elements of a compact topological

Non-uniform cracks in the concrete: the power of free precomputation 23

space) has an infinite subsequence that converges. The critical observation in the usual proof is
that there must be infinitely many ¢ with z; € [0,0.5], or infinitely many i with z; € [0.5, 1].
Define I; as [0,0.5] if there are infinitely many ¢ with x; € [0, 0.5], otherwise as [0.5, 1]; define I
similarly as the left or right half of I1; etc.; and, finally, take the infinite subsequence indexed
by the first ¢ with x; € I1, the first subsequent ¢ with z; € I, etc. Kronecker objected that this
proof gives no way to find the desired subsequence: even if each x; is completely explicit, there
is no procedure to decide whether there are infinitely many i with x; € [0,0.5].

Early 20th-century formalizations of mathematics did not provide any way to express Kro-
necker’s objection. The only formalization of “one can find z such that p(z)” was “it is not
true that, for all z, not p(x)”; for many years it was not obvious that any other formalization
was possible. However, the introduction of “constructive mathematics” showed that one can
formalize mathematics in a way that gives different meanings to these two notions, disallowing
the Bolzano—Weierstrass proof while preserving more explicit mathematical proofs. This is part
of the background for our quantitative approach to effectivity.

Q.16. ? 42.

