
Performance evaluation
of a new coordinate system

for elliptic curves

Daniel J. Bernstein1 and Tanja Lange2

1 Department of Mathematics, Statistics, and Computer Science (M/C 249)
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org

Abstract. Edwards recently introduced a new coordinate system for
non-binary elliptic curves. This paper evaluates the cost of the new co-
ordinate system for cryptographic applications. In particular, this paper
shows how to compute a doubling using only 3 field multiplications and
4 field squarings; a mixed addition using only 9 field multiplications and
1 field squaring, when curve parameters are chosen to be small; and a
non-mixed addition using only 10 field multiplications and 1 field squar-
ing, when curve parameters are chosen to be small. Furthermore, the
non-mixed addition formulas can be used for doublings at no extra cost,
simplifying side-channel protection. Even better, for some curves, the
non-mixed addition formulas work for all pairs of inputs.

Keywords: elliptic curves, efficient implementation, multi-scalar multi-
plication, side-channel countermeasures, unified addition formulas

1 Introduction

The core operations in elliptic-curve cryptography are single-scalar multiplica-
tion (m,P 7→ mP ), double-scalar multiplication (m,n, P,Q 7→ mP + nQ), etc.

In the Crypto ’85 paper that introduced elliptic-curve cryptography, Miller
proposed carrying out these operations in Jacobian coordinates: “Each point is
represented by the triple (x, y, z) which corresponds to the point (x/z2, y/z3)”
on a curve y2 = x3 + a4x + a6. See [21, page 424]. One can add two points
in Jacobian coordinates using 16 field multiplications, specifically 11M + 5S;
here we keep separate tallies of squarings S and general multiplications M. A
precomputation suggested by Chudnovsky and Chudnovsky reduces 11M + 5S

* Date of this document: 2007.05.22.
* Permanent ID of this document: 95616567a6ba20f575c5f25e7cebaf83.
* This work has been supported in part by the European Commission through the

IST Programme under Contract IST–2002–507932 ECRYPT.



2 Daniel J. Bernstein and Tanja Lange

to 10M + 4S. A mixed addition— this means that one input has z = 1— takes
only 8M + 3S. A doubling takes only 3M + 5S if a4 = −3.

Several subsequent papers have analyzed the performance of other coordinate
systems proposed in the mathematical literature. See, e.g., [20] for the speed of
Jacobi intersections, [15] for the speed of Hessians, and [6] for the speed of
Jacobi quartics; see also [22], which introduced Montgomery coordinates and
analyzed their speed. These coordinate systems have attracted some interest —
in particular, many of these coordinate systems simplify protection against side-
channel attacks, and the speed records in [5] for single-scalar multiplication were
set with Montgomery coordinates — but Jacobian coordinates are still the overall
speed leaders for multi-scalar multiplication.

A few months ago a new coordinate system was added to the mathematical
literature: Edwards showed in [14] that all elliptic curves over a number field
could be transformed to the shape x2 + y2 = c2(1 + x2y2), with (0, c) as neutral
element and with the surprisingly simple and symmetric addition law

(x1, y1), (x2, y2) 7→
(

x1y2 + y1x2

c(1 + x1x2y1y2)
,

y1y2 − x1x2

c(1− x1x2y1y2)

)
.

To keep this paper self-contained, we include a section explaining how to trans-
form an elliptic curve over a finite field from short Weierstrass form Y 2 = X3 +
aX + b to Edwards coordinates. Some elliptic curves — for example, the NIST
curves — require a field extension for the transformation; but many other ellip-
tic curves — for example, the curve “Curve25519” previously used to set speed
records for single-scalar multiplication— have transformations defined over the
original field. See Section 3.

Our main goal in this paper is to analyze the impact of Edwards coordi-
nates on cryptographic applications. Our main conclusions are that Edwards
coordinates (1) break solidly through the Jacobian-coordinate speed barrier, (2)
are competitive with Montgomery coordinates for single-scalar multiplication,
and (3) are the new speed leaders for multi-scalar multiplication. Specifically, by
tweaking the Edwards coordinate system and streamlining the addition formulas,
we show that

• one can perform an inversion-free doubling using 3M + 4S;
• one can perform an inversion-free addition using 10M+ 1S+ 1d— here d is

the cost of multiplying by a selectable curve parameter; and
• one can perform a mixed addition (inversion-free with one input affine) using

9M + 1S + 1d.

See Section 2 for details of these computations, and Section 4 for a thorough
comparison of the resulting costs for single-scalar multiplication, double-scalar
multiplication, etc.

Half of the curves that we consider have the extra feature that our inversion-
free addition formulas are complete. This means that the formulas work for all
pairs of input points on the curve, with no exceptions for doubling, no exceptions
for the neutral element, no exceptions for negatives, etc. Some previous addi-
tion formulas have been advertised as unified formulas that can handle generic



Performance evaluation of a new coordinate system for elliptic curves 3

doublings, simplifying protection against side-channel attacks; our addition for-
mulas have the stronger property of completeness, and are less expensive than
previous unified formulas. See Section 4 for further discussion.

2 Computations in the new coordinate system

Let k be a field of characteristic different from 2. Fix c, d, e ∈ k such that c 6= 0,
d 6= 0, e 6= 0, and e = 1− dc4. The curve x2 + y2 = c2(1 + dx2y2) over k is then
birationally equivalent to the elliptic curve V 2 = (U + e)(U2 + 4U + 4e) by the
map (x, y) 7→ (U, V ) = (−2ey/(y − c),−2ec(c2dy2 − 1)x/(y − c)2); furthermore,
the addition law

(x1, y1), (x2, y2) 7→
(

x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − x1x2

c(1− dx1x2y1y2)

)
.

on the curve x2 + y2 = c2(1 + dx2y2) corresponds to the standard addition law
on the elliptic curve. See Section 3.

We refer to the curve x2 + y2 = c2(1 + dx2y2) as an Edwards curve, and
the coordinates (x, y) as affine Edwards coordinates. This is only a slight
generalization from the case d = 1 originally considered by Edwards; all Edwards
curves can easily be transformed to the case d = 1 over an algebraically closed
field. However, the extra parameter d allows extra curves over a finite field, and
in particular it allows curves where the addition law is complete, namely curves
where d is not a square.

This section presents streamlined formulas for doubling, mixed addition,
etc. in Edwards coordinates with arbitrary parameters c, d. As usual we count
the number of operations in the underlying field. We keep separate tallies of the
number of

• general multiplications (each costing M),
• squarings (each costing S),
• multiplications by c (each costing c),
• multiplications by d (each costing d), and
• additions/subtractions (each costing a).

The costs M,S, c,d,a depend on the choice of platform, on the choice of finite
field, and on the choice of c and d.

The fastest case for our formulas is the case c = 1. Every Edwards curve can
easily be transformed to an Edwards curve over the same field having c = 1. In
Section 4 we assume that c = 1.

Addition. To avoid the inversions in the original addition formulas

(x1, y1), (x2, y2) 7→
(

x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − x1x2

c(1− dx1x2y1y2)

)
,

we homogenize the curve equation to (X2+Y 2)Z2 = c2(Z4+dX2Y 2), where the
projective point (X1 : Y1 : Z1) corresponds to the affine point (X1/Z1, Y1/Z1).



4 Daniel J. Bernstein and Tanja Lange

The neutral element is (0 : c : 1) in projective coordinates, and the inverse of
(X1 : Y1 : Z1) is (−X1 : Y1 : Z1). We refer to these coordinates as projective
Edwards coordinates.

The following formulas, given (X1 : Y1 : Z1) and (X2 : Y2 : Z2), compute the
sum (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2):

A = Z1 · Z2; B = A2; C = X1 ·X2; D = Y1 · Y2;
E = (X1 + Y1) · (X2 + Y2)− C −D; F = d · C ·D;

X3 = A · E · (B − F ); Y3 = A · (D − C) · (B + F );
Z3 = c · (B − F ) · (B + F ).

One readily counts 10M + 1S + 1c + 1d + 7a, as stated in Section 1.
The following specific sequence of operations starts with registers R1, R2, R3

containing X1, Y1, Z1 and registers R4, R5, R6 containing X2, Y2, Z2, uses just
two temporary registers R7, R8 and constants c, d, ends with registers R1, R2, R3

containing X3, Y3, Z3 and untouched registers R4, R5, R6 containing X2, Y2, Z2,
and uses 10M + 1S + 1c + 1d + 7a:

R3 ← R3 ·R6; R7 ← R1 + R2; R8 ← R4 + R5; R1 ← R1 ·R4;
R2 ← R2 ·R5; R7 ← R7 ·R8; R7 ← R7 −R1; R7 ← R7 −R2;
R7 ← R7 ·R3; R8 ← R1 ·R2; R8 ← d ·R8; R2 ← R2 −R1;
R2 ← R2 ·R3; R3 ← R2

3; R1 ← R3 −R8; R3 ← R3 + R8;
R2 ← R2 ·R3; R3 ← R3 ·R1; R1 ← R1 ·R7; R3 ← c ·R3.

We emphasize that these formulas work whether or not (X1 : Y1 : Z1) = (X2 :
Y2 : Z2). There is no need to go to extra effort to unify the addition formulas
with separate doubling formulas; the addition formulas are already unified. See
Section 3 for further discussion of the scope of validity of the addition formulas;
in particular, we repeat the fact that the addition law works for all pairs of input
points if d is not a square.

Mixed addition. “Mixed addition” refers to the case that Z2 is known to be 1.
In this case the multiplication A = Z1 ·Z2 can be eliminated, reducing the total
costs to 9M + 1S + 1c + 1d + 7a:

B = Z2
1 ; C = X1 ·X2; D = Y1 · Y2;

E = (X1 + Y1) · (X2 + Y2)− C −D; F = d · C ·D;
X3 = Z1 · E · (B − F ); Y3 = Z1 · (D − C) · (B + F );
Z3 = c · (B − F ) · (B + F ).

Doubling. “Doubling” refers to the case that (X1 : Y1 : Z1) and (X2 : Y2 : Z2)
are known to be equal. In this case one can use the following formulas to speed
up the computation to 3M + 4S + 3c + 6a:

A = X1 + Y1; B = A2; C = X2
1 ; D = Y 2

1 ; E = C + D;
F = B − E; G = c · Z1; H = G2; I = H + H; J = E − I;

X3 = c · F · J ; Y3 = c · E · (C −D); Z3 = E · J.



Performance evaluation of a new coordinate system for elliptic curves 5

The following specific sequence of operations, starting with registers R1, R2, R3

containing X1, Y1, Z1, changes registers R1, R2, R3 to contain X3, Y3, Z3, using
3M + 4S + 3c + 6a and using just two temporary registers R4, R5:

R4 ← R1 + R2; R3 ← c ·R3; R1 ← R2
1; R2 ← R2

2;
R3 ← R2

3; R4 ← R2
4; R3 ← R3 + R3; R5 ← R1 + R2;

R2 ← R1 −R2; R4 ← R4 −R5; R3 ← R5 −R3; R1 ← R3 ·R4;
R3 ← R3 ·R5; R2 ← R2 ·R5; R1 ← c ·R1; R2 ← c ·R2.

The following alternate sequence of operations uses one more addition, totalling
3M + 4S + 3c + 7a, but uses just one additional register R4:

R3 ← c ·R3; R4 ← R2
1; R1 ← R1 + R2; R1 ← R2

1; R2 ← R2
2;

R3 ← R2
3; R3 ← R3 + R3; R4 ← R2 + R4; R2 ← R2 + R2;

R2 ← R4 −R2; R1 ← R1 −R4; R2 ← R2 ·R4; R3 ← R4 −R3;
R1 ← R1 ·R3; R3 ← R3 ·R4; R1 ← c ·R1; R2 ← c ·R2.

Another option is to scale (X3 : Y3 : Z3) to (X3/c : Y3/c : Z3/c), replacing
two multiplications by c with one multiplication by 1/c. Of course, all three
multiplications by c can be skipped if c = 1.

3 From Weierstrass coordinates to the new coordinate
system

Given a large-characteristic elliptic curve E in Weierstrass form, one can trans-
form group operations on E into group operations on the curve x2 + y2 =
c2(1+dx2y2), for an appropriate choice of (c, d). This section presents the details
of the transformation. Proofs appear in Appendix A.

To illustrate the transformation, we use an elliptic curve previously published
for fast scalar multiplication using Montgomery coordinates, namely the elliptic
curve Y 2 = (X ′)3 + 486662(X ′)2 + (X ′) modulo p = 2255 − 19; see [5]. Group
operations on this curve “Curve25519” can be transformed into group operations
on the curve x2 + y2 = c2(1− 2x2y2) where

c = 26923790352479969033134494549992980665882225819690684221603341630881131953763;

this section explains how this c was calculated and how the transformation works.
Applications that are free to choose curves can save time by choosing both c and
d to be small.

Overview of the transformation. The transformation has three parts:

• Transform to short Weierstrass coordinates, i.e., to (X, Y ) satisfying Y 2 =
X3 + aX + b.

• Transform to (U, V ) satisfying V 2 = (U + e)(U2 + 4U + 4e), where e is a
root of the polynomial 4a3(e− 2)2(e2 + 32e− 32)2 + 27b2(e2 − 16e + 16)3.



6 Daniel J. Bernstein and Tanja Lange

• Transform to (x, y) satisfying x2 + y2 = c2(1 + dx2y2), where c, d satisfy
e = 1− dc4.

For computational purposes it is of course most convenient if all of the objects
here —the parameter e for the intermediate curve V 2 = (U+e)(U2+4U+4e), the
parameters c, d for the final curve x2 +y2 = c2(1+dx2y2), and the coefficients of
the transformations between curves —are as small as possible. A multiplication
by c in a field of size p2 can be made faster if c is actually in a subfield of size
p, for example, and can be made even faster if c is actually an integer much
smaller than p. We have made no attempt to optimize our transformation from
this perspective. We comment that the final curve x2 + y2 = c2(1+dx2y2) has a
point (0,−c) of order 2, so it cannot be defined over a prime field if the original
elliptic curve has odd order over that field; in particular, we would not expect
this coordinate system to provide good performance for the NIST curves. But
many other curves allow c, d, and the transformations to be defined over prime
fields, as illustrated by the Curve25519 example.

Step 1: transform to (X, Y ) on Y 2 = X3 + aX + b. We assume that the
original elliptic curve E is defined over a field k of characteristic different from
2 or 3; for example, a large prime field. Then E can be transformed to short
Weierstrass form Y 2 = X3 + aX + b for some a, b ∈ k with 4a3 + 27b2 6= 0.

Curve25519 example: The substitution X = X ′ +486662/3 transforms Y 2 =
(X ′)3 + 486662(X ′)2 + (X ′) into the elliptic curve Y 2 = X3 + aX + b where
a = −236839902241/3 and b = 230521961007359098/27.

Step 2: choose root e of 4a3(e−2)2(e2+32e−32)2+27b2(e2−16e+16)3.
Extend k if necessary so that 4a3(e− 2)2(e2 + 32e− 32)2 + 27b2(e2 − 16e + 16)3

has roots in k. Choose a root e of this polynomial. Appendix A shows that e 6= 1.
Curve25519 example, continued: The integer

e = 37095705934669439343138083508754565189542113879843219016388785533085940283556

is a root of the polynomial 4a3(e − 2)2(e2 + 32e − 32)2 + 27b2(e2 − 16e + 16)3

modulo 2255− 19 when a = −236839902241/3 and b = 230521961007359098/27.

Step 3: choose t with at2 = −3(e2 − 16e +16) and bt3 = 2(e − 2)(e2 +
32e − 32). There are three cases here:

• For b = 0: Extend k if necessary so that −3(e2 − 16e + 16)/a has a square
root t in k.

• For a = 0: Extend k if necessary so that 2(e−2)(e2 +32e−32)/b has a cube
root t in k.

• For ab 6= 0: Define t = −2a(e− 2)(e2 + 32e− 32)/3b(e2 − 16e + 16).

In all three cases, at2 = −3(e2 − 16e + 16) and bt3 = 2(e − 2)(e2 + 32e − 32).
Appendix A shows that t 6= 0.

Curve25519 example, continued: The integer

t = 53391073185350220317628758021919741641991349306709375029437564595301256030719



Performance evaluation of a new coordinate system for elliptic curves 7

satisfies at2 = −3(e2 − 16e + 16) and bt3 = 2(e− 2)(e2 + 32e− 32) for the a, b, e
shown above.

Step 4: choose s with s2 = (t/3)3. Extend k if necessary so that (t/3)3 has
a square root s in k. Note that s 6= 0.

Curve25519 example, continued: The integer

s = 18649689278727228840354232979487548124034359932680984740981561174796302117467

is a square root of (t/3)3 modulo 2255 − 19 for the t shown above.

Step 5: transform to (U, V ) on V 2 = (U + e)(U2 + 4U + 4e). If (X, Y )
satisfies Y 2 = X3 + aX + b then (U, V ) = ((tX − e − 4)/3, sY ) satisfies V 2 =
(U + e)(U2 + 4U + 4e). See Appendix A.

Curve25519 example, continued: If X1 = 7 and

Y1 = 19172526001133118116405784977723800924384594365247398516339237030405822788330

then Y 2
1 = X3

1 + aX1 + b modulo 2255 − 19. The integers

U1 = 54317890835602603248302248377217254841497451422887186710162596874051052490542,

V1 = 27265453978268041840748490304217756379746991228816427167751352985036992860401

are, respectively, (tX1 − e − 4)/3 and sY1 modulo 2255 − 19, for the t, s shown
above. As a double-check, V 2

1 is the same as (U1 + e)(U2
1 + 4U1 + 4e) modulo

2255 − 19, for the e shown above.

Step 6: choose c and d with e = 1 − dc4. Write e in the form 1 − dc4 by
selecting c ∈ k − {0} and defining d = (1 − e)/c4. Alternatively, first choose d
such that (1− e)/d is a nonzero 4th power in k, and then choose c as a 4th root.
If k is a finite field then at least 1/4 of the nonzero elements of k are 4th powers;
this is why d can always be chosen to be extremely small.

Curve25519 example, continued: If d = −2 and

c = 26923790352479969033134494549992980665882225819690684221603341630881131953763

then 1 − dc4 modulo 2255 − 19 is the same as the integer e shown above. Note
that this is not our recommended choice of (c, d), namely c = 1 and d = 1− e.

Applications that are free to choose curves can first choose small c, d, then
compute e = 1− dc4, then write down the curve V 2 = (U + e)(U2 + 4U + 4e).

Step 7: transform to (x, y) on x2 +y2 = c2(1+dx2y2). If (U, V ) satisfies
V 2 = (U + e)(U2 + 4U + 4e), and if U + 2e and U2 + 4U + 4e are nonzero, then
(x, y) = (2cV/(U2 + 4U + 4e), cU/(U + 2e)) satisfies x2 + y2 = c2(1 + dx2y2).
See Appendix A.

To recap: We have transformed points (X, Y ) on the curve Y 2 = X3 +aX +b
into points (U, V ) on the curve V 2 = (U + e)(U2 + 4U + 4e), and then—
except for a few points where U + 2e = 0 or U2 + 4U + 4e = 0 — into points
(x, y) = (2cV/(U2 +4U +4e), cU/(U +2e)) on the curve x2 +y2 = c2(1+dx2y2).



8 Daniel J. Bernstein and Tanja Lange

Curve25519 example, continued: The integers

x1 = 38449057356254576649503480194105044252465313685119321805170194941589028170479,

y1 = 15703921733006088416774302803525630526894002882819000026831678189383841685889

are, respectively, 2cV1/(U2
1 + 4U1 + 4e) and cU1/(U1 + 2e) modulo 2255 − 19 for

the integers c, e, U1, V1 shown above. As a double-check, x2
1 + y2

1 is the same as
c2(1 + dx2

1y
2
1) modulo 2255 − 19, where d = −2 as above.

Step 8: perform group operations on x2 +y2 = c2(1+dx2y2). If (x1, y1)
and (x2, y2) are points on x2 + y2 = c2(1 + dx2y2), and if dx1x2y1y2 /∈ {−1, 1},
then

(x3, y3) =
(

x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − x1x2

c(1− dx1x2y1y2)

)
is also a point on x2 + y2 = c2(1 + dx2y2). This operation (x1, y1), (x2, y2) 7→
(x3, y3) is consistent with the standard addition law on the elliptic curve V 2 =
(U +e)(U2+4U +4e), and therefore with the addition law on the original elliptic
curve E. See Appendix A.

We emphasize that this addition law for the curve x2 + y2 = c2(1 + dx2y2)
does not need any modification for the doubling case (x1, y1) = (x2, y2). The
only failure cases of the addition law are the cases dx1x2y1y2 = ±1, which for
doubling means dx2

1y
2
1 = ±1, occurring for only a few points on the curve. If d is

not a square in k then there are no failure cases for addition; see Appendix A.
Curve25519 example, continued: The integers

x3 = 44070118552736708090129770544946991295910146229981336346215991426600634526292,

y3 = 49211788949231821853202700980531119200569440922762704174632595798780438797193

are, respectively, 2x1y1/c(1+dx2
1y

2
1) and (y2

1−x2
1)/c(1−dx2

1y
2
1) modulo 2255−19,

for the integers c, d, x1, y1 shown above. As a double-check, x2
3 + y2

3 is the same
as c2(1 + dx2

3y
2
3) modulo 2255 − 19.

Step 9: transform back to (U, V ) on V 2 = (U +e)(U2+4U +4e). After a
sequence of group operations produces a point (x, y) on x2 +y2 = c2(1+dx2y2),
solve the equations (x, y) = (2cV/(U2 + 4U + 4e), cU/(U + 2e)) to find the
corresponding point (U, V ) on V 2 = (U + e)(U2 + 4U + 4e). In other words,
define U = −2ey/(y − c) and V = −2ec(c2dy2 − 1)x/(y − c)2.

Curve25519 example, continued: The integers

U3 = 19353927226809319800023215682473111991996239556853927784590583590843827970744,

V3 = 15914012472049123343512503873797345822611472250094411327637863525569550289727

are, respectively,−2ey3/(y3−c) and−2ec(c2dy2
3−1)x3/(y3−c)2 modulo 2255−19,

for the integers c, d, e, x3, y3 shown above. As a double-check, V 2
3 is the same as

(U3 + e)(U2
3 + 4U3 + 4e) modulo 2255 − 19.

Step 10: transform back to (X, Y ) on Y 2 = X3 + aX + b. Finally, solve
the equations (U, V ) = ((tX − e − 4)/3, sY ) to find the corresponding point



Performance evaluation of a new coordinate system for elliptic curves 9

(X, Y ) on Y 2 = X3 + aX + b. In other words, define X = (3U + e + 4)/t and
Y = V/s.

Curve25519 example, continued: The integers

X3 = 44177973078763452834055410435474786018253753500561242948153168022378284829263,

Y3 = 34723047021396797201571638306466206286938174048238133551788788106595160363933

are, respectively, (3U3 + e + 4)/t and V3/s modulo 2255 − 19, for the integers
e, s, t, U3, V3 shown above. This point (X3, Y3) is the same as the output of the
standard doubling law on Y 2 = X3+aX +b when the input is the point (X1, Y1)
shown above: (X3, Y3) is the same as (λ2−2X1, λ(X1−X3)−Y1) modulo 2255−19
where λ = (3X2

1 + a)/2Y1.
Of course, one does not need to transform results back and forth after each

group operation. One can transform points to the curve x2 + y2 = c2(1+ dx2y2)
and carry out many group operations on that curve before transforming the
results back.

Notes regarding exceptional points. The point at infinity on the elliptic
curve V 2 = (U + e)(U2 + 4U + 4e) corresponds to the point (0, c) on the curve
x2 + y2 = c2(1 + dx2y2). The addition law does not need any modification to
handle (0, c) as an input or output: for each point P = (x1, y1) on the curve,
(0, c) is the sum of P and −P = (−x1, y1), and P is the sum of (0, c) and P .

If d is a square in k then there are additional points to worry about. The
points with U + 2e = 0 are (−2e,±4c2

√
de); both of these points correspond to

(0 : 1 : 0), a singular point at infinity on the curve x2 + y2 = c2(1 + dx2y2).
The points with U2 + 4U + 4e = 0 are (−2 ± 2c2

√
d, 0); both of these points

correspond to (1 : 0 : 0), another singular point at infinity on the curve x2+y2 =
c2(1 + dx2y2). The addition law for x2 + y2 = c2(1 + dx2y2) is not defined for
the singular points. One can, in many applications, rely on randomization to
avoid the singular points, or one can fall back on group operations in V 2 =
(U + e)(U2 + 4U + 4e) if singular points occur.

If d is not a square in k then these points do not occur and there is nothing
to worry about. The affine points on x2 +y2 = c2(1+dx2y2) form a group under
the addition law; there are no failure cases. See Appendix A. The Curve25519
example is in this situation: d = −2 is not a square modulo 2255 − 19.

4 Comparison to previous addition speeds

This section compares the speeds announced in this paper to speeds announced
in the literature for previous coordinate systems. The first four tables in this
section are for low-level operations such as doubling; the remaining five tables
in this section are for higher-level operations relevant to various applications.

Level of detail of the comparison. We follow most of the literature in ignoring
the costs of additions, subtractions, and multiplications by small constants. We
recognize that these costs (and the costs of non-arithmetic operations) can be



10 Daniel J. Bernstein and Tanja Lange

quite noticeable in practice, and we plan a more detailed cost evaluation of
Edwards coordinates on various platforms along the lines of [5], but for this
paper we ignore the costs.

Consider, for example, the usual Jacobian-coordinate doubling algorithm in
the case a4 = −3: there are 4 squarings, 4 general multiplications, 5 additions
and subtractions, and 5 multiplications by the constants 2, 3, 4, 8, 8. We sum-
marize this cost as 4M + 4S. The improved algorithm in [3, page 16] involves
5 squarings, 3 general multiplications, 8 additions and subtractions, and 4 mul-
tiplications by small constants; we summarize this cost as 3M + 5S. A simi-
lar multiplication-for-squaring tradeoff is possible for addition in Jacobian and
Chudnovsky coordinates, according to [3, page 17], and is used in our operation
counts without further comment.

Some algorithms involve multiplications by curve parameters, such as the
parameter d in Edwards coordinates. Some applications can take advantage of
multiplying by a constant d, and some applications can choose curves where d
is small, but other applications cannot. To cover both situations we separately
tally the cost d of multiplying by a curve parameter; the reader can substitute
d = 0, d = M, or anything in between.

We sort our tables using the standard, but debatable, approximations S ≈
0.8M and d ≈ 0M. We do not claim that these approximations are valid for
most applications. The order of entries in our tables can easily be affected by
small changes in the S/M ratio, the d/M ratio, etc.

Low-level operations. Inversion-free doubling in the new coordinate system is
faster than inversion-free doubling in previous systems (disregarding the extreme
case S/M = 1):

System Cost of doubling
Projective 6M + 5S + 1d; see [13, page 281]
Hessian 6M + 3S; see [15, page 405, display 9]
Jacobi quartic 1M + 9S + 3d; see [6, page 5, display 11]
Jacobian 2M + 7S + 1d
Jacobian/Chudnovsky if a4 = −3 3M + 5S
Jacobi intersection 4M + 3S; see [20, page 397, long display]
This paper 3M + 4S

Mixed addition (affine plus inversion-free producing inversion-free) in the new
coordinate system is faster than mixed addition in previous systems if d/M <
1− S/M:

System Cost of mixed addition
Jacobi intersection 11M + 2S + 1d; see [20, page 396, long display]
Projective 9M + 2S; see [13, page 281]
Jacobi quartic 8M + 3S + 3d; see [6, page 6, Figure 1]
Jacobian/Chudnovsky 8M + 3S; see [13, page 284]
Hessian 10M; see [15, Section 5, first paragraph]
This paper 9M + 1S + 1d



Performance evaluation of a new coordinate system for elliptic curves 11

Non-mixed addition in the new coordinate system is faster than non-mixed ad-
dition in previous systems (disregarding the extreme case d/M = S/M = 1):

System Cost of non-mixed addition
Jacobian 11M + 5S
Jacobi intersection 13M + 2S + 1d; see [20, page 396, long display]
Projective 12M + 2S; see [13, page 281]
Chudnovsky 10M + 4S
Jacobi quartic 10M + 3S + 3d; see [6, page 6, Figure 1]
Hessian 12M; see [15, page 407, Figure 1]
This paper 10M + 1S + 1d

Similar comments apply to unified addition-or-doubling:

System Cost of unified addition-or-doubling
Jacobian 11M + 6S + 1d; see [8, page 339, bottom]
Jacobian if a4 = −1 13M + 3S; see [8, page 340, top]
Jacobi intersection 13M + 2S + 1d; see [20, page 396, long display]
Jacobi quartic 10M + 3S + 3d; see [6, page 6, Figure 1]
Hessian 12M; see [15, page 408]
This paper 10M + 1S + 1d

Multi-scalar multiplication. The general multi-scalar multiplication problem
is to compute

∑
niPi given integers ni and curve points Pi. Specific problems

are obtained by specifying the number of points, by specifying which points are
known in advance, by specifying which integers are known in advance, etc.

The classic solutions to multi-scalar multiplication problems —see [2] and
[12] for surveys —are obtained by combining doublings, additions, and mixed
additions in a pattern that depends on the integers ni.

For example, the popular JSF approach to computing n1P1 + n2P2, given
b-bit integers n1, n2 and curve points P1, P2, P1 ± P2 in affine coordinates, uses
about b doublings and (for average n1, n2) about 0.5b mixed additions. So we
tally the cost of 1 doubling and 0.5 mixed additions:

System Cost of 1 doubling and 0.5 mixed additions
Projective 10.5M + 6S + 1d ≈ 15.3M
Jacobi quartic 5M + 10.5S + 4.5d ≈ 13.4M
Hessian 11M + 3S ≈ 13.4M
Jacobian 6M + 8.5S + 1d ≈ 12.8M
Jacobi intersection 9.5M + 4S + 0.5d ≈ 12.7M
Jacobian/Chudnovsky if a4 = −3 7M + 6.5S ≈ 12.2M
This paper 7.5M + 4.5S + 0.5d ≈ 11.1M

As a general rule, more points — and more fixed points — produce larger ra-
tios between the number of additions and the number of doublings. For example,
the accelerated ECDSA verification method in [1, page 9] uses about b/3 dou-
blings and about b/2 = 1.5(b/3) mixed additions. So we tally the cost of 1



12 Daniel J. Bernstein and Tanja Lange

doubling and 1.5 mixed additions:

System Cost of 1 doubling and 1.5 mixed additions
Projective 19.5M + 8S + 1d ≈ 25.9M
Jacobi intersection 20.5M + 6S + 1.5d ≈ 25.3M
Jacobi quartic 13M + 13.5S + 7.5d ≈ 23.8M
Hessian 21M + 3S ≈ 23.4M
Jacobian 14M + 11.5S + 1d ≈ 23.2M
Jacobian/Chudnovsky if a4 = −3 15M + 9.5S ≈ 22.6M
This paper 16.5M + 5.5S + 1.5d ≈ 20.9M

One can save an initial inversion at the cost of changing about half of the
mixed additions to non-mixed additions; this is worthwhile on platforms where
inversion is extremely expensive, such as embedded systems equipped with typi-
cal multiplication coprocessors. So we tally the cost of 1 doubling, 0.75 non-mixed
additions, and 0.75 mixed additions:

System Cost of 1 doubling, 0.75 adds, 0.75 mixed adds
Projective 21.75M + 8S + 1d ≈ 28.15M
Jacobi intersection 22M + 6S + 1.5d ≈ 26.8M
Jacobian 16.25M + 13S + 1d ≈ 26.65M
Jacobian if a4 = −3 17.25M + 11S ≈ 26.05M
Jacobi quartic 14.5M + 13.5S + 7.5d ≈ 25.3M
Hessian 22.5M + 3S ≈ 24.9M
Chudnovsky if a4 = −3 16.5M + 10.25S ≈ 24.7M
This paper 17.25M + 5.5S + 1.5d ≈ 21.65M

Doublings become even less important as the number of scalars increases. In
particular, almost all doublings disappear in the context of fixed-point scalar
multiplication. For example, a b-bit fixed-point single-scalar multiplication can
be computed as a 24-scalar multiplication with about b/24 doublings and about
15b/64 = 5.625(b/24) mixed additions, using a fixed “comb” table containing 90
points:

System Cost of 1 doubling, 5.625 mixed additions
Jacobi intersection 65.875M + 14.25S + 5.625d ≈ 77.275M
Projective 56.625M + 16.25S + 1d ≈ 69.625M
Jacobi quartic 46M + 25.875S + 19.875d ≈ 66.7M
Jacobian 47M + 23.875S + 1d ≈ 66.1M
Jacobian/Chudnovsky if a4 = −3 48M + 21.875S ≈ 65.5M
Hessian 62.25M + 3S ≈ 64.65M
This paper 53.625M + 9.625S + 5.625d ≈ 61.325M

Side-channel countermeasures. The above approaches are often unaccept-
able for cryptographic hardware and embedded systems. Many secret bits of the
integers ni are leaked, through the pattern of doublings and mixed additions
and non-mixed additions, to side-channel attacks such as simple power analysis.



Performance evaluation of a new coordinate system for elliptic curves 13

One response —proposed by Liardet and Smart ([20], Jacobi intersection),
Joye and Quisquater ([15], Hessian), Billet and Joye ([6], Jacobi quartic), and
Brier and Joye ([8], Jacobian) — is to hide the pattern of doublings, mixed addi-
tions, and non-mixed additions by carrying out all of the operations with unified
addition-or-doubling formulas. For example, b doublings and b/2 mixed additions
would be converted into 3b/2 unified addition-or-doubling operations:

System Cost of 1.5 unified addition-or-doubling operations
Jacobian 16.5M + 9S + 1.5d ≈ 23.7M
Jacobian if a4 = −1 19.5M + 4.5S ≈ 23.1M
Jacobi intersection 19.5M + 3S + 1.5d ≈ 21.9M
Jacobi quartic 15M + 4.5S + 4.5d ≈ 18.6M
Hessian 18M
This paper 15M + 1.5S + 1.5d ≈ 16.2M

The Hamming weight in the single-scalar case, and the total number of opera-
tions in the general case, is still leaked but can be shielded at low cost in other
ways. Of course, at a lower level, field operations must be individually shielded.
In particular, an operation counted as M must be carried out by a multiplication
unit whose time, power consumption, etc. do not depend on the inputs. Even if
the inputs happen to be the same, and even if a faster squaring unit is available,
the multiplication must not be carried out by the squaring unit. An operation
counted as S can be carried out by a faster squaring unit whose time, power
consumption, etc. do not depend on the input.

The new coordinate system can be combined with various countermeasures
against differential power attacks:

• Randomized representations of scalars as addition-subtraction chains; see,
e.g., [24] and [20, Section 4]. The coordinate system supports arbitrary ad-
ditions and subtractions.

• Randomized scalars; see, e.g., [11, Section 5.1].
• Randomized representations of points; see, e.g., [11, Section 5.3]. Our point

representation is inversion-free and can be scaled freely.
• Randomized points, for example computing nP as n(P + Q)−nQ; see, e.g.,

[11, Section 5.2].

We suggest using a combination of these countermeasures. In particular, point
randomization appears to be vital to counteract Goubin-type attacks. We also
comment that our formulas are unified without any dummy operations; dummy
operations would allow easy fault attacks.

Differential addition chains. To finish our comparison we mention another
approach to high-speed multi-scalar multiplications, namely Montgomery coor-
dinates. These coordinates were introduced by Montgomery in [22] and have
attracted interest both for their side-channel resistance (see [8, Section 4] and
[16]) and for their high speed. Montgomery coordinates do not support fast ad-
dition P,Q 7→ P + Q, and therefore do not fit into our previous tables, but



14 Daniel J. Bernstein and Tanja Lange

they nevertheless support fast computation of P −Q,P,Q 7→ P + Q, and there-
fore fast computation of arbitrary “differential addition chains.” In particular,
Montgomery coordinates use 5M + 4S + 1d per bit of n to compute P 7→ nP .

Are Edwards coordinates faster than Montgomery coordinates for single-
scalar variable-point multiplication? Perhaps. Standard addition chains use a
doubling for each bit of n, plus an occasional addition; Edwards coordinates
thus use 3M + 4S for each bit of n, plus an occasional extra 10M + 1S + 1d.
For typical curves, d is as large as M, so Edwards coordinates are faster than
Montgomery coordinates when there are fewer than about 0.25 additions per
bit. For selected curves, d is negligible, so Edwards coordinates are faster than
Montgomery coordinates when there are fewer than about 0.18 additions per
bit.

What about double-scalar multiplication and beyond? The answer here is
that Montgomery coordinates do not seem to provide competitive performance
as the number of scalars increases, despite recent differential-addition-chain im-
provements in [4] and [9].

References

1. Adrian Antipa, Daniel Brown, Robert Gallant, Rob Lambert, René Struik, Scott
Vanstone, Accelerated verification of ECDSA signatures (2005). URL: http://www.
cacr.math.uwaterloo.ca/techreports/2005/tech reports2005.html.

2. Roberto M. Avanzi, The complexity of certain multi-exponentiation techniques in
cryptography, Journal of Cryptology 18 (2005), 357–373.

3. Daniel J. Bernstein, A software implementation of NIST P-224 (2001). URL:
http://cr.yp.to/talks.html#2001.10.29.

4. Daniel J. Bernstein, Differential addition chains (2006). URL: http://cr.yp.to/
papers.html#diffchain.

5. Daniel J. Bernstein, Curve25519: new Diffie-Hellman speed records, in [26] (2006),
207–228. URL: http://cr.yp.to/papers.html#curve25519.

6. Olivier Billet, Marc Joye, The Jacobi model of an elliptic curve and side-channel
analysis (2002). URL: http://eprint.iacr.org/2002/125.

7. Wieb Bosma, Hendrik W. Lenstra, Jr., Complete systems of two addition laws for
elliptic curves, Journal of Number Theory 53 (1995), 229–240.

8. Éric Brier, Marc Joye, Weierstrass elliptic curves and side-channel attacks, in [23]
(2002), 335–345.

9. Daniel R. L. Brown, Multi-dimensional Montgomery ladders for elliptic curves
(2006). URL: http://eprint.iacr.org/2006/220.

10. Henri Cohen, Gerhard Frey (editors), Handbook of elliptic and hyperelliptic curve
cryptography, CRC Press, 2005. ISBN 1–58488–518–1.

11. Jean-Sébastien Coron, Resistance against differential power analysis for elliptic
curve cryptosystems, in [18] (1999), 292–302.

12. Christophe Doche, Exponentiation, in [10] (2005), 145–168.

13. Christophe Doche, Tanja Lange, Arithmetic of elliptic curves, in [10] (2005), 267–
302. MR 2162729.

14. Harold M. Edwards, Jr., A normal form for elliptic curves, to appear, Bulletin of
the American Mathematical Society (2007).



Performance evaluation of a new coordinate system for elliptic curves 15

15. Marc Joye, Jean-Jacques Quisquater, Hessian elliptic curves and side-channel at-
tacks, in [19] (2001), 402–410.

16. Marc Joye, Sung-Ming Yen, The Montgomery powering ladder, in [17]
(2003), 291–302. URL: http://www.gemplus.com/smart/rd/publications/pdf/

JY03mont.pdf.

17. Burton S. Kaliski Jr., Çetin Kaya Koç, Christof Paar (editors), Cryptographic hard-
ware and embedded systems—CHES 2002, 4th international workshop, Redwood
Shores, CA, USA, August 13–15, 2002, revised papers, Lecture Notes in Computer
Science, 2523, Springer-Verlag, 2003. ISBN 3–540–00409–2.

18. Çetin Kaya Koç, Christof Paar (editors), Cryptographic hardware and embedded
systems, first international workshop, CHES’99, Worcester, MA, USA, August 12-
13, 1999, proceedings, Lecture Notes in Computer Science, 1717, Springer, 1999.
ISBN 3–540–66646–X.

19. Çetin Kaya Koç, David Naccache, Christof Paar (editors), Cryptographic hardware
and embedded systems—CHES 2001, third international workshop, Paris, France,
May 14–16, 2001, proceedings, Lecture Notes in Computer Science, 2162, Springer,
2001. ISBN 3–540–42521–7.

20. Pierre-Yvan Liardet, Nigel P. Smart, Preventing SPA/DPA in ECC systems using
the Jacobi form, in [19] (2001), 391–401.

21. Victor S. Miller, Use of elliptic curves in cryptography, in [25] (1986), 417–426. MR
88b:68040.

22. Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of factor-
ization, Mathematics of Computation 48 (1987), 243–264. ISSN 0025–5718. MR
88e:11130. URL: http://links.jstor.org/sici?sici=0025-5718(198701)48:

177<243:STPAEC>2.0.CO;2-3.

23. David Naccache, Pascal Paillier (editors), Public key cryptography, 5th interna-
tional workshop on practice and theory in public key cryptosystems, PKC 2002,
Paris, France, February 12–14, 2002, proceedings, Lecture Notes in Computer Sci-
ence, 2274, Springer, 2002. ISBN 3–540–43168–3.

24. Elisabeth Oswald, Manfred Aigner, Randomized addition-subtraction chains as a
countermeasure against power attacks, in [19] (2001), 39–50.

25. Hugh C. Williams (editor), Advances in cryptology: CRYPTO ’85, Lecture Notes
in Computer Science, 218, Springer, Berlin, 1986. ISBN 3–540–16463–4.

26. Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin (editors), 9th interna-
tional conference on theory and practice in public-key cryptography, New York, NY,
USA, April 24–26, 2006, proceedings, Lecture Notes in Computer Science, 3958,
Springer, Berlin, 2006. ISBN 978–3–540–33851–2.

A Appendix: Proofs

Proof that e 6= 1. If e = 1 then 0 = 4a3(−1)2(12)2+27b2(12)3 = 4a3+27b2 6= 0,
contradiction.

Proof that t 6= 0. Observe that (39e− 582)(2(e− 2)(e2 + 32e− 32))− (26e2 +
808e− 1624)(3(e2− 16e+16)) = 2733. If t = 0 then −3(e2− 16e+16) = at2 = 0
and 2(e− 2)(e2 + 32e− 32) = bt3 = 0 so 2733 = 0 so k has characteristic 2 or 3,
contradiction.



16 Daniel J. Bernstein and Tanja Lange

Proof that (U, V ) = ((tX − e − 4)/3, sY ) satisfies V 2 = (U + e)(U2 +
4U + 4e). V 2 = (sY )2 = (t/3)3Y 2 = (tX)3/27 + at2(tX)/27 + bt3/27 = (3U +
e + 4)3/27 + at2(3U + e + 4)/27 + bt3/27 = (3U + e + 4)3/27 − 3(e2 − 16e +
16)(3U + e+4)/27+2(e− 2)(e2 +32e− 32)/27 = U3 +(e+4)U2 +8eU +4e2 =
(U + e)(U2 + 4U + 4e).

Proof that (x, y) = (2cV/(U2 + 4U + 4e), cU/(U + 2e)) satisfies x2 +
y2 = c2(1+dx2y2). The difference 1+dx2y2− (x2 +y2)/c2, times the nonzero
quantity (U2 + 4U + 4e)2(U + 2e)2, is (U2 + 4U + 4e)2(U + 2e)2 + 4dc4V 2U2 −
4V 2(U + 2e)2 − U2(U2 + 4U + 4e)2 = (4dc4U2 − 4(U + 2e)2)V 2 + (U2 + 4U +
4e)2((U +2e)2−U2) = (4(1− e)U2− 4(U +2e)2)(U + e)(U2 +4U +4e)+ (U2 +
4U + 4e)2((U + 2e)2 − U2) = 0.

Proof that (x3, y3) is a point on the curve. Subtract the equation (x2
2 +

y2
2)dx2

1y
2
1 = c2(1 + dx2

2y
2
2)dx2

1y
2
1 from the equation x2

1 + y2
1 = c2(1 + dx2

1y
2
1)

to see that x2
1 + y2

1 − (x2
2 + y2

2)dx2
1y

2
1 = c2(1 − d2x2

1x
2
2y

2
1y2

2). Similarly x2
2 +

y2
2 − (x2

1 + y2
1)dx2

2y
2
2 = c2(1− d2x2

1x
2
2y

2
1y2

2). The difference c2(1 + dx2
3y

2
3)− x2

3 −
y2
3 , times the nonzero quantity c2(1 + dx1x2y1y2)2(1 − dx1x2y1y2)2, is c4(1 +

dx1x2y1y2)2(1−dx1x2y1y2)2+d(x1y2+y1x2)2(y1y2−x1x2)2−(x1y2+y1x2)2(1−
dx1x2y1y2)2 − (y1y2 − x1x2)2(1 + dx1x2y1y2)2 = c4(1 − d2x2

1x
2
2y

2
1y2

2)2 − (x2
1 +

y2
1 − (x2

2 + y2
2)dx2

1y
2
1)(x2

2 + y2
2 − (x2

1 + y2
1)dx2

2y
2
2) = c4(1− d2x2

1x
2
2y

2
1y2

2)2 − c2(1−
d2x2

1x
2
2y

2
1y2

2)c2(1− d2x2
1x

2
2y

2
1y2

2) = 0.

Proof that (x1, y1), (x2, y2) 7→ (x3, y3) corresponds to elliptic-curve
addition. The hypotheses here are that

• V 2
1 = U3

1 + (e + 4)U2
1 + 8eU1 + 4e2, V 2

2 = U3
2 + (e + 4)U2

2 + 8eU2 + 4e2, and
V 2

3 = U3
3 + (e + 4)U2

3 + 8eU3 + 4e2;
• (U3, V3) = (U1, V1) + (U2, V2) under the standard addition law;
• (x1, y1) = (2cV1/(U2

1 + 4U1 + 4e), cU1/(U1 + 2e));
• (x2, y2) = (2cV2/(U2

2 + 4U2 + 4e), cU2/(U2 + 2e)); and
• dx1x2y1y2 /∈ {1,−1}.

The goal is to prove that (x3, y3) = (2cV3/(U2
3 + 4U3 + 4e), cU3/(U3 + 2e)).

The standard addition law says that U3 = λ2 − (e + 4) − U1 − U2 and
V3 = λ(U1 − U3) − V1. Here λ = (3U2

1 + 2(e + 4)U1 + 8e)/2V1 in the doubling
case (U1, V1) = (U2, V2), and λ = (V2−V1)/(U2−U1) otherwise. Note that other
cases in the standard addition law, such as (U2, V2) = −(U1, V1), are ruled out
by the hypothesis that (U1, V1) + (U2, V2) = (U3, V3).

We fed the following commands to the Magma computer-algebra system to
check the equation (x3, y3) = (2cV3/(U2

3 + 4U3 + 4e), cU3/(U3 + 2e)) in the
doubling case:

K<c,d,u1>:=FieldOfFractions(PolynomialRing(Rationals(),3));
e:=1-d*c^4; R<v1>:=PolynomialRing(K,1);
S:=quo<R|u1^3+(e+4)*u1^2+8*e*u1+4*e^2-v1^2>;
lam:=(3*u1^2+2*(e+4)*u1+8*e)/(2*v1); u2:=u1; v2:=v1;
u3:=lam^2-(e+4)-u1-u2; v3:=lam*(u1-u3)-v1;



Performance evaluation of a new coordinate system for elliptic curves 17

x1:=2*c*v1/(u1^2+4*u1+4*e); y1:=c*u1/(u1+2*e);
x2:=2*c*v2/(u2^2+4*u2+4*e); y2:=c*u2/(u2+2*e);
x3:=(x1*y2+y1*x2)/(c*(1+d*x1*x2*y1*y2));
y3:=(y1*y2-x1*x2)/(c*(1-d*x1*x2*y1*y2));
S!(x3-2*c*v3/(u3^2+4*u3+4*e)); S!(y3-c*u3/(u3+2*e));

We then used similar commands to check the non-doubling case:

K<c,d,u1,u2>:=FieldOfFractions(PolynomialRing(Rationals(),4));
e:=1-d*c^4; R<v1,v2>:=PolynomialRing(K,2);
S:=quo<R|u1^3+(e+4)*u1^2+8*e*u1+4*e^2-v1^2,

u2^3+(e+4)*u2^2+8*e*u2+4*e^2-v2^2>;
lam:=(v2-v1)/(u2-u1); u3:=lam^2-(e+4)-u1-u2; v3:=lam*(u1-u3)-v1;
x1:=2*c*v1/(u1^2+4*u1+4*e); y1:=c*u1/(u1+2*e);
x2:=2*c*v2/(u2^2+4*u2+4*e); y2:=c*u2/(u2+2*e);
x3:=(x1*y2+y1*x2)/(c*(1+d*x1*x2*y1*y2));
y3:=(y1*y2-x1*x2)/(c*(1-d*x1*x2*y1*y2));
S!(x3-2*c*v3/(u3^2+4*u3+4*e)); S!(y3-c*u3/(u3+2*e));

Proof that the addition law works for all pairs of points if d is not
a square. Assume that (x1, y1) and (x2, y2) are points on the curve; i.e., that
x2

1 + y2
1 = c2(1 + dx2

1y
2
1) and x2

2 + y2
2 = c2(1 + dx2

2y
2
2). Write ε = dx1x2y1y2.

Suppose that ε ∈ {−1, 1}. Then dx2
1y

2
1(x2

2 + y2
2) = c2(dx2

1y
2
1 + d2x2

1y
2
1x2

2y
2
2) =

c2(dx2
1y

2
1 + ε2) = c2(1 + dx2

1y
2
1) = x2

1 + y2
1 , so (x1 + εy1)2 = x2

1 + y2
1 + 2εx1y1 =

dx2
1y

2
1(x2

2 + y2
2) + 2x1y1dx1x2y1y2 = dx2

1y
2
1(x2

2 + 2x2y2 + y2
2) = dx2

1y
2
1(x2 + y2)2.

If x2 + y2 6= 0 then d = ((x1 + εy1)/x1y1(x2 + y2))2, contradiction. Similarly, if
x2 − y2 6= 0 then d = ((x1 − εy1)/x1y1(x2 − y2))2, contradiction. If both x2 + y2

and x2 − y2 are 0 then x2 = 0 and y2 = 0, so c = 0, contradiction.
Thus ε 6= 1 and ε 6= −1; i.e., 1− dx1x2y1y2 6= 0 and 1 + dx1x2y1y2 6= 0.
The reader might wonder why [7, Theorem 1] (“The smallest cardinality of a

complete system of addition laws on E equals two”) does not force exceptional
cases in the addition law for the curve x2 + y2 = c2(1 + dx2y2). The simplest
answer is that [7, Theorem 1] is concerned with exceptional cases in the algebraic
closure of k, whereas we are concerned with exceptional cases in k itself.


