
The Poly1305-AES message-authentication code

Daniel J. Bernstein ?

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago

Chicago, IL 60607–7045
djb@cr.yp.to

Abstract. Poly1305-AES is a state-of-the-art message-authentication
code suitable for a wide variety of applications. Poly1305-AES computes
a 16-byte authenticator of a variable-length message, using a 16-byte
AES key, a 16-byte additional key, and a 16-byte nonce. The security of
Poly1305-AES is very close to the security of AES; the security gap is
at most 14DdL/16e/2106 if messages have at most L bytes, the attacker
sees at most 264 authenticated messages, and the attacker attempts D
forgeries. Poly1305-AES can be computed at extremely high speed: for
example, fewer than 3.1` + 780 Athlon cycles for an `-byte message.
This speed is achieved without precomputation; consequently, 1000 keys
can be handled simultaneously without cache misses. Special-purpose
hardware can compute Poly1305-AES at even higher speed. Poly1305-
AES is parallelizable, incremental, and not subject to any intellectual-
property claims.

1 Introduction

This paper introduces and analyzes Poly1305-AES, a state-of-the-art secret-key
message-authentication code suitable for a wide variety of applications.

Poly1305-AES computes a 16-byte authenticator Poly1305r(m,AESk(n)) of
a variable-length message m, using a 16-byte AES key k, a 16-byte additional
key r, and a 16-byte nonce n. Section 2 of this paper presents the complete
definition of Poly1305-AES.

Poly1305-AES has several useful features:

• Guaranteed security if AES is secure. The security gap is small, even
for long-term keys; the only way for an attacker to break Poly1305-AES is
to break AES. Assume, for example, that messages are packets up to 1024
bytes; that the attacker sees 264 messages authenticated under a Poly1305-
AES key; that the attacker attempts a whopping 275 forgeries; and that the
attacker cannot break AES with probability above δ. Then, with probability
at least 0.999999− δ, all of the 275 forgeries are rejected.

? The author was supported by the National Science Foundation under grant CCR–
9983950, and by the Alfred P. Sloan Foundation. Date of this document: 2005.03.29.
Permanent ID of this document: 0018d9551b5546d97c340e0dd8cb5750. This version
is final and may be freely cited.

• Cipher replaceability. If anything does go wrong with AES, users can
switch from Poly1305-AES to Poly1305-AnotherFunction, with an identical
security guarantee. All the effort invested in the non-AES part of Poly1305-
AES can be reused; the non-AES part of Poly1305-AES cannot be broken.

• Extremely high speed. My published Poly1305-AES software takes just
3843 Athlon cycles, 5361 Pentium III cycles, 5464 Pentium 4 cycles, 4611
Pentium M cycles, 8464 PowerPC 7410 cycles, 5905 PowerPC RS64 IV cycles,
5118 UltraSPARC II cycles, or 5601 UltraSPARC III cycles to verify an
authenticator on a 1024-byte message. Poly1305-AES offers consistent high
speed, not just high speed for one CPU.

• Low per-message overhead. The same software takes just 1232 Pentium
4 cycles, 1264 PowerPC 7410 cycles, or 1077 UltraSPARC III cycles to verify
an authenticator on a 64-byte message. Poly1305-AES offers consistent high
speed, not just high speed for long messages. Most competing functions have
much larger overhead for each message; they are designed for long messages,
without regard to short-packet performance.

• Key agility. Poly1305-AES offers consistent high speed, not just high speed
for single-key benchmarks. The timings in this paper do not rely on any pre-
expansion of the 32-byte Poly1305-AES key (k, r); Poly1305-AES can fit
thousands of simultaneous keys into cache, and remains fast even when keys
are out of cache. This was my primary design goal for Poly1305-AES. Almost
all competing functions use a large table for each key; as the number of keys
grows, those functions miss the cache and slow down dramatically.

• Parallelizability and incrementality. The circuit depth of Poly1305-AES
is quite small, even for long messages. Consequently, Poly1305-AES can take
advantage of additional hardware to reduce the latency for long messages.
For essentially the same reason, Poly1305-AES can be recomputed at low
cost for a small modification of a long message.

• No intellectual-property claims. I am not aware of any patents or patent
applications relevant to Poly1305-AES.

Section 3 of this paper analyzes the security of Poly1305-AES. Section 4 discusses
the software achieving the speeds stated above. Section 5 discusses the speed of
Poly1305-AES in other contexts.

Genealogy

Gilbert, MacWilliams, and Sloane in [15] introduced the idea of provably secure
authentication. The Gilbert-MacWilliams-Sloane system is fast, but it requires
keys longer than L bytes to handle L-byte messages, and it requires a completely
new key for each message.

Wegman and Carter in [32] pointed out that the key length could be merely
64 lg L for the first message plus 16 bytes for each additional message. At about
the same time, in a slightly different context, Karp and Rabin achieved a key
length of 32 bytes for the first message; see [19] and [26]. The system in [19] is
fast once keys are generated, but key generation is slow.

The idea of using a cipher such as AES to expand a short key into a long key
is now considered obvious. Brassard in [12] published the idea in the Wegman-
Carter context; I don’t know whether the idea was considered obvious back then.

Polynomial-evaluation MACs—MACs that treat each message as a univariate
polynomial over a finite field and then evaluate that polynomial at the key—
were introduced in three papers independently: [14] by den Boer; [31, Section 3]
by Taylor; [9, Section 4] by Bierbrauer, Johansson, Kabatianskii, and Smeets.
Polynomial-evaluation MACs combine several attractive features: short keys,
fast key generation, and fast message authentication. Several subsequent papers
reported implementations of polynomial-evaluation MACs over binary fields: [28]
by Shoup; [4] by Afanassiev, Gehrmann, and Smeets, reinventing Kaminski’s
division algorithm in [18]; [22] by Nevelsteen and Preneel.

Polynomial-evaluation MACs over prime fields can exploit the multipliers
built into many current CPUs, achieving substantially better performance than
polynomial-evaluation MACs over binary fields. This idea was first published in
my paper [5] in April 1999, and explained in detail in [7]. Another MAC, avoiding
binary fields for the same reason, was published independently by Black, Halevi,
Krawczyk, Krovetz, and Rogaway in [11] in August 1999.

I used 32-bit polynomial coefficients modulo 2127 − 1 (“hash127”) in [5] and
[7]. The short coefficients don’t allow great performance (for short messages)
without precomputation, so I casually precomputed a few kilobytes of data for
each key; this is a disaster for applications handling many keys simultaneously,
but I didn’t think beyond a single key. Similarly, [11] (“UMAC”) uses large keys.

Krovetz and Rogaway in [21] suggested 64-bit coefficients modulo 264 − 59,
with an escape mechanism for coefficients between 264 − 59 and 264 − 1. They
did not claim competitive performance: their software, run twice to achieve a
reasonable 100-bit security level, was more than three times slower than hash127
(and more than six times slower for messages with all bits set). Krovetz and
Rogaway did point out, however, that their software did not require large tables.

In http://cr.yp.to/talks.html#2002.06.15, posted July 2002, I pointed
out that 128-bit coefficients over the slightly larger prime field Z/(2130−5) allow
excellent performance without precomputation. This paper explains Poly1305-
AES in much more detail.

Kohno, Viega, and Whiting subsequently suggested 96-bit coefficients modulo
2127 − 1 (“CWC HASH”). They published some non-competitive timings for
CWC HASH and then gave up on the idea. A careful implementation of CWC
HASH without precomputation would be quite fast, although still not as fast as
Poly1305-AES.

2 Specification

This section defines the Poly1305-AES function. The Poly1305-AES formula is
a straightforward polynomial evaluation modulo 2130 − 5; most of the detail is
in key format and message padding.

Messages

Poly1305-AES authenticates messages. A message is any sequence of bytes
m[0],m[1], . . . ,m[` − 1]; a byte is any element of {0, 1, . . . , 255}. The length
` can be any nonnegative integer, and can vary from one message to another.

Keys

Poly1305-AES authenticates messages using a 32-byte secret key shared by the
message sender and the message receiver. The key has two parts: first, a 16-
byte AES key k; second, a 16-byte string r[0], r[1], . . . , r[15]. The second part
of the key represents a 128-bit integer r in unsigned little-endian form: i.e.,
r = r[0] + 28r[1] + . . . + 2120r[15].

Certain bits of r are required to be 0: r[3], r[7], r[11], r[15] are required to
have their top four bits clear (i.e., to be in {0, 1, . . . , 15}), and r[4], r[8], r[12] are
required to have their bottom two bits clear (i.e., to be in {0, 4, 8, . . . , 252}). Thus
there are 2106 possibilities for r. In other words, r is required to have the form r0+
r1+r2+r3 where r0 ∈

{

0, 1, 2, 3, . . . , 228 − 1
}

, r1/232 ∈
{

0, 4, 8, 12, . . . , 228 − 4
}

,

r2/264 ∈
{

0, 4, 8, 12, . . . , 228 − 4
}

, and r3/296 ∈
{

0, 4, 8, 12, . . . , 228 − 4
}

.

Nonces

Poly1305-AES requires each message to be accompanied by a 16-byte nonce,
i.e., a unique message number. Poly1305-AES feeds each nonce n through AESk

to obtain the 16-byte string AESk(n).

There is nothing special about AES here. One can replace AES with an
arbitrary keyed function from an arbitrary set of nonces to 16-byte strings. This
paper focuses on AES for concreteness.

Conversion and padding

Let m[0],m[1], . . . ,m[` − 1] be a message. Write q = d`/16e. Define integers
c1, c2, . . . , cq ∈

{

1, 2, 3, . . . , 2129
}

as follows: if 1 ≤ i ≤ b`/16c then

ci = m[16i− 16] + 28m[16i− 15] + 216m[16i− 14] + · · ·+ 2120m[16i− 1] + 2128;

if ` is not a multiple of 16 then

cq = m[16q − 16] + 28m[16q − 15] + · · ·+ 28(` mod 16)−8m[`− 1] + 28(` mod 16).

In other words: Pad each 16-byte chunk of a message to 17 bytes by appending
a 1. If the message has a final chunk between 1 and 15 bytes, append 1 to the
chunk, and then zero-pad the chunk to 17 bytes. Either way, treat the resulting
17-byte chunk as an unsigned little-endian integer.

Authenticators

Poly1305r(m,AESk(n)), the Poly1305-AES authenticator of a message m with
nonce n under secret key (k, r), is defined as the 16-byte unsigned little-endian
representation of

(((c1r
q + c2r

q−1 + · · ·+ cqr
1) mod 2130 − 5) + AESk(n)) mod 2128.

Here the 16-byte string AESk(n) is treated as an unsigned little-endian integer,
and c1, c2, . . . , cq are the integers defined above. See Appendix B for examples.

Sample code

The following C++ code reads k from k[0], k[1], . . . , k[15], reads r from
r[0], r[1], . . . , r[15], reads AESk(n) from s[0], s[1], . . . , s[15], reads m
from m[0], m[1], . . . , m[l-1], and places Poly1305r(m,AESk(n)) into out[0],
out[1], . . . , out[15]:

#include <gmpxx.h>

void poly1305_gmpxx(unsigned char *out,

const unsigned char *r,

const unsigned char *s,

const unsigned char *m,unsigned int l)

{

unsigned int j;

mpz_class rbar = 0;

for (j = 0;j < 16;++j)

rbar += ((mpz_class) r[j]) << (8 * j);

mpz_class h = 0;

mpz_class p = (((mpz_class) 1) << 130) - 5;

while (l > 0) {

mpz_class c = 0;

for (j = 0;(j < 16) && (j < l);++j)

c += ((mpz_class) m[j]) << (8 * j);

c += ((mpz_class) 1) << (8 * j);

m += j; l -= j;

h = ((h + c) * rbar) % p;

}

for (j = 0;j < 16;++j)

h += ((mpz_class) s[j]) << (8 * j);

for (j = 0;j < 16;++j) {

mpz_class c = h % 256;

h >>= 8;

out[j] = c.get_ui();

}

}

See [16] for the underlying integer-arithmetic library, gmpxx.
This code is not meant as a high-speed implementation; it does not have even

the simplest speedups; it should be expected to provide intolerable performance.
It is simply a secondary statement of the definition of Poly1305-AES.

Design decisions

I considered various primes above 2128. I chose 2130 − 5 because its sparse form
makes divisions particularly easy in both software and hardware. My encoding
of messages as polynomials takes advantage of the gap between 2128 and 2130−5.

There are several reasons that Poly1305-AES uses nonces. First, comparable
protocols without nonces have security bounds that look like C(C + D)L/2106

rather than DL/2106—here C is the number of messages authenticated by the
sender, D is the number of forgery attempts, and L is the maximum message
length—and thus cannot be used with confidence for large C. Second, nonces
allow the invocation of AES to be carried out in parallel with most of the other
operations in Poly1305-AES, reducing latency in many contexts. Third, most
protocols have nonces anyway, for a variety of reasons: nonces are required for
secure encryption, for example, and nonces allow trivial rejection of replayed
messages.

I constrained r to simplify and accelerate implementations of Poly1305-AES
in various contexts. A wider range of r—e.g., all 128-bit integers—would allow
a quantitatively better security bound, but the current bound DL/2106 will be
perfectly satisfactory for the foreseeable future, whereas slower authenticator
computations would not be perfectly satisfactory.

I chose little-endian instead of big-endian to improve overall performance.
Little-endian saves time on the most popular CPUs (the Pentium and Athlon)
while making no difference on most other CPUs (the PowerPC, for example, and
the UltraSPARC).

The definition of Poly1305-AES could easily be extended from byte strings
to bit strings, but there is no apparent benefit of doing so.

3 Security

This section discusses the security of Poly1305-AES.

Responsibilities of the user

Any protocol that uses Poly1305-AES must ensure unpredictability of the secret
key (k, r). This section assumes that secret keys are chosen from the uniform
distribution: i.e., probability 2−234 for each of the 2234 possible pairs (k, r).

Any protocol that uses Poly1305-AES must ensure that the secret key is, in
fact, kept secret. This section assumes that all operations are independent of
(k, r), except for the computation of authenticators by the sender and receiver.

(There are safe ways to reuse k for encryption, but those ways are not analyzed
in this paper.)

The sender must never use the same nonce for two different messages. The
simplest way to achieve this is for the sender to use an increasing sequence of
nonces in, e.g., reverse-lexicographic order of 16-byte strings. (Problem: If a key
is stored on disk, while increasing nonce values are stored in memory, what
happens when the power goes out? Solution: Store a safe nonce value—a new
nonce larger than any nonce used—on disk alongside the key.) Any protocol
that uses Poly1305-AES must specify a mechanism of nonce generation and
maintenance that prevents duplicates.

Security guarantee

Poly1305-AES guarantees that the only way for the attacker to find an (n,m, a)
such that a = Poly1305r(m,AESk(n)), other than the authenticated messages
(n,m, a) sent by the sender, is to break AES. If the attacker cannot break AES,
and the receiver discards all (n,m, a) such that a 6= Poly1305r(m,AESk(n)),
then the receiver will see only messages authenticated by the sender.

This guarantee is not limited to “meaningful” messages m. It is true even if
the attacker can see all the authenticated messages sent by the sender. It is true
even if the attacker can see whether the receiver accepts a forgery. It is true even
if the attacker can influence the sender’s choice of messages and unique nonces.
(But it is not true if the nonce-uniqueness rule is violated.)

Here is a quantitative form of the guarantee. Assume that the attacker sees at
most C authenticated messages and attempts at most D forgeries. Assume that
the attacker has probability at most δ of distinguishing AESk from a uniform
random permutation after C +D queries. Assume that all messages have length
at most L. Then, with probability at least

1− δ −
(1− C/2128)−(C+1)/28DdL/16e

2106
,

all of the attacker’s forgeries are discarded. In particular, if C ≤ 264, then
the attacker’s chance of success is at most δ + 1.649 · 8DdL/16e/2106 < δ +
14DdL/16e/2106.

The most important design goal of AES was for δ to be small. There is,
however, no hope of proving that δ is small. Perhaps AES will be broken someday.
If that happens, users should switch to Poly1305-AnotherFunction. Poly1305-
AnotherFunction provides the same security guarantee relative to the security
of AnotherFunction.

Proof of the security guarantee

For each message m, write m for the polynomial c1x
q +c2x

q−1+· · ·+cqx
1, where

q, c1, c2, . . . , cq are defined as in Section 2. Define Hr(m) as the 16-byte unsigned
little-endian representation of (m(r) mod 2130 − 5) mod 2128; note that Hr and

k are independent. Define a group operation + on 16-byte strings as addition
modulo 2128, where each 16-byte string is viewed as the unsigned little-endian
representation of an integer in

{

0, 1, 2, . . . , 2128 − 1
}

. Then the authenticator
Poly1305r(m,AESk(n)) is equal to Hr(m) + AESk(n).

The crucial property of Hr is that it has small differential probabilities: if g
is a 16-byte string, and m,m′ are distinct messages of length at most L, then
Hr(m) = Hr(m

′) + g with probability at most 8dL/16e/2106. See below.
Theorem 5.4 of [8] now guarantees that Hr(m)+AESk(n) is secure if AES is

secure: specifically, that the attacker’s success chance against Hr(m)+AESk(n)
is at most δ + D(1− C/2128)−(C+1)/28dL/16e/2106.

The rest of this section is devoted to proving that Hr has small differential
probabilities.

Theorem 3.1. 2130 − 5 is prime.

Proof. Define p1 = (2130 − 6)/1517314646 and p2 = (p1 − 1)/222890620702.
Observe that 37003 and 221101 are prime divisors of p2− 1; (37003 · 221101)2 >
p2; 2p2−1−1 is divisible by p2; 2(p2−1)/37003−1 and 2(p2−1)/221101−1 are coprime
to p2; p2

2 > p1; 2p1−1 − 1 is divisible by p1; 2(p1−1)/p2 − 1 is coprime to p1;

p2
1 > 2130 − 5; 22130

−6− 1 is divisible by 2130 − 5; and 2(2130
−6)/p1 − 1 is coprime

to 2130 − 5. Hence p2, p1, and 2130 − 5 are prime by Pocklington’s theorem. ut

Theorem 3.2. Let m and m′ be messages. Let u be an integer. If the polynomial

m′ −m− u is zero modulo 2130 − 5 then m = m′.

Proof. Define c1, c2, . . . , cq as above, and define c′1, c
′

2, . . . , c
′

q′ for m′ similarly.
If q > q′ then the coefficient of xq in m′−m is 0−c1. By construction c1 is in

{

1, 2, 3, . . . , 2129
}

, so it is nonzero modulo 2130 − 5; contradiction. Thus q ≤ q′.
Similarly q ≥ q′. Hence q = q′.

If i ∈ {1, 2, . . . , q} then ci−c′i is the coefficient of xq+1−i in m′−m−u, which
by hypothesis is divisible by 2130 − 5. But ci − c′i is between −2129 and 2129 by
construction. Hence ci = c′i. In particular, cq = c′q.

Define ` as the number of bytes in m. Recall that q = d`/16e; thus ` is
between 16q − 15 and 16q. The exact value of ` is determined by q and cq: it is
16q if 2128 ≤ cq, 16q − 1 if 2120 ≤ cq < 2121, 16q − 2 if 2112 ≤ cq < 2113, . . . ,
16q − 15 if 28 ≤ cq < 29. Hence m′ also has ` bytes.

Now consider any j ∈ {0, 1, . . . , `− 1}. Write i = bj/16c+1; then 16i− 16 ≤
j ≤ 16i − 1, and 1 ≤ i ≤ d`/16e = q, so m[j] =

⌊

ci/28(j−16i+16)
⌋

mod 256 =
⌊

c′i/28(j−16i+16)
⌋

mod 256 = m′[j]. Hence m = m′. ut

Theorem 3.3. Let m,m′ be distinct messages, each having at most L bytes. Let

g be a 16-byte string. Let R be a subset of
{

0, 1, . . . , 2130 − 6
}

. Then there are

at most 8dL/16e integers r ∈ R such that Hr(m) = Hr(m
′) + g.

Consequently, if #R = 2106, and if r is a uniform random element of R, then
Hr(m) = Hr(m

′) + g with probability at most 8dL/16e/2106.

Proof. Define U as the set of integers in [−2130 + 6, 2130 − 6] congruent to g
modulo 2128. Note that #U ≤ 8.

If Hr(m) = Hr(m
′)+ g then (m′(r) mod 2130− 5)− (m(r) mod 2130− 5) ≡ g

(mod 2128) so (m′(r) mod 2130 − 5)− (m(r) mod 2130 − 5) = u for some u ∈ U .
Hence r is a root of the polynomial m′−m− u modulo the prime 2130− 5. This
polynomial is nonzero by Theorem 3.2, and has degree at most dL/16e, so it
has at most dL/16e roots modulo 2130 − 5. Sum over all u ∈ U : there are most
8dL/16e possibilities for r. ut

4 A floating-point implementation

This section explains how to compute Poly1305r(m,AESk(n)), given (k, r, n,m),
at very high speeds on common general-purpose CPUs.

These techniques are used by my poly1305aes software library to achieve the
Poly1305-AES speeds reported in Section 1. See Appendix A for further speed
information. The software itself is available from http://cr.yp.to/mac.html.

The current version of poly1305aes includes separate implementations of
Poly1305-AES for the Athlon, the Pentium, the PowerPC, and the UltraSPARC;
it also includes a backup C implementation to handle other CPUs. This section
focuses on the Athlon for concreteness.

Outline

The overall strategy to compute Poly1305r(m,AESk(n)) is as follows. Start by
setting an accumulator h to 0. For each chunk c of the message m, first set
h ← h + c, and then set h ← rh. Periodically reduce h modulo 2130 − 5, not
necessarily to the smallest remainder but to something small enough to continue
the computation. After all input chunks c are processed, fully reduce h modulo
2130 − 5, and add AESk(n).

Large-integer arithmetic in floating-point registers

Represent each of h, c, r as a sum of floating-point numbers, as in [7]. Specifically:

• As in Section 2, write r as r0 + r1 + r2 + r3 where r0 ∈
{

0, 1, 2, . . . , 228 − 1
}

,

r1/232 ∈
{

0, 4, 8, . . . , 228 − 4
}

, r2/264 ∈
{

0, 4, 8, . . . , 228 − 4
}

, and r3/296 ∈
{

0, 4, 8, . . . , 228 − 4
}

. Store each of r0, r1, r2, r3, 5 · 2−130r1, 5 · 2−130r2,
5 · 2−130r3 in memory in 8-byte floating-point format.

• Write each message chunk c as d0 + d1 + d2 + d3 where d0, d1/232, d2/264 ∈
{

0, 1, 2, 3, . . . , 232 − 1
}

and d3/296 ∈
{

0, 1, 2, 3, . . . , 234 − 1
}

.
• Write h as h0 + h1 + h2 + h3 where hi is a multiple of 232i in the range

specified below. Store each hi in one of the Athlon’s floating-point registers.

Warning: The FreeBSD operating system starts each program by instructing
the CPU to round all floating-point mantissas to 53 bits, rather than using the

CPU’s natural 64-bit precision. Make sure to disable this instruction. Under gcc,
for example, the code asm volatile("fldcw %0"::"m"(0x137f)) specifies full
64-bit mantissas.

To set h← h+c, set h0 ← h0 +d0, h1 ← h1 +d1, h2 ← h2 +d2, h3 ← h3 +d3.
Before these additions, h0, h1/232, h2/264, h3/296 are required to be integers in
[−(63/128) · 264, (63/128) · 264]. After these additions, h0, h1/232, h2/264, h3/296

are integers in [−(127/256) · 264, (127/256) · 264].
Before multiplying h by r, reduce the range of each hi by performing four

parallel carries as follows:

• Define α0 = 295+294, α1 = 2127+2126, α2 = 2159+2158, and α3 = 2193+2192.
• Compute yi = fp64(hi + αi)−αi and xi = hi − yi. Here fp64(hi + αi) means

the 64-bit-mantissa floating-point number closest to hi +αi, with ties broken
in the usual way; see [3]. Then y0/232, y1/264, y2/296, y3/2130 are integers.

• Set h0 ← x0 + 5 · 2−130y3, h1 ← x1 + y0, h2 ← x2 + y1, and h3 ← x3 + y2.

This substitution changes h by (2130 − 5)2−130y3, so it does not change h mod
2130−5. There are 17 floating-point operations here: 8 additions, 8 subtractions,
and 1 multiplication by the constant 5 · 2−130.

Ranges: x0, x1/232, and x2/264 are in [−(1/2) · 232, (1/2) · 232]; x3/296 is
in [−2 · 232, 2 · 232]; y0/232, y1/264, y2/296, and y3/2128 are in [−(127/256) ·
232, (127/256) · 232]; h0 is in [−(1147/1024) · 232, (1147/1024) · 232]; h1/232 is in
[−(255/256) · 232, (255/256) · 232]; h2/264 is in [−(255/256) · 232, (255/256) · 232];
h3/296 is in [−(639/256) · 232, (639/256) · 232].

To multiply h by r modulo 2130 − 5, replace (h0, h1, h2, h3) with

(r0h0 + 5 · 2−130r1h3 + 5 · 2−130r2h2 + 5 · 2−130r3h1,
r0h1 + r1h0 + 5 · 2−130r2h3 + 5 · 2−130r3h2,
r0h2 + r1h1 + r2h0 + 5 · 2−130r3h3,
r0h3 + r1h2 + r2h1 + r3h0).

Recall that 2−34r1, 2−66r2, and 2−98r3 are integers, so 2−130r1h3, 2−130r2h2,
and 2−130r3h1 are integers; similarly, 2−130r2h3 and 2−130r3h2 are multiples of
232, and 2−130r3h3 is a multiple of 264. There are 28 floating-point operations
here: 16 multiplications and 12 additions.

Ranges: h0, h1/232, h2/264, h3/296 are now integers of absolute value at most
228(1147/1024 + 2 · (5/4)255/256 + (5/4)639/256)232 < (63/128)264, ready for
the next iteration of the inner loop.

Note that the carries can be omitted on the first loop: d0 is an integer in
[0, 232]; d1/232 is an integer in [0, 232]; d2/264 is an integer in [0, 232]; d3/296 is
an integer in [0, 3 · 232]; and 228(1 + (5/4) + (5/4) + (5/4)3)232 < (63/128)264.

Output conversion

After the last message chunk is processed, carry one last time, to put h0, h1, h2, h3

into the small ranges listed above.

Add 2130−297 to h3; add 297−265 to h2; add 265−233 to h1; and add 233−5
to h0. This makes each hi positive, and puts h = h0 +h1 +h2 +h3 into the range
{

0, 1, . . . , 2(2130 − 5)− 1
}

.
Perform a few integer add-with-carry operations to convert the accumulator

into a series of 32-bit words in the usual form. Subtract 2130 − 5, and keep the
result if it is nonnegative, being careful to use constant-time operations so that
no information is leaked through timing.

Finally, add AESk(n). There are two reasons to pay close attention to the
AES computation:

• It is extremely difficult to write high-speed constant-time AES software.
Typical AES software leaks key bytes to the simplest conceivable timing
attack. See [6]. My new AES implementations go to extensive effort to reduce
the AES timing variability.

• The time to compute AESk(n) from (k, n) is more than half of the time
to compute Poly1305r(m,AESk(n)) for short messages, and remains quite
noticeable for longer messages. My new AES implementations are, as far as
I know, the fastest available software for computing AESk(n) from (k, n). Of
course, if there is room in cache, then one can save some time by instead
computing AESk(n) from (K,n), where K is a pre-expanded version of k.

Details of the AES computation are not discussed in this paper but are discussed
in the poly1305aes documentation.

Instruction selection and scheduling

Consider an integer (such as d0) between 0 and 232 − 1, stored in the usual way
as four bytes. How does one load the integer into a floating-point register, when
the Athlon does not have a load-four-byte-unsigned-integer instruction? Here are
three possibilities:

• Concatenate the four bytes with (0, 0, 0, 0), and use the Athlon’s load-eight-
byte-signed-integer instruction. Unfortunately, the four-byte store forces the
eight-byte load to wait for dozens of cycles.

• Concatenate the bytes with (0, 0, 56, 67), producing an eight-byte floating-
point number. Load that number, and subtract 252+251 to obtain the desired
integer. This well-known trick has the virtue of also allowing the integer to
be scaled by (e.g.) 232: replace 67 with 69 and 252 + 251 with 284 + 283.
Unfortunately, as above, the four-byte store forces the eight-byte load to
wait for dozens of cycles.

• Subtract 231 from the integer, use the Athlon’s load-four-byte-signed-integer
instruction, and add 231 to the result. This has smaller latency, but puts
more pressure on the floating-point unit.

Top performance requires making the right choice.
(A variant of Poly1305-AES using signed 32-bit integers would save time on

the Athlon. On the other hand, it would lose time on typical 64-bit CPUs.)

This is merely one example of several low-level issues that can drastically
affect speed: instruction selection, instruction scheduling, register assignment,
instruction fetching, etc. A “fast” implementation of Poly1305-AES, with just
a few typical low-level mistakes, will use twice as many cycles per byte as the
software described here.

Other modern CPUs

The same floating-point operations also run at high speed on the Pentium 1,
Pentium MMX, Pentium Pro, Pentium II, Pentium III, Pentium 4, Pentium M,
Celeron, Duron, et al.

The UltraSPARC, PowerPC, et al. support fast arithmetic on floating-point
numbers with 53-bit, rather than 64-bit, mantissas. The simplest way to achieve
good performance on these chips is to break a 32-bit number into two 16-bit
pieces before multiplying it by another 32-bit number.

As in the case of the Athlon, careful attention to low-level CPU details is
necessary for top performance.

5 Other implementation strategies

Some people, upon hearing that there is a tricky way to use the Athlon’s floating-
point unit to compute a function quickly, leap to the unjustified conclusion that
the same function cannot be computed quickly except on an Athlon. Consider,
for example, the incorrect statement “hash-127 needs good hardware support
for a fast implementation” in [17, footnote 3].

This section outlines three non-floating-point methods to compute Poly1305-
AES, and indicates contexts where the methods are useful.

Integer registers

The 130-bit accumulator in Poly1305-AES can be spread among several integer
registers rather than several floating-point registers.

This is good for low-end CPUs that do not support floating-point operations
but that still have reasonably fast integer multipliers. It is also good for some
high-end CPUs, such as the Athlon 64, that offer faster multiplication through
integer registers than through floating-point registers.

Tables

One can make a table of the integers r, 2r, 4r, 8r, . . . , 2129r modulo 2130 − 5, and
then multiply any 130-bit integer by r by adding, on average, about 65 elements
of the table.

One can reduce the amount of work by using both additions and subtractions,
by increasing the table size, and by choosing table entries more carefully. For
example, one can include 3r, 24r, 192r, . . . in the table, and then multiply any

130-bit integer by r by adding and subtracting, on average, about 38 elements
of the table. This is a special case of an algorithm often credited to Brickell,
Gordon, McCurley, Wilson, Lim, and Lee, but actually introduced much earlier
by Pippenger in [23].

One can also balance the table size against the effort in reduction modulo
2130 − 5. Consider, for example, the table r, 2r, 3r, 4r, . . . , 255r.

Table lookups are often the best approach for tiny CPUs that do not have
any fast multiplication operations. Of course, their key agility is poor, and they
are susceptible to timing attacks if they are not implemented very carefully.

Special-purpose circuits

An 1800MHz AMD Duron, costing under $50, can feed 4 gigabits per second
of 1500-byte messages through Poly1305-AES with the software discussed in
Section 4. Hardware implementations of Poly1305-AES can strip away a great
deal of unnecessary cost: the multiplier is only part of the cost of the Duron;
furthermore, some of the multiplications are by sparse constants; furthermore,
only about 20% of the multiplier area is doing any useful work, since each input
is much smaller than 64 bits; furthermore, almost all carries can be deferred
until the end of the Poly1305-AES computation, rather than being performed
after each multiplication; furthermore, hardware implementations need not, and
should not, imitate traditional software structures—one can directly build a fast
multiplier modulo 2130−5, taking advantage of more sophisticated multiplication
algorithms than those used in the Duron. Evidently Poly1305-AES can handle
next-generation Ethernet speeds at reasonable cost.

References

1. —, 17th annual symposium on foundations of computer science, IEEE Computer
Society, Long Beach, California, 1976. MR 56:1766.

2. —, 20th annual symposium on foundations of computer science, IEEE Computer
Society, New York, 1979. MR 82a:68004.

3. —, IEEE standard for binary floating-point arithmetic, Standard 754–1985, Insti-
tute of Electrical and Electronics Engineers, New York, 1985.

4. Valentine Afanassiev, Christian Gehrmann, Ben Smeets, Fast message authentica-
tion using efficient polynomial evaluation, in [10] (1997), 190–204. URL: http://
cr.yp.to/bib/entries.html#1997/afanassiev.

5. Daniel J. Bernstein, Guaranteed message authentication faster than MD5 (abstract)
(1999). URL: http://cr.yp.to/papers.html#hash127-abs.

6. Daniel J. Bernstein, Cache-timing attacks on AES (2004). URL: http://cr.yp.to/
papers.html#cachetiming. ID cd9faae9bd5308c440df50fc26a517b4.

7. Daniel J. Bernstein, Floating-point arithmetic and message authentication (2004).
URL: http://cr.yp.to/papers.html#hash127. ID dabadd3095644704c5cbe9690

ea3738e.
8. Daniel J. Bernstein, Stronger security bounds for Wegman-Carter-Shoup authenti-

cators, Proceedings of Eurocrypt 2005, to appear (2005). URL: http://cr.yp.to/
papers.html#securitywcs. ID 2d603727f69542f30f7da2832240c1ad.

9. Jürgen Bierbrauer, Thomas Johansson, Gregory Kabatianskii, Ben Smeets, On
families of hash functions via geometric codes and concatenation, in [30] (1994),
331–342. URL: http://cr.yp.to/bib/entries.html#1994/bierbrauer.

10. Eli Biham (editor), Fast Software Encryption ’97, Lecture Notes in Computer
Science, 1267, Springer-Verlag, Berlin, 1997. ISBN 3–540–63247–6.

11. John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, Phillip Rogaway, UMAC:
fast and secure message authentication, in [34] (1999), 216–233. URL: http://

www.cs.ucdavis.edu/~rogaway/umac/.
12. Gilles Brassard, On computationally secure authentication tags requiring short

secret shared keys, in [13] (1983), 79–86. URL: http://cr.yp.to/bib/entries.
html#1983/brassard.

13. David Chaum, Ronald L. Rivest, Alan T. Sherman (editors), Advances in cryptol-
ogy: proceedings of Crypto 82, Plenum Press, New York, 1983. ISBN 0–306–41366–
3. MR 84j:94004.

14. Bert den Boer, A simple and key-economical unconditional authentication scheme,
Journal of Computer Security 2 (1993), 65–71. ISSN 0926–227X. URL: http://
cr.yp.to/bib/entries.html#1993/denboer.

15. Edgar N. Gilbert, F. Jessie MacWilliams, Neil J. A. Sloane, Codes which detect
deception, Bell System Technical Journal 53 (1974), 405–424. ISSN 0005–8580. MR
55:5306. URL: http://cr.yp.to/bib/entries.html#1974/gilbert.

16. Torbjorn Granlund (editor), GMP 4.1.2: GNU multiple precision arithmetic library
(2004). URL: http://www.swox.com/gmp/.

17. Shai Halevi, Phil Rogaway, A tweakable enciphering mode (2003). URL: http://
www.research.ibm.com/people/s/shaih/pubs/hr03.html.

18. Michael Kaminski, A linear time algorithm for residue computation and a fast
algorithm for division with a sparse divisor, Journal of the ACM 34 (1987), 968–
984. ISSN 0004–5411. MR 89f:68033.

19. Richard M. Karp, Michael O. Rabin, Efficient randomized pattern-matching al-
gorithms, IBM Journal of Research and Development 31 (1987), 249–260. ISSN
0018–8646. URL: http://cr.yp.to/bib/entries.html#1987/karp.

20. Neal Koblitz (editor), Advances in cryptology—CRYPTO ’96, Lecture Notes in
Computer Science, 1109, Springer-Verlag, Berlin, 1996.

21. Ted Krovetz, Phillip Rogaway, Fast universal hashing with small keys and no pre-
processing: the PolyR construction (2000). URL: http://www.cs.ucdavis.edu/

~rogaway/papers/poly.htm.
22. Wim Nevelsteen, Bart Preneel, Software performance of universal hash functions,

in [29] (1999), 24–41.
23. Nicholas Pippenger, On the evaluation of powers and related problems (preliminary

version), in [1] (1976), 258–263; newer version split into [24] and [25]. MR 58:3682.
URL: http://cr.yp.to/bib/entries.html#1976/pippenger.

24. Nicholas Pippenger, The minimum number of edges in graphs with prescribed
paths, Mathematical Systems Theory 12 (1979), 325–346; see also older version
[23]. ISSN 0025–5661. MR 81e:05079. URL: http://cr.yp.to/bib/entries.html#
1979/pippenger.

25. Nicholas Pippenger, On the evaluation of powers and monomials, SIAM Journal
on Computing 9 (1980), 230–250; see also older version [23]. ISSN 0097–5397. MR
82c:10064. URL: http://cr.yp.to/bib/entries.html#1980/pippenger.

26. Michael O. Rabin, Fingerprinting by random polynomials, Harvard Aiken Com-
putational Laboratory TR-15-81 (1981). URL: http://cr.yp.to/bib/entries.

html#1981/rabin.

27. Victor Shoup, On fast and provably secure message authentication based on uni-
versal hashing, in [20] (1996), 313–328; see also newer version [28].

28. Victor Shoup, On fast and provably secure message authentication based on uni-
versal hashing (1996); see also older version [27]. URL: http://www.shoup.net/
papers.

29. Jacques Stern (editor), Advances in cryptology: EUROCRYPT ’99, Lecture Notes
in Computer Science, 1592, Springer-Verlag, Berlin, 1999. ISBN 3–540–65889–0.
MR 2000i:94001.

30. Douglas R. Stinson (editor), Advances in cryptology—CRYPTO ’93: 13th annual
international cryptology conference, Santa Barbara, California, USA, August 22–
26, 1993, proceedings, Lecture Notes in Computer Science, 773, Springer-Verlag,
Berlin, 1994. ISBN 3–540–57766–1, 0–387–57766–1. MR 95b:94002.

31. Richard Taylor, An integrity check value algorithm for stream ciphers, in [30]
(1994), 40–48. URL: http://cr.yp.to/bib/entries.html#1994/taylor.

32. Mark N. Wegman, J. Lawrence Carter, New classes and applications of hash func-
tions, in [2] (1979), 175–182; see also newer version [33]. URL: http://cr.yp.to/
bib/entries.html#1979/wegman.

33. Mark N. Wegman, J. Lawrence Carter, New hash functions and their use in au-
thentication and set equality, Journal of Computer and System Sciences 22 (1981),
265–279; see also older version [32]. ISSN 0022–0000. MR 82i:68017. URL: http://
cr.yp.to/bib/entries.html#1981/wegman.

34. Michael Wiener (editor), Advances in cryptology—CRYPTO ’99, Lecture Notes
in Computer Science, 1666, Springer-Verlag, Berlin, 1999. ISBN 3–5540–66347–9.
MR 2000h:94003.

A Appendix: Speed graphs

These graphs show the time to verify an authenticator in various situations. The
horizontal axis on the graphs is message length, from 0 bytes to 4096 bytes. The
vertical axis on the graphs is time, from 0 CPU cycles to 24576 CPU cycles;
time includes function-call overhead, timing overhead, etc. The bottom-left-to-
top-right diagonal is 6 CPU cycles per byte. Color scheme:

• Non-reddish (black, green, dark blue, light blue): Keys are in cache.
• Reddish (red, yellow, purple, gray): Keys are not in cache. Loading the keys

from DRAM takes extra time.
• Non-greenish (black, red, dark blue, purple): Messages, authenticators, and

nonces are in cache.
• Greenish (green, yellow, light blue, gray): Messages, authenticators, and

nonces are not in cache. Loading the data from DRAM takes extra time,
typically growing with the message length.

• Non-blueish (black, red, green, yellow): Keys, message, authenticators, and
nonces are aligned.

• Blueish (dark blue, purple, light blue, gray): Keys, message, authenticators,
and nonces are unaligned. This hurts some CPUs.

The graphs include code in cache and code out of cache, with no color change.
The out-of-cache case costs between 10000 and 30000 cycles, depending on the
CPU; it is often faintly visible as a cloud above the in-cache case.

Lengths divisible by 16 are slightly faster than lengths not divisible by 16.
The best case in (almost) every graph is length divisible by 16, everything in
cache, everything aligned; this case is visible as 256 black dots at the bottom of
the graph.

In black-and-white printouts, the keys-not-in-cache case is a slightly higher
line at the same slope; the data-not-in-cache case is a line at a considerably
higher slope; the unaligned case is a line at a slightly higher slope.

See http://cr.yp.to/mac/speed.html for much more speed information.

AMD Athlon, 900MHz: IBM PowerPC RS64 IV, 668MHz:

Intel Pentium III, 500MHz: Intel Pentium III, 850MHz:

Intel Pentium III, 1000MHz: Intel Pentium 4, 1900MHz:

Intel Pentium 4, 3400MHz: Intel Pentium M, 1300MHz:

Motorola PowerPC 7410, 533MHz: Sun UltraSPARC II, 296MHz:

Sun UltraSPARC IIi, 360MHz: Sun UltraSPARC III, 900MHz:

Two notes: 1. The load-keys-from-DRAM penalty (red) is quite small, thanks
to Poly1305-AES’s key agility. On the PowerPC 7410, keys in cache are slower

than keys out of cache, presumably because of a cache-associativity accident
that slightly more sophisticated code will be able to avoid.

2. The load-data-from-DRAM penalty (green) is generally quite noticeable.
I have not yet experimented with prefetch instructions. But the penalty is small
on the Pentium 4 and almost invisible on the Pentium M; the Pentium M does
a good job of figuring out for itself which data to prefetch.

B Appendix: Examples

The following table, with all integers on the right displayed in hexadecimal,
illustrates authenticator computations for strings of length 2, 0, 32, and 63. The
notation m(r) means c1r

q +c2r
q−1 + · · ·+cqr

1. A much more extensive test suite
appears in http://cr.yp.to/mac/test.html.

m f3 f6

c1 00000000000000000000000000001f6f3

r 85 1f c4 0c 34 67 ac 0b e0 5c c2 04 04 f3 f7 00

m(r) mod 2130 − 5 321e58e25a69d7f8f27060770b3f8bb9c

k ec 07 4c 83 55 80 74 17 01 42 5b 62 32 35 ad d6

n fb 44 73 50 c4 e8 68 c5 2a c3 27 5c f9 d4 32 7e

AESk(n) 58 0b 3b 0f 94 47 bb 1e 69 d0 95 b5 92 8b 6d bc

Poly1305r(m,AESk(n)) f4 c6 33 c3 04 4f c1 45 f8 4f 33 5c b8 19 53 de

m
r a0 f3 08 00 00 f4 64 00 d0 c7 e9 07 6c 83 44 03

m(r) mod 2130 − 5 000000000000000000000000000000000

k 75 de aa 25 c0 9f 20 8e 1d c4 ce 6b 5c ad 3f bf

n 61 ee 09 21 8d 29 b0 aa ed 7e 15 4a 2c 55 09 cc

AESk(n) dd 3f ab 22 51 f1 1a c7 59 f0 88 71 29 cc 2e e7

Poly1305r(m,AESk(n)) dd 3f ab 22 51 f1 1a c7 59 f0 88 71 29 cc 2e e7

m 66 3c ea 19 0f fb 83 d8 95 93 f3 f4 76 b6 bc 24

d7 e6 79 10 7e a2 6a db 8c af 66 52 d0 65 61 36

c1 124bcb676f4f39395d883fb0f19ea3c66

c2 1366165d05266af8cdb6aa27e1079e6d7

r 48 44 3d 0b b0 d2 11 09 c8 9a 10 0b 5c e2 c2 08

m(r) mod 2130 − 5 1cfb6f98add6a0ea7c631de020225cc8b

k 6a cb 5f 61 a7 17 6d d3 20 c5 c1 eb 2e dc dc 74

n ae 21 2a 55 39 97 29 59 5d ea 45 8b c6 21 ff 0e

AESk(n) 83 14 9c 69 b5 61 dd 88 29 8a 17 98 b1 07 16 ef

Poly1305r(m,AESk(n)) 0e e1 c1 6b b7 3f 0f 4f d1 98 81 75 3c 01 cd be

m ab 08 12 72 4a 7f 1e 34 27 42 cb ed 37 4d 94 d1

36 c6 b8 79 5d 45 b3 81 98 30 f2 c0 44 91 fa f0

99 0c 62 e4 8b 80 18 b2 c3 e4 a0 fa 31 34 cb 67

fa 83 e1 58 c9 94 d9 61 c4 cb 21 09 5c 1b f9

c1 1d1944d37edcb4227341e7f4a721208ab

c2 1f0fa9144c0f2309881b3455d79b8c636

c3 167cb3431faa0e4c3b218808be4620c99

c4 001f91b5c0921cbc461d994c958e183fa

r 12 97 6a 08 c4 42 6d 0c e8 a8 24 07 c4 f4 82 07

m(r) mod 2130 − 5 0c3c4f37c464bbd44306c9f8502ea5bd1

k e1 a5 66 8a 4d 5b 66 a5 f6 8c c5 42 4e d5 98 2d

n 9a e8 31 e7 43 97 8d 3a 23 52 7c 71 28 14 9e 3a

AESk(n) 80 f8 c2 0a a7 12 02 d1 e2 91 79 cb cb 55 5a 57

Poly1305r(m,AESk(n)) 51 54 ad 0d 2c b2 6e 01 27 4f c5 11 48 49 1f 1b

