
The Poly1305-AES message-authentication code

Daniel J. Bernstein ?

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago

Chicago, IL 60607–7045
djb@cr.yp.to

Abstract. Poly1305-AES is a state-of-the-art message-authentication
code suitable for a wide variety of applications. Poly1305-AES computes
a 16-byte authenticator of a variable-length message, using a 16-byte
AES key, a 16-byte additional key, and a 16-byte nonce. The security of
Poly1305-AES is very close to the security of AES; the security gap is
at most 14DdL/16e/2106 if messages have at most L bytes, the attacker
sees at most 264 authenticated messages, and the attacker attempts D
forgeries. Poly1305-AES can be computed at extremely high speed: for
example, fewer than 3.625(` + 170) Athlon cycles for an `-byte message.
This speed is achieved without precomputation; consequently, 1000 keys
can be handled simultaneously without cache misses. Special-purpose
hardware can compute Poly1305-AES at even higher speed. Poly1305-
AES is parallelizable, incremental, and not subject to any intellectual-
property claims.

Keywords: key agility, authentication, MAC, polynomial evaluation,
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1 Introduction

This paper introduces and analyzes Poly1305-AES, a state-of-the-art secret-key
message-authentication code suitable for a wide variety of applications.

Poly1305-AES computes a 16-byte authenticator Poly1305r(m,AESk(n)) of
a variable-length message m, using a 16-byte AES key k, a 16-byte additional
key r, and a 16-byte nonce n. Section 2 of this paper presents the complete
definition of Poly1305-AES.

Poly1305-AES has several useful features:
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• Guaranteed security if AES is secure. The security gap is small, even for
long-term keys. Assume, for example, that messages are packets up to 1024
bytes; that the attacker sees 264 messages authenticated under a Poly1305-
AES key; that the attacker attempts a whopping 275 forgeries; and that the
attacker cannot break AES with probability above δ. Then, with probability
at least 0.999999− δ, all of the 275 forgeries are rejected.

• Cipher replaceability. If anything does go wrong with AES, users can
switch from Poly1305-AES to Poly1305-AnotherFunction, with an identical
security guarantee. All the effort invested in the non-AES part of Poly1305-
AES can be reused; the non-AES part of Poly1305-AES cannot be broken.

• Extremely high speed. Poly1305-AES can take advantage of the fast
floating-point multipliers in popular CPUs. My Poly1305-AES software takes
just 4212 Athlon cycles for a 1024-byte message. Special-purpose hardware
can compute Poly1305-AES at even higher speed using integer multipliers.
Much smaller processors can compute Poly1305-AES at reasonable speed
using table lookups.

• Low per-message overhead. Poly1305-AES achieves good performance
even for short messages. The same software takes just 577 Athlon cycles
for a 16-byte message and 764 Athlon cycles for a 64-byte message. Most
competing functions have much larger overhead for each message; they are
optimized solely for large packets, even though a large fraction of Internet
packets are below 64 bytes.

• Key agility. These cycle counts were achieved with no precomputation. The
input is exactly (k, r, n,m) as stated above; the key (k, r) occupies exactly
32 bytes. Poly1305-AES authenticates messages very quickly even when it is
cycling through 1000 simultaneous keys. This was my primary design goal for
Poly1305-AES. Almost all competing functions use a large table for each key,
typically several kilobytes per key, so they slow down dramatically (missing
L1 cache and then missing L2 cache) as the number of keys grows; they are
optimized solely for single-key applications.

• Parallelizability and incrementality. The circuit depth of Poly1305-AES
is quite small, even for long messages. Consequently, Poly1305-AES can take
advantage of additional hardware to reduce the latency for long messages.
For essentially the same reason, Poly1305-AES can be recomputed at low
cost for a small modification of a long message.

• No intellectual-property claims. I am not aware of any patents or patent
applications relevant to Poly1305-AES.

Section 3 of this paper analyzes the security of Poly1305-AES. Section 4 discusses
the software achieving the Athlon results stated above. Section 5 discusses the
speed of Poly1305-AES in other contexts.

Genealogy

Gilbert, MacWilliams, and Sloane in [15] introduced the idea of provably secure
authentication. The Gilbert-MacWilliams-Sloane system is fast, but it requires



keys longer than L bytes to handle L-byte messages, and it requires a completely
new key for each message.

Wegman and Carter in [32] pointed out that the key length could be merely
64 lg L for the first message plus 16 bytes for each additional message. At about
the same time, in a slightly different context, Karp and Rabin achieved a key
length of 32 bytes for the first message; see [19] and [26]. The system in [19] is
fast once keys are generated, but key generation is slow.

The idea of using a cipher such as AES to expand a short key into a long key
is now considered obvious. Brassard in [12] published the idea in the Wegman-
Carter context; I don’t know whether the idea was considered obvious back then.

Polynomial-evaluation MACs—MACs that treat each message as a univariate
polynomial over a finite field and then evaluate that polynomial at the key—
were introduced in three papers independently: [14] by den Boer; [31, Section 3]
by Taylor; [9, Section 4] by Bierbrauer, Johansson, Kabatianskii, and Smeets.
Polynomial-evaluation MACs combine several attractive features: short keys,
fast key generation, and fast message authentication. Several subsequent papers
reported implementations of polynomial-evaluation MACs over binary fields: [28]
by Shoup; [4] by Afanassiev, Gehrmann, and Smeets, reinventing Kaminski’s
division algorithm in [18]; [22] by Nevelsteen and Preneel.

Polynomial-evaluation MACs over prime fields can exploit the multipliers
built into many current CPUs, achieving substantially better performance than
polynomial-evaluation MACs over binary fields. This idea was first published in
my paper [5] in April 1999, and explained in detail in [7]. Another MAC, avoiding
binary fields for the same reason, was published independently by Black, Halevi,
Krawczyk, Krovetz, and Rogaway in [11] in August 1999.

I used 32-bit polynomial coefficients modulo 2127 − 1 (“hash127”) in [5] and
[7]. The short coefficients don’t allow great performance (for short messages)
without precomputation, so I casually precomputed a few kilobytes of data for
each key; this is a disaster for applications handling many keys simultaneously,
but I didn’t think beyond a single key. Similarly, [11] (“UMAC”) uses large keys.

Krovetz and Rogaway in [21] suggested 64-bit coefficients modulo 264 − 59,
with an escape mechanism for coefficients between 264 − 59 and 264 − 1. They
did not claim competitive performance: their software, run twice to achieve a
reasonable 100-bit security level, was more than three times slower than hash127
(and more than six times slower for messages with all bits set). Krovetz and
Rogaway did point out, however, that their software did not require large tables.

In http://cr.yp.to/talks.html#2002.06.15, posted July 2002, I pointed
out that 128-bit coefficients over the slightly larger prime field Z/(2130−5) allow
excellent performance without precomputation. This paper explains Poly1305-
AES in much more detail.

Kohno, Viega, and Whiting subsequently suggested 96-bit coefficients modulo
2127 − 1 (“CWC HASH”). They published some non-competitive timings for
CWC HASH and then gave up on the idea. A careful implementation of CWC
HASH without precomputation would be quite fast, although still not as fast as
Poly1305-AES.



2 Specification

This section defines the Poly1305-AES function. The Poly1305-AES formula is
a straightforward polynomial evaluation modulo 2130 − 5; most of the detail is
in key format and message padding.

Messages

Poly1305-AES authenticates messages. A message is any sequence of bytes
m[0],m[1], . . . ,m[` − 1]; a byte is any element of {0, 1, . . . , 255}. The length
` can be any nonnegative integer, and can vary from one message to another.

Keys

Poly1305-AES authenticates messages using a 32-byte secret key shared by the
message sender and the message receiver. The key has two parts: first, a 16-
byte AES key k; second, a 16-byte string r[0], r[1], . . . , r[15]. The second part
of the key represents a 128-bit integer r in unsigned little-endian form: i.e.,
r = r[0] + 28r[1] + . . . + 2120r[15].

Certain bits of r are required to be 0: r[3], r[7], r[11], r[15] are required to
have their top four bits clear (i.e., to be in {0, 1, . . . , 15}), and r[4], r[8], r[12] are
required to have their bottom two bits clear (i.e., to be in {0, 4, 8, . . . , 252}). Thus
there are 2106 possibilities for r. In other words, r is required to have the form r0+
r1+r2+r3 where r0 ∈

{

0, 1, 2, 3, . . . , 228 − 1
}

, r1/232 ∈
{

0, 4, 8, 12, . . . , 228 − 4
}

,

r2/264 ∈
{

0, 4, 8, 12, . . . , 228 − 4
}

, and r3/296 ∈
{

0, 4, 8, 12, . . . , 228 − 4
}

.

Nonces

Poly1305-AES requires each message to be accompanied by a 16-byte nonce,
i.e., a unique message number. Poly1305-AES feeds each nonce n through AESk

to obtain the 16-byte string AESk(n).
There is nothing special about AES here. One can replace AES with an

arbitrary keyed function from an arbitrary set of nonces to 16-byte strings. This
paper focuses on AES for concreteness.

Conversion and padding

Let m[0],m[1], . . . ,m[` − 1] be a message. Write q = d`/16e. Define integers
c1, c2, . . . , cq ∈

{

1, 2, 3, . . . , 2129
}

as follows: if 1 ≤ i ≤ b`/16c then

ci = m[16i− 16] + 28m[16i− 15] + 216m[16i− 14] + · · ·+ 2120m[16i− 1] + 2128;

if ` is not a multiple of 16 then

cq = m[16q − 16] + 28m[16q − 15] + · · ·+ 28(` mod 16)−8m[`− 1] + 28(` mod 16).

In other words: Pad each 16-byte chunk of a message to 17 bytes by appending
a 1. If the message has a final chunk between 1 and 15 bytes, append 1 to the
chunk, and then zero-pad the chunk to 17 bytes. Either way, treat the resulting
17-byte chunk as an unsigned little-endian integer.



Authenticators

Poly1305r(m,AESk(n)), the Poly1305-AES authenticator of a message m with
nonce n under secret key (k, r), is defined as the 16-byte unsigned little-endian
representation of

(((c1r
q + c2r

q−1 + · · ·+ cqr
1) mod 2130 − 5) + AESk(n)) mod 2128.

Here the 16-byte string AESk(n) is treated as an unsigned little-endian integer,
and c1, c2, . . . , cq are the integers defined above. See Appendix A for examples.

Sample code

The following C++ code reads k from k[0], k[1], . . . , k[15], reads r from
r[0], r[1], . . . , r[15], reads n from n[0], n[1], . . . , n[15], reads m from m[0],
m[1], . . . , m[l-1], and places Poly1305r(m,AESk(n)) into out[0], out[1], . . . ,
out[15]:

void poly1305aes_sample(unsigned char *out,

const unsigned char *k,const unsigned char *r,

const unsigned char *n,const unsigned char *m,unsigned int l)

{

unsigned int j; integer rinteger = 0;

for (j = 0;j < 16;++j)

rinteger += ((integer) r[j]) << (8 * j);

integer h = 0;

integer p = (((integer) 1) << 130) - 5;

while (l > 0) {

integer c = 0;

for (j = 0;(j < 16) && (j < l);++j)

c += ((integer) m[j]) << (8 * j);

c += ((integer) 1) << (8 * j);

m += j; l -= j; h = ((h + c) * rinteger) % p;

}

unsigned char aeskn[16]; aes(aeskn,k,n);

for (j = 0;j < 16;++j)

h += ((integer) aeskn[j]) << (8 * j);

for (j = 0;j < 16;++j) {

integer c = h % 256; h >>= 8;

out[j] = c.get_ui();

}

}

Here integer can be defined as mpz_class from [16], or as any similar big-integer
class.

This code is not meant as a high-speed implementation; it does not have even
the simplest speedups; it should be expected to provide intolerable performance.
It is simply a secondary statement of the definition of Poly1305-AES.



Design decisions

I considered various primes above 2128. I chose 2130 − 5 because its sparse form
makes divisions particularly easy in both software and hardware. My encoding
of messages as polynomials takes advantage of the gap between 2128 and 2130−5.

There are several reasons that Poly1305-AES uses nonces. First, comparable
protocols without nonces have security bounds that look like C(C + D)L/2106

rather than DL/2106—here C is the number of messages authenticated by the
sender, D is the number of forgery attempts, and L is the maximum message
length—and thus cannot be used with confidence for large C. Second, nonces
allow the invocation of AES to be carried out in parallel with most of the other
operations in Poly1305-AES, reducing latency in many contexts. Third, most
protocols have nonces anyway, for a variety of reasons: nonces are required for
secure encryption, for example, and nonces allow trivial rejection of replayed
messages.

I constrained r to simplify and accelerate implementations of Poly1305-AES
in various contexts. A wider range of r—e.g., all 128-bit integers—would allow
a quantitatively better security bound, but the current bound DL/2106 will be
perfectly satisfactory for the foreseeable future, whereas slower authenticator
computations would not be perfectly satisfactory.

I chose little-endian instead of big-endian to improve overall performance.
Little-endian saves time on the most popular CPUs (the Pentium and Athlon)
while making no difference on most other CPUs (the PowerPC, for example, and
the UltraSPARC).

The definition of Poly1305-AES could easily be extended from byte strings
to bit strings, but there is no apparent benefit of doing so.

3 Security

This section discusses the security of Poly1305-AES.

Responsibilities of the user

Any protocol that uses Poly1305-AES must ensure unpredictability of the secret
key (k, r). This section assumes that secret keys are chosen from the uniform
distribution: i.e., probability 2−234 for each of the 2234 possible pairs (k, r).

Any protocol that uses Poly1305-AES must ensure that the secret key is, in
fact, kept secret. This section assumes that all operations are independent of
(k, r), except for the computation of authenticators by the sender and receiver.
(There are safe ways to reuse k for encryption, but those ways are not analyzed
in this paper.)

The sender must never use the same nonce for two different messages. The
simplest way to achieve this is for the sender to use an increasing sequence of
nonces in, e.g., reverse-lexicographic order of 16-byte strings. (Problem: If a key
is stored on disk, while increasing nonce values are stored in memory, what



happens when the power goes out? Solution: Store a safe nonce value—a new
nonce larger than any nonce used—on disk alongside the key.) Any protocol
that uses Poly1305-AES must specify a mechanism of nonce generation and
maintenance that prevents duplicates.

Security guarantee

Poly1305-AES guarantees that the only way for the attacker to find an (n,m, a)
such that a = Poly1305r(m,AESk(n)), other than the authenticated messages
(n,m, a) sent by the sender, is to break AES. If the attacker cannot break AES,
and the receiver discards all (n,m, a) such that a 6= Poly1305r(m,AESk(n)),
then the receiver will see only messages authenticated by the sender.

This guarantee is not limited to “meaningful” messages m. It is true even if
the attacker can see all the authenticated messages sent by the sender. It is true
even if the attacker can see whether the receiver accepts a forgery. It is true even
if the attacker can influence the sender’s choice of messages and unique nonces.
(But it is not true if the nonce-uniqueness rule is violated.)

Here is a quantitative form of the guarantee. Assume that the attacker sees at
most C authenticated messages and attempts at most D forgeries. Assume that
the attacker has probability at most δ of distinguishing AESk from a uniform
random permutation after C +D queries. Assume that all messages have length
at most L. Then, with probability at least

1− δ −
(1− C/2128)−(C+1)/28DdL/16e

2106
,

all of the attacker’s forgeries are discarded. In particular, if C ≤ 264, then
the attacker’s chance of success is at most δ + 1.649 · 8DdL/16e/2106 < δ +
14DdL/16e/2106.

The most important design goal of AES was for δ to be small. There is,
however, no hope of proving that δ is small. Perhaps AES will be broken someday.
If that happens, users should switch to Poly1305-AnotherFunction. Poly1305-
AnotherFunction provides the same security guarantee relative to the security
of AnotherFunction.

Proof of the security guarantee

For each message m, write m for the polynomial c1x
q +c2x

q−1+· · ·+cqx
1, where

q, c1, c2, . . . , cq are defined as in Section 2. Define Hr(m) as the 16-byte unsigned
little-endian representation of (m(r) mod 2130 − 5) mod 2128; note that Hr and
k are independent. Define a group operation + on 16-byte strings as addition
modulo 2128, where each 16-byte string is viewed as the unsigned little-endian
representation of an integer in

{

0, 1, 2, . . . , 2128 − 1
}

. Then the authenticator
Poly1305r(m,AESk(n)) is equal to Hr(m) + AESk(n).

The crucial property of Hr is that it has small differential probabilities: if g
is a 16-byte string, and m,m′ are distinct messages of length at most L, then
Hr(m) = Hr(m

′) + g with probability at most 8dL/16e/2106. See below.



Theorem 5.4 of [8] now guarantees that Hr(m)+AESk(n) is secure if AES is
secure: specifically, that the attacker’s success chance against Hr(m)+AESk(n)
is at most δ + D(1− C/2128)−(C+1)/28dL/16e/2106.

The rest of this section is devoted to proving that Hr has small differential
probabilities.

Theorem 3.1. 2130 − 5 is prime.

Proof. Define p1 = (2130 − 6)/1517314646 and p2 = (p1 − 1)/222890620702.
Observe that 37003 and 221101 are prime divisors of p2− 1; (37003 · 221101)2 >
p2; 2p2−1−1 is divisible by p2; 2(p2−1)/37003−1 and 2(p2−1)/221101−1 are coprime
to p2; p2

2 > p1; 2p1−1 − 1 is divisible by p1; 2(p1−1)/p2 − 1 is coprime to p1;

p2
1 > 2130 − 5; 22130

−6− 1 is divisible by 2130 − 5; and 2(2130
−6)/p1 − 1 is coprime

to 2130 − 5. Hence p2, p1, and 2130 − 5 are prime by Pocklington’s theorem. ut

Theorem 3.2. Let m and m′ be messages. Let u be an integer. If the polynomial

m′ −m− u is zero modulo 2130 − 5 then m = m′.

Proof. Define c1, c2, . . . , cq as above, and define c′1, c
′

2, . . . , c
′

q′ for m′ similarly.
If q > q′ then the coefficient of xq in m′−m is 0−c1. By construction c1 is in

{

1, 2, 3, . . . , 2129
}

, so it is nonzero modulo 2130 − 5; contradiction. Thus q ≤ q′.
Similarly q ≥ q′. Hence q = q′.

If i ∈ {1, 2, . . . , q} then ci−c′i is the coefficient of xq+1−i in m′−m−u, which
by hypothesis is divisible by 2130 − 5. But ci − c′i is between −2129 and 2129 by
construction. Hence ci = c′i. In particular, cq = c′q.

Define ` as the number of bytes in m. Recall that q = d`/16e; thus ` is
between 16q − 15 and 16q. The exact value of ` is determined by q and cq: it is
16q if 2128 ≤ cq, 16q − 1 if 2120 ≤ cq < 2121, 16q − 2 if 2112 ≤ cq < 2113, . . . ,
16q − 15 if 28 ≤ cq < 29. Hence m′ also has ` bytes.

Now consider any j ∈ {0, 1, . . . , `− 1}. Write i = bj/16c+1; then 16i− 16 ≤
j ≤ 16i − 1, and 1 ≤ i ≤ d`/16e = q, so m[j] =

⌊

ci/28(j−16i+16)
⌋

mod 256 =
⌊

c′i/28(j−16i+16)
⌋

mod 256 = m′[j]. Hence m = m′. ut

Theorem 3.3. Let m,m′ be distinct messages, each having at most L bytes. Let

g be a 16-byte string. Let R be a subset of
{

0, 1, . . . , 2130 − 6
}

. Then there are

at most 8dL/16e integers r ∈ R such that Hr(m) = Hr(m
′) + g.

Consequently, if #R = 2106, and if r is a uniform random element of R, then
Hr(m) = Hr(m

′) + g with probability at most 8dL/16e/2106.

Proof. Define U as the set of integers in [−2130 + 6, 2130 − 6] congruent to g
modulo 2128. Note that #U ≤ 8.

If Hr(m) = Hr(m
′)+ g then (m′(r) mod 2130− 5)− (m(r) mod 2130− 5) ≡ g

(mod 2128) so (m′(r) mod 2130 − 5)− (m(r) mod 2130 − 5) = u for some u ∈ U .
Hence r is a root of the polynomial m′−m− u modulo the prime 2130− 5. This
polynomial is nonzero by Theorem 3.2, and has degree at most dL/16e, so it
has at most dL/16e roots modulo 2130 − 5. Sum over all u ∈ U : there are most
8dL/16e possibilities for r. ut



4 A floating-point implementation

This section explains how to compute Poly1305r(m,AESk(n)), given (k, r, n,m),
at very high speeds on the common Athlon CPU.

My software takes 577 cycles for a 16-byte message, 764 cycles for a 64-
byte message, 1444 cycles for a 256-byte message, and 4212 cycles for a 1024-
byte message—if the software is in L1 cache, (k, r, n,m) are in L1 cache, and
(k, r, n,m) have memory locations divisible by 4. A more comprehensive speed
table appears in Appendix B.

Outline

The overall strategy to compute Poly1305r(m,AESk(n)) is as follows. Start by
setting an accumulator h to 0. For each chunk c of the message m, first set
h ← h + c, and then set h ← rh. Periodically reduce h modulo 2130 − 5, not
necessarily to the smallest remainder but to something small enough to continue
the computation. After all input chunks c are processed, fully reduce h modulo
2130 − 5, and add AESk(n).

Large-integer arithmetic in floating-point registers

Represent each of h, c, r as a sum of floating-point numbers, as in [7]. Specifically:

• As in Section 2, write r as r0 + r1 + r2 + r3 where r0 ∈
{

0, 1, 2, . . . , 228 − 1
}

,

r1/232 ∈
{

0, 4, 8, . . . , 228 − 4
}

, r2/264 ∈
{

0, 4, 8, . . . , 228 − 4
}

, and r3/296 ∈
{

0, 4, 8, . . . , 228 − 4
}

. Store each of r0, r1, r2, r3, 5 · 2−130r1, 5 · 2−130r2,
5 · 2−130r3 in memory in 8-byte floating-point format.

• Write each message chunk c as d0 + d1 + d2 + d3 where d0, d1/232, d2/264 ∈
{

0, 1, 2, 3, . . . , 232 − 1
}

and d3/296 ∈
{

0, 1, 2, 3, . . . , 234 − 1
}

.
• Write h as h0 + h1 + h2 + h3 where hi is a multiple of 232i in the range

specified below. Store each hi in one of the Athlon’s floating-point registers.

Warning: The FreeBSD operating system starts each program by instructing
the CPU to round all floating-point mantissas to 53 bits, rather than using the
CPU’s natural 64-bit precision. Make sure to disable this instruction. Under gcc,
for example, the code asm volatile("fldcw %0"::"m"(0x137f)) specifies full
64-bit mantissas.

To set h← h+c, set h0 ← h0 +d0, h1 ← h1 +d1, h2 ← h2 +d2, h3 ← h3 +d3.
Before these additions, h0, h1/232, h2/264, h3/296 are required to be integers in
[−(63/128) · 264, (63/128) · 264]. After these additions, h0, h1/232, h2/264, h3/296

are integers in [−(127/256) · 264, (127/256) · 264].
Before multiplying h by r, reduce the range of each hi by performing four

parallel carries as follows. Define α0 = 295+294, α1 = 2127+2126, α2 = 2159+2158,
and α3 = 2193 + 2192. Compute yi = fp64(hi + αi) − αi and xi = hi − yi,
where fp64(hi + αi) means the 64-bit floating-point number closest to hi + αi,
with ties broken in the usual way (see [3]). Then y0/232, y1/264, y2/296, y3/2130



are integers. Set h0 ← x0 + 5 · 2−130y3, h1 ← x1 + y0, h2 ← x2 + y1, and
h3 ← x3 + y2. This substitution changes h by (2130 − 5)2−130y3, so it does not
change h mod 2130 − 5. There are 17 floating-point operations here: 8 additions,
8 subtractions, and 1 multiplication by the constant 5 · 2−130.

Ranges: x0, x1/232, and x2/264 are in [−(1/2) · 232, (1/2) · 232]; x3/296 is
in [−2 · 232, 2 · 232]; y0/232, y1/264, y2/296, and y3/2128 are in [−(127/256) ·
232, (127/256) · 232]; h0 is in [−(1147/1024) · 232, (1147/1024) · 232]; h1/232 is in
[−(255/256) · 232, (255/256) · 232]; h2/264 is in [−(255/256) · 232, (255/256) · 232];
h3/296 is in [−(639/256) · 232, (639/256) · 232].

To multiply h by r modulo 2130 − 5, replace (h0, h1, h2, h3) with

(r0h0 + 5 · 2−130r1h3 + 5 · 2−130r2h2 + 5 · 2−130r3h1,
r0h1 + r1h0 + 5 · 2−130r2h3 + 5 · 2−130r3h2,
r0h2 + r1h1 + r2h0 + 5 · 2−130r3h3,
r0h3 + r1h2 + r2h1 + r3h0).

Recall that 2−34r1, 2−66r2, and 2−98r3 are integers, so 2−130r1h3, 2−130r2h2,
and 2−130r3h1 are integers; similarly, 2−130r2h3 and 2−130r3h2 is a multiple of
232, and 2−130r3h3 is a multiple of 264. There are 28 floating-point operations
here: 16 multiplications and 12 additions.

Ranges: h0, h1/232, h2/264, h3/296 are now integers of absolute value at most
228(1147/1024 + 2 · (5/4)255/256 + (5/4)639/256)232 < (63/128)264, ready for
the next iteration of the inner loop.

Note that the carries can be omitted on the first loop: d0 is an integer in
[0, 232]; d1/232 is an integer in [0, 232]; d2/264 is an integer in [0, 232]; d3/296 is
an integer in [0, 3 · 232]; and 228(1 + (5/4) + (5/4) + (5/4)3)232 < (63/128)264.

Output conversion

After the last message chunk is processed, carry one last time, to put h0, h1, h2, h3

into the small ranges listed above.
Add 2130−297 to h3; add 297−265 to h2; add 265−233 to h1; and add 233−5

to h0. This makes each hi positive, and puts h = h0 +h1 +h2 +h3 into the range
{

0, 1, . . . , 2(2130 − 5)− 1
}

.
Perform a few integer add-with-carry operations to convert the accumulator

into a series of 32-bit words in the usual form. Subtract 2130 − 5, and keep the
result if it is nonnegative, being careful to use constant-time operations so that
no information is leaked through timing.

Finally, add AESk(n). My not-seriously-optimized Athlon implementation of
AES takes approximately 102 cycles to expand k into a 176-byte table and 244
cycles to finish computing AESk(n), if 8192 bytes of AES constants are in level-
1 cache. Of course, a faster AES implementation will improve Poly1305-AES
performance; the 102-cycle expansion can be eliminated if all active 176-byte
expanded keys fit into level-1 cache; and a sufficiently advanced cache-loading
mechanism would allow expanded keys to be fetched in the background during
the computation of m(r).



Instruction selection and scheduling

Consider an integer (such as d0) between 0 and 232 − 1, stored in the usual way
as four bytes. How does one load the integer into a floating-point register, when
the Athlon does not have a load-four-byte-unsigned-integer instruction? Here are
three possibilities:

• Concatenate the four bytes with (0, 0, 0, 0), and use the Athlon’s load-eight-
byte-signed-integer instruction. Unfortunately, the four-byte store forces the
eight-byte load to wait for dozens of cycles.

• Concatenate the bytes with (0, 0, 56, 67), producing an eight-byte floating-
point number. Load that number, and subtract 252+251 to obtain the desired
integer. This well-known trick has the virtue of also allowing the integer to
be scaled by (e.g.) 232: replace 67 with 69 and 252 + 251 with 284 + 283.
Unfortunately, as above, the four-byte store forces the eight-byte load to
wait for dozens of cycles.

• Subtract 231 from the integer, use the Athlon’s load-four-byte-signed-integer
instruction, and add 231 to the result. This is reasonably fast.

Top performance requires making the right choice.
(A variant of Poly1305-AES using signed 32-bit integers would save time on

the Athlon. On the other hand, it would lose time on typical 64-bit CPUs.)
This is merely one example of several low-level issues that can drastically

affect speed: instruction selection, instruction scheduling, register assignment,
instruction fetching, etc. A “fast” implementation of Poly1305-AES, with just
a few typical low-level mistakes, will use twice as many cycles per byte as the
software described here.

Other modern CPUs

The software described above also works on the Pentium I, Pentium MMX,
Pentium Pro, Pentium II, Pentium III, Pentium IV, and Pentium M. All of
these chips have reasonably fast floating-point units.

The UltraSPARC, PowerPC, et al. support fast arithmetic on floating-point
numbers with 53-bit, rather than 64-bit, mantissas. The simplest way to achieve
good performance on these chips is to break a 32-bit number into two 16-bit
pieces before multiplying it by another 32-bit number.

As above, careful attention to low-level CPU details is necessary for top
performance. I plan to publish Poly1305-AES software for all of these CPUs.

5 Other implementation strategies

Some people, upon hearing that there is a tricky way to use the Athlon’s floating-
point unit to compute a function quickly, leap to the unjustified conclusion that
the same function cannot be computed quickly except on an Athlon. Consider,
for example, the incorrect statement “hash-127 needs good hardware support
for a fast implementation” in [17, footnote 3].



This section outlines three non-floating-point methods to compute Poly1305-
AES, and indicates contexts where the methods are useful.

Integer registers

The 130-bit accumulator in Poly1305-AES can be spread among several integer
registers rather than several floating-point registers.

This is good for low-end CPUs that do not support floating-point operations
but that still have reasonably fast integer multipliers. It is also good for some
high-end CPUs, such as the Athlon 64, that offer faster multiplication through
integer registers than through floating-point registers.

Tables

One can make a table of the integers r, 2r, 4r, 8r, . . . , 2129r modulo 2130 − 5, and
then multiply any 130-bit integer by r by adding, on average, about 65 elements
of the table.

One can reduce the amount of work by using both additions and subtractions,
by increasing the table size, and by choosing table entries more carefully. For
example, one can include 3r, 24r, 192r, . . . in the table, and then multiply any
130-bit integer by r by adding and subtracting, on average, about 38 elements
of the table. This is a special case of an algorithm often credited to Brickell,
Gordon, McCurley, Wilson, Lim, and Lee, but actually introduced much earlier
by Pippenger in [23].

One can also balance the table size against the effort in reduction modulo
2130 − 5. Consider, for example, the table r, 2r, 3r, 4r, . . . , 255r.

Table lookups are often the best approach for tiny CPUs that do not have
any fast multiplication operations. Of course, their key agility is poor, and they
are susceptible to timing attacks if they are not implemented very carefully.

Special-purpose circuits

A 1600MHz AMD Duron, costing under $50, can feed 3 gigabits per second
of 1500-byte messages through Poly1305-AES with the software discussed in
Section 4. Hardware implementations of Poly1305-AES can strip away a great
deal of unnecessary cost: the multiplier is only part of the cost of the Duron;
furthermore, some of the multiplications are by sparse constants; furthermore,
only about 20% of the multiplier area is doing any useful work, since each input
is much smaller than 64 bits; furthermore, almost all carries can be deferred
until the end of the Poly1305-AES computation, rather than being performed
after each multiplication; furthermore, hardware implementations need not, and
should not, imitate traditional software structures—one can directly build a fast
multiplier modulo 2130−5, taking advantage of more sophisticated multiplication
algorithms than those used in the Duron. Evidently Poly1305-AES can handle
next-generation Ethernet speeds at reasonable cost.
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A Appendix: Examples

The following table, with all integers on the right displayed in hexadecimal,
illustrates authenticator computations for strings of length 2, 0, 32, and 63. The
notation m(r) means c1r

q + c2r
q−1 + · · ·+ cqr

1.

m f3 f6

c1 00000000000000000000000000001f6f3

r 85 1f c4 0c 34 67 ac 0b e0 5c c2 04 04 f3 f7 00

m(r) mod 2130 − 5 321e58e25a69d7f8f27060770b3f8bb9c

k ec 07 4c 83 55 80 74 17 01 42 5b 62 32 35 ad d6

n fb 44 73 50 c4 e8 68 c5 2a c3 27 5c f9 d4 32 7e

AESk(n) 58 0b 3b 0f 94 47 bb 1e 69 d0 95 b5 92 8b 6d bc

Poly1305r(m,AESk(n)) f4 c6 33 c3 04 4f c1 45 f8 4f 33 5c b8 19 53 de

m
r a0 f3 08 00 00 f4 64 00 d0 c7 e9 07 6c 83 44 03

m(r) mod 2130 − 5 000000000000000000000000000000000

k 75 de aa 25 c0 9f 20 8e 1d c4 ce 6b 5c ad 3f bf

n 61 ee 09 21 8d 29 b0 aa ed 7e 15 4a 2c 55 09 cc

AESk(n) dd 3f ab 22 51 f1 1a c7 59 f0 88 71 29 cc 2e e7

Poly1305r(m,AESk(n)) dd 3f ab 22 51 f1 1a c7 59 f0 88 71 29 cc 2e e7

m 66 3c ea 19 0f fb 83 d8 95 93 f3 f4 76 b6 bc 24

d7 e6 79 10 7e a2 6a db 8c af 66 52 d0 65 61 36

c1 124bcb676f4f39395d883fb0f19ea3c66

c2 1366165d05266af8cdb6aa27e1079e6d7

r 48 44 3d 0b b0 d2 11 09 c8 9a 10 0b 5c e2 c2 08

m(r) mod 2130 − 5 1cfb6f98add6a0ea7c631de020225cc8b

k 6a cb 5f 61 a7 17 6d d3 20 c5 c1 eb 2e dc dc 74

n ae 21 2a 55 39 97 29 59 5d ea 45 8b c6 21 ff 0e

AESk(n) 83 14 9c 69 b5 61 dd 88 29 8a 17 98 b1 07 16 ef

Poly1305r(m,AESk(n)) 0e e1 c1 6b b7 3f 0f 4f d1 98 81 75 3c 01 cd be

m ab 08 12 72 4a 7f 1e 34 27 42 cb ed 37 4d 94 d1

36 c6 b8 79 5d 45 b3 81 98 30 f2 c0 44 91 fa f0

99 0c 62 e4 8b 80 18 b2 c3 e4 a0 fa 31 34 cb 67

fa 83 e1 58 c9 94 d9 61 c4 cb 21 09 5c 1b f9

c1 1d1944d37edcb4227341e7f4a721208ab

c2 1f0fa9144c0f2309881b3455d79b8c636

c3 167cb3431faa0e4c3b218808be4620c99

c4 001f91b5c0921cbc461d994c958e183fa

r 12 97 6a 08 c4 42 6d 0c e8 a8 24 07 c4 f4 82 07

m(r) mod 2130 − 5 0c3c4f37c464bbd44306c9f8502ea5bd1

k e1 a5 66 8a 4d 5b 66 a5 f6 8c c5 42 4e d5 98 2d

n 9a e8 31 e7 43 97 8d 3a 23 52 7c 71 28 14 9e 3a

AESk(n) 80 f8 c2 0a a7 12 02 d1 e2 91 79 cb cb 55 5a 57

Poly1305r(m,AESk(n)) 51 54 ad 0d 2c b2 6e 01 27 4f c5 11 48 49 1f 1b



B Appendix: Speed table

The table below shows cycle counts on a 900MHz Athlon for ten Poly1305-AES
computations on a 0-byte message, then ten Poly1305-AES computations on a
1-byte message, etc., using the software described in Section 4.

Each number includes about 35 cycles of timing overhead and C function-
call overhead. I obtained each set of ten numbers as consecutive differences of
eleven results from the Athlon RDTSC instruction surrounding ten calls to the
Poly1305-AES function.

There are several reasons for variability within lines:

• My Poly1305-AES code takes 4375 bytes (of which 3046 bytes are for AES).
For message lengths 0, 1, 16, and 17, the first computation needed extra time
to load the relevant code into L1 cache.

• The next few length-0 computations needed extra time to load unused parts
of the 8192-byte AES table into L1 cache.

• The remaining length-0 computations needed extra time to load new keys
into L1 cache. I used ten separate keys (k, r).

• Each new message length meant a new sequence of conditional jumps; the
Athlon’s branch-prediction unit took a few iterations to adapt to the new
sequence.

• AES performance depended slightly on the key. This problem exists in every
AES implementation I have checked; see [6] for further discussion.

0 17329 3949 1553 736 927 612 735 768 416 422
1 3668 833 585 574 603 567 577 568 570 585
2 568 572 574 575 570 563 565 569 571 574
3 569 573 575 576 571 564 566 570 572 575
4 573 577 579 580 575 568 570 574 576 579
5 574 578 580 581 576 569 571 575 577 580
6 575 579 581 582 577 570 572 576 578 581
7 577 581 583 584 579 572 574 578 580 583
8 578 582 584 585 580 573 575 579 581 584
9 579 583 585 586 581 574 576 580 582 585

10 581 585 587 588 583 576 578 582 584 587
11 582 586 588 589 584 577 579 583 585 588
12 591 593 595 596 591 584 586 590 592 595
13 591 595 597 598 593 586 588 592 594 597
14 592 596 598 599 594 587 589 593 595 598
15 593 597 599 600 595 588 590 594 596 599
16 577 552 566 555 550 543 545 549 563 566
17 1149 657 659 644 639 632 634 638 640 643
18 646 658 644 645 640 633 635 639 641 644
19 646 643 645 646 641 634 636 640 642 645
20 643 647 649 650 645 638 640 644 646 649



21 644 648 650 651 646 639 641 645 647 650
22 645 649 651 652 647 640 642 646 648 651
23 647 651 653 654 649 642 644 648 650 653
24 652 656 658 659 654 647 649 653 655 658
25 653 657 659 660 655 648 650 654 656 659
26 655 659 661 662 657 650 652 656 658 661
27 656 660 662 663 658 651 653 657 659 662
28 659 663 665 666 661 654 656 660 662 665
29 661 665 667 668 663 656 658 662 664 667
30 662 666 668 669 664 657 659 663 665 668
31 663 667 669 670 665 658 660 664 666 669
32 654 653 665 630 610 603 605 609 611 614
33 729 743 719 703 698 691 693 697 699 702
34 713 701 703 704 699 692 694 698 700 703
35 697 702 704 705 700 693 695 699 701 704
36 702 706 708 709 704 697 699 703 705 708
37 703 707 709 710 705 698 700 704 706 709
38 704 708 710 711 706 699 701 705 707 710
39 706 710 712 713 708 701 703 707 709 712
40 711 715 717 718 713 706 708 712 714 717
41 728 716 718 719 714 707 709 713 715 718
42 714 718 720 721 716 709 711 715 717 720
43 715 719 721 722 717 710 712 716 718 721
44 714 719 721 722 717 710 712 716 718 721
45 716 721 723 724 719 712 714 718 720 723
46 717 722 724 725 720 713 715 719 721 724
47 718 723 725 726 721 714 716 720 722 725
48 711 724 691 673 668 661 663 667 669 672
64 758 762 764 731 726 719 721 725 727 730
80 816 834 822 788 783 776 778 782 784 787
96 883 877 863 846 841 834 836 840 842 845

128 998 992 960 961 956 949 951 955 957 960
160 1122 1136 1091 1092 1087 1080 1082 1086 1088 1091
192 1210 1214 1206 1207 1202 1195 1197 1201 1203 1206
224 1325 1329 1321 1322 1317 1310 1312 1316 1318 1321
256 1440 1444 1436 1437 1432 1425 1427 1431 1433 1436
320 1670 1674 1666 1667 1662 1655 1657 1661 1663 1666
384 1900 1904 1896 1897 1892 1885 1887 1891 1893 1896
448 2138 2142 2134 2135 2130 2123 2125 2129 2131 2134
512 2366 2372 2364 2365 2360 2353 2355 2359 2361 2364
768 3288 3292 3284 3285 3280 3273 3275 3279 3281 3284

1024 4206 4212 4204 4205 4200 4193 4195 4199 4201 4204
1536 6048 6052 6044 6045 6040 6033 6035 6039 6041 6044
2048 7888 7892 7884 7885 7880 7873 7875 7879 7881 7884
3072 11579 11572 11564 11565 11560 11553 11555 11559 11561 11564
4096 15259 15252 15239 15245 15235 15228 15235 15239 15241 15244


