FAST MULTIPLICATION AND ITS APPLICATIONS

DANIEL J. BERNSTEIN

Abstract. This survey explains how some useful arithmetic operations can be sped up from quadratic time to essentially linear time.

Figure 1. Outline of the paper. A vertex " $\S N . F$ " here means that Section N describes an algorithm to compute the function F. Arrows here indicate prerequisite algorithms.

Date: 2004.10.07. Permanent ID of this document: 8758803e61822d485d54251b27b1a20d.
2000 Mathematics Subject Classification. Primary 68-02. Secondary 11Y16, 12Y05, 65D20, $65 \mathrm{~T} 50,65 \mathrm{Y} 20,68 \mathrm{~W} 30$.

1. Introduction

This paper presents fast algorithms for several useful arithmetic operations on polynomials, power series, integers, real numbers, and 2-adic numbers.

Each section focuses on one algorithm for one operation, and describes seven features of the algorithm:

- Input: What numbers are provided to the algorithm? Sections 2, 3, 4, and 5 explain how various mathematical objects are represented as inputs.
- Output: What numbers are computed by the algorithm?
- Speed: How many coefficient operations does the algorithm use to perform a polynomial operation? The answer is at most $n^{1+o(1)}$, where n is the problem size; each section states a more precise upper bound, often using the function μ defined in Section 4.
- How it works: What is the algorithm? The algorithm may use previous algorithms as subroutines, as shown in (the transitive closure of) Figure 1.
- The integer case (except in Section 2): The inputs were polynomials (or power series); what about the analogous operations on integers (or real numbers)? What difficulties arise in adapting the algorithm to integers? How much time does the adapted algorithm take?
- History: How were these ideas developed?
- Improvements: The algorithm was chosen to be reasonably simple (subject to the $n^{1+o(1)}$ bound) at the expense of speed; how can the same function be computed even more quickly?
Sections 2 through 5 describe fast multiplication algorithms for various rings. The remaining sections describe various applications of fast multiplication. Here is a simplified summary of the functions being computed:
- §6. Reciprocal. $f \mapsto 1 / f$ approximation.
- §7. Quotient. $f, h \mapsto h / f$ approximation.
- §8. Logarithm. $f \mapsto \log f$ approximation.
- §9. Exponential. $f \mapsto \exp f$ approximation. Also $\S 15, ~ § 16$.
- §10. Power. $f, e \mapsto f^{e}$ approximation.
- §11. Matrix product. $f, g \mapsto f g$ for 2×2 matrices.
- §12. Product tree. $f_{1}, f_{2}, f_{3}, \ldots \mapsto$ tree of products including $f_{1} f_{2} f_{3} \cdots$.
- §13. Sum of fractions. $f_{1}, g_{1}, f_{2}, g_{2}, \ldots \mapsto f_{1} / g_{1}+f_{2} / g_{2}+\cdots$.
- §14. Fraction from continued fraction. $q_{1}, q_{2}, \ldots \mapsto q_{1}+1 /\left(q_{2}+1 /(\cdots)\right)$.
- §17. Quotient and remainder. $f, h \mapsto\lfloor h / f\rfloor, h \bmod f$.
- §18. Remainder tree. $h, f_{1}, f_{2}, \ldots \mapsto h \bmod f_{1}, h \bmod f_{2}, \ldots$.
- §19. Small factors of a product. $S, h_{1}, h_{2}, \ldots \mapsto S\left(h_{1} h_{2} \cdots\right)$ where S is a set of primes and $S(h)$ is the subset of S dividing h.
- $\S 20$. Small factors of a sequence. $S, h_{1}, h_{2}, \ldots \mapsto S\left(h_{1}\right), S\left(h_{2}\right), \ldots$.
- $\S 21$. Continued fraction from fraction. $f_{1}, f_{2} \mapsto q_{1}, q_{2}, \ldots$ with $f_{1} / f_{2}=$ $q_{1}+1 /\left(q_{2}+1 /(\cdots)\right)$.
- §22. Greatest common divisor. $f_{1}, f_{2} \mapsto \operatorname{gcd}\left\{f_{1}, f_{2}\right\}$.
- §23. Interpolator. $f_{1}, g_{1}, f_{2}, g_{2}, \ldots \mapsto h$ with $h \equiv f_{j}\left(\bmod g_{j}\right)$.
- §24. Coprime base. $f_{1}, f_{2}, \ldots \mapsto$ coprime set S with $f_{1}, f_{2}, \ldots \in\langle S\rangle$.

Acknowledgments. Thanks to Alice Silverberg, Paul Zimmermann, and the referee for their comments.

2. Product: the FFT case

Input. Let $n \geq 1$ be a power of 2 . Let c be a nonzero element of \mathbf{C}. The algorithm described in this section is given two elements f, g of the ring $\mathbf{C}[x] /\left(x^{n}-c\right)$.

An element of $\mathbf{C}[x] /\left(x^{n}-c\right)$ is, by convention, represented as a sequence of n elements of \mathbf{C} : the sequence $\left(f_{0}, f_{1}, \ldots, f_{n-1}\right)$ represents $f_{0}+f_{1} x+\cdots+f_{n-1} x^{n-1}$.
Output. This algorithm computes the product $f g \in \mathbf{C}[x] /\left(x^{n}-c\right)$, represented in the same way. If the input is $f_{0}, f_{1}, \ldots, f_{n-1}, g_{0}, g_{1}, \ldots, g_{n-1}$ then the output is $h_{0}, h_{1}, \ldots, h_{n-1}$, where $h_{i}=\sum_{0 \leq j \leq i} f_{j} g_{i-j}+c \sum_{i+1 \leq j<n} f_{j} g_{i+n-j}$.

For example, for $n=4$, the output is $f_{0} g_{0}+c f_{1} g_{3}+c f_{2} g_{2}+c f_{3} g_{1}, f_{0} g_{1}+f_{1} g_{0}+$ $c f_{2} g_{3}+c f_{3} g_{2}, f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0}+c f_{3} g_{3}, f_{0} g_{3}+f_{1} g_{2}+f_{2} g_{1}+f_{3} g_{0}$.

Model of computation. Let A be a commutative ring. An operation in A is, by definition, one binary addition $a, b \mapsto a+b$, one binary subtraction $a, b \mapsto a-b$, or one binary multiplication $a, b \mapsto a b$. Here a is an input, a constant, or a result of a previous operation; same for b.

For example, given $a, b \in \mathbf{C}$, one can compute $10 a+11 b, 9 a+10 b$ with four operations in C: add a and b to obtain $a+b$; multiply by 10 to obtain $10 a+10 b$; add b to obtain $10 a+11 b$; subtract a from $10 a+10 b$ to obtain $9 a+10 b$.

Starting in Section 19 of this paper, the definition of operation in A is expanded to allow equality tests. Starting in Section 21, the ring A is assumed to be a field, and the definition of operation in A is expanded to allow divisions (when the denominators are nonzero). Algorithms built out of additions, subtractions, multiplications, divisions, and equality tests are called algebraic algorithms. See [33, Chapter 4] for a precise definition of this model of computation.

Beware that the definition of an algebraic algorithm is sometimes simplified into a mere sequence of intermediate results: for example, the algorithm "add a to b, then multiply by b " is replaced by the sequence $a+b, a b+b^{2}$. The problem with this simplification is that standard measurements of algebraic complexity, such as the number of multiplications, are generally not determined by the sequence of intermediate results. (How many multiplications are in $2 a, a^{2}, 2 a^{2}$?) For example, the definition of addition-chain length in [74] is nonsense.

Speed. The algorithm in this section uses $O(n \lg n)$ operations-more precisely, $(9 / 2) n \lg n+2 n$ additions, subtractions, and multiplications-in C. Here $\lg =\log _{2}$.

How it works. If $n=1$ then the algorithm simply multiplies f_{0} by g_{0} to obtain the output $f_{0} g_{0}$.

The strategy for larger n is to split an n-coefficient problem into two ($n / 2$)coefficient problems, which are handled by the same method recursively. One needs $\lg n$ levels of recursion to split the original problem into n easy single-coefficient problems; each level of recursion involves $9 / 2$ operations per coefficient.

Consider, for any n, the functions $\varphi: \mathbf{C}[x] /\left(x^{2 n}-c^{2}\right) \rightarrow \mathbf{C}[x] /\left(x^{n}-c\right)$ and $\varphi^{\prime}: \mathbf{C}[x] /\left(x^{2 n}-c^{2}\right) \rightarrow \mathbf{C}[x] /\left(x^{n}+c\right)$ that take $f_{0}+\cdots+f_{2 n-1} x^{2 n-1}$ to $\left(f_{0}+c f_{n}\right)+$ $\cdots+\left(f_{n-1}+c f_{2 n-1}\right) x^{2 n-1}$ and $\left(f_{0}-c f_{n}\right)+\cdots+\left(f_{n-1}-c f_{2 n-1}\right) x^{2 n-1}$ respectively. Given f, one can compute $\varphi(f), \varphi^{\prime}(f)$ with n additions, n subtractions, and n multiplications by the constant c.

These functions $\varphi, \varphi^{\prime}$ are $\mathbf{C}[x]$-algebra morphisms. In particular, they preserve multiplication: $\varphi(f g)=\varphi(f) \varphi(g)$ and $\varphi^{\prime}(f g)=\varphi^{\prime}(f) \varphi^{\prime}(g)$. Furthermore, $\varphi \times \varphi^{\prime}$ is

Figure 2. Splitting product in $\mathbf{C}[x] /\left(x^{4}+1\right)$ into products in \mathbf{C}.
injective: one can recover f from $\varphi(f)$ and $\varphi^{\prime}(f)$. It is simpler to recover $2 f$: this takes n additions, n subtractions, and n multiplications by the constant $1 / c$.

Here, then, is how the algorithm computes $2 n f g$, given $f, g \in \mathbf{C}[x] /\left(x^{2 n}-c^{2}\right)$:

- Compute $\varphi(f), \varphi(g), \varphi^{\prime}(f), \varphi^{\prime}(g)$ with $2 n$ additions, $2 n$ subtractions, and $2 n$ multiplications by c.
- Recursively compute $n \varphi(f) \varphi(g)=\varphi(n f g)$ in $\mathbf{C}[x] /\left(x^{n}-c\right)$, and recursively compute $n \varphi^{\prime}(f) \varphi^{\prime}(g)=\varphi^{\prime}(n f g)$ in $\mathbf{C}[x] /\left(x^{n}+c\right)$.
- Compute $2 n f g$ from $\varphi(n f g), \varphi^{\prime}(n f g)$ with n additions, n subtractions, and n multiplications by $1 / c$.
For example, given $f=f_{0}+f_{1} x+f_{2} x^{2}+f_{3} x^{3}$ and $g=g_{0}+g_{1} x+g_{2} x^{2}+g_{3} x^{3}$, the algorithm computes 4 fg in $\mathbf{C}[x] /\left(x^{4}+1\right)=\mathbf{C}[x] /\left(x^{4}-i^{2}\right)$ as follows:
- Compute $\varphi(f)=\left(f_{0}+i f_{2}\right)+\left(f_{1}+i f_{3}\right) x$ and $\varphi^{\prime}(f)=\left(f_{0}-i f_{2}\right)+\left(f_{1}-i f_{3}\right) x$, and similarly compute $\varphi(g)$ and $\varphi^{\prime}(g)$.
- Recursively compute $2 \varphi(f) \varphi(g)$ in $\mathbf{C}[x] /\left(x^{2}-i\right)$, and recursively compute $2 \varphi^{\prime}(f) \varphi^{\prime}(g)$ in $\mathbf{C}[x] /\left(x^{2}+i\right)$.
- Recover $4 f g$.

See Figure 2.
A straightforward induction shows that the total work to compute $n f g$, given $f, g \in \mathbf{C}[x] /\left(x^{n}-c\right)$, is (3/2) $n \lg n$ additions, (3/2) $n \lg n$ subtractions, (3/2) $n \lg n$ multiplications by various constants, and n more multiplications. The algorithm then computes $f g$ with an additional n multiplications by the constant $1 / n$.

Generalization. More generally, let A be a commutative ring in which 2 is invertible, let $n \geq 2$ be a power of 2 , let c be an invertible element of A, and let ζ be an ($n / 2$)nd root of -1 in A.

By exactly the same method as above, one can multiply two elements of the ring $A[x] /\left(x^{n}-c^{n}\right)$ with (9/2) $n \lg n+2 n$ operations in A : specifically, (3/2) $n \lg n$ additions, (3/2) $n \lg n$ subtractions, (3/2) $n \lg n+n$ multiplications by constants, and n more multiplications. The constants are $1 / n$ and products of powers of c and ζ.

The assumption that A has a primitive nth root of 1 is a heavy restriction on A. If \mathbf{Z} / t has a primitive nth root of 1 , for example, then every prime divisor of t is in $1+n \mathbf{Z}$. (This fact is a special case of Pocklington's primality test; see Chapter 6 of this book.) Section 3 explains how to handle more general rings A.

Variant: radix 3. Similarly, let A be a commutative ring in which 3 is invertible, let $n \geq 3$ be a power of 3 , let c be an invertible element of A, and let ζ be an element of A satisfying $1+\zeta^{n / 3}+\zeta^{2 n / 3}=0$. Then one can multiply two elements of the ring $A[x] /\left(x^{n}-c^{n}\right)$ with $O(n \lg n)$ operations in A.

History. Gauss in [49, pages 265-327] was the first to point out that one can quickly compute a ring isomorphism from $\mathbf{R}[x] /\left(x^{2 n}-1\right)$ to $\mathbf{R}^{2} \times \mathbf{C}^{n-1}$ when n has no large prime factors. In [49, pages 308-310], for example, Gauss (in completely different language) mapped $\mathbf{R}[x] /\left(x^{12}-1\right)$ to $\mathbf{R}[x] /\left(x^{3}-1\right) \times \mathbf{R}[x] /\left(x^{3}+1\right) \times$ $\mathbf{C}[x] /\left(x^{3}+i\right)$, then mapped $\mathbf{R}[x] /\left(x^{3}-1\right)$ to $\mathbf{R} \times \mathbf{C}$, mapped $\mathbf{R}[x] /\left(x^{3}+1\right)$ to $\mathbf{R} \times \mathbf{C}$, and mapped $\mathbf{C}[x] /\left(x^{3}+i\right)$ to $\mathbf{C} \times \mathbf{C} \times \mathbf{C}$.

The discrete Fourier transform-this isomorphism from $\mathbf{R}[x] /\left(x^{2 n}-1\right)$ to $\mathbf{R}^{2} \times \mathbf{C}^{n-1}$, or the analogous isomorphism from $\mathbf{C}[x] /\left(x^{n}-1\right)$ to \mathbf{C}^{n}-was applied to many areas of scientific computation over the next hundred years. Gauss's method was reinvented several times, as discussed in [56], and finally became widely known after it was reinvented and published by Cooley and Tukey in [41]. Gauss's method is now called the fast Fourier transform or simply the FFT.

Shortly after the Cooley-Tukey paper, Sande and Stockham pointed out that one can quickly multiply in $\mathbf{C}[x] /\left(x^{n}-1\right)$ by applying the FFT, multiplying in \mathbf{C}^{n}, and applying the inverse FFT. See [108, page 229] and [50, page 573].

Fiduccia in [47] was the first to point out that each step of the FFT is an algebra isomorphism. This fact is still not widely known, despite its tremendous expository value; most expositions of the FFT use only the module structure of each step. I have taken Fiduccia's idea much further in this paper and in [13], identifying the ring morphisms behind all known multiplication methods.

Improvements. The algorithm explained above takes $15 n \lg n+8 n$ operations in \mathbf{R} to multiply in $\mathbf{C}[x] /\left(x^{n}-1\right)$, if $n \geq 2$ is a power of 2 and \mathbf{C} is represented as $\mathbf{R}[i] /\left(i^{2}+1\right)$:

- $5 n \lg n$ to transform the first input from $\mathbf{C}[x] /\left(x^{n}-1\right)$ to \mathbf{C}^{n}. The FFT takes $n \lg n$ additions and subtractions in C, totalling $2 n \lg n$ operations in \mathbf{R}, and ($1 / 2) n \lg n$ multiplications by various roots of 1 in \mathbf{C}, totalling $3 n \lg n$ operations in \mathbf{R}.
- $5 n \lg n$ to transform the second input from $\mathbf{C}[x] /\left(x^{n}-1\right)$ to \mathbf{C}^{n}.
- $2 n$ to scale one of the transforms, i.e., to multiply by the constant $1 / n$. One can eliminate most of these multiplications by absorbing $1 / n$ into other constants.
- $6 n$ to multiply the two transformed inputs in \mathbf{C}^{n}.
- $5 n \lg n$ to transform the product from \mathbf{C}^{n} back to $\mathbf{C}[x] /\left(x^{n}-1\right)$.

One can reduce each $5 n \lg n$ to $5 n \lg n-10 n+16$ for $n \geq 4$ by recognizing roots of 1 that allow easy multiplications: multiplications by 1 can be skipped, multiplications by -1 and $\pm i$ can be absorbed into subsequent computations, and multiplications by $\pm \sqrt{ \pm i}$ are slightly easier than general multiplications.

Gentleman and Sande in [50] pointed out another algorithm to map $\mathbf{C}[x] /\left(x^{n}-1\right)$ to \mathbf{C}^{n} using $5 n \lg n-10 n+16$ operations: map $\mathbf{C}[x] /\left(x^{2 n}-1\right)$ to $\mathbf{C}[x] /\left(x^{n}-1\right) \times$ $\mathbf{C}[x] /\left(x^{n}+1\right)$, twist $\mathbf{C}[x] /\left(x^{n}+1\right)$ into $\mathbf{C}[x] /\left(x^{n}-1\right)$ by mapping $x \rightarrow \zeta x$, and handle each $\mathbf{C}[x] /\left(x^{n}-1\right)$ recursively. I call this method the twisted FFT.

The split-radix FFT is faster: it uses only $4 n \lg n-6 n+8$ operations for $n \geq 2$, so multiplication in $\mathbf{C}[x] /\left(x^{n}-1\right)$ uses only $12 n \lg n+O(n)$ operations. The splitradix FFT is a mixture of Gauss's FFT with the Gentleman-Sande twisted FFT: it maps $\mathbf{C}[x] /\left(x^{4 n}-1\right)$ to $\mathbf{C}[x] /\left(x^{2 n}-1\right) \times \mathbf{C}[x] /\left(x^{2 n}+1\right)$, maps $\mathbf{C}[x] /\left(x^{2 n}+1\right)$ to $\mathbf{C}[x] /\left(x^{n}-i\right) \times \mathbf{C}[x] /\left(x^{n}+i\right)$, twists each $\mathbf{C}[x] /\left(x^{n} \pm i\right)$ into $\mathbf{C}[x] /\left(x^{n}-1\right)$ by mapping $x \rightarrow \zeta x$, and recursively handles both $\mathbf{C}[x] /\left(x^{2 n}-1\right)$ and $\mathbf{C}[x] /\left(x^{n}-1\right)$.

Another method is the real-factor FFT: map $\mathbf{C}[x] /\left(x^{4 n}-(2 \cos 2 \alpha) x^{2 n}+1\right)$ to $\mathbf{C}[x] /\left(x^{2 n}-(2 \cos \alpha) x^{n}+1\right) \times \mathbf{C}[x] /\left(x^{2 n}+(2 \cos \alpha) x^{n}+1\right)$, and handle each factor recursively. The real-factor FFT uses $4 n \lg n+O(n)$ operations if one represents elements of $\mathbf{C}[x] /\left(x^{2 n} \pm \cdots\right)$ using the basis $\left(1, x, \ldots, x^{n-1}, x^{-n}, x^{1-n}, \ldots, x^{-1}\right)$.

It is difficult to assign credit for the bound $4 n \lg n+O(n)$. Yavne announced the bound $4 n \lg n-6 n+8$ (specifically, $3 n \lg n-3 n+4$ additions and subtractions and $n \lg n-3 n+4$ multiplications) in [124, page 117], and apparently had in mind a method achieving that bound; but nobody, to my knowledge, has ever deciphered Yavne's explanation of the method. Ten years later, Bruun in [31] published the real-factor FFT. Several years after that, Duhamel and Hollmann in [44], Martens in [83], Vetterli and Nussbaumer in [121], and Stasinski (according to [45, page 263]) independently discovered the split-radix FFT.

One can multiply in $\mathbf{R}[x] /\left(x^{2 n}+1\right)$ with $12 n \lg n+O(n)$ operations in \mathbf{R}, if n is a power of 2: $\operatorname{map} \mathbf{R}[x] /\left(x^{2 n}+1\right)$ to $\mathbf{C}[x] /\left(x^{n}-i\right)$, twist $\mathbf{C}[x] /\left(x^{n}-i\right)$ into $\mathbf{C}[x] /\left(x^{n}-1\right)$, and apply the split-radix FFT. This is approximately twice as fast as mapping $\mathbf{R}[x] /\left(x^{2 n}+1\right)$ to $\mathbf{C}[x] /\left(x^{2 n}+1\right)$. An alternative is to use the real-factor FFT, with \mathbf{R} in place of \mathbf{C}.

One can also multiply in $\mathbf{R}[x] /\left(x^{2 n}-1\right)$ with $12 n \lg n+O(n)$ operations in \mathbf{R}, if n is a power of 2 : map $\mathbf{R}[x] /\left(x^{2 n}-1\right)$ to $\mathbf{R}[x] /\left(x^{n}-1\right) \times \mathbf{R}[x] /\left(x^{n}+1\right)$; handle $\mathbf{R}[x] /\left(x^{n}-1\right)$ by the same method recursively; handle $\mathbf{R}[x] /\left(x^{n}+1\right)$ as above. This is approximately twice as fast as mapping $\mathbf{R}[x] /\left(x^{2 n}-1\right)$ to $\mathbf{C}[x] /\left(x^{2 n}-1\right)$. This speedup was announced by Bergland in [9], but it was already part of Gauss's FFT.

The general strategy of all of the above algorithms is to $\operatorname{transform} f$, transform g, multiply the results, and then undo the transform to recover $f g$. There is some redundancy here if $f=g$: one can easily save a factor of $1.5+o(1)$ by transforming f, squaring the result, and undoing the transform to recover f^{2}. (Of course, f^{2} is much easier to compute if $2=0$ in A; this also saves time in Section 6.)

More generally, one can save the transform of each input, and reuse the transform in a subsequent multiplication if one knows (or observes) that the same input is showing up again. I call this technique FFT caching. FFT caching was announced in [42, Section 9], but it was already widely known; see, e.g., [87, Section 3.7].

Further savings are possible when one wants to compute a sum of products. Instead of undoing a transform to recover $a b$, undoing another transform to recover $c d$, and adding the results to obtain $a b+c d$, one can add first and then undo a single transform to recover $a b+c d$. I call this technique FFT addition.

There is much more to say about FFT performance, because there are much more sophisticated models of computation. Real computers have operation latency, memory latency, and instruction-decoding latency, for example; a serious analysis of constant factors takes these latencies into account.

3. Product: extension

Input. Let A be a commutative ring in which 2 is invertible. Let $n \geq 1$ be a power of 2 . The algorithm described in this section is given two elements f, g of the ring $A[x] /\left(x^{n}+1\right)$.

An element of $A[x] /\left(x^{n}+1\right)$ is, by convention, represented as a sequence of n elements of A : the sequence $\left(f_{0}, f_{1}, \ldots, f_{n-1}\right)$ represents $f_{0}+f_{1} x+\cdots+f_{n-1} x^{n-1}$.
Output. This algorithm computes the product $f g \in A[x] /\left(x^{n}+1\right)$.
Speed. This algorithm uses $O(n \lg n \lg \lg n)$ operations in A : more precisely, at most $(((9 / 2) \lg \lg (n / 4)+63 / 2) \lg (n / 4)-33 / 2) n$ operations in A if $n \geq 8$.

How it works. For $n \leq 8$, use the definition of multiplication in $A[x] /\left(x^{n}+1\right)$. This takes at most $n^{2}+n(n-1)=(2 n-1) n$ operations in A. If $n=8$ then $\lg (n / 4)=1$ so $((9 / 2) \lg \lg (n / 4)+63 / 2) \lg (n / 4)-33 / 2=63 / 2-33 / 2=15=2 n-1$.

For $n \geq 16$, find the unique power m of 2 such that $m^{2} \in\{2 n, 4 n\}$. Notice that $8 \leq m<n$. Notice also that $\lg (n / 4)-1 \leq 2 \lg (m / 4) \leq \lg (n / 4)$, so $\lg \lg (m / 4) \leq$ $\lg \lg (n / 4)-1$ and $2 \lg (2 n / m) \leq \lg (n / 4)+3$.

Define $B=A[x] /\left(x^{m}+1\right)$. By induction, given $f, g \in B$, one can compute the product $f g$ with at most $(((9 / 2) \lg \lg (m / 4)+63 / 2) \lg (m / 4)-33 / 2) m$ operations in A. One can also compute any of the following with m operations in A : the sum $f+g$; the difference $f-g$; the product $c f$, where c is a constant element of A; the product $c f$, where c is a constant power of x.

There is a $(2 n / m)$ th root of -1 in B, namely $x^{m^{2} / 2 n}$. Therefore one can use the algorithm explained in Section 2 to multiply quickly in $B[y] /\left(y^{2 n / m}+1\right)$-and, consequently, to multiply in $A[x, y] /\left(y^{2 n / m}+1\right)$ if each input has x-degree smaller than $m / 2$. This takes $(9 / 2)(2 n / m) \lg (2 n / m)+2 n / m$ easy operations in B and $2 n / m$ more multiplications in B.

Now, given $f, g \in A[x] /\left(x^{n}+1\right)$, compute $f g$ as follows. Consider the $A[x]$ algebra morphism $\varphi: A[x, y] /\left(y^{2 n / m}+1\right) \rightarrow A[x] /\left(x^{n}+1\right)$ that takes y to $x^{m / 2}$. Find $F \in A[x, y] /\left(y^{2 n / m}+1\right)$ such that F has x-degree smaller than $m / 2$ and $\varphi(F)=f$; explicitly, $F=\sum_{j} \sum_{0 \leq i<m / 2} f_{i+(m / 2) j} x^{i} y^{j}$ if $f=\sum f_{i} x^{i}$. Similarly construct G from g. Compute $F G$ as explained above. Then compute $\varphi(F G)=f g$; this takes n additional operations in A.

One multiplication in $A[x] /\left(x^{n}+1\right)$ has thus been split into

- $2 n / m$ multiplications in B, i.e., at most $((9 \lg \lg (m / 4)+63) \lg (m / 4)-33) n \leq$ $(((9 / 2) \lg \lg (n / 4)+27) \lg (n / 4)-33) n$ operations in A;
- $(9 n / m) \lg (2 n / m)+2 n / m \leq((9 / 2) \lg (n / 4)+31 / 2) n / m$ easy operations in B, i.e., at most $((9 / 2) \lg (n / 4)+31 / 2) n$ operations in A; and
- n additional operations in A.

The total is at most $(((9 / 2) \lg \lg (n / 4)+63 / 2) \lg (n / 4)-33 / 2) n$ as claimed.
For example, given $f=f_{0}+f_{1} x+\cdots+f_{7} x^{7}$ and $g=g_{0}+g_{1} x+\cdots+g_{7} x^{7}$ in $A[x] /\left(x^{8}+1\right)$, define $F=\left(f_{0}+f_{1} x\right)+\left(f_{2}+f_{3} x\right) y+\left(f_{4}+f_{5} x\right) y^{2}+\left(f_{6}+f_{7} x\right) y^{3}$ and $G=\left(g_{0}+g_{1} x\right)+\left(g_{2}+g_{3} x\right) y+\left(g_{4}+g_{5} x\right) y^{2}+\left(g_{6}+g_{7} x\right) y^{3}$ in $A[x, y] /\left(y^{4}+1\right)$. The product $F G$ has the form

$$
\begin{aligned}
& \left(h_{0}+h_{1} x+h_{2} x^{2}\right)+\left(h_{3}+h_{4} x+h_{5} x^{2}\right) y \\
& \quad+\left(h_{6}+h_{7} x+h_{8} x^{2}\right) y^{2}+\left(h_{9}+h_{10} x+h_{11} x^{2}\right) y^{3} .
\end{aligned}
$$

Figure 3. Splitting product in $A[x] /\left(x^{8}+1\right)$ into four products in $B=A[x] /\left(x^{4}+1\right)$, if 2 is invertible in A. Compare to Figure 2.

Compute this product in $A[x, y] /\left(x^{4}+1, y^{4}+1\right)$, and substitute $y=x^{2}$ to recover $f g=\left(h_{0}-h_{11}\right)+h_{1} x+\left(h_{2}+h_{3}\right) x^{2}+h_{4} x^{3}+\left(h_{5}+h_{6}\right) x^{4}+h_{7} x^{5}+\left(h_{8}+h_{9}\right) x^{6}+h_{10} x^{7}$. The multiplication in $A[x, y] /\left(x^{4}+1, y^{4}+1\right)$ splits into four multiplications in $A[x] /\left(x^{4}+1\right)$. See Figure 3.

Variant: radix 3 . Similarly, let A be a commutative ring in which 3 is invertible, and let $n \geq 3$ be a power of 3 . One can multiply two elements of $A[x] /\left(x^{2 n}+x^{n}+1\right)$ with $O(n \lg n \lg \lg n)$ operations in A.

The integer case; another model of computation. Algorithms that multiply polynomials of high degree using very few coefficient operations are analogous to algorithms that multiply integers with many bits in very little time.

There are many popular definitions of time. In this paper, time means number of steps on a multitape Turing machine. See [90, Section 2.3] for a precise definition of multitape Turing machines.

Let n be a power of 2 . There is an algorithm, analogous to the multiplication algorithm for $A[x] /\left(x^{n}+1\right)$, that multiplies two elements of $\mathbf{Z} /\left(2^{n}+1\right)$ in time $O(n \lg n \lg \lg n)$. Here an element of $\mathbf{Z} /\left(2^{n}+1\right)$ is, by convention, represented as a sequence of $n+1$ bits: the sequence $\left(f_{0}, f_{1}, \ldots, f_{n}\right)$ represents $f_{0}+2 f_{1}+\cdots+2^{n} f_{n}$. Note that most numbers have two representations.

The multiplication algorithm for $\mathbf{Z} /\left(2^{n}+1\right)$ performs $2 n / m$ multiplications in $\mathbf{Z} /\left(2^{m}+1\right)$, for $n \geq 16$, where $m^{2} \in\{2 n, 4 n\}$. Splitting a $\mathbf{Z} /\left(2^{n}+1\right)$ multiplication into $\mathbf{Z} /\left(2^{m}+1\right)$ multiplications is analogous to, but slightly more complicated than, splitting an $A[x] /\left(x^{n}+1\right)$ multiplication into $A[x] /\left(x^{m}+1\right)$ multiplications. The complication is that a sum of $2 n / m$ products of ($m / 2$)-bit integers generally does not quite fit into m bits. On the other hand, the sum does fit into $m+k$ bits for a small k, so it is determined by its images in $\mathbf{Z} /\left(2^{m}+1\right)$ and $\mathbf{Z} / 2^{k}$. One multiplies in $\mathbf{Z}[y] /\left(y^{2 n / m}+1\right)$ by multiplying recursively in $\left(\mathbf{Z} /\left(2^{m}+1\right)\right)[y] /\left(y^{2 n / m}+1\right)$ and multiplying straightforwardly in $\left(\mathbf{Z} / 2^{k}\right)[y] /\left(y^{2 n / m}+1\right)$.

History. The ideas in this section were developed first in the integer case. The crucial point is that one can multiply in $\mathbf{Z}[y] /\left(y^{m} \pm 1\right)$ by selecting t so that \mathbf{Z} / t has an appropriate root of 1 , mapping $\mathbf{Z}[y] /\left(y^{m} \pm 1\right)$ to $(\mathbf{Z} / t)[y] /\left(y^{m} \pm 1\right)$, and applying an FFT over \mathbf{Z} / t. This multiplication method was suggested by Pollard in [92], independently by Nicholson in [88, page 532], and independently by Schönhage and Strassen in [102]. Schönhage and Strassen suggested the choice $t=2^{m}+1$ and proved the $O(n \lg n \lg \lg n)$ time bound.

The analogous algorithm for polynomials was mentioned by Schönhage in [98] and presented in detail by Turk in [117, Section 2]. Schönhage also suggested using the radix-3 FFT to multiply polynomials over fields of characteristic 2.

Nussbaumer in [89] introduced a different algorithm achieving the $O(n \lg n \lg \lg n)$ operation bound for polynomials. Nussbaumer's algorithm starts in the same way, lifting (for example) $A[x] /\left(x^{8}+1\right)$ to $A[x, y] /\left(y^{4}+1\right)$ by $y \mapsto x^{2}$. It then maps $A[x, y] /\left(y^{4}+1\right)$ to $\left(A[y] /\left(y^{4}+1\right)\right)[x] /\left(x^{4}-1\right)$ and applies an FFT over $A[y] /\left(y^{4}+1\right)$, instead of mapping $A[x, y] /\left(y^{4}+1\right)$ to $\left(A[x] /\left(x^{4}+1\right)\right)[y] /\left(y^{4}+1\right)$ and applying an FFT over $A[x] /\left(x^{4}+1\right)$.
Improvements. Multiplication by a constant power of x in $A[x] /\left(x^{m}+1\right)$ is easier than the above analysis indicates: multiplications by 1 in A can be eliminated, and multiplications by -1 in A can be absorbed into subsequent computations. The total operation count drops from (9/2+o(1)) $n \lg n \lg \lg n$ to $(3+o(1)) n \lg n \lg \lg n$.

The constant 3 here is the best known. There is much more to say about the $o(1)$. See [13] for a survey of relevant techniques.

There is vastly more to say about the integer case, in part because Turingmachine time is a more complicated concept than algebraic complexity, and in part because real computers are more complicated than Turing machines.

4. Product: Zero-Padding and localization

Input. Let A be a commutative ring. Let n be a positive integer. The algorithm in this section is given two elements f, g of the polynomial ring $A[x]$ such that $\operatorname{deg} f g<n$: e.g., such that n is the total number of coefficients in f and g.

An element of $A[x]$ is, by convention, represented as a finite sequence of elements of A : the sequence $\left(f_{0}, f_{1}, \ldots, f_{d-1}\right)$ represents $f_{0}+f_{1} x+\cdots+f_{d-1} x^{d-1}$.
Output. This algorithm computes the product $f g \in A[x]$.
Speed. The algorithm uses $O(n \lg n \lg \lg n)$ operations in A.
Equivalently: The algorithm uses at most $n \mu(n)$ operations in A, where $\mu: \mathbf{N} \rightarrow$ \mathbf{R} is a nondecreasing positive function with $\mu(n) \in O(\lg n \lg \lg n)$. The μ notation helps simplify the run-time analysis in subsequent sections of this paper.
Special case: how it works if $A=\mathbf{C}$. Given $f, g \in \mathbf{C}[x]$ such that $\operatorname{deg} f g<n$, one can compute $f g$ by using the algorithm of Section 2 to compute $f g \bmod \left(x^{m}-1\right)$ in $\mathbf{C}[x] /\left(x^{m}-1\right)$; here m is the smallest power of 2 with $m \geq n$. This takes $O(m \lg m)=O(n \lg n)$ operations in C.

For example, if $f=f_{0}+f_{1} x+f_{2} x^{2}$ and $g=g_{0}+g_{1} x+g_{2} x^{2}+g_{3} x^{3}$, use the algorithm of Section 2 to multiply the elements $f_{0}+f_{1} x+f_{2} x^{2}+0 x^{3}+0 x^{4}+0 x^{5}+$ $0 x^{6}+0 x^{7}$ and $g_{0}+g_{1} x+g_{2} x^{2}+g_{3} x^{3}+0 x^{4}+0 x^{5}+0 x^{6}+0 x^{7}$ of $\mathbf{C}[x] /\left(x^{8}-1\right)$, obtaining $h_{0}+h_{1} x+h_{2} x^{2}+h_{3} x^{3}+h_{4} x^{4}+h_{5} x^{5}+0 x^{6}+0 x^{7}$. Then $f g=h_{0}+h_{1} x+$ $h_{2} x^{2}+h_{3} x^{3}+h_{4} x^{4}+h_{5} x^{5}$. Appending zeros to an input-for example, converting f_{0}, f_{1}, f_{2} to $f_{0}, f_{1}, f_{2}, 0,0,0,0,0$-is called zero-padding.

In this special case $A=\mathbf{C}$, the previously mentioned bound $\mu(n) \in O(\lg n \lg \lg n)$ is unnecessarily pessimistic: one can take $\mu(n) \in O(\lg n)$. Subsequent sections of this paper use the bound $\mu(n) \in O(\lg n \lg \lg n)$, and are correspondingly pessimistic.

Similar comments apply to other rings A having appropriate roots of -1 , and to nearby rings such as \mathbf{R}.

Intermediate generality: how it works if 2 is invertible in A. Let A be any commutative ring in which 2 is invertible. Given $f, g \in A[x]$ with $\operatorname{deg} f g<n$, one can compute $f g$ by using the algorithm of Section 3 to compute $f g \bmod \left(x^{m}+1\right)$ in $A[x] /\left(x^{m}+1\right)$; here m is the smallest power of 2 with $m \geq n$. This takes $O(m \lg m \lg \lg m)=O(n \lg n \lg \lg n)$ operations in A.

Intermediate generality: how it works if 3 is invertible in A. Let A be any commutative ring in which 3 is invertible. The previous algorithm has a radix-3 variant that computes $f g$ using $O(n \lg n \lg \lg n)$ operations in A.

Full generality: how it works for arbitrary rings. What if neither 2 nor 3 is invertible? Answer: Map A to the product of the localizations $2^{-\mathbf{N}} A$ and $3^{-\mathbf{N}} A$. This map is injective; 2 is invertible in $2^{-\mathbf{N}} A$; and 3 is invertible in $3^{-\mathbf{N}} A$.

In other words: Given polynomials f, g over any commutative ring A, use the technique of Section 3 to compute $2^{j} f g$ for some j; use the radix-3 variant to compute $3^{k} f g$ for some k; and then compute $f g$ as a linear combination of $2^{j} f g$ and $3^{k} f g$. This takes $O(n \lg n \lg \lg n)$ operations in A if $\operatorname{deg} f g<n$.

Assume, for example, that $\operatorname{deg} \mathrm{fg}<8$. Compute 16 fg by computing 16 fg mod $\left(x^{8}-1\right)$, and compute $9 f g$ by computing $9 f g \bmod \left(x^{18}+x^{9}+1\right)$; then $f g=$ $4(16 f g)-7(9 f g)$. The numbers 16 and 9 here are the denominators produced by the algorithm of Section 3.

The integer case. An analogous algorithm computes the product of two integers in time $O(n \lg n \lg \lg n)$, if the output size is known to be at most n bits. (Given $f, g \in \mathbf{Z}$ with $|f g|<2^{n}$, use the algorithm of Section 3 to compute $f g \bmod \left(2^{m}+1\right)$ in $\mathbf{Z} /\left(2^{m}+1\right)$; here m is the smallest power of 2 with $m \geq n+1$.)

Here an integer is, by convention, represented in two's-complement notation: a sequence of bits $\left(f_{0}, f_{1}, \ldots, f_{k-1}, f_{k}\right)$ represents $f_{0}+2 f_{1}+\cdots+2^{k-1} f_{k-1}-2^{k} f_{k}$.

History. Karatsuba in [63] was the first to point out that integer multiplication can be done in subquadratic time. This result is often (e.g., in [33, page 58]) credited to Karatsuba and Ofman, because [63] was written by Karatsuba and Ofman; but [63] explicitly credited the algorithm to Karatsuba alone.

Toom in [115] was the first to point out that integer multiplication can be done in essentially linear time: more precisely, time $n \exp (O(\sqrt{\log n}))$. Schönhage in [96] independently published the same observation a few years later. Cook in [40, page $53]$ commented that Toom's method could be used to quickly multiply polynomials over finite fields.

Stockham in [108, page 230] suggested zero-padding and FFT-based multiplication in $\mathbf{C}[x] /\left(x^{n}-1\right)$ as a way to multiply in $\mathbf{C}[x]$.

The $O(n \lg n \lg \lg n)$ time bound for integers is usually credited to Schönhage and Strassen; see Section 3. Cantor and Kaltofen in [37] used $A \rightarrow 2^{-\mathbf{N}} A \times 3^{-\mathbf{N}} A$ to prove the $O(n \lg n \lg \lg n)$ operation bound for polynomials over any ring.

Improvements. The above algorithms take

- $(m / n)(9 / 2+o(1)) n \lg n$ operations in \mathbf{C} to multiply in $\mathbf{C}[x]$; or
- $(m / n)(12+o(1)) n \lg n$ operations in \mathbf{R} to multiply in $\mathbf{C}[x]$, using the splitradix FFT or the real-factor FFT; or
- $(m / n)(6+o(1)) n \lg n$ operations in \mathbf{R} to multiply in $\mathbf{R}[x]$; or
- $(m / n)(3+o(1)) n \lg n \lg \lg n$ operations in any ring A to multiply in $A[x]$, if 2 is invertible in A.
There are several ways to eliminate the m / n factor here. One good way is to compute $f g$ modulo $x^{m}+1$ for several powers m of 2 with $\sum m \geq n$, then recover $f g$. For example, if $n=80000$, one can recover $f g$ from $f g \bmod \left(x^{65536}+1\right)$ and $f g \bmod \left(x^{16384}+1\right)$. A special case of this technique was pointed out by Crandall and Fagin in $[42$, Section 7]. See [13, Section 8] for an older technique.

One can save time at the beginning of the FFT when the input is known to be the result of zero-padding. For example, one does not need an operation to compute $f_{0}+0$. Similarly, one can save time at the end of the FFT when the output is known to have zeros: the zeros need not be recomputed.

In the context of FFT addition-for example, computing $a b+c d$ with only five transforms - the transform size does not need to be large enough for $a b$ and $c d$; it need only be large enough for $a b+c d$. This is useful in applications where $a b+c d$ is known to be small.

When f has a substantially larger degree than g (or vice versa), one can often save time by splitting f into pieces of comparable size to g, and multiplying each piece by g. Similar comments apply in Section 7. In the polynomial case, this technique is most often called the "overlap-add method"; it was introduced by Stockham in [108, page 230] under the name "sectioning." The analogous technique for integers appears in [72, answer to Exercise 4.3.3-13] with credit to Schönhage.

See [13] for a survey of further techniques.

5. Product: completion

Input. Let A be a commutative ring. Let n be a positive integer. The algorithm in this section is given the precision- n representations of two elements f, g of the power-series ring $A[[x]]$.

The precision- n representation of a power series $f \in A[[x]]$ is, by definition, the polynomial $f \bmod x^{n}$. If $f=\sum_{j} f_{j} x^{j}$ then $f \bmod x^{n}=f_{0}+f_{1} x+\cdots+f_{n-1} x^{n-1}$. This polynomial is, in turn, represented in the usual way as its coefficient sequence $\left(f_{0}, f_{1}, \ldots, f_{n-1}\right)$.

This representation does not carry complete information about f; it is only an approximation to f. It is nevertheless useful.

Output. This algorithm computes the precision-n representation of the product $f g \in A[[x]]$. If the input is $f_{0}, f_{1}, \ldots, f_{n-1}, g_{0}, g_{1}, \ldots, g_{n-1}$ then the output is $f_{0} g_{0}, f_{0} g_{1}+f_{1} g_{0}, f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0}, \ldots, f_{0} g_{n-1}+f_{1} g_{n-2}+\cdots+f_{n-1} g_{0}$.

Speed. This algorithm uses $O(n \lg n \lg \lg n)$ operations in A : more precisely, at most $(2 n-1) \mu(2 n-1)$ operations in A.
How it works. Given $f \bmod x^{n}$ and $g \bmod x^{n}$, compute the polynomial product $\left(f \bmod x^{n}\right)\left(g \bmod x^{n}\right)$ by the algorithm of Section 4. Throw away the coefficients of x^{n}, x^{n+1}, \ldots to obtain $\left(f \bmod x^{n}\right)\left(g \bmod x^{n}\right) \bmod x^{n}=f g \bmod x^{n}$.

For example, given the precision-3 representation f_{0}, f_{1}, f_{2} of the series $f=$ $f_{0}+f_{1} x+f_{2} x^{2}+\cdots$, and given the precision-3 representation g_{0}, g_{1}, g_{2} of the series $g=g_{0}+g_{1} x+g_{2} x^{2}+\cdots$, first multiply $f_{0}+f_{1} x+f_{2} x^{2}$ by $g_{0}+g_{1} x+g_{2} x^{2}$ to obtain $f_{0} g_{0}+\left(f_{0} g_{1}+f_{1} g_{0}\right) x+\left(f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0}\right) x^{2}+\left(f_{1} g_{2}+f_{2} g_{1}\right) x^{3}+f_{2} g_{2} x^{4}$; then throw away the coefficients of x^{3} and x^{4} to obtain $f_{0} g_{0}, f_{0} g_{1}+f_{1} g_{0}, f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0}$.

The integer case, easy completion: $\mathbf{Q} \rightarrow \mathbf{Q}_{2}$. Consider the ring \mathbf{Z}_{2} of 2-adic integers. The precision- n representation of $f \in \mathbf{Z}_{2}$ is, by definition, the integer $f \bmod 2^{n} \in \mathbf{Z}$. This representation of elements of \mathbf{Z}_{2} as nearby elements of \mathbf{Z} is analogous in many ways to the representation of elements of $A[[x]]$ as nearby elements of $A[x]$. In particular, there is an analogous multiplication algorithm: given $f \bmod 2^{n}$ and $g \bmod 2^{n}$, one can compute $f g \bmod 2^{n}$ in time $O(n \lg n \lg \lg n)$.
The integer case, hard completion: $\mathbf{Q} \rightarrow \mathbf{R}$. Each real number $f \in \mathbf{R}$ is, by convention, represented as a nearby element of the localization $2^{-\mathbf{N}} \mathbf{Z}$: an integer divided by a power of 2 . If $|f|<1$, for example, then there are one or two integers d with $|d| \leq 2^{n}$ such that $\left|d / 2^{n}-f\right|<1 / 2^{n}$.

If another real number g with $|g|<1$ is similarly represented by an integer e then $f g$ is almost represented by the integer $\left\lfloor d e / 2^{n}\right\rfloor$, which can be computed in time $O(n \lg n \lg \lg n)$. However, the distance from $f g$ to $\left\lfloor d e / 2^{n}\right\rfloor / 2^{n}$ may be somewhat larger than $1 / 2^{n}$. This effect is called roundoff error: the output is known to slightly less precision than the input.

History. See [72, Section 4.1] for the history of positional notation.
Improvements. Operations involved in multiplying $f \bmod x^{n}$ by $g \bmod x^{n}$ can be skipped if they are used only to compute the coefficients of x^{n}, x^{n+1}, \ldots. The number of operations skipped depends on the multiplication method; optimizing $u, v \mapsto u v$ does not necessarily optimize $u, v \mapsto u v \bmod x^{n}$. Similar comments apply to the integer case.

6. Reciprocal

Input. Let A be a commutative ring. Let n be a positive integer. The algorithm in this section is given the precision- n representation of a power series $f \in A[[x]]$ with $f(0)=1$.

Output. This algorithm computes the precision- n representation of the reciprocal $1 / f=1+(1-f)+(1-f)^{2}+\cdots \in A[[x]]$. If the input is $1, f_{1}, f_{2}, f_{3}, \ldots, f_{n-1}$ then the output is $1,-f_{1}, f_{1}^{2}-f_{2}, 2 f_{1} f_{2}-f_{1}^{3}-f_{3}, \ldots, \cdots-f_{n-1}$.
Speed. This algorithm uses $O(n \lg n \lg \lg n)$ operations in A : more precisely, at most $(8 n+2 k-8) \mu(2 n-1)+(2 n+2 k-2)$ operations in A if $n \leq 2^{k}$.

How it works. If $n=1$ then $(1 / f) \bmod x^{n}=1$. There are 0 operations here; and $(8 n+2 k-8) \mu(2 n-1)+(2 n+2 k-2)=2 k \mu(1)+2 k \geq 0$ since $k \geq \lg n=0$.

Otherwise define $m=\lceil n / 2\rceil$. Recursively compute $g_{0}=(1 / f) \bmod x^{m}$; note that $m<n$. Then compute $(1 / f) \bmod x^{n}$ as $\left(g_{0}-\left(f g_{0}-1\right) g_{0}\right) \bmod x^{n}$, using the algorithm of Section 5 for the multiplications by g_{0}. This works because the difference $1 / f-\left(g_{0}-\left(f g_{0}-1\right) g_{0}\right)$ is exactly $f\left(1 / f-g_{0}\right)^{2}$, which is a multiple of $x^{2 m}$, hence of x^{n}.

For example, given the precision-4 representation $1+f_{1} x+f_{2} x^{2}+f_{3} x^{3}$ of f, recursively compute $g_{0}=(1 / f) \bmod x^{2}=1-f_{1} x$. Multiply f by g_{0} modulo x^{4} to obtain $1+\left(f_{2}-f_{1}^{2}\right) x^{2}+\left(f_{3}-f_{1} f_{2}\right) x^{3}$. Subtract 1 and multiply by g_{0} modulo x^{4} to obtain $\left(f_{2}-f_{1}^{2}\right) x^{2}+\left(f_{3}+f_{1}^{3}-2 f_{1} f_{2}\right) x^{3}$. Subtract from g_{0} to obtain $1-f_{1} x+\left(f_{1}^{2}-f_{2}\right) x^{2}+\left(2 f_{1} f_{2}-f_{1}^{3}-f_{3}\right) x^{3}$. This is the precision-4 representation of $1 / f$.

The proof of speed is straightforward. By induction, the recursive computation uses at most $(8 m+2(k-1)-8) \mu(2 m-1)+(2 m+2(k-1)-2)$ operations in A, since $m \leq 2^{k-1}$. The subtraction from g_{0} and the subtraction of 1 use at most $n+1$ operations in A. The two multiplications by g_{0} use at most $2(2 n-1) \mu(2 n-1)$ operations in A. Apply the inequalities $m \leq(n+1) / 2$ and $\mu(2 m-1) \leq \mu(2 n-1)$ to see that the total is at most $(8 n+2 k-8) \mu(2 n-1)+(2 n+2 k-2)$ as claimed.
The integer case, easy completion: $\mathbf{Q} \rightarrow \mathbf{Q}_{2}$. Let $f \in \mathbf{Z}_{2}$ be an odd 2-adic integer. Then f has a reciprocal $1 / f=1+(1-f)+(1-f)^{2}+\cdots \in \mathbf{Z}_{2}$.

One can compute $(1 / f) \bmod 2^{n}$, given $f \bmod 2^{n}$, by applying the same formula as in the power-series case: first recursively compute $g_{0}=(1 / f) \bmod 2^{\lceil n / 2\rceil}$; then compute $(1 / f) \bmod 2^{n}$ as $\left(g_{0}+\left(1-f g_{0}\right) g_{0}\right) \bmod 2^{n}$. This takes time $O(n \lg n \lg \lg n)$.

The integer case, hard completion: $\mathbf{Q} \rightarrow \mathbf{R}$. Let $f \in \mathbf{R}$ be a real number between 0.25 and 1 . Then f has a reciprocal $g=1+(1-f)+(1-f)^{2}+\cdots \in \mathbf{R}$. If g_{0} is a close approximation to $1 / f$, then $g_{0}+\left(1-f g_{0}\right) g_{0}$ is an approximation to $1 / f$ with nearly twice the precision. Consequently one can compute a precision- n representation of $1 / f$, given a slightly higher-precision representation of f, in time $O(n \lg n \lg \lg n)$.

The details are, thanks to roundoff error, more complicated than in the powerseries case, and are not included in this paper. See [72, Algorithm 4.3.3-R] or [11, Section 8] for a complete algorithm.

History. Simpson in [105, page 81] presented the iteration $g \mapsto g-(f g-1) g$ for reciprocals. Simpson also commented that one can carry out the second-to-last iteration at about $1 / 2$ the desired precision, the third-to-last iteration at about $1 / 4$ the desired precision, etc., so that the total time is comparable to the time for the last iteration. I have not been able to locate earlier use of this iteration.

Simpson considered, more generally, the iteration $g \mapsto g-p(g) / p^{\prime}(g)$ for roots of a function p. The iteration $g \mapsto g-(f g-1) g$ is the case $p(g)=g^{-1}-f$. The general case is usually called "Newton's method," but I see no evidence that Newton deserves credit for it. Newton used the iteration for polynomials p, but so did previous mathematicians. Newton's descriptions never mentioned derivatives and were not amenable to generalization. See [77] and [125] for further discussion.

Cook in [40, pages 81-86] published details of a variable-precision reciprocal algorithm for \mathbf{R} taking essentially linear time, using the iteration $g \mapsto g-(f g-1) g$ with Toom's essentially-linear-time multiplication algorithm.

Sieveking in [104], apparently unaware of Cook's result, published details of an analogous reciprocal algorithm for $A[[x]]$. The analogy was pointed out by Kung in [80].

Improvements. Computing a reciprocal by the above algorithm takes $4+o(1)$ times as many operations as computing a product. There are several ways that this constant 4 can be reduced. The following discussion focuses on $\mathbf{C}[[x]]$ and assumes that n is a power of 2. Analogous comments apply to other values of n; to $A[[x]]$ for other rings A; to \mathbf{Z}_{2}; and to \mathbf{R}.

One can achieve $3+o(1)$ by skipping some multiplications by low zeros. The point is that that $f g_{0}-1$ is a multiple of x^{m}. Write $u=\left(\left(f g_{0}-1\right) \bmod x^{n}\right) / x^{m}$ and $v=g_{0} \bmod x^{n-m}$; then u and v are polynomials of degree below $n-m$, and $\left(\left(f g_{0}-1\right) g_{0}\right) \bmod x^{n}=x^{m} u v \bmod x^{n}$. One can compute $u v \bmod x^{n}-1$, extract the bottom $n-m$ coefficients of the product, and insert m zeros, to obtain $\left(\left(f g_{0}-1\right) g_{0}\right) \bmod x^{n}$.

One can achieve $2+o(1)$ by skipping some multiplications by high zeros and by not recomputing a stretch of known coefficients. To compute $f g_{0} \bmod x^{n}$, one multiplies $f \bmod x^{n}$ by g_{0} and extracts the bottom n coefficients. The point is that $\left(f \bmod x^{n}\right) g_{0}-1$ is a multiple of x^{m}, and has degree at most $m+n$, so it is easily computed from its remainder modulo $x^{n}-1$: it has m zeros, then the top $n-m$ coefficients of the remainder, then the bottom $n-m$ coefficients of the remainder.

One can achieve $5 / 3+o(1)$ by applying FFT caching. There is a multiplication of $f \bmod x^{n}$ by g_{0} modulo $x^{n}-1$, and a multiplication of $\left(f g_{0}-1\right) \bmod x^{n}$ by g_{0} modulo $x^{n}-1$; the transform of g_{0} can be reused rather than recomputed.

One can achieve $3 / 2+o(1)$ by evaluating a cubic rather than two quadratics. The polynomial $\left(\left(f \bmod x^{n}\right) g_{0}-1\right) g_{0}$ is a multiple of x^{m} and has degree below $n+2 m$, so it is easily computed from its remainders modulo $x^{n}+1$ and $x^{m}-1$. One transforms $f \bmod x^{n}$, transforms g_{0}, multiplies the first transform by the square of the second, subtracts the second, and untransforms the result.

Brent published $3+o(1)$ in [28]. Schönhage, Grotefeld, and Vetter in [101, page 256] announced $2+o(1)$ without giving details. I published $28 / 15+o(1)$ in 1998, and $3 / 2+o(1)$ in 2000, with a rather messy algorithm; see [15]. Schönhage in [100] independently published the above $3 / 2+o(1)$ algorithm.

7. Quotient

Input. Let A be a commutative ring. Let n be a positive integer. The algorithm in this section is given the precision- n representations of power series $f, h \in A[[x]]$ such that $f(0)=1$.

Output. This algorithm computes the precision- n representation of $h / f \in A[[x]]$. If the input is $1, f_{1}, f_{2}, \ldots, f_{n-1}, h_{0}, h_{1}, h_{2}, \ldots, h_{n-1}$ then the output is

$$
\begin{aligned}
& h_{0} \\
& h_{1}-f_{1} h_{0} \\
& h_{2}-f_{1} h_{1}+\left(f_{1}^{2}-f_{2}\right) h_{0} \\
& \vdots \\
& h_{n-1}-\cdots+\left(\cdots-f_{n-1}\right) h_{0}
\end{aligned}
$$

Speed. This algorithm uses $O(n \lg n \lg \lg n)$ operations in A : more precisely, at most $(10 n+2 k-9) \mu(2 n-1)+(2 n+2 k-2)$ operations in A if $n \leq 2^{k}$.

How it works. First compute a precision- n approximation to $1 / f$ as explained in Section 6. Then multiply by h as explained in Section 5.

The integer case, easy completion: $\mathbf{Q} \rightarrow \mathbf{Q}_{2}$. Let h and f be elements of \mathbf{Z}_{2} with f odd. Given $f \bmod 2^{n}$ and $h \bmod 2^{n}$, one can compute $(h / f) \bmod 2^{n}$ in time $O(n \lg n \lg \lg n)$ by the same method.

The integer case, hard completion: $\mathbf{Q} \rightarrow \mathbf{R}$. Let h and f be elements of \mathbf{R} with $0.5 \leq f \leq 1$. One can compute a precision- n representation of h / f, given slightly higher-precision representations of f and h, in time $O(n \lg n \lg \lg n)$. As usual, roundoff error complicates the algorithm.

Improvements. One can improve the number of operations for a reciprocal to $3 / 2+o(1)$ times the number of operations for a product, as discussed in Section 6, so one can improve the number of operations for a quotient to $5 / 2+o(1)$ times the number of operations for a product.

The reader may be wondering at this point why quotient deserves to be discussed separately from reciprocal. Answer: Further improvements are possible. Karp and Markstein in [66] pointed out that a quotient computation could profitably avoid some of the work in a reciprocal computation. I achieved a gap of $13 / 15+o(1)$ in 1998 and $2 / 3+o(1)$ in 2000, combining the Karp-Markstein idea with some FFT reuse; see [15]. In 2004, Hanrot and Zimmermann announced a gap of $7 / 12+o(1)$: i.e., the number of operations for a quotient is $25 / 12+o(1)$ times the number of operations for a product.

8. LoGarithm: the series case

Input. Let A be a commutative ring containing \mathbf{Q}. Let n be a positive integer. The algorithm in this section is given the precision- n representation of a power series $f \in A[[x]]$ with $f(0)=1$.

Output. This algorithm computes the precision- n representation of the series $\log f=-(1-f)-(1-f)^{2} / 2-(1-f)^{3} / 3-\cdots \in A[[x]]$. If the input is $1, f_{1}, f_{2}, f_{3}, \ldots$ then the output is $0, f_{1}, f_{2}-f_{1}^{2} / 2, f_{3}-f_{1} f_{2}+f_{1}^{3} / 3, \ldots$.

Define $D\left(\sum a_{j} x^{j}\right)=\sum j a_{j} x^{j}$. The reader may enjoy checking the following properties of \log and D :

- $D(f g)=g D(f)+f D(g)$;
- $D\left(g^{n}\right)=n g^{n-1} D(g)$;
- if $f(0)=1$ then $D(\log f)=D(f) / f$;
- if $f(0)=1$ and $\log f=0$ then $f=1$;
- if $f(0)=1$ and $g(0)=1$ then $\log f g=\log f+\log g$;
- \log is injective: i.e., if $f(0)=1$ and $g(0)=1$ and $\log f=\log g$ then $f=g$.

Speed. This algorithm uses $O(n \lg n \lg \lg n)$ operations in A : more precisely, at most $(10 n+2 k-9) \mu(2 n-1)+(4 n+2 k-4)$ operations in A if $n \leq 2^{k}$.

How it works. Given $f \bmod x^{n}$, compute $D(f) \bmod x^{n}$ from the definition of D; compute $(D(f) / f) \bmod x^{n}$ as explained in Section 7; and recover $(\log f) \bmod x^{n}$ from the formula $D\left((\log f) \bmod x^{n}\right)=(D(f) / f) \bmod x^{n}$.

The integer case. This $A[[x]]$ algorithm does not have a useful analogue for \mathbf{Z}_{2} or \mathbf{R}, because \mathbf{Z}_{2} and \mathbf{R} do not have adequate replacements for the differential operator D. See, however, Section 16.

History. This algorithm was published by Brent in [28, Section 13].
Improvements. See Section 7 for improved quotient algorithms. I do not know any way to compute $\log f$ more quickly than computing a generic quotient.

9. Exponential: the series case

Input. Let A be a commutative ring containing \mathbf{Q}. Let n be a positive integer. The algorithm in this section is given the precision- n representation of a power series $f \in A[[x]]$ with $f(0)=0$.
Output. This algorithm computes the precision- n representation of the series $\exp f=1+f+f^{2} / 2!+f^{3} / 3!+\cdots \in A[[x]]$. If the input is $0, f_{1}, f_{2}, f_{3}, \ldots$ then the output is $1, f_{1}, f_{2}+f_{1}^{2} / 2, f_{3}+f_{1} f_{2}+f_{1}^{3} / 6, \ldots$.

The reader may enjoy checking the following properties of exp:

- if $f(0)=0$ then $D(\exp f)=D(f) \exp f$;
- if $f(0)=0$ then $\log \exp f=f$;
- if $g(0)=1$ then $\exp \log g=g$;
- if $f(0)=0$ and $g(0)=0$ then $\exp (f+g)=(\exp f) \exp g$.

Speed. This algorithm uses $O(n \lg n \lg \lg n)$ operations in A : more precisely, at most $\left(24 n+k^{2}+3 k-24\right) \mu(2 n-1)+\left(12 n+k^{2}+3 k-12\right)$ operations in A if $n \leq 2^{k}$.
How it works. If $n=1$ then $(\exp f) \bmod x^{n}=1$. Otherwise define $m=\lceil n / 2\rceil$. Recursively compute $g_{0}=(\exp f) \bmod x^{m}$. Compute $\left(\log g_{0}\right) \bmod x^{n}$ as explained in Section 8. Then compute $(\exp f) \bmod x^{n}$ as $\left(g_{0}+\left(f-\log g_{0}\right) g_{0}\right) \bmod x^{n}$. This works because $\exp \left(f-\log g_{0}\right)-1-\left(f-\log g_{0}\right)$ is a multiple of $\left(f-\log g_{0}\right)^{2}$, hence of $x^{2 m}$, hence of x^{n}.

The recursive step uses at most $\left(24(n+1) / 2+(k-1)^{2}+3(k-1)-24\right) \mu(2 n-1)+$ $\left(12(n+1) / 2+(k-1)^{2}+3(k-1)-12\right)$ operations by induction. The computation of $\left(\log g_{0}\right) \bmod x^{n}$ uses at most $(10 n+2 k-9) \mu(2 n-1)+(4 n+2 k-4)$ operations. The subtraction from f and the addition of g_{0} use at most $2 n$ operations. The multiplication by g_{0} uses at most $(2 n-1) \mu(2 n-1)$ operations. The total is at most $\left(24 n+k^{2}+3 k-24\right) \mu(2 n-1)+\left(12 n+k^{2}+3 k-12\right)$ as claimed.

The integer case. See Section 16.
History. The iteration $g \mapsto g+(f-\log g) g$ is an example of "Newton's method," i.e., Simpson's method.

Brent in [28, Section 13] pointed out that this is a particularly efficient way to compute \exp for $\mathbf{R}[[x]]$, since \log is so easy to compute for $\mathbf{R}[[x]]$.

Improvements. Brent in [28, Section 13] stated that the number of operations for an exponential in $\mathbf{R}[[x]]$ could be improved to $22 / 3+o(1)$ times the number of operations for a product. In fact, one can achieve $17 / 6+o(1)$. See [15].

10. Power: the series case

Input. Let A be a commutative ring containing \mathbf{Q}. Let n be a positive integer. The algorithm in this section is given the precision- n representations of power series $f, e \in A[[x]]$ such that $f(0)=1$.

Output. This algorithm computes the precision- n representation of the series $f^{e}=\exp (e \log f) \in A[[x]]$. If the input is $1, f_{1}, f_{2}, \ldots, e_{0}, e_{1}, \ldots$ then the output is $1, e_{0} f_{1}, e_{1} f_{1}+e_{0} f_{2}+e_{0}\left(e_{0}-1\right) f_{1}^{2} / 2, \ldots$.

The reader may enjoy checking the following properties of $f, e \mapsto f^{e}$:

- $f^{0}=1$;
- $f^{1}=f$;
- $f^{d+e}=f^{d} \cdot f^{e}$, so the notation f^{e} for $\exp (e \log f)$ is, for positive integers e, consistent with the usual notation f^{e} for $\prod_{1 \leq j \leq e} f$;
- $f^{-1}=1 / f$;
- $\left(f^{d}\right)^{e}=f^{d e}$;
- $(f g)^{e}=f^{e} g^{e}$;
- $D\left(f^{e}\right)=D(e) f^{e} \log f+D(f) e f^{e-1}$;
- $f^{e}=1+e(f-1)+(e(e-1) / 2)(f-1)^{2}+\cdots$.

Speed. This algorithm uses $O(n \lg n \lg \lg n)$ operations in A : more precisely, at most $\left(36 n+k^{2}+5 k-34\right) \mu(2 n-1)+\left(16 n+k^{2}+5 k-16\right)$ operations in A if $n \leq 2^{k}$.
How it works. Given $f \bmod x^{n}$, compute $(\log f) \bmod x^{n}$ as explained in Section 8; compute $(e \log f) \bmod x^{n}$ as explained in Section 5; compute $(\exp (e \log f)) \bmod$ x^{n} as explained in Section 9.

The integer case. See Section 16.
History. According to various sources, Napier introduced the functions exp and \log for \mathbf{R}, along with the idea of using exp and \log to compute products in \mathbf{R}. I do not know the history of exp and \log for \mathbf{Z}_{2} and $A[[x]]$.

Improvements. As in Sections 6, 7, and 9, one can remove some redundancy from the above algorithm. See [15].

Brauer in [25] pointed out that, if e is a positive integer, one can compute f^{e} with about $\lg e$ squarings and at most about $(\lg e) / \lg \lg e$ other multiplications. This is faster than the exp-log algorithm if e is small. See [16] for further discussion of square-and-multiply exponentiation algorithms.

One can compute f^{e} for any rational number e with a generalization of the algorithm of Section 6. This takes essentially linear time for fixed e, as pointed out by Cook in [40, page 86]; it is faster than the exp-log algorithm if the height of e is small, i.e., the numerator and denominator of e are small. The special case $e=1 / 2$-i.e., square roots-is discussed in detail in [15].

11. Matrix PRODUCT

Input. Let A be a commutative ring. The algorithm in this section is given two 2×2 matrices $F=\left(\begin{array}{ll}F_{11} & F_{12} \\ F_{21} & F_{22}\end{array}\right)$ and $G=\left(\begin{array}{ll}G_{11} & G_{12} \\ G_{21} & G_{22}\end{array}\right)$ with entries in the polynomial ring $A[x]$.
Output. This algorithm computes the 2×2 matrix product $F G$.
Speed. This algorithm uses $O(n \lg n \lg \lg n)$ operations in A, where n is the total number of input coefficients. More precisely, the algorithm uses at most $n(2 \mu(n)+2)$ operations in A. This bound is pessimistic.

Here, and elsewhere in this paper, number of coefficients means the number of elements of A provided as input. Reader beware: the number of coefficients of an input polynomial is not determined by the polynomial; it depends on how the polynomial is represented. For example, the sequence ($5,7,0$), with 3 coefficients, represents the same polynomial as the sequence $(5,7)$, with 2 coefficients.

How it works. Multiply F_{11} by G_{11}, multiply F_{12} by G_{21}, add, etc., to obtain $F G=\left(\begin{array}{ll}F_{11} G_{11}+F_{12} G_{21} & F_{11} G_{12}+F_{12} G_{22} \\ F_{21} G_{11}+F_{22} G_{21} & F_{21} G_{12}+F_{22} G_{22}\end{array}\right)$.
The integer case. An analogous algorithm computes the product of two 2×2 matrices with entries in \mathbf{Z} in time $O(n \lg n \lg \lg n)$, where n is the number of input bits.

History. The matrix concept is generally credited to Sylvester and Cayley.
Improvements. The above algorithm involves 24 transforms. FFT cachingtransforming each of the input polynomials $F_{11}, F_{12}, F_{21}, F_{22}, G_{11}, G_{12}, G_{21}, G_{22}$ just once-saves 8 transforms. FFT addition-untransforming $F_{11} G_{11}+F_{12} G_{21}$, for example, rather than separately untransforming $F_{11} G_{11}$ and $F_{12} G_{21}$-saves 4 more transforms.

Strassen in [110] published a method to multiply 2×2 matrices using just 7 multiplications of entries and 18 additions or subtractions of entries, rather than 8 multiplications and 4 additions. Winograd observed that 18 could be replaced by 15 ; see [72, page 500].

Many applications involve matrices of particular shapes: for example, matrices F in which $F_{12}=0$. One can often save time accordingly.

Generalization: larger matrices. Strassen in [110] published a general method to multiply $d \times d$ matrices using $O\left(d^{\alpha}\right)$ multiplications, additions, and subtractions of entries; here $\alpha=\log _{2} 7=2.807 \ldots$ Subsequent work by Pan, Bini, Capovani, Lotti, Romani, Schönhage, Coppersmith, and Winograd showed that there is an algorithm to multiply $d \times d$ matrices using $d^{\beta+o(1)}$ multiplications and additions of entries, for a certain number $\beta<2.38$. See [33, Chapter 15] for a detailed exposition and further references.

It is not known whether matrix multiplication can be carried out in essentially linear time, when the matrix size is a variable.

12. Product tree

Input. Let A be a commutative ring. Let t be a nonnegative integer. The algorithm in this section is given 2×2 matrices $M_{1}, M_{2}, \ldots, M_{t}$ with entries in $A[x]$.

Output. This algorithm computes the product tree of $M_{1}, M_{2}, \ldots, M_{t}$, which is defined as follows. The root of the tree is the 2×2 matrix $M_{1} M_{2} \cdots M_{t}$. If $t \leq 1$, that's the complete tree. If $t \geq 2$, the left subtree is the product tree of $M_{1}, M_{2}, \ldots, M_{s}$, and the right subtree is the product tree of $M_{s+1}, M_{s+2}, \ldots, M_{t}$, where $s=\lceil t / 2\rceil$. For example, here is the product tree of $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}$:

Most applications use only the root $M_{1} M_{2} \cdots M_{t}$ of the product tree. This root is often described in the language of linear recurrences as follows. Define $X_{i}=M_{1} M_{2} \cdots M_{i}$; then $X_{i}=X_{i-1} M_{i}$, i.e., $X_{i, j, k}=X_{i-1, j, 0} M_{i, 0, k}+X_{i-1, j, 1} M_{i, 1, k}$. The algorithm computes $X_{t, 0,0}, X_{t, 0,1}, X_{t, 1,0}, X_{t, 1,1}$, given the coefficients $M_{i, j, k}$ of the linear recurrence $X_{i, j, k}=X_{i-1, j, 0} M_{i, 0, k}+X_{i-1, j, 1} M_{i, 1, k}$, with the starting condition $\left(X_{0,0,0}, X_{0,0,1}, X_{0,1,0}, X_{0,1,1}\right)=(1,0,0,1)$.
Speed. This algorithm uses $O\left(n(\lg n)^{2} \lg \lg n\right)$ operations in A, where n is the total number of coefficients in $M_{1}, M_{2}, \ldots, M_{t}$: more precisely, at most $n k(2 \mu(n)+2)$ operations in A if k is a nonnegative integer and $t \leq 2^{k}$.

How it works. If $t=0$ then the answer is the identity matrix. If $t=1$ then the answer is M_{1}. Otherwise recursively compute the product tree of $M_{1}, M_{2}, \ldots, M_{s}$ and the product tree of $M_{s+1}, M_{s+2}, \ldots, M_{t}$, where $s=\lceil t / 2\rceil$. Multiply the roots $M_{1} M_{2} \cdots M_{s}$ and $M_{s+1} \cdots M_{t}$, as discussed in Section 11, to obtain $M_{1} M_{2} \cdots M_{t}$.

Time analysis: Define m as the total number of coefficients in $M_{1}, M_{2}, \ldots, M_{s}$. By induction, the computation of the product tree of $M_{1}, M_{2}, \ldots, M_{s}$ uses at most $m(k-1)(2 \mu(n)+2)$ operations, and the computation of the product tree of M_{s+1}, \ldots, M_{t} uses at most $(n-m)(k-1)(2 \mu(n)+2)$ operations. The final multiplication uses at most $n(2 \mu(n)+2)$ operations. Add: $m(k-1)+(n-m)(k-1)+n=n k$.
The integer case. An analogous algorithm takes time $O\left(n(\lg n)^{2} \lg \lg n\right)$ to compute the product tree of a sequence $M_{1}, M_{2}, \ldots, M_{t}$ of 2×2 matrices with entries in \mathbf{Z}. Here n is the total number of input bits.

Generalization: larger matrices. One can use the same method to compute a product of several $d \times d$ matrices - in other words, to compute terms in linear recurrences of any order. It is not known whether this can be done in essentially linear time for variable d; see Section 11 for further comments.

History. Product trees are so simple and so widely applicable that they have been reinvented many times. They are not only a basic tool in the context of fast multiplication but also a basic tool for building low-depth parallel algorithms.

Unfortunately, most authors state product trees for particular applications, with no hint of the generality of the technique. They define ad-hoc product operations,
and prove associativity of their product operations from scratch, never realizing that these operations are special cases of matrix product.

Weinberger and Smith in [123] published the "carry-lookahead adder," a lowdepth parallel circuit for computing the sum of two nonnegative integers, with the inputs and output represented in the usual way as bit strings. The WeinbergerSmith algorithm computes (in different language) a product

$$
\left(\begin{array}{ll}
a_{1} & 0 \\
b_{1} & 1
\end{array}\right)\left(\begin{array}{ll}
a_{2} & 0 \\
b_{2} & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{t} & 0 \\
b_{t} & 1
\end{array}\right)=\left(\begin{array}{cc}
a_{1} a_{2} \cdots a_{t} & 0 \\
b_{t}+b_{t-1} a_{t}+b_{t-2} a_{t-1} a_{t}+\cdots+b_{1} a_{2} \cdots a_{t} & 1
\end{array}\right)
$$

of matrices over the Boole algebra $\{0,1\}$ by multiplying pairs of matrices in parallel, then multiplying pairs of pairs in parallel, and so on for approximately $\lg t$ steps.

Estrin in [46] published a low-depth parallel algorithm for evaluating a onevariable polynomial. Estrin's algorithm computes (in different language) a product

$$
\left(\begin{array}{cc}
a & 0 \\
b_{1} & 1
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
b_{2} & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
a & 0 \\
b_{t} & 1
\end{array}\right)=\left(\begin{array}{cc}
a^{t} & 0 \\
b_{t}+b_{t-1} a+b_{t-2} a^{2}+\cdots+b_{1} a^{t-1} & 1
\end{array}\right)
$$

by multiplying pairs, pairs of pairs, etc.
Schönhage, as reported in [69, Exercise 4.4-13], pointed out that one can convert integers from base 10 to base 2 in essentially linear time. Schönhage's algorithm computes (in different language) a product

$$
\left(\begin{array}{ll}
10 & 0 \\
b_{1} & 1
\end{array}\right)\left(\begin{array}{ll}
10 & 0 \\
b_{2} & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
10 & 0 \\
b_{t} & 1
\end{array}\right)=\left(\begin{array}{cc}
10^{t} & 0 \\
b_{t}+10 b_{t-1}+100 b_{t-2}+\cdots+10^{t-1} b_{1} & 1
\end{array}\right)
$$

by multiplying pairs of matrices, then pairs of pairs, etc.
Knuth in [70, Theorem 1] published an algorithm to convert a continued fraction to a fraction in essentially linear time. Knuth's algorithm is (in different language) another example of the product-tree algorithm; see Section 14 for details.

Moenck and Borodin in [85, page 91] and [20, page 372] pointed out that one can compute the product tree - and thus the product - of a sequence of polynomials or a sequence of integers in essentially linear time. Beware that the Moenck-Borodin "theorems" assume that all of the inputs are "single precision"; it is unclear what this is supposed to mean for integers.

Moenck and Borodin also pointed out an algorithm to add fractions in essentially linear time. This algorithm is (in different language) yet another example of the product-tree algorithm. See Section 13 for details and further historical notes.

Meanwhile, in the context of parallel algorithms, Stone and Kogge published the product-tree algorithm in a reasonable level of generality in [109], [76], and [75], with polynomial evaluation and continued-fraction-to-fraction conversion ("tridiagonal-linear-system solution") as examples. Stone commented that linear recurrences of any order could be phrased as matrix products - see [109, page 34] and [109, page 37]-but, unfortunately, made little use of matrices elsewhere in his presentation.

Kogge and Stone in [76, page 792] credited Robert Downs, Harvard Lomax, and H. R. G. Trout for independent discoveries of general product-tree algorithms. They also stated that special cases of the algorithm were "known to J. J. Sylvester as early as $1853^{\prime \prime}$; but I see no evidence that Sylvester ever formed a product tree in that context or any other context. Sylvester in [114] (cited in [70] and [109]) simply pointed out the associativity of continued fractions.

Brent in [26, Section 6] pointed out that the numerator and denominator of $1+1 / 2+1 / 3!+\cdots+1 / t!\approx \exp 1$ could be computed quickly. Brent's algorithm
formed (in different language) a product tree for

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right) \cdots\left(\begin{array}{ll}
t & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
t! & 0 \\
t!+t!/ 2+\cdots+t(t-1)+t+1 & 1
\end{array}\right) .
$$

Brent also addressed exp for more general inputs, as discussed in Section 15; and π, via arctan. Brent described his method as a mixed-radix adaptation of Schönhage's base-conversion algorithm. Evidently he had in mind the product

$$
\left(\begin{array}{ll}
a_{1} & 0 \\
b_{1} & c
\end{array}\right)\left(\begin{array}{ll}
a_{2} & 0 \\
b_{2} & c
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{t} & 0 \\
b_{t} & c
\end{array}\right)=\left(\begin{array}{cc}
a_{1} a_{2} \cdots a_{t} & 0 \\
c^{t-1} b_{t}+c^{t-2} b_{t-1} a_{t}+\cdots+b_{1} a_{2} \cdots a_{t} & c^{t}
\end{array}\right)
$$

corresponding to the sum $\sum_{1 \leq k \leq t} c^{k-1} b_{k} / a_{1} \cdots a_{k}$. Brent and McMillan mentioned in [30, page 308] that the sum $\sum_{1 \leq k \leq t} n^{k}(-1)^{k-1} / k!k$ could be handled similarly.

I gave a reasonably general statement of the product-tree algorithm in [10], with a few series and continued fractions as examples. I pointed out that computing $M_{1} M_{2} \cdots M_{t}$ takes time $O\left(t(\lg t)^{3} \lg \lg t\right)$ in the common case that the entries of M_{j} are bounded by polynomials in j.

Gosper presented a wide range of illustrative examples of matrix products in [51], emphasizing their "notational, analytic, and computational virtues." Gosper briefly stated the product-tree algorithm in [51, page 263], and credited it to Rich Schroeppel.

Chudnovsky and Chudnovsky in [38, pages 115-118] stated the product-tree algorithm for matrices M_{j} whose entries depend rationally on j. They gave a broad class of series as examples in [38, pages 123-134]. They called the algorithm "a well-known method to accelerate the (numerical) solution of linear recurrences."

Karatsuba used product trees (in different language) to evaluate various sums in several papers starting in 1991 and culminating in [64].

See [53], [118], [22, Section 7], and [119] for further uses of product trees to evaluate sums.

Improvements. One can change s in the definition of a product tree and in the product-tree algorithm. The choice $s=\lceil t / 2\rceil$, balancing s against $t-s$, is not necessarily the fastest way to compute $M_{1} M_{2} \cdots M_{t}$: when $M_{1}, M_{2}, \ldots, M_{t}$ have widely varying degrees, it is much better to balance $\operatorname{deg} M_{1}+\operatorname{deg} M_{2}+\cdots+\operatorname{deg} M_{s}$ against $\operatorname{deg} M_{s+1}+\operatorname{deg} M_{s+2}+\cdots+\operatorname{deg} M_{t}$. Strassen proved in [113, Theorem 3.2] that a slightly more complicated strategy is within a constant factor of optimal.

In some applications, $M_{1}, M_{2}, \ldots, M_{t}$ are known to commute. One can often permute $M_{1}, M_{2}, \ldots, M_{t}$ for slightly higher speed. Strassen in [113, Theorem 2.2] pointed out a particularly fast, and pleasantly simple, algorithm: find the two matrices of smallest degree, replace them by their product, and repeat. See [33, Section 2.3] for an exposition.

Robert Kramer has recently pointed out another product-tree speedup. Suppose, as an illustration, that $M_{1}, M_{2}, M_{3}, M_{4}$ each have degree close to n. To multiply M_{1} by M_{2}, one applies a size- $2 n$ transform to each of M_{1} and M_{2}, multiplies the transforms, and untransforms the result. To multiply $M_{1} M_{2}$ by $M_{3} M_{4}$, one starts by applying a size- $4 n$ transform to $M_{1} M_{2}$. Kramer's idea, which I call FFT doubling, is that the first half of the size- $4 n$ transform of $M_{1} M_{2}$ is exactly the size- $2 n$ transform of $M_{1} M_{2}$, which is already known. This idea saves two halves of every three transforms in a large balanced product-tree computation.

13. Sum of fractions

Input. Let A be a commutative ring. Let t be a positive integer. The algorithm in this section is given $2 t$ polynomials $f_{1}, g_{1}, f_{2}, g_{2}, \ldots, f_{t}, g_{t} \in A[x]$.

Output. This algorithm computes $h=f_{1} g_{2} \cdots g_{t}+g_{1} f_{2} \cdots g_{t}+\cdots+g_{1} g_{2} \cdots f_{t}$, along with $g_{1} g_{2} \cdots g_{t}$.

The reader may think of this output as follows: the algorithm computes the sum $h / g_{1} g_{2} \cdots g_{t}$ of the fractions $f_{1} / g_{1}, f_{2} / g_{2}, \ldots, f_{t} / g_{t}$. The equation $h / g_{1} g_{2} \cdots g_{t}=$ $f_{1} / g_{1}+f_{2} / g_{2}+\cdots+f_{t} / g_{t}$ holds in any $A[x]$-algebra where $g_{1}, g_{2}, \ldots, g_{t}$ are invertible: in particular, in the localization $g_{1}^{-\mathbf{N}} g_{2}^{-\mathbf{N}} \ldots g_{t}^{-\mathbf{N}} A[x]$.
Speed. This algorithm uses $O\left(n(\lg n)^{2} \lg \lg n\right)$ operations in A, where n is the total number of coefficients in the input polynomials.
How it works. The matrix product $\left(\begin{array}{cc}g_{1} & f_{1} \\ 0 & g_{1}\end{array}\right)\left(\begin{array}{cc}g_{2} & f_{2} \\ 0 & g_{2}\end{array}\right) \ldots\left(\begin{array}{cc}g_{t} & f_{t} \\ 0 & g_{t}\end{array}\right)$ is exactly $\left(\begin{array}{cc}g_{1} g_{2} \cdots g_{t} & h \\ 0 & g_{1} g_{2} \cdots g_{t}\end{array}\right)$. Compute this product as described in Section 12.

The point is that adding fractions a / b and c / d to obtain $(a d+b c) / b d$ is the same as multiplying matrices $\left(\begin{array}{cc}b & a \\ 0 & b\end{array}\right)$ and $\left(\begin{array}{ll}d & c \\ 0 & d\end{array}\right)$ to obtain $\left(\begin{array}{cc}b d & a d+b c \\ 0 & b d\end{array}\right)$.

Alternate proof, using the language of recurrences: the quantities $p_{j}=g_{1} g_{2} \cdots g_{j}$ and $q_{j}=\left(f_{1} / g_{1}+\cdots+f_{j} / g_{j}\right) p_{j}$ satisfy the recurrences $p_{j}=p_{j-1} g_{j}$ and $q_{j}=$ $q_{j-1} g_{j}+p_{j-1} f_{j}$, i.e., $\left(\begin{array}{cc}p_{j} & q_{j} \\ 0 & p_{j}\end{array}\right)=\left(\begin{array}{cc}p_{j-1} & q_{j-1} \\ 0 & p_{j-1}\end{array}\right)\left(\begin{array}{cc}g_{j} & f_{j} \\ 0 & g_{j}\end{array}\right)$.

The reader may prefer to describe this algorithm without matrices: for $t \geq 2$, recursively compute $f_{1} / g_{1}+\cdots+f_{s} / g_{s}$ and $f_{s+1} / g_{s+1}+\cdots+f_{t} / g_{t}$, and then add to obtain $f_{1} / g_{1}+\cdots+f_{t} / g_{t}$. Here $s=\lceil t / 2\rceil$.

The integer case. An analogous algorithm, given integers $f_{1}, g_{1}, f_{2}, g_{2}, \ldots, f_{t}, g_{t}$, computes $f_{1} g_{2} \ldots g_{t}+g_{1} f_{2} \ldots g_{t}+\cdots+g_{1} g_{2} \ldots f_{t}$. It takes time $O\left(n(\lg n)^{2} \lg \lg n\right)$, where n is the total number of input bits.

History. Horowitz in [60] published an algorithm to compute the polynomial

$$
\left(\frac{b_{1}}{x-a_{1}}+\frac{b_{2}}{x-a_{2}}+\cdots+\frac{b_{t}}{x-a_{t}}\right)\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{t}\right)
$$

within a $\lg t$ factor of the time for polynomial multiplication. Horowitz's algorithm is essentially the algorithm described above, but it splits t into $t / 2, t / 4, t / 8, \ldots$ rather than $t / 2, t / 2$.

Borodin and Moenck in [20, Section 7] published a more general algorithm to add fractions, in both the polynomial case and the integer case, for the application described in Section 23.

Improvements. See Section 12 for improved product-tree algorithms.

14. Fraction from continued fraction

Input. Let A be a commutative ring. Let t be a nonnegative integer. The algorithm in this section is given t polynomials $q_{1}, q_{2}, \ldots, q_{t} \in A[x]$ such that, for each i, at least one of q_{i}, q_{i+1} is nonzero.

Output. This algorithm computes the polynomials $F\left(q_{1}, q_{2}, \ldots, q_{t}\right) \in A[x]$ and $G\left(q_{1}, q_{2}, \ldots, q_{t}\right) \in A[x]$ defined recursively by $F()=1, G()=0, F\left(q_{1}, q_{2}, \ldots, q_{t}\right)=$ $q_{1} F\left(q_{2}, \ldots, q_{t}\right)+G\left(q_{2}, \ldots, q_{t}\right)$ for $t \geq 1$, and $G\left(q_{1}, q_{2}, \ldots, q_{t}\right)=F\left(q_{2}, \ldots, q_{t}\right)$ for $t \geq 1$.

For example, $F\left(q_{1}, q_{2}, q_{3}, q_{4}\right)=q_{1} q_{2} q_{3} q_{4}+q_{1} q_{2}+q_{1} q_{4}+q_{3} q_{4}+1$. In general, $F\left(q_{1}, q_{2}, \ldots, q_{t}\right)$ is the sum of all products of subsequences of $\left(q_{1}, q_{2}, \ldots, q_{t}\right)$ obtained by deleting any number of non-overlapping adjacent pairs.

The reader may think of this output as the numerator and denominator of a continued fraction:

$$
\frac{F\left(q_{1}, q_{2}, \ldots, q_{t}\right)}{G\left(q_{1}, q_{2}, \ldots, q_{t}\right)}=q_{1}+\frac{1}{\frac{F\left(q_{2}, \ldots, q_{t}\right)}{G\left(q_{2}, \ldots, q_{t}\right)}}=q_{1}+\frac{1}{q_{2}+\frac{1}{\ddots+\frac{1}{q_{t}}}}
$$

As in Section 13, these equations hold in any $A[x]$-algebra where all the divisions make sense.

Speed. This algorithm uses $O\left(n(\lg n)^{2} \lg \lg n\right)$ operations in A, where n is the total number of coefficients in the input polynomials.
How it works. The matrix product $\left(\begin{array}{cc}q_{1} & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}q_{2} & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}q_{3} & 1 \\ 1 & 0\end{array}\right) \ldots\left(\begin{array}{cc}q_{t} & 1 \\ 1 & 0\end{array}\right)\binom{1}{0}$ is exactly $\binom{F\left(q_{1}, q_{2}, \ldots, q_{t}\right)}{G\left(q_{1}, q_{2}, \ldots, q_{t}\right)}$ by definition of F and G. Compute this product as described in Section 12.

The assumption that no two consecutive q 's are 0 ensures that the total number of coefficients in these matrices is in $O(n)$.
The integer case. An analogous algorithm, given integers $q_{1}, q_{2}, \ldots, q_{t}$, computes $F\left(q_{1}, q_{2}, \ldots, q_{t}\right)$ and $G\left(q_{1}, q_{2}, \ldots, q_{t}\right)$. It takes time $O\left(n(\lg n)^{2} \lg \lg n\right)$, where n is the total number of input bits.

History. See Section 12.
Improvements. See Section 12 for improved product-tree algorithms.

15. Exponential: the short case

Input. Let A be a commutative ring containing \mathbf{Q}. Let m and n be positive integers. The algorithm in this section is given a polynomial $f \in A[x]$ with $\operatorname{deg} f<$ $2 m$ and $f \bmod x^{m}=0$. For example, if $m=2$, the input is a polynomial of the form $f_{2} x^{2}+f_{3} x^{3}$.
Output. This algorithm computes the precision- n representation of the series $\exp f \in A[[x]]$ defined in Section 9 .

Speed. This algorithm uses $O\left(n(\lg n)^{2} \lg \lg n\right)$ operations in A. It is usually slower than the algorithm of Section 9; its main virtue is that the same idea also works for \mathbf{Z}_{2} and \mathbf{R}.
How it works. Define $k=\lceil n / m-1\rceil$. Compute the matrix product $\left(\begin{array}{ll}u & v \\ 0 & w\end{array}\right)=$ $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}f & f \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}f & f \\ 0 & 2\end{array}\right) \ldots\left(\begin{array}{ll}f & f \\ 0 & k\end{array}\right)$ as described in Section 12. Then $(\exp f) \bmod$ $x^{n}=(v / w) \bmod x^{n}$. Note that w is simply the integer k !, so the division by w is a multiplication by the constant $1 / k!$.

The point is that $(u, v, w)=\left(f^{k}, k!\left(1+f+f^{2} / 2+\cdots+f^{k} / k!\right), k!\right)$ by induction, so $(\exp f)-v / w=f^{k+1} /(k+1)!+f^{k+2} /(k+2)!+\cdots$; but k was chosen so that f^{k+1} is divisible by x^{n}.

The integer case, easy completion: $\mathbf{Q} \rightarrow \mathbf{Q}_{2}$. One can use the same method to compute a precision- n representation of $\exp f \in \mathbf{Z}_{2}$, given an integer $f \in$ $\left\{0,2^{m},(2) 2^{m}, \ldots,\left(2^{m}-1\right) 2^{m}\right\}$, in time $O\left(n(\lg n)^{2} \lg \lg n\right)$, for $m \geq 2$. Note that k must be chosen somewhat larger in this case, because the final division of v by $w=k$! loses approximately k bits of precision.

The integer case, hard completion: $\mathbf{Q} \rightarrow \mathbf{R}$. One can compute a precision- n representation of $\exp f$, given a real number f such that $|f|<2^{-m}$ and f is a multiple of $2^{-2 m}$, in time $O\left(n(\lg n)^{2} \lg \lg n\right)$. As usual, roundoff error complicates the algorithm.

History. See Section 12.
Improvements. See Section 16.

16. Exponential: the general case

Input. Let A be a commutative ring containing \mathbf{Q}. Let n be a positive integer. The algorithm in this section is given the precision- n representation of a power series $f \in A[[x]]$ with $f(0)=0$.

Output. This algorithm computes the precision-n representation of the series $\exp f \in A[[x]]$ defined in Section 9 .

Speed. This algorithm uses $O\left(n(\lg n)^{3} \lg \lg n\right)$ operations in A. It is usually much slower than the algorithm of Section 9; its main virtue is that the same idea also works for \mathbf{Z}_{2} and \mathbf{R}.

How it works. Write f as a sum $f_{1}+f_{2}+f_{4}+f_{8}+\cdots$ where $f_{m} \bmod x^{m}=0$ and deg $f_{m}<2 m$. In other words, put the coefficient of x^{1} into f_{1}; the coefficients of x^{2} and x^{3} into f_{2}; the coefficients of x^{4} through x^{7} into f_{4}; and so on.

Compute precision- n approximations to $\exp f_{1}, \exp f_{2}, \exp f_{4}, \ldots$ as described in Section 15. Multiply to obtain $\exp f$.
The integer case. Similar algorithms work for \mathbf{Z}_{2} and \mathbf{R}.
History. This method of computing exp is due to Brent. See [26, Theorem 6.2]. Brent also pointed out that, starting from a fast algorithm for exp, one can use "Newton's method" -i.e., Simpson's method-to quickly compute log and various other functions. Note the reversal of roles from Section 9, where exp was obtained by inverting log.

Improvements. Salamin, and independently Brent, observed that one could use the "arithmetic-geometric mean" to compute \log and \exp for \mathbf{R} in time only $O\left(n(\lg n)^{2} \lg \lg n\right)$. See [8, Item 143], [94], [27], and [28, Section 9] for the basic idea; [21] for much more information about the arithmetic-geometric mean; and my self-contained paper [17] for constant-factor improvements.

17. Quotient and Remainder

Input. Let A be a commutative ring. Let d and e be nonnegative integers. The algorithm in this section is given two elements f, h of the polynomial ring $A[x]$ such that f is monic, $\operatorname{deg} f=d$, and $\operatorname{deg} h<e$.

Output. This algorithm computes $q, r \in A[x]$ such that $h=q f+r$ and $\operatorname{deg} r<d$. In other words, this algorithm computes $r=h \bmod f$ and $q=(h-r) / f$.

For example, say $d=2$ and $e=5$. Given $f=f_{0}+f_{1} x+x^{2}$ and $h=h_{0}+h_{1} x+$ $h_{2} x^{2}+h_{3} x^{3}+h_{4} x^{4}$, this algorithm computes

$$
q=\left(h_{2}-h_{3} f_{1}+h_{4}\left(f_{1}^{2}-f_{0}\right)\right)+\left(h_{3}-h_{4} f_{1}\right) x+h_{4} x^{2}
$$

and

$$
\begin{aligned}
r= & h \bmod f=h-q f \\
= & \left(h_{0}-h_{2} f_{0}+h_{3} f_{1} f_{0}+h_{4}\left(f_{1}^{2}-f_{0}\right) f_{0}\right) \\
& \quad+\left(h_{1}-h_{2} f_{1}+h_{3}\left(f_{1}^{2}-f_{0}\right)+h_{4}\left(\left(f_{1}^{2}-f_{0}\right) f_{1}+f_{1} f_{0}\right)\right) x
\end{aligned}
$$

Speed. This algorithm uses $O(e \lg e \lg \lg e)$ operations in A.
More precisely, the algorithm uses at most $(10(e-d)+2 k-9) \mu(2(e-d)-1)+$ $(2(e-d)+2 k-2)+e \mu(e)+e$ operations in A if $1 \leq e-d \leq 2^{k}$. The algorithm uses no operations if $e \leq d$.

For simplicity, subsequent sections of this paper use the relatively crude upper bound $12(e+1)(\mu(2 e)+1)$.

How it works: $A(x) \rightarrow A\left(\left(x^{-1}\right)\right)$. The point is that polynomial division in $A[x]$ is division in $A\left(\left(x^{-1}\right)\right) ; A\left(\left(x^{-1}\right)\right)$, in turn, is isomorphic to $A((x))$.

If $e \leq d$, the answer is $q=0$ and $r=h$. Assume from now on that $e>d$.
Reverse the coefficient order in $f=\sum_{j} f_{j} x^{j}$ to obtain $F=\sum_{j} f_{d-j} x^{j} \in A[x]$; in other words, define $F=x^{d} f\left(x^{-1}\right)$. Then $\operatorname{deg} F \leq d$ and $F(0)=1$. For example, if $d=2$ and $f=f_{0}+f_{1} x+x^{2}$, then $F=1+f_{1} x+f_{0} x^{2}$.

Similarly, reverse $h=\sum_{j} h_{j} x^{j}$ to obtain $H=\sum_{j} h_{e-1-j} x^{j} \in A[x]$; in other words, define $H=x^{e-1} h\left(x^{-1}\right)$. Then $\operatorname{deg} H<e$. For example, if $e=5$ and $h=h_{0}+h_{1} x+h_{2} x^{2}+h_{3} x^{3}+h_{4} x^{4}$, then $H=h_{4}+h_{3} x+h_{2} x^{2}+h_{1} x^{3}+h_{0} x^{4}$.

Now compute $Q=(H / F) \bmod x^{e-d}$ as explained in Section 7. Then $\operatorname{deg} Q<$ $e-d$. Reverse $Q=\sum_{j} q_{e-d-1-j} x^{j}$ to obtain $q=\sum_{j} q_{j} x^{j} \in A[x]$; in other words, define $q=x^{e-d-1} Q\left(x^{-1}\right)$.

Compute $r=h-q f \in A[x]$ as explained in Section 4. Then $\operatorname{deg} r<d$. Indeed, $x^{e-1} r\left(x^{-1}\right)=H-Q F$ is a multiple of x^{e-d} by construction of Q.
The x-adic case: $A(x) \rightarrow A((x))$. Omit the reversal of coefficients in the above algorithm. The resulting algorithm, given two polynomials f, h with $f(0)=1$, $\operatorname{deg} f \leq d$, and $\operatorname{deg} h<e$, computes polynomials q, r such that $h=q f+x^{\max \{e-d, 0\}} r$ and $\operatorname{deg} r<d$.
The integer case, easy completion: $\mathbf{Q} \rightarrow \mathbf{Q}_{2}$. An analogous algorithm, given integers f, h with f odd, $|f| \leq 2^{d}$, and $|h|<2^{e}$, computes integers q, r such that $h=q f+2^{\max \{e-d, 0\}} r$ and $|r|<2^{d}$. The algorithm takes time $O(n \lg n \lg \lg n)$, where n is the total number of input bits.

The integer case, hard completion: $\mathbf{Q} \rightarrow \mathbf{R}$. An analogous algorithm, given integers f, h with $f \neq 0$, computes integers q, r such that $h=q f+r$ and $0 \leq r<|f|$. The algorithm takes time $O(n \lg n \lg \lg n)$, where n is the total number of input bits.

It is often convenient to change the sign of r when f is negative; in other words, to replace $0 \leq r<|f|$ with $0 \leq r / f<1$; in other words, to take $q=\lfloor h / f\rfloor$. The time remains $O(n \lg n \lg \lg n)$.
History. See Section 7 for historical notes on fast division in $A[[x]]$ and \mathbf{R}.
The use of $x \mapsto x^{-1}$ for computing quotients dates back to at least 1973: Strassen commented in [111, page 240] (translated) that "the division of two formal power series can easily be used for the division of two polynomials with remainder." I have not attempted to trace the earlier history of the x^{-1} valuation.

Improvements. One can often save some time, particularly in the integer case, by changing the problem, allowing a wider range of remainders. Most applications do not need the smallest possible remainder of h modulo f; any reasonably small remainder is adequate.

A different way to divide h by f is to recursively divide the top half of h by the top half of f, then recursively divide what's left. Moenck and Borodin in [85] published this algorithm (in the polynomial case), and observed that it takes time $O\left(n(\lg n)^{2} \lg \lg n\right)$. Later, in [20, Section 6], Borodin and Moenck summarized the idea in two sentences and then dismissed it in favor of multiply-by-reciprocal. The Moenck-Borodin idea was reinvented many years later (in the integer case) by Jebelean in [62], by Daniel Ford (according to email I received from John Cannon in June 1998), and by Burnikel and Ziegler in [35]. The idea is claimed in [35, Section 4] to be faster than multiply-by-reciprocal for fairly large values of n; on the other hand, the algorithm in [35, Section 4.2] is certainly not the state of the art in reciprocal computation. Further investigation is needed.

Many applications of division in \mathbf{R} can work equally well with division in \mathbf{Z}_{2}. This fact-widely known to number theorists since Hensel's introduction of \mathbf{Z}_{2} (and more general completions) in the early 1900s-has frequently been applied to computations; replacing \mathbf{R} with \mathbf{Z}_{2} usually saves a little time and a considerable amount of effort. See, e.g., [78], [55], [52], [43] (using \mathbf{Z}_{p} where, for simplicity, p is chosen to not divide an input), [86], and [61]. Often \mathbf{Z}_{2} division is called "Montgomery reduction," but this gives too much credit to [86].

In some applications, one knows in advance that a division will be exact, i.e., that the remainder will be zero. Schönhage and Vetter in [103] suggested computing the top half of the quotient with division in \mathbf{R}, and the bottom half of the quotient with division in \mathbf{Z}_{2}. These two half-size computations are faster than one fullsize computation, because computation speed is not exactly linear. Similarly, for polynomials, one can combine x-adic division with the usual division.

Another exact-division method, for $h, f \in \mathbf{C}[x]$, is deconvolution: one solves $h=q f$ by transforming h, transforming f, dividing to obtain the transform of q, and untransforming the result to obtain q. Extra work is required if the transform of f is noninvertible.

18. Remainder tree

Input. Let A be a commutative ring. Let t be a nonnegative integer. The algorithm in this section is given a polynomial $h \in A[x]$ and monic polynomials $f_{1}, f_{2}, \ldots, f_{t} \in A[x]$.

Output. This algorithm computes $h \bmod f_{1}, h \bmod f_{2}, \ldots, h \bmod f_{t}$. Actually, the algorithm computes more: the remainder tree of $h, f_{1}, f_{2}, \ldots, f_{t}$.

The remainder tree is defined as follows: for each vertex v in the product tree of $f_{1}, f_{2}, \ldots, f_{t}$, there is a corresponding vertex $h \bmod v$ in the remainder tree of $h, f_{1}, f_{2}, \ldots, f_{t}$. In particular, the leaves of the product tree are $f_{1}, f_{2}, \ldots, f_{t}$, so the leaves of the remainder tree are $h \bmod f_{1}, h \bmod f_{2}, \ldots, h \bmod f_{t}$.

For example, here is the remainder tree of $h, f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}$:

In other words: The root of the remainder tree is $h \bmod f_{1} f_{2} \ldots f_{t}$. That's the complete tree if $t \leq 1$. Otherwise the left subtree is the remainder tree of $h, f_{1}, f_{2}, \ldots, f_{s}$, and the right subtree is the remainder tree of $h, f_{s+1}, f_{s+2}, \ldots, f_{t}$, where $s=\lceil t / 2\rceil$.
Speed. This algorithm uses $O\left(n(\lg n)^{2} \lg \lg n\right)$ operations in A, where n is the total number of coefficients in $h, f_{1}, f_{2}, \ldots, f_{t}$.

More precisely: Assume that d, m, k are nonnegative integers, that $\operatorname{deg} h<m$, that $f_{1}, f_{2}, \ldots, f_{t}$ together have at most d coefficients, and that $t \leq 2^{k}$. Then the algorithm uses at most $\left(12 m+26 d k+24 \cdot 2^{k}-12\right)(\mu(2 \max \{d, m\})+1)$ operations in A.

How it works: $A(x) \rightarrow A\left(\left(x^{-1}\right)\right)$. Here is a recursive algorithm that, given h and the product tree P of f_{1}, \ldots, f_{t}, computes the remainder tree R of $h, f_{1}, f_{2}, \ldots, f_{t}$. This algorithm uses at most $12\left(m+2 d k+2^{k+1}-1\right)(\mu(2 \max \{d, m\})+1)$ operations in A; add $2 d k(\mu(2 d)+1)$ operations in A to compute P in the first place as explained in Section 12.

The root of P is $f_{1} f_{2} \cdots f_{t}$. Compute $g=h \bmod f_{1} f_{2} \cdots f_{t}$ as explained in Section 17; this is the root of R. This uses at most $12(m+1)(\mu(2 m)+1) \leq$ $12(m+1) \mu(2 \max \{d, m\})+1$ operations in A.

The strategy is to compute each remaining vertex in R by reducing its parent vertex modulo the corresponding vertex in P. For example, the algorithm computes $h \bmod f_{1} f_{2} \cdots f_{s}$ as $\left(h \bmod f_{1} f_{2} \cdots f_{t}\right) \bmod f_{1} f_{2} \cdots f_{s}$.

If $t \leq 1$, stop. There are no operations here; and $k \geq 0$ so $12(m+1) \leq$ $12\left(m+2 d k+2^{k+1}-1\right)$.

Otherwise define $s=\lceil t / 2\rceil$. Apply this algorithm recursively to g and the left subtree of P to compute the remainder tree of $g, f_{1}, f_{2}, \ldots, f_{s}$, which is exactly the left subtree of R. Apply this algorithm recursively to g and the right subtree of P to compute the remainder tree of $g, f_{s+1}, f_{s+2}, \ldots, f_{t}$, which is exactly the right subtree of R.

Time analysis: Define c as the number of coefficients of f_{1}, \ldots, f_{s}. By induction, the recursion for the left subtree uses at most $12\left(d+2 c(k-1)+2^{k}-1\right)$ times $\mu(2 d)+1 \leq \mu(2 \max \{d, m\})+1$ operations, since $\operatorname{deg} g<d$. The recursion for the right subtree uses at most $12\left(d+2(d-c)(k-1)+2^{k}-1\right)$ times $\mu(2 \max \{d, m\})+1$ operations. Add: $m+1+d+2 c(k-1)+2^{k}-1+d+2(d-c)(k-1)+2^{k}-1=$ $m+2 d k+2^{k+1}-1$.

The x-adic case: $A(x) \rightarrow A((x))$. One obtains a simpler algorithm by omitting the reversals described in Section 17. The simpler algorithm, given polynomials $h, f_{1}, f_{2}, \ldots, f_{t}$ where $f_{1}(0)=f_{2}(0)=\cdots=f_{t}(0)=1$, computes small polynomials $r_{1}, r_{2}, \ldots, r_{t}$ such that h is congruent modulo f_{j} to a certain power of x times r_{j}. The algorithm uses $O\left(n(\lg n)^{2} \lg \lg n\right)$ operations in A.

The integer case, easy completion: $\mathbf{Q} \rightarrow \mathbf{Q}_{2}$. An analogous algorithm, given an integer h and odd integers $f_{1}, f_{2}, \ldots, f_{t}$, computes small integers $r_{1}, r_{2}, \ldots, r_{t}$ such that h is congruent modulo f_{j} to a certain power of 2 times r_{j}. The algorithm takes time $O\left(n(\lg n)^{2} \lg \lg n\right)$, where n is the total number of input bits.

The integer case, hard completion: $\mathbf{Q} \rightarrow \mathbf{R}$. An analogous algorithm, given an integer h and nonzero integers $f_{1}, f_{2}, \ldots, f_{t}$, computes integers $r_{1}, r_{2}, \ldots, r_{t}$, with $0 \leq r_{j}<\left|f_{j}\right|$, such that h is congruent modulo f_{j} to r_{j}. The algorithm takes time $O\left(n(\lg n)^{2} \lg \lg n\right)$, where n is the total number of input bits.

History. This algorithm was published by Borodin and Moenck in [85] and [20, Sections 4-6] for "single-precision" moduli $f_{1}, f_{2}, \ldots, f_{t}$.

Improvements. Montgomery in [87, Section 3.7] pointed out several opportunities to remove redundancy - for example, by FFT caching-within and across levels of computation of a remainder tree.

One can replace the remainder tree with the scaled remainder tree to save another constant factor in the computation of $h \bmod f_{1}, h \bmod f_{2}, \ldots, h \bmod f_{t}$. Where the remainder tree has integers such as $h \bmod f_{1} f_{2}$, the scaled remainder tree has real numbers such as $\left(h \bmod f_{1} f_{2}\right) / f_{1} f_{2}$, represented in the usual way as nearby floating-point numbers. Here's the point: moving from $h \bmod f_{1} f_{2}$ to $h \bmod f_{1}$ means dividing by f_{1}; moving from $\left(h \bmod f_{1} f_{2}\right) / f_{1} f_{2}$ to $\left(h \bmod f_{1}\right) / f_{1}$ means multiplying by f_{2}, which is faster. This speedup was achieved in the polynomial case by Bostan, Lecerf, and Schost, using a more complicated approach that does not work for integers; see [24] and [23, Section 3.1]. I found the scaled-remaindertree structure, achieved the same speedup for integers, and then pointed out some redundancies that could be removed, saving even more time. See [19].

19. Small factors of a product

Input. Let A be a commutative ring. Let s be a positive integer, and let t be a nonnegative integer. The algorithm in this section is given polynomials $h_{1}, h_{2}, \ldots, h_{s} \in A[x]$ and monic polynomials $f_{1}, f_{2}, \ldots, f_{t} \in A[x]$.
Output. This algorithm figures out which f_{i} 's divide $h_{1} h_{2} \cdots h_{s}$: it computes the subsequence g_{1}, g_{2}, \ldots of f_{1}, \ldots, f_{t} consisting of each f_{i} that divides $h_{1} h_{2} \cdots h_{s}$.

The name "small factors" comes from the following important special case. Let A be a finite field, and let f_{1}, f_{2}, \ldots be all the small primes in $A[x]$, i.e., all the low-degree monic irreducible polynomials in $A[x]$. Then this algorithm computes the small factors of $h_{1} h_{2} \cdots h_{s}$.

For example, say $A=\mathbf{Z} / 2, s=4, t=5, h_{1}=101111=1+x^{2}+x^{3}+x^{4}+x^{5}$, $h_{2}=1101011, h_{3}=00001011, h_{4}=0001111, f_{1}=01, f_{2}=11, f_{3}=111$, $f_{4}=1101$, and $f_{5}=1011$. This algorithm finds all the factors of $h_{1} h_{2} h_{3} h_{4}$ among $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}$. Its output is $(01,11,111,1011)$: the product $h_{1} h_{2} h_{3} h_{4}$ is divisible by $01,11,111$, and 1011 , but not by 1101 .
Speed. This algorithm uses $O\left(n(\lg n)^{2} \lg \lg n\right)$ operations in A, where n is the total number of coefficients in $h_{1}, h_{2}, \ldots, h_{s}, f_{1}, f_{2}, \ldots, f_{t}$.

More precisely: Assume that d, m, j, k are nonnegative integers, that h_{1}, \ldots, h_{s} together have at most m coefficients, that f_{1}, \ldots, f_{t} together have at most d coefficients, that $s \leq 2^{j}$, and that $t \leq 2^{k}$. Then the algorithm uses at most $\left(2 m j+12 m+26 d k+24 \cdot 2^{k}-12\right)(\mu(2 \max \{d, m\})+1)+d$ operations in A.
How it works. Compute $h=h_{1} h_{2} \cdots h_{s}$ as explained in Section 12. This uses at $\operatorname{most} 2 m j(\mu(m)+1) \leq 2 m j(\mu(2 \max \{d, m\})+1)$ operations in A.

Compute $h \bmod f_{1}, h \bmod f_{2}, \ldots, h \bmod f_{t}$ as explained in Section 18. This uses at most $\left(12 m+26 d k+24 \cdot 2^{k}-12\right)(\mu(2 \max \{d, m\})+1)$ operations in A.

Check whether $h \bmod f_{1}=0, h \bmod f_{2}=0, \ldots, h \bmod f_{t}=0$. This uses at most d equality tests in A.

The integer case. An analogous algorithm, given integers $h_{1}, h_{2}, \ldots, h_{s}$ and given nonzero integers $f_{1}, f_{2}, \ldots, f_{t}$, figures out which f_{i} 's divide $h_{1} h_{2} \cdots h_{s}$. The algorithm takes time $O\left(n(\lg n)^{2} \lg \lg n\right)$, where n is the total number of input bits.

History. See Section 20. This algorithm is a stepping-stone to the algorithm of Section 20.

Improvements. See Section 12 for improved product-tree algorithms, and Section 18 for improved remainder-tree algorithms.

As discussed in Section 17, Schönhage and Vetter combined \mathbf{Z}_{2} and \mathbf{R} to compute a quotient more quickly when the remainder was known in advance to be 0 . A similar technique can be used to check more quickly whether a remainder is 0 .

20. Small factors of a sequence

Input. Let A be a commutative ring. Let s be a positive integer, and let t be a nonnegative integer. The algorithm in this section is given nonzero polynomials $h_{1}, h_{2}, \ldots, h_{s} \in A[x]$ and monic coprime polynomials $f_{1}, f_{2}, \ldots, f_{t} \in A[x]$ with $\operatorname{deg} f_{i} \geq 1$ for each i.

Here coprime means that $A[x]=f_{i} A[x]+f_{j} A[x]$ for every i, j with $i \neq j$; in other words, there exist $u, v \in A[x]$ with $f_{i} u+f_{j} v=1$. (Warning: Some authors instead say pairwise coprime, reserving "coprime" for the notion that $\left.A[x]=f_{1} A[x]+f_{2} A[x]+\cdots+f_{t} A[x].\right)$

The importance of coprimality is the Chinese remainder theorem: the $A[x]$ algebra morphism from $A[x] / f_{1} f_{2} \cdots f_{t}$ to $A[x] / f_{1} \times A[x] / f_{2} \times \cdots \times A[x] / f_{t}$ is an isomorphism. In particular, if each of $f_{1}, f_{2}, \ldots, f_{t}$ divides a polynomial h, then the product $f_{1} f_{2} \cdots f_{t}$ divides h. This is crucial for the speed of the algorithm.

Output. This algorithm figures out which f_{i} 's divide h_{1}, which f_{i} 's divide h_{2}, which f_{i} 's divide h_{3}, etc.

As in Section 19, the name "small factors" comes from the important special case that A is a finite field and f_{1}, f_{2}, \ldots are all of the small primes in $A[x]$. Then this algorithm computes the small factors of h_{1}, the small factors of h_{2}, etc.

For example, say $A=\mathbf{Z} / 2, s=4, t=5, h_{1}=101111=1+x^{2}+x^{3}+x^{4}+x^{5}$, $h_{2}=1101011, h_{3}=00001011, h_{4}=0001111, f_{1}=01, f_{2}=11, f_{3}=111$, $f_{4}=1101$, and $f_{5}=1011$. This algorithm finds all the factors of $h_{1}, h_{2}, h_{3}, h_{4}$ among $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}$. Its output is ()$,(111),(01,1011),(01,11)$.
Speed. This algorithm uses $O\left(n(\lg n)^{3} \lg \lg n\right)$ operations in A, where n is the total number of coefficients in $h_{1}, h_{2}, \ldots, h_{s}, f_{1}, f_{2}, \ldots, f_{t}$.

More precisely: Assume, as in Section 19, that d, m, j, k are nonnegative integers, that h_{1}, \ldots, h_{s} together have at most m coefficients, that f_{1}, \ldots, f_{t} together have at most d coefficients, that $s \leq 2^{j}$, and that $t \leq 2^{k}$. Then the algorithm uses at $\operatorname{most}\left(\left(104 j k+j^{2}+109 j+12\right) m+26 d k+24 \cdot 2^{k}\right)(\mu(2 \max \{d, m\})+1)+d+4 m j$ operations in A.

How it works. Figure out which of $f_{1}, f_{2}, \ldots, f_{t}$ divide $h_{1} h_{2} \cdots h_{s}$, as explained in Section 19. Write $\left(g_{1}, g_{2}, \ldots\right)$ for this subsequence of $\left(f_{1}, f_{2}, \ldots, f_{t}\right)$. This uses at most $\left(2 m j+12 m+26 d k+24 \cdot 2^{k}\right)(\mu(2 \max \{d, m\})+1)+d$ operations in A, leaving $\left(104 j k+j^{2}+107 j\right) m(\mu(2 \max \{d, m\})+1)+4 m j$ operations for the remaining steps in the algorithm.

If $s=1$, the answer is $\left(g_{1}, g_{2}, \ldots\right)$. There are no further operations in this case, and $\left(104 j k+j^{2}+107 j\right) m(\mu(2 \max \{d, m\})+1)+4 m j$ is nonnegative.

Otherwise apply the algorithm recursively to $h_{1}, h_{2}, \ldots, h_{r}$ and g_{1}, g_{2}, \ldots, and then apply the algorithm recursively to $h_{r+1}, h_{r+2}, \ldots, h_{s}$ and g_{1}, g_{2}, \ldots, where $r=\lceil s / 2\rceil$. This works because any f 's that divide h_{i} also divide $h_{1} h_{2} \cdots h_{s}$ and are therefore included among the g 's.

The central point in the time analysis is that $\operatorname{deg}\left(g_{1} g_{2} \cdots\right)<m$. Indeed, g_{1}, g_{2}, \ldots are coprime divisors of $h_{1} \cdots h_{s}$, so their product is a divisor of $h_{1} \cdots h_{s}$; but $h_{1} \cdots h_{s}$ is a nonzero polynomial of degree smaller than m. Thus there are at most $\min \{m, t\}$ polynomials in g_{1}, g_{2}, \ldots, and the total number of coefficients in g_{1}, g_{2}, \ldots is at most $\min \{2 m, d\}$.

Define ℓ as the number of coefficients in $h_{1}, h_{2}, \ldots, h_{r}$, and define e as the smallest nonnegative integer with $\min \{m, t\} \leq 2^{e}$. Then $\ell \leq m ; e \leq k$; and $2^{e} \leq 2 m$, since $m \geq 1$. By induction, the recursive computation for $h_{1}, \ldots, h_{r}, g_{1}, g_{2}, \ldots$ uses at most

$$
\begin{aligned}
&\left(\left(104(j-1) e+(j-1)^{2}+109(j-1)+12\right) \ell+26 \min \{2 m, d\} e+24 \cdot 2^{e}\right) \\
&(\mu(2 \max \{\min \{2 m, d\}, \ell\})+1)+\min \{2 m, d\}+4 \ell(j-1) \\
& \leq\left(\left(104(j-1) k+(j-1)^{2}+109(j-1)+12\right) \ell+52 m k+48 m\right) \\
&(\mu(2 \max \{d, m\})+1)+2 m+4 \ell(j-1)
\end{aligned}
$$

operations in A. Similarly, the recursive computation for $h_{r+1}, \ldots, h_{s}, g_{1}, g_{2}, \ldots$ uses at most

$$
\begin{aligned}
& \left(\left(104(j-1) k+(j-1)^{2}+109(j-1)+12\right)(m-\ell)+52 m k+48 m\right) \\
& \quad(\mu(2 \max \{d, m\})+1)+2 m+4(m-\ell)(j-1)
\end{aligned}
$$

operations in A. The total is exactly $\left(104 j k+j^{2}+107 j\right) m(\mu(2 \max \{d, m\})+1)+4 m j$ as desired.

Here is an example of how the algorithm works. To factor $h_{1}=101111$, $h_{2}=1101011, h_{3}=00001011$, and $h_{4}=0001111$ over $A=\mathbf{Z} / 2$ using the primes $01,11,111,1101,1011$, the algorithm first finds the factors $01,11,111,1011$ of $h_{1} h_{2} h_{3} h_{4}$ as explained in Section 19. It then recursively factors h_{1}, h_{2} using $01,11,111,1011$, and recursively factors h_{3}, h_{4} using $01,11,111,1011$.

At the first level of recursion in the same example: To factor h_{3}, h_{4} using $01,11,111,1011$, the algorithm finds the factors $01,11,1011$ of $h_{3} h_{4}$ as explained in Section 19. It then recursively factors h_{3} using $01,11,1011$, and recursively factors h_{4} using 01, 11, 1011.

The integer case. An analogous algorithm, given nonzero integers $h_{1}, h_{2}, \ldots, h_{s}$ and coprime integers $f_{1}, f_{2}, \ldots, f_{t} \geq 2$, figures out which f_{j} 's divide h_{1}, which f_{j} 's divide h_{2}, which f_{j} 's divide h_{3}, etc. The algorithm takes time $O\left(n(\lg n)^{3} \lg \lg n\right)$, where n is the total number of input bits.

An important special case is that $f_{1}, f_{2}, \ldots, f_{t}$ are the first t prime numbers. Then this algorithm computes the small factors of h_{1}, the small factors of h_{2}, etc.

History. I introduced this algorithm in [12, Section 21] and [14]. The version in [12] is slower but more general: it relies solely on multiplication, exact division, and greatest common divisors.

Improvements. There are many previous algorithms to find small factors: for example, Legendre's root-finding method (when the inputs are polynomials over a finite field), sieving (when the inputs are successive values of a polynomial), Pollard's $p-1$ method, and Lenstra's elliptic-curve method. See [14, Section 2] for a survey. One of my current projects is to combine and optimize these algorithms.

Many applications-see [14, Section 3], for example, and Chapter 11 of this book-discard inputs that are not smooth, i.e., that do not factor completely over the primes $f_{1}, f_{2}, \ldots, f_{t}$. One can identify and discard those inputs without factoring them. Franke, Kleinjung, Morain, and Wirth in [48, Section 4] published a smoothness-detection algorithm that typically takes time $O\left(n(\lg n)^{2} \lg \lg n\right)$. My paper [18] explains a slight variant that always takes time $O\left(n(\lg n)^{2} \lg \lg n\right)$: first compute $f=f_{1} f_{2} \cdots f_{t}$; then compute $f \bmod h_{1}, f \bmod h_{2}, \ldots$; then, for each i, compute $f^{2^{b_{i}}} \bmod h_{i}$ by repeated squaring, for a sensible choice of b_{i}. The result is 0 if and only if h_{i} is smooth.

21. Continued fraction from fraction

Input. Let A be a field. Let d be a nonnegative integer. The algorithm in this section is given polynomials $f_{1}, f_{2} \in A[x]$, not both zero.

Both f_{1} and f_{2} are assumed to be represented without leading zero coefficients, so the algorithm can see the degrees of f_{1} and f_{2} without any equality tests in A.

Output. This algorithm computes polynomials $M_{11}, M_{12}, M_{21}, M_{22}$ in $A[x]$ such that $\operatorname{deg} M_{11}, \operatorname{deg} M_{12}, \operatorname{deg} M_{21}, \operatorname{deg} M_{22}$ are all at most $d ; M_{11} M_{22}-M_{12} M_{21}$ is in $\{-1,1\}$; and $\operatorname{deg}\left(M_{21} f_{1}+M_{22} f_{2}\right)<\max \left\{\operatorname{deg} f_{1}, \operatorname{deg} f_{2}\right\}-d$. In particular, $M_{21} f_{1}+M_{22} f_{2}=0$ in the important special case $d=\max \left\{\operatorname{deg} f_{1}, \operatorname{deg} f_{2}\right\}$.

This algorithm also computes a factorization of the matrix $M=\left(\begin{array}{ll}M_{11} & M_{12} \\ M_{21} & M_{22}\end{array}\right)$: polynomials $q_{1}, q_{2}, \ldots, q_{t} \in A[x]$ with $M=\left(\begin{array}{cc}0 & 1 \\ 1 & -q_{t}\end{array}\right) \cdots\left(\begin{array}{cc}0 & 1 \\ 1 & -q_{2}\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ 1 & -q_{1}\end{array}\right)$. In particular, $\binom{f_{1}}{f_{2}}=\left(\begin{array}{cc}q_{1} & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}q_{2} & 1 \\ 1 & 0\end{array}\right) \cdots\left(\begin{array}{cc}q_{t} & 1 \\ 1 & 0\end{array}\right) M\binom{f_{1}}{f_{2}}$. The reader may think of this equation as expanding f_{1} / f_{2} into a continued fraction

$$
q_{1}+\frac{1}{q_{2}+\frac{1}{\ddots+\frac{1}{q_{t}+\frac{g_{2}}{g_{1}}}}}
$$

with $g_{1}=M_{11} f_{1}+M_{12} f_{2}$ and $g_{2}=M_{21} f_{1}+M_{22} f_{2}$; see Section 14 .
Note for future reference that if $\operatorname{deg} f_{1} \geq \operatorname{deg} f_{2}$ then $\operatorname{deg} g_{1}=\operatorname{deg} f_{1}-\operatorname{deg} M_{22} \geq$ $\operatorname{deg} f_{1}-d>\operatorname{deg} g_{2}$; if also $M_{21} \neq 0$ then $\operatorname{deg} g_{1}=\operatorname{deg} f_{2}-\operatorname{deg} M_{21}$. (Proof: $\operatorname{deg} M_{12} g_{2}<d+\operatorname{deg} f_{1}-d=\operatorname{deg} f_{1}$, and $M_{22} g_{1}=M_{12} g_{2} \pm f_{1}$, so $\operatorname{deg} M_{22} g_{1}=$ $\operatorname{deg} f_{1}$. If $M_{21} \neq 0$ then $\operatorname{deg} M_{21} f_{1} \geq \operatorname{deg} f_{1} \geq \operatorname{deg} f_{1}-d>\operatorname{deg} g_{2}$, and $M_{22} f_{2}=$ $g_{2}-M_{21} f_{1}$, so $\operatorname{deg} M_{22} f_{2}=\operatorname{deg} M_{21} f_{1}$.)

Speed. This algorithm uses $O\left(d(\lg d)^{2} \lg \lg d\right)$ operations in A.
More precisely: Assume that $2 d \leq 2^{k}$ where k is a nonnegative integer. Then this algorithm uses at most $\left(46 d k+44\left(2^{k+1}-1\right)\right)(\mu(4 d+8)+1)$ operations in A. This bound is pessimistic.

How it works. The desired matrix M is computed in nine steps shown below. The desired factorization of M is visible from the construction of M, as is the (consequent) fact that $\operatorname{det} M \in\{-1,1\}$.

There are several recursive calls in this algorithm. Most of the recursive calls reduce d; the other recursive calls preserve d and reduce $\operatorname{deg} f_{2}$. The time analysis inducts on $\left(d, \operatorname{deg} f_{2}\right)$ in lexicographic order.
Step 1: fix the input order. If $\operatorname{deg} f_{1}<\operatorname{deg} f_{2}$: Apply the algorithm recursively to d, f_{2}, f_{1} to find a matrix C, of degree at most d, such that $\operatorname{deg}\left(C_{21} f_{2}+C_{22} f_{1}\right)<$ $\operatorname{deg} f_{2}-d$. Compute $M=C\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. The answer is M.

Time analysis: By induction, the recursive computation of C uses at most $\left(46 d k+44\left(2^{k+1}-1\right)\right)(\mu(4 d+8)+1)$ operations. The computation of M uses no operations: M is simply a reshuffling of C.

Step 2: check for large d. If $\operatorname{deg} f_{1}<d$: Apply the algorithm recursively to $\operatorname{deg} f_{1}, f_{1}, f_{2}$ to find a matrix M, of degree at most $\operatorname{deg} f_{1}<d$, such that $M_{21} f_{1}+$ $M_{22} f_{2}=0$. The answer is M.

Time analysis: By induction, the recursive computation of M uses at most $\left(46\left(\operatorname{deg} f_{1}\right) k+44\left(2^{k+1}-1\right)\right)\left(\mu\left(4\left(\operatorname{deg} f_{1}\right)+8\right)+1\right) \leq\left(46 d k+44\left(2^{k+1}-1\right)\right)(\mu(4 d+8)+1)$ operations.

Step 3: if no quotients are needed, stop. If $\operatorname{deg} f_{2}<\operatorname{deg} f_{1}-d$: The answer is $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Time analysis: This computation uses $0 \leq\left(46 d k+44\left(2^{k+1}-1\right)\right)(\mu(4 d+8)+1)$ operations.

Step 4: focus on the top $2 d$ coefficients. Define $i=\operatorname{deg} f_{1}-2 d$. If $i>0$: Apply the algorithm recursively to $d,\left\lfloor f_{1} / x^{i}\right\rfloor,\left\lfloor f_{2} / x^{i}\right\rfloor$ to find a matrix M, of degree at most d, such that $\operatorname{deg}\left(M_{21}\left\lfloor f_{1} / x^{i}\right\rfloor+M_{22}\left\lfloor f_{2} / x^{i}\right\rfloor\right)<\operatorname{deg}\left(\left\lfloor f_{1} / x^{i}\right\rfloor\right)-d=\operatorname{deg} f_{1}-$ $i-d$.

The answer is M. Indeed, $x^{i}\left(M_{21}\left\lfloor f_{1} / x^{i}\right\rfloor+M_{22}\left\lfloor f_{2} / x^{i}\right\rfloor\right)$ has degree below $\operatorname{deg} f_{1}-d ; M_{21}\left(f_{1} \bmod x^{i}\right)$ and $M_{22}\left(f_{2} \bmod x^{i}\right)$ have degree below $d+i=\operatorname{deg} f_{1}-d$; add to see that $M_{21} f_{1}+M_{22} f_{2}$ has degree below $\operatorname{deg} f_{1}-d$.

Time analysis: By induction, the recursive computation of M uses at most $\left(46 d k+44\left(2^{k+1}-1\right)\right)(\mu(4 d+8)+1)$ operations as claimed.

From now on, $0 \leq \operatorname{deg} f_{1}-d \leq \operatorname{deg} f_{2} \leq \operatorname{deg} f_{1} \leq 2 d$.
Step 5: handle degree 0. If $d=0$ then $\operatorname{deg} f_{1}=\operatorname{deg} f_{2}=0$; the answer is $\left(\begin{array}{cc}0 & 1 \\ 1 & -f_{1} / f_{2}\end{array}\right)$.

Time analysis: This computation uses $2 \leq\left(46 d k+44\left(2^{k+1}-1\right)\right)(\mu(4 d+8)+1)$ operations as claimed.

From now on, $d \geq 1$, so $k \geq 1$.
Step 6: compute the first half of the continued fraction. Find a matrix C, of degree at most $\lfloor d / 2\rfloor$, with $\operatorname{deg}\left(C_{21} f_{1}+C_{22} f_{2}\right)<\operatorname{deg} f_{1}-\lfloor d / 2\rfloor$, by applying this algorithm to $\lfloor d / 2\rfloor, f_{1}, f_{2}$. Compute $g_{2}=C_{21} f_{1}+C_{22} f_{2}$. Compute deg g_{2}.

Time analysis: Note that $2\lfloor d / 2\rfloor \leq d \leq 2^{k-1}$. The recursive computation of C uses at most $\left(46(d / 2)(k-1)+44\left(2^{k}-1\right)\right)(\mu(4(d / 2)+8)+1)$ operations by induction. The computation of $C_{21} f_{1}$ uses at most $3 d \mu(3 d)$ operations, since $\operatorname{deg} C_{21} \leq d$ and $\operatorname{deg} f_{1} \leq 2 d$. The computation of $C_{22} f_{2}$ uses at most $3 d \mu(3 d)$ operations. The computation of g_{2} uses at most $2 d$ additions, since $\operatorname{deg} g_{2}<\operatorname{deg} f_{1} \leq 2 d$. The computation of $\operatorname{deg} g_{2}$ uses at most $2 d$ equality tests.

Step 7: if no more quotients are needed, stop. If $\operatorname{deg} g_{2}<\operatorname{deg} f_{1}-d$: The answer is C. Time analysis: There are no operations here; for comparison, more than 0 operations are counted below.

From now on, $\operatorname{deg} f_{1}-d \leq \operatorname{deg} g_{2}<\operatorname{deg} f_{1}-\lfloor d / 2\rfloor$.
Step 8: compute one more quotient. Compute $g_{1}=C_{11} f_{1}+C_{12} f_{2}$. Compute polynomials $q, r \in A[x]$ such that $g_{1}=q g_{2}+r$ and $\operatorname{deg} r<\operatorname{deg} g_{2}$, as explained in Section 17. Compute $\operatorname{deg} r$.

Problem: Section 17 considers division by monic polynomials; g_{2} is usually not monic. Solution: Divide g_{2} by its leading coefficient, and adjust q accordingly.

Observe that the matrix $\left(\begin{array}{cc}0 & 1 \\ 1 & -q\end{array}\right) C=\left(\begin{array}{cc}C_{21} & C_{22} \\ C_{11}-q C_{21} & C_{12}-q C_{22}\end{array}\right)$ has degree at most $\operatorname{deg} f_{1}-\operatorname{deg} g_{2}$. (Proof: Recall that $\operatorname{deg} C_{22}=\operatorname{deg} f_{1}-\operatorname{deg} g_{1} ; \operatorname{sodeg} q C_{22}=$ $\operatorname{deg} q+\operatorname{deg} C_{22}=\left(\operatorname{deg} g_{1}-\operatorname{deg} g_{2}\right)+\left(\operatorname{deg} f_{1}-\operatorname{deg} g_{1}\right)=\operatorname{deg} f_{1}-\operatorname{deg} g_{2}$. Recall also that $\operatorname{deg} C_{21} \leq \operatorname{deg} f_{2}-\operatorname{deg} g_{1} \leq \operatorname{deg} f_{1}-\operatorname{deg} g_{1} ; \operatorname{so} \operatorname{deg} q C_{21} \leq \operatorname{deg} f_{1}-\operatorname{deg} g_{2}$. Finally, all of $C_{11}, C_{12}, C_{21}, C_{22}$ have degree at most $\lfloor d / 2\rfloor<\operatorname{deg} f_{1}-\operatorname{deg} g_{2}$.)

Time analysis: The computation of g_{1} uses at most $6 d \mu(3 d)+2 d+1$ operations, since $\operatorname{deg} g_{1} \leq \operatorname{deg} f_{1} \leq 2 d$. The division of g_{2} by its leading coefficient uses at most $2 d$ operations. The division of g_{1} by the result uses at most $12(2 d+2)(\mu(4 d+2)+1)$ operations. The division of the quotient by the leading coefficient of g_{2} uses at most $d+1$ operations since $\operatorname{deg} q \leq \operatorname{deg} f_{1}-\operatorname{deg} g_{2} \leq d$. The computation of $\operatorname{deg} r$ uses at most $2 d$ equality tests.

Step 9: compute the second half of the continued fraction. Find a matrix D, of degree at most $\operatorname{deg} g_{2}-\left(\operatorname{deg} f_{1}-d\right)$, such that $\operatorname{deg}\left(D_{21} g_{2}+D_{22} r\right)<\operatorname{deg} f_{1}-d$, by applying the algorithm recursively to $\operatorname{deg} g_{2}-\left(\operatorname{deg} f_{1}-d\right), g_{2}, r$.

Compute $M=D\left(\begin{array}{cc}0 & 1 \\ 1 & -q\end{array}\right) C$. Observe that $M_{21} f_{1}+M_{22} f_{2}=\left(\begin{array}{ll}0 & 1\end{array}\right) M\binom{f_{1}}{f_{2}}=$ $\left(\begin{array}{ll}0 & 1\end{array}\right) D\left(\begin{array}{cc}0 & 1 \\ 1 & -q\end{array}\right) C\binom{f_{1}}{f_{2}}=\left(\begin{array}{ll}D_{21} & D_{22}\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ 1 & -q\end{array}\right)\binom{g_{1}}{g_{2}}=\left(\begin{array}{ll}D_{21} & D_{22}\end{array}\right)\binom{g_{2}}{r}=$ $D_{21} g_{2}+D_{22} r$.

The answer is M. Indeed, the degree of D is at most $\operatorname{deg} g_{2}-\operatorname{deg} f_{1}+d$, and the degree of $\left(\begin{array}{cc}0 & 1 \\ 1 & -q\end{array}\right) C$ is at most $\operatorname{deg} f_{1}-\operatorname{deg} g_{2}$, so the degree of M is at most d; and $\operatorname{deg}\left(M_{21} f_{1}+M_{22} f_{2}\right)=\operatorname{deg}\left(D_{21} g_{2}+D_{22} r\right)<\operatorname{deg} f_{1}-d$.

Time analysis: Note that $\operatorname{deg} g_{2}-\left(\operatorname{deg} f_{1}-d\right) \leq \operatorname{deg} f_{1}-\lfloor d / 2\rfloor-1-\left(\operatorname{deg} f_{1}-d\right) \leq$ $\lfloor d / 2\rfloor$. By induction, the recursive computation of D uses at most

$$
\left(46(d / 2)(k-1)+44\left(2^{k}-1\right)\right)(\mu(4(d / 2)+8)+1)
$$

operations. The computation of $q C_{21}$ uses at most $(d+1) \mu(d+1)$ operations since $\operatorname{deg} q C_{21} \leq \operatorname{deg} f_{1}-\operatorname{deg} g_{2} \leq d$. The computation of $q C_{22}$ uses at most $(d+1) \mu(d+1)$ operations since $\operatorname{deg} q C_{22}=\operatorname{deg} f_{1}-\operatorname{deg} g_{2} \leq d$. The computation of $C_{11}-q C_{21}$ uses at most $d+1$ operations. The computation of $C_{12}-q C_{22}$ uses at most $d+1$ operations. The multiplication of D by $\left(\begin{array}{cc}0 & 1 \\ 1 & -q\end{array}\right) C$ uses at most $(8 d+16)(\mu(4 d+8)+1)$ operations.

Totals: at most $\left(46 d(k-1)+44\left(2^{k+1}-2\right)\right)(\mu(4 d+8)+1)$ operations for the recursive computations of C and D, and at most $(46 d+42) \mu(4 d+8)+45 d+44 \leq$ $(46 d+44)(\mu(4 d+8)+1)$ operations for everything else. The grand total is at most $\left(46 d k+44\left(2^{k+1}-1\right)\right)(\mu(4 d+8)+1)$ operations as claimed.

The integer case. A more complicated algorithm, given a nonnegative integer d and given integers f_{1}, f_{2} not both zero, computes a (factored) 2×2 integer matrix M with entries not much larger than 2^{d} in absolute value, with determinant in $\{-1,1\}$, and with $\left|M_{21} f_{1}+M_{22} f_{2}\right|<\max \left\{\left|f_{1}\right|,\left|f_{2}\right|\right\} / 2^{d}$. It takes time $O\left(n(\lg n)^{2} \lg \lg n\right)$, where n is the total number of input bits.

The main complication here is that the answer for the top $2 d$ bits of f_{1} and f_{2} is, in general, not exactly the answer for f_{1} and f_{2}. One has to check whether $\left|M_{21} f_{1}+M_{22} f_{2}\right|$ is too large, and divide a few more times if it is.

History. Almost all of the ideas in this algorithm were published by Lehmer in [81] in the integer case. Lehmer made the crucial observation that the top $2 d$ bits of f_{1} and f_{2} determined approximately d bits of the continued fraction for f_{1} / f_{2}. Lehmer suggested computing the continued fraction for f_{1} / f_{2} by computing a small part of the continued fraction, computing another quotient, and then computing the rest of the continued fraction.

Shortly after fast multiplication was widely understood, Knuth in [70] suggested replacing "a small part" with "half" in Lehmer's algorithm. Knuth proved that the continued fraction for f_{1} / f_{2} could be computed within a $O\left((\lg n)^{4}\right)$ factor of multiplication time. Schönhage in [97] streamlined the Lehmer-Knuth algorithm and proved that the continued fraction for f_{1} / f_{2} could be computed within a $O(\lg n)$ factor of multiplication time.

The $(\lg n)^{3}$ disparity between [70] and [97] arose as follows. Knuth lost one $\lg n$ factor from continually re-multiplying matrices $\left(\begin{array}{cc}0 & 1 \\ 1 & -q\end{array}\right)$ instead of reusing their products M; another $\lg n$ factor from doing a binary search, again with no reuse of partial results, to determine how much of the continued fraction of f_{1} / f_{2} matched the continued fraction of $\left\lfloor f_{1} / 2^{i}\right\rfloor /\left\lfloor f_{2} / 2^{i}\right\rfloor$; and one more $\lg n$ factor from an unnecessarily crude analysis.

Moenck in [84] claimed to have a simplified algorithm covering both the integer case and the polynomial case. In fact, Moenck's algorithm does not work in the integer case, does not work in the "nonnormal" situation of a quotient having degree different from 1 , and does not work except when $\operatorname{deg} f_{1}$ is a power of 2 . The errors in [84] begin on page 143, where the "degree" function mapping an integer A to $\lfloor\lg |A|\rfloor$ is claimed to be a homomorphism.

Brent, Gustavson, and Yun in [29, Section 3] outlined a simplified algorithm for the polynomial case. Strassen in [113, page 16] stated the remarkably clean algorithm shown above (under the assumption $\operatorname{deg} f_{1} \geq \operatorname{deg} f_{2}$), with one omission: Strassen's algorithm recurses forever when $d=\operatorname{deg} f_{1}=\operatorname{deg} f_{2}=0$.

Improvements. There are many opportunities for FFT caching and FFT addition in this algorithm.

One can replace $\lfloor d / 2\rfloor$ in this algorithm by any integer between 0 and $d-1$. The optimal choice depends heavily on the exact speed of multiplication.

It is often helpful (for applications, and for recursion inside this algorithm) to compute $M_{21} f_{1}+M_{22} f_{2}$, and sometimes $M_{11} f_{1}+M_{12} f_{2}$, along with M. One can often save time by incorporating these computations into the recursion. For example, when M is constructed from D, q, C, one can compute $M_{21} f_{1}+M_{22} f_{2}$ as $D_{21} g_{2}+D_{22} r$, and one can compute $M_{11} f_{1}+M_{12} f_{2}$ as $D_{11} g_{2}+D_{12} r$.

One can often save time by skipping M_{11} and M_{21}, and working solely with $M_{12}, M_{22}, M_{11} f_{1}+M_{12} f_{2}, M_{21} f_{1}+M_{22} f_{2}$. Applications that need M_{11} and M_{21} can use formulas such as $M_{11}=\left(\left(M_{11} f_{1}+M_{12} f_{2}\right)-M_{12} f_{2}\right) / f_{1}$. In [72, page 343] this observation is credited to Gordon H. Bradley.

Some applications need solely $M_{11} f_{1}+M_{12} f_{2}$ and $M_{21} f_{1}+M_{22} f_{2}$. The algorithm, and some of its recursive calls, can be sped up accordingly.

Often f_{1} and f_{2} have an easily detected common factor, such as x or $x-1$. Dividing out this factor speeds up the algorithm, perhaps enough to justify the cost of checking for the factor in the first place.

22. Greatest common divisor

Input. Let A be a field. The algorithm in this section is given polynomials $f_{1}, f_{2} \in$ $A[x]$.

Output. This algorithm computes $\operatorname{gcd}\left\{f_{1}, f_{2}\right\}$: in other words, a polynomial g such that $g A[x]=f_{1} A[x]+f_{2} A[x]$ and such that g is monic if it is nonzero.

This algorithm also computes polynomials $h_{1}, h_{2} \in A[x]$, each of degree at most $\max \left\{\operatorname{deg} f_{1}, \operatorname{deg} f_{2}\right\}$, such that $g=f_{1} h_{1}+f_{2} h_{2}$.

In particular, if f_{1} and f_{2} are coprime, then $g=1 ; h_{1}$ is a reciprocal of f_{1} modulo f_{2}; and h_{2} is a reciprocal of f_{2} modulo f_{1}.

Speed. This algorithm uses $O\left(n(\lg n)^{2} \lg \lg n\right)$ operations in A, where n is the total number of coefficients in f_{1}, f_{2}.
How it works. If $f_{1}=f_{2}=0$ then the answer is $0,0,0$. Assume from now on that at least one of f_{1} and f_{2} is nonzero.

Define $d=\max \left\{\operatorname{deg} f_{1}, \operatorname{deg} f_{2}\right\}$. Apply the algorithm of Section 21 to compute $M_{11}, M_{12}, M_{21}, M_{22}$ in $A[x]$, of degree at most d, with $M_{11} M_{22}-M_{12} M_{21}= \pm 1$ and $M_{21} f_{1}+M_{22} f_{2}=0$.

Compute $u=M_{11} f_{1}+M_{12} f_{2}$. Note that $\pm f_{1}=M_{22} u$ and $\mp f_{2}=M_{21} u$, so $u A[x]=f_{1} A[x]+f_{2} A[x]$. In particular, $u \neq 0$.

Compute $g=u / c, h=M_{11} / c$, and $h_{2}=M_{12} / c$, where c is the leading coefficient of u. Then g is monic, and $g A[x]=f_{1} A[x]+f_{2} A[x]$, so $g=\operatorname{gcd}\left\{f_{1}, f_{2}\right\}$. The answer is g, h_{1}, h_{2}.

The integer case. An analogous algorithm, given integers f_{1} and f_{2}, computes $\operatorname{gcd}\left\{f_{1}, f_{2}\right\}$ and reasonably small integers h_{1}, h_{2} with $\operatorname{gcd}\left\{f_{1}, f_{2}\right\}=f_{1} h_{1}+f_{2} h_{2}$. It takes time $O\left(n(\lg n)^{2} \lg \lg n\right)$, where n is the total number of input bits.

History. See Section 21. This application has always been one of the primary motivations for studying the problem of Section 21.
Improvements. See Section 21.
The reader may have noticed that Section 21 and this section use division in $A\left(\left(x^{-1}\right)\right)$ and division in \mathbf{R}. What about \mathbf{Q}_{2} ? Answer: There are several "binary" algorithms to compute greatest common divisors of integers. See, e.g., [106] and [72, pages 338-341; Exercises 4.5.2-38, 4.5.2-39, 4.5.2-40]. Recently, in [107], Stehlé and Zimmermann introduced a particuarly clean "binary" gcd algorithm and proved that it takes time $O\left(n(\lg n)^{2} \lg \lg n\right)$. The Stehlé-Zimmermann algorithm, given an odd integer f_{1} and an even integer f_{2}, expands f_{1} / f_{2} into what one might call a simple 2 -adic continued fraction: a continued fraction with all quotients chosen from the set $\{ \pm 1 / 2, \pm 1 / 4, \pm 3 / 4, \pm 1 / 8, \pm 3 / 8, \pm 5 / 8, \pm 7 / 8, \ldots\}$. My initial impression is that this algorithm supersedes all previous work on gcd computation.

23. Interpolator

Input. Let A be a field. Let t be a nonnegative integer. The algorithm in this section is given polynomials $f_{1}, f_{2}, \ldots, f_{t} \in A[x]$ and nonzero coprime polynomials $g_{1}, g_{2}, \ldots, g_{t} \in A[x]$.
Output. This algorithm computes $h \in A[x]$, with $\operatorname{deg} h<\operatorname{deg} g_{1} g_{2} \cdots g_{t}$, such that $h \equiv f_{1}\left(\bmod g_{1}\right), h \equiv f_{2}\left(\bmod g_{2}\right), \ldots, h \equiv f_{t}\left(\bmod g_{t}\right)$.

In particular, consider the special case that each g_{j} is a monic linear polynomial $x-c_{j}$. The answer h is a polynomial of degree below t such that $h\left(c_{1}\right)=f_{1}\left(c_{1}\right)$, $h\left(c_{2}\right)=f_{2}\left(c_{2}\right), \ldots, h\left(c_{t}\right)=f_{t}\left(c_{t}\right)$. Finding h is usually called interpolation in this case, and I suggest using the same name for the general case. Another common name is Chinese remaindering.
Speed. This algorithm uses $O\left(n(\lg n)^{2} \lg \lg n\right)$ operations in A, where n is the total number of input coefficients.

How it works. For $t=0$: The answer is 0 .
Compute $G=g_{1} \cdots g_{t}$ as explained in Section 12.
Compute $G \bmod g_{1}^{2}, \ldots, G \bmod g_{t}^{2}$ as explained in Section 18.
Divide each $G \bmod g_{j}^{2}$ by g_{j}, as explained in Section 17, to obtain $\left(G / g_{j}\right) \bmod g_{j}$. Note that G / g_{j} and g_{j} are coprime; thus $\left(\left(G / g_{j}\right) \bmod g_{j}\right)$ and g_{j} are coprime.

Compute a (reasonably small) reciprocal p_{j} of $\left(\left(G / g_{j}\right) \bmod g_{j}\right)$ modulo g_{j}, as explained in Section 22. Compute $q_{j}=f_{j} p_{j} \bmod g_{j}$ as explained in Section 17.

Now compute $h=\left(q_{1} / g_{1}+\cdots+q_{t} / g_{t}\right) G$ as explained in Section 13. (Proof that, modulo g_{j}, this works: $h \equiv q_{j}\left(G / g_{j}\right) \equiv f_{j} p_{j}\left(G / g_{j}\right) \equiv f_{j} p_{j}\left(G / g_{j} \bmod g_{j}\right) \equiv f_{j}$.)

The integer case. An analogous algorithm, given integers $f_{1}, f_{2}, \ldots, f_{t}$ and given nonzero coprime integers $g_{1}, g_{2}, \ldots, g_{t}$, computes a reasonably small integer h such that $h \equiv f_{1}\left(\bmod g_{1}\right), h \equiv f_{2}\left(\bmod g_{2}\right), \ldots, h \equiv f_{t}\left(\bmod g_{t}\right)$. The algorithm takes time $O\left(n(\lg n)^{2} \lg \lg n\right)$, where n is the total number of input bits.

History. Horowitz in [60] published most of the above algorithm, in the special case that each g_{j} is a monic linear polynomial. Horowitz did not have a fast method (for large t) to compute $\left(G / g_{1}\right) \bmod g_{1}, \ldots,\left(G / g_{t}\right) \bmod g_{t}$ from G. Moenck and Borodin in [85, page 95] and [20, page 381] suggested the above solution in the ("single-precision") integer case.

The special case $t=2$ was published first by Heindel and Horowitz in [57], along with a different essentially-linear-time interpolation algorithm for general t. The Heindel-Horowitz algorithm is summarized below; it takes time $O\left(n(\lg n)^{3} \lg \lg n\right)$.
Improvements. When g_{j} is a linear polynomial, $\left(G / g_{j}\right) \bmod g_{j}$ has degree 0 , so p_{j} is simply $1 /\left(\left(G / g_{j}\right) \bmod g_{j}\right)$, and q_{j} is $\left(f_{j} \bmod g_{j}\right) /\left(\left(G / g_{j}\right) \bmod g_{j}\right)$. More generally, whenever g_{j} is very small, the algorithm of this section provides very small inputs to the modular-reciprocal algorithm of Section 22.

When g_{j} is a monic linear polynomial, $\left(G / g_{j}\right) \bmod g_{j}$ is the same as $G^{\prime} \bmod$ g_{j}, where G^{\prime} is the derivative of G. Borodin and Moenck in [20, Sections 8-9] suggested computing $G^{\prime} \bmod g_{1}, \ldots, G^{\prime} \bmod g_{t}$ as explained in Section 18, instead of computing $G \bmod g_{1}^{2}, \ldots, G \bmod g_{t}^{2}$.

More generally, if g_{j} and its derivative g_{j}^{\prime} are coprime, then $\left(G / g_{j}\right) \bmod g_{j}$ is the same as $\left(g_{j}^{\prime}\right)^{-1} G^{\prime} \bmod g_{j}$. One can compute $G^{\prime} \bmod g_{1}, \ldots, G^{\prime} \bmod g_{t}$; compute each reciprocal $\left(G^{\prime}\right)^{-1} \bmod g_{j}$; and then compute $q_{j}=f_{j} g_{j}^{\prime}\left(G^{\prime}\right)^{-1} \bmod g_{j}$.

Another way to compute $\left(G / g_{j}\right) \bmod g_{j}$ is to first compute $G / g_{1}+\cdots+G / g_{t}$ as explained in Section 13, then compute $\left(G / g_{1}+\cdots+G / g_{t}\right) \bmod g_{j}=\left(G / g_{j}\right) \bmod g_{j}$ for all j as explained in Section 18. Bürgisser, Clausen, and Shokrollahi published this method in [33, pages 77-78].

When $t=2$, one can use the algorithm of Section 22 to simultaneously compute a reciprocal p_{2} of $g_{1}=G / g_{2}$ modulo g_{2} and a reciprocal p_{1} of $g_{2}=G / g_{1}$ modulo g_{1}. The answer is then $\left(f_{1} p_{1} \bmod g_{1}\right) g_{2}+\left(f_{2} p_{2} \bmod g_{2}\right) g_{1}$. It might be faster to compute $\left(f_{1} p_{1} g_{2}+f_{2} p_{2} g_{1}\right) \bmod g_{1} g_{2}$.

One can skip the computation of p_{1} when $f_{1}=0$. One can reduce the general case to this case: interpolate $0, f_{2}-f_{1}, f_{3}-f_{1}, \ldots, f_{t}-f_{1}$ and then add f_{1} to the result. In particular, for $t=2$, the answer is $f_{1}+\left(\left(f_{2}-f_{1}\right) p_{2} \bmod g_{2}\right) g_{1}$, if f_{1} is small enough for that answer to be in the right range.

The Heindel-Horowitz algorithm interpolates pairs, then pairs of pairs, etc. This may be better than the Horowitz-Borodin-Moenck algorithm for small t.

One can cache the reciprocals p_{j} for subsequent interpolations involving the same g_{1}, \ldots, g_{t}.

24. Coprime base

Input. Let A be a field. Let t be a nonnegative integer. The algorithm in this section is given monic polynomials $f_{1}, f_{2}, \ldots, f_{t} \in A[x]$.
Output. This algorithm computes a coprime base for $\left\{f_{1}, f_{2}, \ldots, f_{t}\right\}$: coprime monic polynomials $g_{1}, g_{2}, \ldots \in A[x]$ such that each f_{j} can be factored as a product of powers of g_{1}, g_{2}, \ldots.

In fact, the algorithm computes the natural coprime base for $\left\{f_{1}, f_{2}, \ldots, f_{t}\right\}$: the unique coprime base that does not contain 1 and that can be obtained from $f_{1}, f_{2}, \ldots, f_{t}$ by multiplication, exact division, and greatest common divisors.

In most applications, one also wants the factorization of each f_{j} over g_{1}, g_{2}, \ldots These factorizations can be computed quickly by an extension of the algorithm of Section 20.

Speed. This algorithm uses $O\left(n(\lg n)^{7} \lg \lg n\right)$ operations in A, where n is the total number of input coefficients.

How it works. See [12]. The algorithm is too complicated to be stated in this paper, as the reader might guess from the exponent 7.

The integer case. An analogous algorithm computes the natural coprime base of a set of positive integers $f_{1}, f_{2}, \ldots, f_{t}$. It takes time $O\left(n(\lg n)^{7} \lg \lg n\right)$, where n is the total number of input bits.

History. I published this algorithm in [12]. No previous essentially-linear-time algorithms were known, even in the case $t=2$.

Improvements. One of my current projects is to speed up this algorithm. I have recently convinced myself that the natural coprime base can be computed in time $O\left(n(\lg n)^{4} \lg \lg n\right)$.

References

[1] -, AFIPS conference proceedings, volume 17: 1960 Western Joint Computer Conference, 1960. ISSN 0095-6880.
[2] -, AFIPS conference proceedings, volume 28: 1966 Spring Joint Computer Conference, Spartan Books, Washington, 1966.
[3] -, AFIPS conference proceedings, volume 29: 1966 Fall Joint Computer Conference, Spartan Books, Washington, 1966.
[4] -, AFIPS conference proceedings, volume 33, part one: 1968 Fall Joint Computer Conference, December 9-11, 1968, San Francisco, California, Thompson Book Company, Washington, 1968.
[5] -, Actes du congrès international des mathématiciens, tome 3, Gauthier-Villars Éditeur, Paris, 1971. MR 54:5.
[6] Alfred V. Aho (chairman), Proceedings of fifth annual ACM symposium on theory of computing: Austin, Texas, April 30-May 2, 1973, Association for Computing Machinery, New York, 1973.
[7] Robert S. Anderssen, Richard P. Brent (editors), The complexity of computational problem solving, University of Queensland Press, Brisbane, 1976. ISBN 0-7022-1213-X. URL: http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub031.html.
[8] Michael Beeler, R. William Gosper, Richard Schroeppel, HAKMEM, Artificial Intelligence Memo No. 239, Massachusetts Institute of Technology, 1972. URL: http://www.inwap.com/ pdp10/hbaker/hakmem/hakmem.html.
[9] Glenn D. Bergland, A fast Fourier transform algorithm for real-valued series, Communications of the ACM 11 (1968), 703-710. ISSN 0001-0782. URL: http://cr.yp.to/bib/ entries.html\#1968/bergland-real.
[10] Daniel J. Bernstein, New fast algorithms for π and e, paper for the Westinghouse competition, distributed widely at the Ramanujan Centenary Conference (1987). URL: http:// cr.yp.to/bib/entries.html\#1987/bernstein.
[11] Daniel J. Bernstein, Detecting perfect powers in essentially linear time, Mathematics of Computation 67 (1998), 1253-1283. ISSN 0025-5718. MR 98j:11121. URL: http://cr.yp. to/papers.html.
[12] Daniel J. Bernstein, Factoring into coprimes in essentially linear time, to appear, Journal of Algorithms. ISSN 0196-6774. URL: http://cr.yp.to/papers.html. ID f32943f0bb67a9 317d4021513f9eee5a.
[13] Daniel J. Bernstein, Multidigit multiplication for mathematicians. URL: http://cr.yp.to/ papers.html.
[14] Daniel J. Bernstein, How to find small factors of integers, accepted to Mathematics of Computation; now being revamped. URL: http://cr.yp.to/papers.html.
[15] Daniel J. Bernstein, Removing redundancy in high-precision Newton iteration, draft. URL: http://cr.yp.to/papers.html\#fastnewton. ID def7f1e35fb654671c6f767b16b93d50.
[16] Daniel J. Bernstein, Pippenger's exponentiation algorithm, to be incorporated into author's High-speed cryptography book. URL: http://cr.yp.to/papers.html.
[17] Daniel J. Bernstein, Computing logarithm intervals with the arithmetic-geometric-mean iteration. URL: http://cr.yp.to/papers.html\#logagm. ID 8f92b1e3ec7918d37b28b9efcee5e 97f.
[18] Daniel J. Bernstein, How to find smooth parts of integers, draft. URL: http://cr.yp.to/ papers.html\#smoothparts. ID 201a045d5bb24f43f0bd0d97fcf5355a.
[19] Daniel J. Bernstein, Scaled remainder trees, draft. URL: http://cr.yp.to/papers. html\#scaledmod. ID e2b8da026cf72d01d97e20cf2874f278.
[20] Allan Borodin, Robert T. Moenck, Fast modular transforms, Journal of Computer and System Sciences 8 (1974), 366-386; older version, not a subset, in [85]. ISSN 0022-0000. MR 51:7365. URL: http://cr.yp.to/bib/entries.html\#1974/borodin.
[21] Jonathan M. Borwein, Peter B. Borwein, Pi and the AGM, Wiley, New York, 1987. ISBN 0-471-83138-7. MR 89a:11134.
[22] Jonathan M. Borwein, David M. Bradley, Richard E. Crandall, Computational strategies for the Riemann zeta function, Journal of Computational and Applied Mathematics 121 (2000), 247-296. ISSN 0377-0427. MR 2001h:11110. URL: http://www.sciencedirect.com/ science/article/B6TYH-4118GDF-F/1/64371ba75fa0e923ba6b231779fb0673.
[23] Alin Bostan, Grégoire Lecerf, Bruno Salvy, Éric Schost, Bernd Wiebelt, Complexity issues in bivariate polynomial factorization, in [95] (2004), 42-49.
[24] Alin Bostan, Grégoire Lecerf, Éric Schost, Tellegen's principle into practice, in [59] (2003), 37-44.
[25] Alfred Brauer, On addition chains, Bulletin of the American Mathematical Society 45 (1939), 736-739. ISSN 0273-0979. MR 1,40a. URL: http://cr.yp.to/bib/entries.html\# 1939/brauer.
[26] Richard P. Brent, The complexity of multiple-precision arithmetic, in [7] (1976), 126-165. URL: http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub032.html.
[27] Richard P. Brent, Fast multiple-precision evaluation of elementary functions, Journal of the ACM 23 (1976), 242-251. ISSN 0004-5411. MR 52:16111. URL: http://web.comlab. ox.ac.uk/oucl/work/richard.brent/pub/pub034.html.
[28] Richard P. Brent, Multiple-precision zero-finding methods and the complexity of elementary function evaluation, in [116] (1976), 151-176. MR 54:11843. URL: http://web.comlab.ox. ac.uk/oucl/work/richard.brent/pub/pub028.html.
[29] Richard P. Brent, Fred G. Gustavson, David Y. Y. Yun, Fast solution of Toeplitz systems of equations and computation of Padé approximants, Journal of Algorithms 1 (1980), 259-295. ISSN 0196-6774. MR 82d:65033. URL: http://web.comlab.ox.ac.uk/oucl/work/richard. brent/pub/pub059.html.
[30] Richard P. Brent, Edwin M. McMillan, Some new algorithms for high-precision computation of Euler's constant, Mathematics of Computation 34 (1980), 305-312. ISSN 00255718. MR 82g:10002. URL: http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/ pub049.html.
[31] Georg Bruun, z-transform DFT filters and FFTs, IEEE Transactions on Acoustics, Speech, and Signal Processing 26 (1978), 56-63. ISSN 0096-3518. URL: http://cr.yp.to/bib/ entries.html\#1978/bruun.
[32] Duncan A. Buell (editor), Algorithmic number theory: 6th international symposium, ANTSVI, Burlington, VT, USA, June 2004, proceedings, Lecture Notes in Computer Science, 3076, Springer-Verlag, Berlin, 2004. ISBN 3-540-22156-5.
[33] Peter Bürgisser, Michael Clausen, Mohammed Amin Shokrollahi, Algebraic complexity theory, Springer-Verlag, Berlin, 1997. ISBN 3-540-60582-7. MR 99c:68002.
[34] Joe P. Buhler (editor), Algorithmic number theory: ANTS-III, Lecture Notes in Computer Science, 1423, Springer-Verlag, Berlin, 1998. ISBN 3-540-64657-4. MR 2000g:11002.
[35] Christoph Burnikel, Joachim Ziegler, Fast recursive division, MPI research report I-98-1-022, 1998. URL: http://data.mpi-sb.mpg.de/internet/reports.nsf/NumberView/1998-1-022.
[36] Jacques Calmet (editor), Computer algebra: EUROCAM '82, Lecture Notes in Computer Science, 144, Springer-Verlag, Berlin, 1982. ISBN 3-540-11607-9. MR 83k:68003.
[37] David G. Cantor, Erich Kaltofen, On fast multiplication of polynomials over arbitrary algebras, Acta Informatica 28 (1991), 693-701. ISSN 0001-5903. MR 92i:68068. URL: http:// www.math.ncsu.edu/~kaltofen/bibliography/.
[38] David V. Chudnovsky, Gregory V. Chudnovsky, Computer algebra in the service of mathematical physics and number theory, in [39] (1990), 109-232. MR 92g:11122.
[39] David V. Chudnovsky, Richard D. Jenks (editors), Computers in mathematics, Lecture Notes in Pure and Applied Mathematics, 125, Marcel Dekker, New York, 1990. ISBN 0-8247-8341-7. MR 91e:00020.
[40] Stephen A. Cook, On the minimum computation time of functions, Ph.D. thesis, Department of Mathematics, Harvard University, 1966. URL: http://cr.yp.to/bib/entries. html\#1966/cook.
[41] James W. Cooley, John W. Tukey, An algorithm for the machine calculation of complex Fourier series, Mathematics of Computation 19 (1965), 297-301. ISSN 0025-5718. MR 31:2843. URL: http://cr.yp.to/bib/entries.html\#1965/cooley.
[42] Richard Crandall, Barry Fagin, Discrete weighted transforms and large-integer arithmetic, Mathematics of Computation 62 (1994), 305-324. ISSN 0025-5718. MR 94c:11123. URL: http://cr.yp.to/bib/entries.html\#1994/crandall.
[43] John D. Dixon, Exact solution of linear equations using p-adic expansions, Numerische Mathematik 40 (1982), 137-141. ISSN 0029-599X. MR 83m:65025. URL: http://cr.yp.to/ bib/entries.html\#1982/dixon.
[44] Pierre Duhamel, H. Hollmann, Split-radix FFT algorithm, Electronics Letters 20 (1984), 14-16. ISSN 0013-5194. URL: http://cr.yp.to/bib/entries.html\#1984/duhamel.
[45] Pierre Duhamel, Martin Vetterli, Fast Fourier transforms: a tutorial review and a state of the art, Signal Processing 19 (1990), 259-299. ISSN 0165-1684. MR 91a:94004. URL: http://cr.yp.to/bib/entries.html\#1990/duhamel.
[46] Gerald Estrin, Organization of computer systems - the fixed plus variable structure computer, in [1] (1960), 33-40. URL: http://cr.yp.to/bib/entries.html\#1960/estrin.
[47] Charles M. Fiduccia, Polynomial evaluation via the division algorithm: the fast Fourier transform revisited, in [93] (1972), 88-93. URL: http://cr.yp.to/bib/entries.html\#1972/ fiduccia-fft.
[48] Jens Franke, T. Kleinjung, François Morain, T. Wirth, Proving the primality of very large numbers with fastECPP. URL: http://www.lix.polytechnique.fr/Labo/Francois. Morain/Articles/large.ps.gz.
[49] Carl F. Gauss, Werke, Band 3, Königlichen Gesellschaft der Wissenschaften, Göttingen, 1866. URL: http://134.76.163.65/agora_docs/41929TABLE_OF_CONTENTS.html.
[50] W. Morven Gentleman, Gordon Sande, Fast Fourier transforms-for fun and profit, in [3] (1966), 563-578. URL: http://cr.yp.to/bib/entries.html\#1966/gentleman.
[51] William Gosper, Strip mining in the abandoned orefields of nineteenth century mathematics, in [39] (1990), 261-284. MR 91h:11154. URL: http://cr.yp.to/bib/entries.html\#1990/ gosper.
[52] Robert T. Gregory, Error-free computation: why it is needed and methods for doing it, Robert E. Krieger Publishing Company, New York, 1980. ISBN 0-89874-240-4. MR 83f:65061.
[53] Bruno Haible, Thomas Papanikolaou, Fast multiprecision evaluation of series of rational numbers, Technical Report TI-7/97, Darmstadt University of Technology, 1997; see also newer version [54]. URL: http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/ papanik/Welcome.html.
[54] Bruno Haible, Thomas Papanikolaou, Fast multiprecision evaluation of series of rational numbers, in [34] (1998), 338-350; see also older version [53]. MR 2000i:11197. URL: http:// cr.yp.to/bib/entries.html\#1998/haible.
[55] Eric C. R. Hehner, R. Nigel Horspool, A new representation of the rational numbers for fast easy arithmetic, SIAM Journal on Computing 8 (1979), 124-134. ISSN 0097-5397. MR 80h:68027. URL: http://cr.yp.to/bib/entries.html\#1979/hehner.
[56] Michael T. Heideman, Don H. Johnson, C. Sidney Burrus, Gauss and the history of the fast Fourier transform, Archive for History of Exact Sciences 34 (1985), 265-277. ISSN 0003-9519. MR 87f:01018. URL: http://cr.yp.to/bib/entries.html\#1985/heideman.
[57] Lee E. Heindel, Ellis Horowitz, On decreasing the computing time for modular arithmetic, in [58] (1971), 126-128. URL: http://cr.yp.to/bib/entries.html\#1971/heindel.
[58] Fred C. Hennie (chairman), 12th annual symposium on switching and automata theory, IEEE Computer Society, Northridge, 1971.
[59] Hoon Hong (editor), Proceedings of the 2003 international symposium on symbolic and algebraic computation, Association for Computing Machinery, New York, 2003. ISBN 1-58113-641-2.
[60] Ellis Horowitz, A fast method for interpolation using preconditioning, Information Processing Letters 1 (1972), 157-163. ISSN 0020-0190. MR 47:4413. URL: http://cr.yp.to/bib/ entries.html\#1972/horowitz.
[61] Tudor Jebelean, An algorithm for exact division, Journal of Symbolic Computation 15 (1993), 169-180. ISSN 0747-7171. MR 93m:68092. URL: http://cr.yp.to/bib/entries. html\#1993/jebelean.
[62] Tudor Jebelean, Practical integer division with Karatsuba complexity, in [79] (1997), 339341.
[63] Anatoly A. Karatsuba, Y. Ofman, Multiplication of multidigit numbers on automata, Soviet Physics Doklady 7 (1963), 595-596. ISSN 0038-5689. URL: http://cr.yp.to/bib/entries. html\#1963/karatsuba.
[64] Ekatharine A. Karatsuba, Fast evaluation of hypergeometric functions by FEE, in [91] (1999), 303-314. MR 2000e:65030. URL: http://cr.yp.to/bib/entries.html\#1999/ karatsuba.
[65] Alan H. Karp, Peter Markstein, High-precision division and square root, Technical Report HPL-93-42(R.1), 1994; see also newer version [66]. URL: http://www.hpl.hp.com/ techreports/93/HPL-93-42.html.
[66] Alan H. Karp, Peter Markstein, High-precision division and square root, ACM Transactions on Mathematical Software 23 (1997), 561-589; see also older version [65]. ISSN 00983500. MR 1671 702. URL: http://www.hpl.hp.com/personal/Alan_Karp/publications/ publications.html.
[67] Richard M. Karp (chairman), 13th annual symposium on switching and automata theory, IEEE Computer Society, Northridge, 1972.
[68] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms, 1st edition, 1st printing, Addison-Wesley, Reading, 1969; see also newer version [69]. MR 44:3531.
[69] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms, 1st edition, 2nd printing, Addison-Wesley, Reading, 1971; see also older version [68]; see also newer version [71]. MR 44:3531.
[70] Donald E. Knuth, The analysis of algorithms, in [5] (1971), 269-274. MR 54:11839. URL: http://cr.yp.to/bib/entries.html\#1971/knuth-gcd.
[71] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms, 2nd edition, Addison-Wesley, Reading, 1981; see also older version [69]; see also newer version [72]. ISBN 0-201-03822-6. MR 83i:68003.
[72] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms, 3rd edition, Addison-Wesley, Reading, 1997; see also older version [71]. ISBN 0-201-896842.
[73] Donald E. Knuth (editor), Selected papers on analysis of algorithms, CSLI Publications, Stanford, 2000. ISBN 1-57586-212-3. MR 2001c:68066.
[74] Donald E. Knuth, Christos H. Papadimitriou, Duality in addition chains, Bulletin of the European Association for Theoretical Computer Science 13 (1981), 2-4; reprinted in [73, chapter 31]. ISSN 0252-9742.
[75] Peter M. Kogge, Parallel solution of recurrence problems, IBM Journal of Research and Development 18 (1974), 138-148. ISSN 0018-8646. MR 49:6552. URL: http://cr.yp.to/ bib/entries.html\#1974/kogge.
[76] Peter M. Kogge, Harold S. Stone, A parallel algorithm for the efficient solution of a general class of recurrence equations, IEEE Transactions on Computers 22 (1973), 786-793. ISSN 0018-9340. URL: http://cr.yp.to/bib/entries.html\#1973/kogge.
[77] Nick Kollerstrom, Thomas Simpson and "Newton's method of approximation": an enduring myth, British Journal for the History of Science 1992 (1992), 347-354. URL: http://www. ucl.ac.uk/sts/nk/newtonapprox.htm.
[78] E. V. Krishnamurthy, Matrix processors using p-adic arithmetic for exact linear computations, IEEE Transactions on Computers 26 (1977), 633-639. ISSN 0018-9340. MR 57:7963. URL: http://cr.yp.to/bib/entries.html\#1977/krishnamurthy.
[79] Wolfgang Kuechlin (editor), Symbolic and algebraic computation: ISSAC '97, Association for Computing Machinery, New York, 1997. ISBN 0-89791-875-4.
[80] H. T. Kung, On computing reciprocals of power series, Numerische Mathematik 22 (1974), 341-348. ISSN 0029-599X. MR 50:3536. URL: http://cr.yp.to/bib/entries.html\#1974/ kung.
[81] Derrick H. Lehmer, Euclid's algorithm for large numbers, American Mathematical Monthly 45 (1938), 227-233. ISSN 0002-9890. URL: http://links.jstor.org/sici?sici=0002-9890 (193804) $45: 4<227:$ EAFLN>2.0.CO;2-Y.
[82] Hendrik W. Lenstra, Jr., Robert Tijdeman (editors), Computational methods in number theory I, Mathematical Centre Tracts, 154, Mathematisch Centrum, Amsterdam, 1982. ISBN 90-6196-248-X. MR 84c:10002.
[83] Jean-Bernard Martens, Recursive cyclotomic factorization-a new algorithm for calculating the discrete Fourier transform, IEEE Transactions on Acoustics, Speech, and Signal Processing 32 (1984), 750-761. ISSN 0096-3518. MR 86b:94004. URL: http://cr.yp.to/bib/ entries.html\#1984/martens.
[84] Robert T. Moenck, Fast computation of $G C D s$, in [6] (1973), 142-151. URL: http://cr. yp.to/bib/entries.html\#1973/moenck.
[85] Robert T. Moenck, Allan Borodin, Fast modular transforms via division, in [67] (1972), 90-96; newer version, not a superset, in [20]. URL: http://cr.yp.to/bib/entries.html\# 1972/moenck.
[86] Peter L. Montgomery, Modular multiplication without trial division, Mathematics of Computation 44 (1985), 519-521. ISSN 0025-5718. MR 86e:11121.
[87] Peter L. Montgomery, An FFT extension of the elliptic curve method of factorization, Ph.D. thesis, University of California at Los Angeles, 1992.
[88] Peter J. Nicholson, Algebraic theory of finite Fourier transforms, Journal of Computer and System Sciences 5 (1971), 524-547. ISSN 0022-0000. MR 44:4112.
[89] Henri J. Nussbaumer, Fast polynomial transform algorithms for digital convolution, IEEE Transactions on Acoustics, Speech, and Signal Processing 28 (1980), 205-215. ISSN 00963518. MR 80m:94004. URL: http://cr.yp.to/bib/entries.html\#1980/nussbaumer.
[90] Christos M. Papadimitriou, Computational complexity, Addison-Wesley, Reading, Massachusetts, 1994. ISBN 0201530821. MR 95f:68082.
[91] Nicolas Papamichael, Stephan Ruscheweyh, Edward B. Saff (editors), Computational methods and function theory 1997: proceedings of the third CMFT conference, 13-17 October 1997, Nicosia, Cyprus, Series in Approximations and Decompositions, 11, World Scientific, Singapore, 1999. ISBN 9810236263. MR 2000c:00029.
[92] John M. Pollard, The fast Fourier transform in a finite field, Mathematics of Computation 25 (1971), 365-374. ISSN 0025-5718. MR 46:1120. URL: http://cr.yp.to/bib/entries. html\#1971/pollard.
[93] Arnold L. Rosenberg (chairman), Fourth annual ACM symposium on theory of computing, Association for Computing Machinery, New York, 1972. MR 50:1553.
[94] Eugene Salamin, Computation of π using arithmetic-geometric mean, Mathematics of Computation 30 (1976), 565-570. ISSN 0025-5718. MR 53:7928.
[95] Josef Schicho (editor), Proceedings of the 2004 international symposium on symbolic and algebraic computation, Association for Computing Machinery, New York, 2004. ISBN 1-58113-827-X.
[96] Arnold Schönhage, Multiplikation großer Zahlen, Computing 1 (1966), 182-196. ISSN 0010485X. MR 34:8676. URL: http://cr.yp.to/bib/entries.html\#1966/schoenhage.
[97] Arnold Schönhage, Schnelle Berechnung von Kettenbruchentwicklugen, Acta Informatica 1 (1971), 139-144. ISSN 0001-5903. URL: http://cr.yp.to/bib/entries.html\#1971/ schoenhage-gcd.
[98] Arnold Schönhage, Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2, Acta Informatica 7 (1977), 395-398. ISSN 0001-5903. MR 55:9604. URL: http://cr.yp. to/bib/entries.html\#1977/schoenhage.
[99] Arnold Schönhage, Asymptotically fast algorithms for the numerical multiplication and division of polynomials with complex coefficients, in [36] (1982), 3-15. MR 83m:68064. URL: http://cr.yp.to/bib/entries.html\#1982/schoenhage.
[100] Arnold Schönhage, Variations on computing reciprocals of power series, Information Processing Letters 74 (2000), 41-46. ISSN 0020-0190. MR 2001c:68069.
[101] Arnold Schönhage, Andreas F. W. Grotefeld, Ekkehart Vetter, Fast algorithms: a multitape Turing machine implementation, Bibliographisches Institut, Mannheim, 1994. ISBN 3-411-16891-9. MR 96c:68043.
[102] Arnold Schönhage, Volker Strassen, Schnelle Multiplikation großer Zahlen, Computing 7 (1971), 281-292. ISSN 0010-485X. MR 45:1431. URL: http://cr.yp.to/bib/entries.html\# 1971/schoenhage-mult.
[103] Arnold Schönhage, Ekkehart Vetter, A new approach to resultant computations and other algorithms with exact division, in [120] (1994), 448-459. MR 96d:68109.
[104] Malte Sieveking, An algorithm for division of powerseries, Computing 10 (1972), 153-156. ISSN 0010-485X. MR 47:1257. URL: http://cr.yp.to/bib/entries.html\#1972/sieveking.
[105] Thomas Simpson, Essays on several curious and useful subjects in speculative and mix'd mathematics, illustrated by a variety of examples, 1740.
[106] Jonathan Sorenson, Two fast GCD algorithms, Journal of Algorithms 16 (1994), 110-144. ISSN 0196-6774. MR 94k:11135.
[107] Damian Stelhé, Paul Zimmermann, A binary recursive gcd algorithm, in [32] (2004), 411425.
[108] Thomas G. Stockham, Jr., High-speed convolution and correlation, in [2] (1966), 229-233. URL: http://cr.yp.to/bib/entries.html\#1966/stockham.
[109] Harold S. Stone, An efficient parallel algorithm for the solution of a tridiagonal linear system of equations, Journal of the ACM 20 (1973), 27-38. ISSN 0004-5411. MR 48:12792. URL: http://cr.yp.to/bib/entries.html\#1973/stone.
[110] Volker Strassen, Gaussian elimination is not optimal, Numerische Mathematik 13 (1969), 354-356. ISSN 0029-599X. MR 40:2223. URL: http://cr.yp.to/bib/entries.html\#1969/ strassen.
[111] Volker Strassen, Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten, Numerische Mathematik 20 (1973), 238-251. ISSN 0029599X. MR 48:3296.
[112] Volker Strassen, The computational complexity of continued fractions, in [122] (1981), 51-67; see also newer version [113]. URL: http://cr.yp.to/bib/entries.html\#1981/strassen.
[113] Volker Strassen, The computational complexity of continued fractions, SIAM Journal on Computing 12 (1983), 1-27; see also older version [112]. ISSN 0097-5397. MR 84b:12004. URL: http://cr.yp.to/bib/entries.html\#1983/strassen.
[114] James J. Sylvester, On a fundamental rule in the algorithm of continued fractions, Philosophical Magazine 6 (1853), 297-299. URL: http://cr.yp.to/bib/entries.html\#1853/ sylvester.
[115] Andrei L. Toom, The complexity of a scheme of functional elements realizing the multiplication of integers, Soviet Mathematics Doklady 3 (1963), 714-716. ISSN 0197-6788.
[116] Joseph F. Traub, Analytic computational complexity, Academic Press, New York, 1976. MR 52:15938.
[117] Johannes W. M. Turk, Fast arithmetic operations on numbers and polynomials, in [82] (1982), 43-54. MR 84f:10006. URL: http://cr.yp.to/bib/entries.html\#1982/turk.
[118] Joris van der Hoeven, Fast evaluation of holonomic functions, Theoretical Computer Science 210 (1999), 199-215. ISSN 0304-3975. MR 99h:65046. URL: http://www.math.u-psud.fr/ ~vdhoeven/.
[119] Joris van der Hoeven, Fast evaluation of holonomic functions near and in regular singularities, Journal of Symbolic Computation 31 (2001), 717-743. ISSN 0747-7171. MR 2002j:30037. URL: http://www.math.u-psud.fr/~vdhoeven/.
[120] Jan van Leeuwen (editor), Algorithms-ESA '94, Lecture Notes in Computer Science, 855, Springer-Verlag, Berlin, 1994. ISBN 3-540-58434-X. MR 96c:68002.
[121] Martin Vetterli, Henri J. Nussbaumer, Simple FFT and DCT algorithms with reduced number of operations, Signal Processing 6 (1984), 262-278. ISSN 0165-1684. MR 85m:65128. URL: http://cr.yp.to/bib/entries.html\#1984/vetterli.
[122] Paul S. Wang (editor), SYM-SAC '81: proceedings of the 1981 ACM Symposium on Symbolic and Algebraic Computation, Snowbird, Utah, August 5-7, 1981, Association for Computing Machinery, New York, 1981. ISBN 0-89791-047-8.
[123] Arnold Weinberger, J. L. Smith, A logic for high-speed addition, National Bureau of Standards Circular 591 (1958), 3-12. ISSN 0096-9648.
[124] R. Yavne, An economical method for calculating the discrete Fourier transform, in [4] (1968), 115-125. URL: http://cr.yp.to/bib/entries.html\#1968/yavne.
[125] Tjalling J. Ypma, Historical development of the Newton-Raphson method, SIAM Review 37 (1995), 531-551. ISSN 1095-7200. MR 97b:01003.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The University of Illinois at Chicago, Chicago, IL 60607-7045

E-mail address: djb@cr.yp.to

