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Abstract

Let Sbe a finite set of positive integers. A “coprime base forS” means a setP of positive integers
such that (1) each element ofP is coprime to every other element ofP and (2) each element ofS is a
product of powers of elements ofP. There is a natural coprime base forS. This paper introduces an
algorithm that computes the natural coprime base forS in essentially linear time. The best previous
result was a quadratic-time algorithm of Bach, Driscoll, and Shallit. This paper also shows how
to factorS into elements ofP in essentially linear time. The algorithms use solely multiplication,
exact division, gcd, and equality testing, so they apply to any free commutative monoid with fast
algorithms for those four operations; for example, given a finite setSof monic polynomials over a
finite field, the algorithms factorS into coprimes in essentially linear time. These algorithms can be
used as a substitute for prime factorization in many applications.
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1. Introduction

It appears to be difficult to factor most integers into primes. The point of this paper is
that it is easy to factor integers intocoprimes.

Given a finite setS of positive integers, I can construct a setP, with any two distinct
elements ofP coprime, and factor every element ofS into elements ofP, in essentially
linear time. The best previous result was a quadratic-time algorithm by Bach, Driscoll,
and Shallit in [2].

Similarly, given a finite setS of monic polynomials in one variable over a finite field,
I can factorS into coprimes in essentially linear time. For comparison, an algorithm of
Kaltofen and Shoup in [21] factors polynomials into primes in subquadratic random time.

This paper presents my algorithms and proves that they run in essentially linear time.
Priority dates: I announced these results without proof in November 1995, and posted a
complete draft of this paper in October 1997.
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Warning: The algorithms in this paper arenot designed to be as fast as possible. They
are designed to be assimpleas possible, under the constraints of (1) running in essentially
linear time and (2) using a limited set of arithmetic operations. There are many ways to
save more time; these speedups are important but are beyond the scope of this paper.

Applications. Factoring into coprimes is often an adequate substitute for factoring into
primes. See, e.g., [13]; [4]; [20, Section 3]; [14] and [33, Section 3.1]; [16, Remark 6.8]
and [2, page 201]; [27]; [28, Section 4.6] and [9]; [29]; [17] and [8]; [5]; [31, Theorem 5];
and [22, page 427].

Notation and terminology.General-purpose notation:{}means the empty set. WhenSis
a set, #Smeans the cardinality ofS. WhenSandT are sets,S−T means{x∈ S: x /∈ T}.
WhenS is a finite set, prodSmeans∏x∈Sx. When a proposition appears inside brackets, it
means 1 if the proposition is true, 0 otherwise; for example,[2 < 3] = 1.

Notation and terminology specific to this paper: bit is defined in Section 17; cbis defined
in Section 7; coprime bases are defined in Section 4;λ is defined in Section 9; lg is defined
in Section 8; ls is defined in Section 12;M-time is defined in Section 8;µ is defined in
Section 8; ord is defined in Section 6; ppi,ppo,ppg,pple are defined in Section 11; reduce
is defined in Section 19; split is defined in Section 15;τ is defined in Section 9.

“Essentially linear time” means timeb1+o(1) whereb is the number of input bits.

Acknowledgments.The author was supported by the National Science Foundation under
grant DMS–9600083.

Thanks to Igor Shparlinski and two anonymous referees for their comments.

2. Outline of the paper

This paper is organized into four parts.

Part I. Existence and uniqueness.Section 4 proves that every finite setS has a finite
“coprime base.” The proof uses greatest common divisors and exact division (i.e., division
where the remainder is known to be 0) to construct the coprime base.

Sections 6 and 7 show that there is only one coprime base that can be obtained from
S via multiplication, exact division, and greatest common divisors: the “natural coprime
base” forS, written cbS.

Bach, Driscoll, and Shallit stated their results twice, once for integers and once for
polynomials. I have instead abstracted the algebraic properties of integers and polynomials
that make the constructions work. The setting for the Bach-Driscoll-Shallitalgorithm is a
“Noetherian coid with cancellation,” defined in Section 3. The setting for natural coprime
bases, and for my algorithms, is a “free coid,” defined in Section 5. Readers not interested
in maximum generality can skip Sections 3 and 5, and instead remember the following
facts: the set of positive integers is a free coid; the set of monic polynomials in one variable
over a field is a free coid; every free coid is a Noetherian coid with cancellation.
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Part II. Two-element sets.Sections 10 through 13 give several constructions culminating
in Algorithm 13.2, which finds the natural coprime base for any two-element set. The
most important idea is explained in Section 9. Algorithm 13.2 takes essentially linear
time, given essentially-linear-time subroutines for multiplication, exact division, and gcd,
as discussed in Section 8.

Part III. Finite sets. Sections 14 through 18 give several further constructions culminating
in Algorithm 18.1, which finds the natural coprime base for any finite set inessentially
linear time.

Part IV. Factorization. To factor a setS into coprimes, first construct a coprime baseP
for S, and then factorS into elements ofP. Sections 19 through 21 show how to carry out
the factorization, givenSandP, in essentially linear time.

PART I. EXISTENCE AND UNIQUENESS

3. Coids and maximal common divisors

A coid is a set with a commutative associative binary operation, written(a,b) 7→ ab, and
a neutral element, written 1. Commutativity meansab= ba. Associativity means(ab)c =
a(bc). Neutrality means 1a = a = a1.

The word “coid” is nonstandard. It is an abbreviation of “commutative monoid,” and an
abbreviation of “commutative semigroup with identity”; heresemigroupmeans a set with
an associative binary operation, andmonoid means a semigroup with a neutral element.
“Coid,” like “monoid,” should be pronounced to rhyme with “overjoyed.”

Divisibility. Whena = bq for someq, a is amultiple of b; a is divisible by b; b divides
a; b is adivisor of a. If a dividesb andb dividesc thena dividesc.

Cancellation.A coid has cancellationif q = r wheneverbq= br. In other words, when
c is a multiple ofb, there is a uniqueq such thatc = bq; this q is denotedc/b.

Noetherian coids.Let S be a subset of a coid. An element ofS is minimal if it is not
divisible by any other elements ofS. An element ofS is maximal if it does not divide any
other elements ofS. An element ofS is greatestif it is divisible by all elements ofS.

A coid H is Noetherian if every nonempty subset ofH has a minimal element.

Combinatorial coids. Elementsa,b of a coid areassociatesif a dividesb andb divides
a. A coid is combinatorial if a = b whenevera andb are associates. Observe that every
Noetherian coid is combinatorial: ifa andb are associates witha 6= b then{a,b} has no
minimal element.

One can systematically replace “equal” by “associate,” replace “minimal” by “minimal
up to associates,” etc., obtaining definitions and results that apply to non-combinatorial
coids. I prefer to avoid unnecessary complexity: given a general coid, one can simply
consider the combinatorial coid of classes of associates.
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Examples.The set of positive integers, with integer multiplication, is a Noetherian coid
with cancellation. Equivalently: The set of nonzero ideals ofZ, with ideal multiplication,
is a Noetherian coid with cancellation.

Let k be a field. The set of monic polynomials in the univariate polynomial ringk[x],
with polynomial multiplication, is a Noetherian coid with cancellation. Equivalently: The
set of nonzero ideals ofk[x] is a Noetherian coid with cancellation.

Generalizing both examples: The set of nonzero ideals of a Dedekind domain is a
Noetherian coid with cancellation. Even more generally, the set of cancellable ideals of
a Noetherian domain is a Noetherian coid with cancellation. See [8].

Theorem 3.1. Let B be a nonempty subset of a Noetherian coid with cancellation. Then
there exists a maximal common divisor of B.

Here acommon divisor ofB means a divisor of every element ofB.

Proof. Selectb∈ B. DefineS= {b/d : d is a common divisor ofB}. Observe thatb∈ S.
ThusShas some minimal element, sayb/g, whereg is a common divisor ofB. If g divides
another common divisord of B, thenb/d divides b/g; but b/d ∈ S, so b/d = b/g by
minimality of b/g, sod = g. Henceg is a maximal common divisor ofB.

Theorem 3.2. Let a,b,g be elements of a Noetherian coid with cancellation. If g is a
maximal common divisor of{a,b} then a/g is coprime to b/g.

Herec is coprime to d if the only common divisor of{c,d} is 1. Some authors say
“relatively prime tod” or simply “prime tod.”

Proof. If d dividesa/g andb/g thendg dividesa andb. Certainlyg dividesdg, so by
maximalityg = dg, sod = 1 by cancellation.

Theorem 3.3. Every element of a Noetherian coid with cancellation can be written as a
product q1q2 · · ·qn for some n≥ 0 and some irreducibles q1,q2, . . . ,qn.

Herep is anirreducible if p 6= 1 andp cannot be written in the formabwith a 6= 1 and
b 6= 1.

Proof. Suppose that the coid has elements that are not products of irreducibles. Let z be a
minimal such element.

Case 1:z= 1. Thenz is the product of 0 irreducibles. Contradiction.
Case 2:z = ab for somea,b with a 6= 1 andb 6= 1. Thena dividesz anda 6= z. The

minimality of z implies thata is a product of irreducibles. Similarly,b is a product of
irreducibles. Thusz is a product of irreducibles. Contradiction.

Case 3:z is irreducible. Thenz is the product of 1 irreducible. Contradiction.

Theorem 3.4. Let p,a be elements of a Noetherian coid with cancellation. Assume that
p 6= 1. Then there is a unique integer m≥ 0 such that pm divides a and pm+1 does not
divide a.
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Proof. Suppose thatpm+1 dividesa for everym≥ 0. Then the set{a/p,a/p2, . . .} does not
have a minimal element:a/pm is divisible bya/pm+1, anda/pm 6= a/pm+1 sincep 6= 1.
Contradiction.

Find the smallest integerm≥ 0 such thatpm+1 does not dividea. If m= 0 thenpm = 1
so pm dividesa. If m≥ 1 thenpm dividesa by minimality ofm.

Uniqueness:p0, p1, . . . , pm dividea, while pm+1, pm+2, . . . do not.

4. Coprime bases

Let P andS be subsets of a Noetherian coidH with cancellation. Thecoid generated
by P is the smallest subset ofH that containsP∪{1} and is closed under multiplication;
more concretely, it is the set of products of powers of elements ofP. P is abase forS if S
is contained in the coid generated byP; i.e., each element ofS is a product of powers of
elements ofP.

P is coprime if each element ofP is coprime to every other element ofP. (Some authors
instead say “P is pairwise coprime,” saving “P is coprime” for the less important concept
that gcdP = 1. A few authors say “P is gcd-free,” as if elements ofP were somehow
immune to the gcd operation.)

P is acoprime base forS if P is coprime andP is a base forS.

Theorem 4.1. Let H be a Noetherian coid with cancellation. Every finite subset of H has
a finite coprime base.

Proof. Suppose not. Select a finite subsetSof H, without a finite coprime base, in such a
way that prodS is minimal.

Scannot be coprime—otherwise it is a finite coprime base for itself. Thus there are two
distinct elementsa,b∈ Swith a not coprime tob.

By Theorem 3.1, there is a maximal common divisorg of {a,b}. If g = 1 thena is
coprime tob; thusg 6= 1. DefineT = (S−{a,b})∪{g,a/g,b/g}. Then prodT divides
((prodS)/ab)g(a/g)(b/g) = (prodS)/g; so prodT is a divisor of prodS different from
prodS. The minimality of prodS implies thatT has a finite coprime base, sayP.

Now a = g(a/g) and b = g(b/g) are products of elements ofT, and thus are in the
coid generated byP. All other elements ofS are elements ofT, and thus are in the coid
generated byP. HenceP is a base forS. Contradiction.

5. Free coids and greatest common divisors

A free coid is a Noetherian coid with cancellation in whicha is coprime tobcwhenever
a is coprime to bothb andc.

Bach, Driscoll, and Shallit suggested in [2, page 216] (in different language) that free
coids would form a “suitable abstract setting” for factoring into coprimes.The algorithms
in [2] actually work for arbitrary Noetherian coids with cancellation, butfree coids are the
setting for most of this paper.
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Examples.The set of nonzero ideals in a Dedekind domain is a free coid. The point is
that, in a Dedekind domain, the suma+ b of two idealsa andb is a maximal common
divisor of{a,b}. Therefore, ifa is coprime to bothb andc, thena+b = 1 anda+c = 1,
soa+bc= 1a+bc= (1+b)a+bc= a+ba+bc= a+b(a+c) = a+b1= a+b= 1 by
elementary ideal arithmetic, soa is coprime tobc.

In particular, the set of positive integers is a free coid, and ifk is a field then the set of
monic polynomials ink[x] is a free coid.

Theorem 5.1. Let a,b,c be elements of a free coid. If a divides bc, with a coprime to b,
then a divides c.

Proof. By Theorem 3.1,{a,c} has a maximal common divisorg. By Theorem 3.2,a/g is
coprime toc/g. By hypothesis,a/g is coprime tob. Thusa/g is coprime tob(c/g) = bc/g.
But a/g dividesbc/g, soa/g must be 1. Thusa = g dividesc.

Theorem 5.2. Let x,y,z,h be elements of a free coid. If x and y divide z, and h is a maximal
common divisor of{x,y}, then xy/h divides z.

Proof. By hypothesis,x/h dividesz/h = (z/y)(y/h). By Theorem 3.2,x/h andy/h are
coprime. Thusx/h dividesz/y by Theorem 5.1. Hence(x/h)y divides(z/y)y = z.

Theorem 5.3. Let B be a nonempty subset of a free coid. Then there exists a greatest
common divisor of B.

The greatest common divisor ofB is denoted gcdB.

Proof. By Theorem 3.1, there is a maximal common divisorg of B. I claim that every
common divisord of B is a divisor ofg. Indeed, leth be a maximal common divisor of
{g,d}. By Theorem 5.2,gd/h is a common divisor ofB. But g is maximal, sog = gd/h,
sod = h, sod dividesg as claimed.

Theorem 5.4. Let z be an element of a free coid. Let x1,x2, . . . ,xn be divisors of z such
that xi is coprime to xj whenever i6= j. Then x1x2 · · ·xn divides z.

Proof. Induct onn. Forn= 0: 1 dividesz. Forn= 1: By hypothesisx1 dividesz. Forn≥ 2:
By hypothesis 1 is a maximal common divisor of{x1,x2}, sox1x2 dividesz by Theorem
5.2. Define(y1,y2,y3, . . . ,yn−1) = (x1x2,x3,x4, . . . ,xn). Theny1,y2, . . . ,yn−1 divide z, and
yi is coprime toy j wheneveri 6= j, soy1y2 · · ·yn−1 divideszby induction; i.e.,x1x2x3 · · ·xn

dividesz.

Theorem 5.5. Every irreducible in a free coid is a prime.

Herep is aprime if p 6= 1 and the non-multiples ofp are closed under multiplication:
i.e., if p dividesab thenp dividesa or p dividesb.
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Proof. Let p be an irreducible in the coid. Leta,b be elements of the coid such thatp
dividesab. Defineg= gcd{p,a}. Thenp= (p/g)g. By definition of irreducibles,p/g= 1
or g = 1. If p/g = 1 theng = p so p dividesa as desired. Ifg = 1 thenp is coprime toa
so p dividesb by Theorem 5.1.

Theorem 5.6. Every element of a free coid can be written as a product∏primep pap where
each ap is a nonnegative integer and{p : ap 6= 0} is finite.

Proof. By Theorem 3.3, every element can be written as a productq1q2 · · ·qn where each
qi is an irreducible. By Theorem 5.5, eachqi is a prime. Defineap = #{i : qi = p}; then
q1q2 · · ·qn = ∏primep pap, and{p : ap 6= 0}= {q1,q2, . . . ,qn}.

6. Theord function

Let p be a prime in a free coid, and leta be an element of the coid. By Theorem 3.4,
there is a unique integerm≥ 0 such thatpm dividesa andpm+1 does not. This integer is
denoted ordpm.

Theorem 6.1. Let a,b, p be elements of a free coid. If p is a prime thenordp ab= ordp a+
ordp b.

Proof. Write e= ordpa and f = ordp b. Thenpe dividesa andpf dividesb sope+ f divides
ab. Furthermore,p divides neithera/pe norb/pf ; by definition of prime,p does not divide
(a/pe)(b/pf ); so pe+ f+1 does not divideab.

Theorem 6.2. Let a,b, p be elements of a free coid. If p is a prime thenordp gcd{a,b}=
min{ordp a,ordp b}.

Proof. Write e= ordpa and f = ordp b. Without loss of generality assumee≤ f . Thenpe

divides botha andb sope divides gcd{a,b}. Furthermore,pe+1 does not dividea, sope+1

does not divide gcd{a,b}.

Theorem 6.3. Let a be an element of a free coid. Then{primep : ordpa 6= 0} is finite, and
a = ∏primep pordp a.

Consequently, if ordpa = ordpb for every primep, thena = b.

Proof. By Theorem 5.6,a can be written as a product∏primep pap where eachap is a
nonnegative integer and{p : ap 6= 0} is finite. If q is a prime then ordq q= 1 and ordq p= 0
for all primesp 6= q, so ordq a = ∑primep apordq p = aq. Hence{p : ordp a 6= 0} is finite
anda = ∏primep pordp a.

Theorem 6.4. Let a,b be elements of a free coid. Ifmin{ordp a,ordp b} = 0 for every
prime p then a is coprime to b.
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Proof. If p is a prime then ordp gcd{a,b} = 0 by Theorem 6.2. Hence gcd{a,b} = 1 by
Theorem 6.3.

Theorem 6.5. Let a,b be elements of a free coid. Ifordp a≤ ordpb for every prime p then
a divides b.

Proof. If p is a prime then ordpgcd{a,b}= ordp a by Theorem 6.2. Hence gcd{a,b}= a
by Theorem 6.3.

Theorem 6.6. Let P be a coprime subset of a free coid. Define a= ∏p∈P pap where each
ap is a nonnegative integer and{p : ap 6= 0} is finite. Define b= ∏p∈P pbp where each bp
is a nonnegative integer and{p : bp 6= 0} is finite. Thengcd{a,b}= ∏p∈P pmin{ap,bp}.

Proof. I will show for every primeq that ordq ∏p pmin{ap,bp} = ordq gcd{a,b}. Hence

∏p∈P pmin{ap,bp} = gcd{a,b} by Theorem 6.3.
If q does not divide anyr ∈ P then ordq a= 0, ordqb= 0, and ordq ∏p pmin{ap,bp} = 0=

ordq gcd{a,b}. Assume from now on thatq divides somer ∈ P.
If r ′ ∈P−{r} then gcd{r, r ′}= 1 so min{ordq r,ordq r ′}= 0 by Theorem 6.2 so ordq r ′=

0. Thus ordq a= ar ordq r, ordqb= br ordq r, and ordq ∏p pmin{ap,bp}= min{ar ,br}ordq r =

min
{

ordq a,ordq b
}

= ordq gcd{a,b}.

Theorem 6.7. Let P be a coprime subset of a free coid. Define a= ∏p∈P pap where each
ap is a nonnegative integer and{p : ap 6= 0} is finite. Define b= ∏p∈P pbp where each bp
is a nonnegative integer and{p : bp 6= 0} is finite. If a divides b then ap ≤ bp for every
p∈ P−{1} and b/a = ∏p∈P−{1} pbp−ap.

Proof. Selectr ∈P−{1}. Select a primeq dividing r. Then ordq r > 0, so ordq p= 0 for all
p∈ P−{r}. Thus ordq a = ar ordq r and ordq b = br ordq r; but ordq a≤ ordq b, soar ≤ br .
Also a∏p∈P−{1} pbp−ap = ∏p∈P−{1} pap+bp−ap = b.

7. The natural coprime base

Fix a subsetSof a free coid. Theclosure ofS is the smallest subsetT of the free coid
such that

• S∪{1} ⊆ T;
• ab∈ T if a,b∈ T;
• a∈ T if ab,b∈ T; and
• gcd{a,b} ∈ T if a,b∈ T.

Thenatural coprime base forS, denoted cbS, is the set of minimal elements ofT−{1}.
This is, in fact, a coprime base forS; see Theorem 7.1. It is the only coprime base forS
insideT−{1}; see Theorem 7.3.

There are other ways to characterize cbS. In drafts of this paper I defined cbS as the
set of maximal quasiprimes forS; herep is aquasiprime for S if every element ofScan
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be written in the formupm with p coprime tou. A referee suggested defining cbS as a
minimal subset ofT that is a base forT. Bach, Driscoll, and Shallit proved in [2, Theorem
3] that there is a maximum coprime base forSin a particular ordering of coprime bases for
S, and that this maximum coprime base is a subset ofT−{1}. Another characterization
appears without proof in [20, Lemma 3.2]. An incorrect characterization appears without
proof in [16, Remark 6.8].

Theorem 7.1. Let S be a subset of a free coid. ThencbS is a coprime base for S.

Proof. DefineT as the closure ofS. DefineP = cbS.
P is coprime: Saya∈P is not coprime tob∈P. Defineg= gcd{a,b}. Theng∈T−{1},

and g divides a; but a is a minimal element ofT −{1} by definition of P, so g = a.
Similarly g = b. Thusa = b.

P is a base forT (hence forS): Suppose not. Find a minimal elementz of T outside the
coid generated byP. Thenz /∈P. Thusz is not a minimal element ofT−{1}, by definition
of P; but z∈ T−{1}; soz has a divisory∈ T−{1} with y 6= z. Also z/y∈ T−{1} and
z/y 6= z. The minimality ofz implies that bothy andz/y are in the coid generated byP;
hencez is in the coid generated byP. Contradiction.

Theorem 7.2. Let S and Q be subsets of a free coid. If Q is a coprime base for S then Q
is a base for the closure of S.

Proof. Define T ′ as the intersection ofT with the coid generated byQ. Then 1∈ T ′;
ab∈ T ′ if a,b∈ T ′; S⊆ T ′ sinceQ is a base forS; a∈ T ′ if ab,b∈ T ′, by Theorem 6.7;
and gcd{a,b} ∈ T ′ if a,b∈ T ′, by Theorem 6.6. ThusT ⊆ T ′; i.e.,Q is a base forT.

Theorem 7.3. Let S be a subset of a free coid. Let P be a coprime base for S. Let T be the
closure of S. If P⊆ T−{1} then P= cbS.

Proof. P is a base forT by Theorem 7.2, soP is a base for cbS, so each element of cbS
is divisible by an element ofP. Furthermore, cbS is a base forP, so each element ofP is
divisible by an element of cbS.

Starting from anyp∈ P, find q∈ cbSsuch thatq dividesp, and then findp′ ∈ P such
thatp′ dividesq. Thenp′ dividesp, so by coprimalityp′ = p, soq= p, sop∈ cbS. Hence
P⊆ cbS. Similarly cbS⊆ P.

Theorem 7.4. Let S be a finite subset of a free coid. ThencbS is a finite coprime base for
S.

Proof. The proof of Theorem 4.1 recursively constructs a finite coprime baseQ for Susing
exact division and gcd. ThusQ⊆T, whereT is the closure ofS. DefineP= Q−{1}. Then
P is a finite coprime base forS, andP⊆ T−{1}, soP = cbSby Theorem 7.3, so cbS is a
finite coprime base forS.

Theorem 7.5. Let S be a finite subset of a free coid H. Let z be an element of H. If every
element of S divides z then∏p∈cbSp divides z.
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Proof. Takep∈ cbS. If p does not divide any element ofSthenp is coprime to all elements
of S, sop is coprime to all elements of the closure ofS, sop is coprime top, contradiction.
Thusp dividesz. By Theorem 5.4,∏p∈cbSp dividesz.

PART II. TWO-ELEMENT SETS

8. Logarithms and M-time

The algorithms in this paper work for any free coidH. They are given elements ofH
(represented in some way as strings) and oracles that perform the following operations:

• Multiplication: computeab∈ H givena,b∈ H.
• Exact division: computea∈ H givenab,b∈ H.
• Greatest common divisor: compute gcd{a,b} ∈ H givena,b∈ H.
• Equality testing: compute[a = b] ∈ {0,1} givena,b∈ H.

The algorithms combine these four operations to perform more complicated operations.
For example, Algorithm 10.1 computesa4 ∈ H, givena ∈ H, by first feedinga,a to the
multiplication oracle to obtaina2, and then feedinga2,a2 to the multiplication oracle to
obtaina4. As another example, to check whethera is a divisor ofb, Algorithm 19.2 checks
whether gcd{a,b} equalsa.

Definition of M-time. I count the number of multiplications, divisions, and gcds in each
algorithm, with a weight of(1+ lgab)µ(lgab) for each multiplicationa,b 7→ ab, each
exact divisionab,b 7→ a, and each greatest common divisora,b 7→ gcd{a,b}. The total is
calledM-time. Hereµ : R→ R is any nondecreasing positive function, and lg :H→ R is
any function satisfying (1) lgab= lga+ lgb and (2) lga≥ 1 for everya 6= 1. Note that
lg1 = 0.

Each algorithm is accompanied by a theorem stating an upper bound, parametrized by lg
andµ, on theM-time used by that algorithm. In particular, ifµ(x) ∈ xo(1), then theM-time
to compute cbSis essentially linear in lgprodSby Theorem 18.2, and theM-time to factor
S over any coprime baseP for S is essentially linear in lgprodS+ lgprodP by Theorem
21.3.

Why M-time is useful. These bounds onM-time imply bounds on algorithm time for
various coidsH that arise in practice.

In particular, ifH is the set of positive integers (represented in the usual way as base-
2 strings), then there are algorithms (for, e.g., multitape Turing machines) that perform
multiplication, exact division, and gcd in time at most(1+ lgab)µ(lgab). Here lg :H→R
is the usual logarithm base 2, andµ is a nondecreasing positive function withµ(x) ∈
xo(1). The time spent by my algorithms inside these subroutines for multiplication, exact
division, and gcd is bounded byM-time for these functions lg,µ; the reader can check that
my algorithms spend negligible time in other operations; theM-time for factoring into
coprimes is essentially linear in the input size. Conclusion: factoring positive integers into
coprimes takes time essentially linear in the input size.
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Similarly, if H is the set of monic polynomials in one variable over a finite field, then
there are algorithms that perform multiplication, exact division, and gcd intime at most
(1+ lgab)µ(lgab). Here lg :H → R is the degree map, andµ is a nondecreasing positive
function withµ(x) ∈ xo(1). Conclusion: factoring monic polynomials into coprimes takes
time essentially linear in the input size.

See my paper [7] for a survey of the standard essentially-linear-time algorithms for
multiplication, exact division, and gcd.

Integers and polynomials support many other useful arithmetic operations: division with
remainder, for example, and size inspection (approximation of lg). Algorithms that save
time by using these extra operations are beyond the scope of this paper,as explained in
Section 1. MyM-time bounds are expressed in much more detail than “essentially linear
time” solely because those details simplify the proofs; the level of detail is not meant to
suggest that these are near-optimal bounds for near-optimal algorithms.

Termination. Another consequence of theM-time bounds is that each of these algorithms
terminates for any free coidH. Proof: Defineµ(x) = 1. Define lg :H → R by setting
lg p = 1 for each primep in H. TheM-time bounds are then upper bounds on the number
of multiplications, divisions, and gcds in the algorithm. Every algorithm loop involves at
least one multiplication, division, or gcd. Hence the algorithm terminates.

Another way to prove termination is to observe that the relevant subcoid ofH (the coid
generated by a finite coprime base for the inputs to the algorithm) is isomorphic to a
subcoid of the set of positive integers. The algorithm terminates for positive integers, so it
terminates forH.

9. From CBA to DCBA

The natural coprime base for
{

pe, pf
}

is {pg}−{1} whereg= gcd{e, f}. Thusnatural
coprime bases act on exponents as greatest common divisors.

This section compares two algorithms to compute cb{a,b}. One algorithm, which I call
CBA (the “coprime base algorithm”), is the quadratic-time algorithm introduced by Bach,
Driscoll, and Shallit in [2]. The other algorithm, which I call DCBA, is the essentially-
linear-time algorithm introduced in this paper.

CBA replaces(a,b) with (a/gcd{a,b},gcd{a,b},b/gcd{a,b}); it focuses on the left
pair in this vector and then focuses on the right pair. In particular, it replaces(pe, pf ) with
(pe− f , pf ,1) if e> f or (1, pe, pf−e) if e≤ f . The exponent pair(e, f ) has been replaced
with (e− f , f ) or (e, f − e). ThusCBA uses Euclid’s subtractive algorithm to compute
greatest common divisors of exponents.

Euclid’s subtractive algorithm is a dangerous way to compute greatest common divisors:
the number of steps is the sum of the quotients in the continued fraction fore/ f . A much
safer alternative is Euclid’s repeated-division algorithm, where the number of steps is at
worst logarithmic ine+ f . See generally [26, Sections 4.5.2 and 4.5.3].

Writing out the standard base-2 integer-division algorithm inside Euclid’s repeated-
division algorithm produces Brent’s left-shift binary gcd algorithm, which replaces(e, f )
with (e− 2k f , f ) for the largest possible value ofk, or with ( f ,e) if e < f . It will turn

11



out thatDCBA uses Brent’s left-shift algorithm to compute greatest common divisors of
exponents.

DCBA actually uses a slightly different exponent transformation, namely the functionτ
defined below, to simplify the computations.

The exponent transformation.Define a functionτ on pairs of nonnegative integers as
follows:

τ(e, f ) =































( f −e,e) if e≤ f
(e− f , f ) if f < e≤ 2 f
(e−2 f , f ) if 2 f < e≤ 4 f
(e−4 f , f ) if 4 f < e≤ 8 f
...
(e,0) if 0 = f < e.

Write τn for thenth iterate ofτ.
Defineλ(a,b) as the smallestn≥ 0 such that the second component ofτn(ordp a,ordp b)

is 0 for every primep. Existence ofλ(a,b) follows from Theorem 9.3.

Theorem 9.1. Let e, f ,n be nonnegative integers. If f= 0 or e+
√

2 f <
√

2
n+1

then
τn(e, f ) has second component0.

Proof. Induct onn. For n = 0: If e+
√

2 f <
√

2 then f < 1, so in any casef = 0, so
τn(e, f ) = (e,0) as desired. Forn≥ 1: Define(e′, f ′) = τ(e, f ). I will show that f ′ = 0 or
e′+
√

2 f ′ <
√

2
n
; henceτn(e, f ) = τn−1(e′, f ′) has second component 0 by induction.

Case 1:f = 0 ande= 0. Then(e′, f ′) = ( f −e,e) = (0,0) by definition ofτ.
Case 2:f = 0 ande> 0. Then(e′, f ′) = (e,0) by definition ofτ.
Case 3:f > 0 ande≤ f . Then(e′, f ′) = ( f −e,e) by definition ofτ, so

√
2e′+ 2 f ′−

e−
√

2 f = (1−
√

2)e≤ 0, soe′+
√

2 f ′ ≤ (e+
√

2 f )/
√

2 <
√

2
n
.

Case 4:f > 0 ande> f . Then 2k f < e≤ 2k+1 f for some integerk≥ 0. Now(e′, f ′) =
(e−2k f , f ) by definition ofτ, so

√
2e′+2 f ′−e−

√
2 f = (

√
2−1)e− (2k

√
2+
√

2−2) f

≤ 2k+1(
√

2−1) f − (2k
√

2+
√

2−2) f

= (1−2k)(2−
√

2) f ≤ 0,

so againe′+
√

2 f ′ <
√

2
n
.

Theorem 9.2. Let a be an element of a free coid. Thenordpa≤ lga for every prime p.

Proof. Write n = ordpa. Thena = upn for someu, and lgp≥ 1 sincep 6= 1, so lga =
lgu+nlg p≥ nlg p≥ n.

Theorem 9.3. Let a,b be elements of a free coid. Let n be a nonnegative integer. Iflga+√
2lgb <

√
2

n+1
thenλ(a,b)≤ n.
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Proof. Definee= ordp a and f = ordp b wherep is a prime. By Theorem 9.2,e+
√

2 f ≤
lga+

√
2lgb <

√
2

n+1
. By Theorem 9.1,τn(e, f ) has second component 0.

Theorem 9.4. Let a,b be elements of a free coid. Ifλ(a,b) = 0 then b= 1.

Proof. If p is a prime then ordp b = 0 by definition ofλ. Henceb = 1.

10. Computing powers

Algorithm 10.1. Given(a,n), with n a nonnegative integer, to printa2n
:

1. If n = 0: Printa and stop.
2. Seta← a2. Setn← n−1. Return to Step 1.

Theorem 10.2. Algorithm 10.1 uses M-time at most(n+2(2n−1) lga)µ(2n lga).

Proof. For n = 0, Algorithm 10.1 uses noM-time, andn+2(2n−1) lga = 0.
Forn≥ 1, Algorithm 10.1 first computesa2, usingM-time at most(1+2lga)µ(2lga)≤

(1+2lga)µ(2n lga). It then computes(a2)2n−1
, usingM-time at most

(n−1+2(2n−1−1) lga2)µ(2n−1 lga2) = (n−1+2(2n−2) lga)µ(2n lga)

by induction. Finally 1+2lga+n−1+2(2n−2) lga = n+2(2n−1) lga.

11. Theppi, ppo, ppg, and pplefunctions

The defining properties of ppi(a,b), ppo(a,b), ppg(a,b), and pple(a,b) are that

ordp ppi(a,b) = (ordpa)[ordpb > 0]

ordp ppo(a,b) = (ordpa)[ordpb = 0]

ordp ppg(a,b) = (ordpa)[ordpa > ordpb]

ordp pple(a,b) = (ordpa)[ordpa≤ ordpb]

for all primesp. Existence of ppi,ppo,ppg,pple is proven constructively in Theorem 11.1
and Theorem 11.2. Uniqueness follows from Theorem 6.3.

The notation ppi(a,b) stands for “powers ina of primes insideb”; ppo(a,b) is “powers
in a of primes outsideb”; ppg(a,b) is “prime powers ina greater than those inb”; and
pple(a,b) is “prime powers ina less than or equal to those inb.” I originally used the
notation gcd{a,b∞} for ppi(a,b), but the shorter name ppi will be helpful later.

The ppg function is the subject of [30, Chapter 1, Section 19]; Stieltjes’salgorithm in
[30] takes quadratic time on inputs(2n+1,2n). The ppo function is the subject of [27];
Lüneburg’s algorithm in [27] takes quadratic time on inputs(2n,2).
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Theorem 11.1. Let a,c be elements of a free coid. Define x0 = gcd{a,c} and y0 = a/x0.
For n≥ 0define xn+1 = xn gcd{xn,yn} and yn+1 = yn/gcd{xn,yn}. (1) If n≥ 0and2n≥ lga
thengcd{xn,yn}= 1. (2) If gcd{xn,yn}= 1 then xn = ppi(a,c) and yn = ppo(a,c).

Proof. Write e= ordpa and f = ordp c wherep is a prime. Note thatxnyn = a by induction
onn, so ordp xn +ordpyn = e.

The point is that ordpxn = min{e,2n f} for all n≥ 0. Proof: ordp x0 = min{e, f}. For
n≥ 1, assume inductively that ordpxn−1 = min

{

e,2n−1 f
}

. If e< 2n−1 f then ordpxn−1 = e
so ordp yn−1 = 0 so ordp gcd{xn−1,yn−1} = min{e,0} = 0 so ordpxn = e= min{e,2n f}.
If e≥ 2n−1 f then ordp xn−1 = 2n−1 f so ordp yn−1 = e−2n−1 f so ordp gcd{xn−1,yn−1}=
min

{

2n−1 f ,e−2n−1 f
}

so ordp xn = 2n−1 f +min
{

e−2n−1 f ,2n−1 f
}

= min{e,2n f}.
(1) If f = 0 then ordp xn = 0= ordpxn+1. If f > 0 then 2n f ≥ 2n≥ lga≥ eby Theorem

9.2 so ordp xn = e= ordp xn+1. In both cases, ordpgcd{xn,yn}= ordp xn+1−ordpxn = 0.
(2) By hypothesisxn = xn+1, so min{e,2n f}= min

{

e,2n+1 f
}

. If f = 0 then ordp xn =

min{e,0} = 0. If f > 0 then 2n f < 2n+1 f so e≤ 2n f ; thus ordpxn = e. In both cases,
ordp xn = e[ f > 0] and ordp yn = e−ordpxn = e[ f = 0].

Theorem 11.2. Let a,b be elements of a free coid. Define y0 = gcd{a,b} and x0 = a/y0.
For n≥ 0define xn+1 = xn gcd{xn,yn} and yn+1 = yn/gcd{xn,yn}. (1) If n≥ 0and2n≥ lga
thengcd{xn,yn}= 1. (2) If gcd{xn,yn}= 1 then xn = ppg(a,b) and yn = pple(a,b).

Proof. Definec = x0. Thenx0 = gcd{a,c} andy0 = a/x0.
(1) If n≥ 0 and 2n≥ lga then gcd{xn,yn}= 1 by Theorem 11.1.
(2) If gcd{xn,yn} = 1 thenxn = ppi(a,c) andyn = ppo(a,c) by Theorem 11.1. Write

e = ordp a and f = ordpb wherep is a prime. Then ordp y0 = min{e, f}, so ordpc is 0
exactly whene≤ f . Thus ordp xn = e[ordp c> 0] = e[e> f ] and ordpyn = e[ordp c= 0] =
e[e≤ f ].

The following two algorithms includen solely for expository purposes.

Algorithm 11.3. Given(a,c), to print gcd{a,c}, ppi(a,c), and ppo(a,c):
1. Setx← gcd{a,c}. Printx. Sety← a/x. Setn← 0.
2. (Now (x,y) = (xn,yn) in Theorem 11.1.) Setg← gcd{x,y}. If g = 1: print x,

print y, and stop.
3. Setx← xgandy← y/g. Setn← n+1. Return to Step 2.

Algorithm 11.4. Given(a,b), to print gcd{a,b}, ppg(a,b), and pple(a,b):
1. Sety← gcd{a,b}. Printy. Setx← a/y. Setn← 0.
2. (Now (x,y) = (xn,yn) in Theorem 11.2.) Setg← gcd{x,y}. If g = 1: print x,

print y, and stop.
3. Setx← xgandy← y/g. Setn← n+1. Return to Step 2.

Theorem 11.5. Algorithm 11.3 computesgcd{a,c},ppi(a,c),ppo(a,c) in M-time at most
(3k+3+(2k+4) lga+ lgc)µ(lgac) if k ≥ 0 and2k ≥ lga.
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Proof. By Theorem 11.1, gcd{xk,yk}= 1, so the algorithm stops whenn= k if not earlier.
It thus performs Step 2 forn∈ {0,1, . . . ,k} at most, and Step 3 forn∈ {0,1, . . . ,k−1} at
most.

Step 1 usesM-time at most(1+ lgac)µ(lgac) to compute gcd{a,c} andM-time at most
(1+ lga)µ(lga) to computea/x.

Each iteration of Step 2 usesM-time at most(1+ lga)µ(lga) sincexy= xnyn = a. The
total is at most(k+1)(1+ lga)µ(lga).

Each iteration of Step 3 usesM-time at most(1+ lgxg)µ(lgxg) + (1+ lgy)µ(lgy) ≤
(2+ lgxn+1 + lgyn)µ(lga). The total forn∈ {0,1,2, . . . ,k−1} telescopes to

(2k+ lgxk +(k−1) lga+ lgy0)µ(lga)≤ (2k+(k+1) lga)µ(lga).

Add: (1+ lgac) + (1+ lga) + (k+ 1)(1+ lga) + (2k+ (k+ 1) lga) = 3k+ 3+ lgc+
(2k+4) lga.

Theorem 11.6. Algorithm 11.4 computesgcd{a,b},ppg(a,b),pple(a,b) in M-time at
most(3k+3+(2k+4) lga+ lgb)µ(lgab) if k ≥ 0 and2k ≥ lga.

Proof. Same analysis as in Theorem 11.5.

12. Thels function

Fix a,b in a free coid. Define lsn(a,b) as(gn,hn,cn), where

(g0,h0,c0) = (gcd,ppg,pple)(ppi(a,b),b),

(gn+1,hn+1,cn+1) = (gcd,ppg,pple)(hn,g2
n).

The name ls stands for “left shift.” This function separates the primes ina andb according
to the cases in the definition ofτ in Section 9.

Theorem 12.1.Let a,b be elements of a free coid. Define e= ordpa and f= ordp b where
p is a prime. Define(gn,hn,cn) = lsn(a,b). Then

(ordp gn,ordphn,ordp cn) = [0 < 2n−1 f < e]
(

min{e,2n f},e[e> 2n f ],e[e≤ 2n f ]
)

for n≥ 1.

Proof. Notice that ordp gn+1, ordp hn+1, and ordpcn+1 are all bounded by ordp hn; so if
ordp hm = 0 then ordp gn = ordphn = ordp cn = 0 for all n > m.

Case 1:f = 0. Then ordp ppi(a,b) = 0 so ordp gn = ordphn = ordp cn = 0 for all n.
Case 2:e≤ f . Then ordp ppi(a,b) = e, so ordp h0 = e[e> f ] = 0, so ordpgn = ordp hn =

ordp cn = 0 for all n≥ 1.
Case 3:e > f > 0. Then ordpppi(a,b) = e, so ordp h0 = e and ordpg0 = f . Thus

ordp g1 = min{e,2 f}; ordp h1 = e[e> 2 f ]; and ordp c1 = e[e≤ 2 f ].
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Assume inductively that ordp gn = [2n−1 f < e]min{e,2n f} and ordphn = e[e> 2n f ]. If
e≤ 2n f then ordp hn = 0 so ordp gn+1 = ordphn+1 = ordp cn+1 = 0 as desired. Ife> 2n f
then(ordp gn,ordphn) = (2n f ,e) so ordp gn+1 = min

{

e,2n+1 f
}

as desired; ordphn+1 =

e[e> 2n+1 f ] as desired; and ordpcn+1 = e[e≤ 2n+1 f ] as desired.

Theorem 12.2. Let a,b be elements of a free coid. Define(gn,hn,cn) = lsn(a,b). If m≥ 1
and hm = 1 then a= c0c1 · · ·cmppo(a,b). Furthermore, any two members of the sequence
c0,c1, . . . ,cm,ppo(a,b) are coprime.

Proof. Write e= ordp a and f = ordp b wherep is a prime. I will show that the sum of
the numbers ordpc0,ordp c1, . . . ,ordp cm,ordp ppo(a,b) is e, and that at most one of the
numbers is nonzero.

Case 1: f = 0. Then ordp ppi(a,b) = 0 so ordp c0 = 0; ordpcn = 0 for n ≥ 1; and
ordp ppo(a,b) = e.

Case 2:e≤ f . Then ordpppo(a,b) = 0; ordpc0 = e[e≤ f ] = e; and ordpcn = 0 for n≥ 1.
Case 3:e > f > 0. Then ordp c0 = 0; ordpcn = e[2n−1 f < e≤ 2n f ] for n ≥ 1; and

ordp ppo(a,b) = 0. There is exactly one value ofk≥ 1 for which 2k−1 f < e≤ 2k f ; and
ordp hm = 0 soe≤ 2m f sok≤m.

Theorem 12.3. Let a,b be elements of a free coid. Define(gn,hn,cn) = lsn(a,b). Define

dn = gcd{cn,b} for n≥ 1. Then d2
n−1

n divides cn; λ(cn/d2n−1

n ,dn)≤ λ(a,b)−1 if b 6= 1; and
c0d1d2 · · ·dn divides b. Furthermore, if m≥ 1 and hm = 1, then b/d1d2 · · ·dm is coprime to
a/c0, andλ(b/c0d1d2 · · ·dm,c0)≤ λ(a,b)−1 if b 6= 1.

Proof. Write e= ordpa and f = ordp b wherep is a prime.
By Theorem 12.1, ordp cn = e[2n−1 f < e≤ 2n f ], so ordp dn = f [2n−1 f < e≤ 2n f ], so

2n−1ordp dn≤ e[2n−1 f < e≤ 2n f ] = ordpcn. Thusd2n−1

n dividescn.
Next, ordpc0d1d2 · · ·dn = e[e≤ f ] + f [ f < e≤ 2n f ] ≤ f [e≤ f ] + f [ f < e≤ 2n f ] =

f [e≤ 2n f ]≤ f . Thusc0d1d2 · · ·dn dividesb.
If hm = 1 thenf = 0 ore≤ 2m f , so ordp d1d2 · · ·dm = f [ f < e], so ordp(b/d1d2 · · ·dm) =

f [e≤ f ]; but ordp(a/c0) = e[e> f ]. Thusb/d1d2 · · ·dm anda/c0 are coprime.
Assume from now on thatb 6= 1. Writek= λ(a,b). Thenτk(e, f ) = (. . . ,0) by definition

of λ, andk≥ 1 by Theorem 9.4.
If 2n−1 f < e≤ 2n f then(ordp(cn/d2n−1

n ),ordpdn) = (e−2n−1 f , f ) = τ(e, f ) so

τk−1(ordp(cn/d2n−1

n ),ordp dn) = τk(e, f ) = (. . . ,0).

Otherwise(ordp(cn/d2n−1

n ),ordp dn) = (0,0) soτk−1(ordp(cn/d2n−1

n ),ordp dn) = (0,0).
Finally, if hm = 1 ande≤ f then(ordp(b/c0d1d2 · · ·dm),ordpc0) = ( f −e,e) = τ(e, f );

if hm = 1 ande> f then(ordp(b/c0d1d2 · · ·dm),ordpc0) = (0,0); in either case, as above,
τk−1(ordp(b/c0d1d2 · · ·dm),ordp c0) = (. . . ,0).

Theorem 12.4. Let a,b be elements of a free coid. Define(gn,hn,cn) = lsn(a,b). If m≥ 1
and2m−1≥ lga then hm = 1.
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Proof. Write e = ordp a and f = ordpb where p is a prime. Thene≤ lga ≤ 2m−1 by
Theorem 9.2. Iff = 0 then ordp hm = 0; if f ≥ 1 thene≤ 2m−1 f so ordp hm = 0.

13. Computing a coprime base for a two-element set

This section introduces a fast algorithm to compute cb{a,b}.

Theorem 13.1. Let a,b be elements of a free coid. Define(gn,hn,cn) = lsn(a,b). Define
dn = gcd{cn,b} for n≥ 1. Assume that hm = 1 with m≥ 1. Define Pn = cb{cn/d2n−1

n ,dn}
for 1≤ n≤m. Define Q= cb{b/c0d1d2 · · ·dm,c0}. Define R= cb{ppo(a,b)}. Then P=
S

Pn is a disjoint union; P∪Q∪R is a disjoint union; and P∪Q∪R= cb{a,b}.

Proof. By constructiondn dividescn, so each element ofPn dividescn. Hence, by Theorem
12.2, elements ofPn are coprime to elements ofPk for k 6= n. Natural coprime bases do not
contain 1, soP1,P2, . . . ,Pm are disjoint, and their unionP is a coprime set.

Next, by Theorem 12.2 again,c1,c2, . . . ,cm are coprime to ppo(a,b), so P is disjoint
from R, andP∪R is a coprime set.

Next, each element ofQ dividesb/d1d2 · · ·dm, hence is coprime toa/c0 by Theorem
12.3, hence is coprime toc1c2 · · ·cmppo(a,b) by Theorem 12.2. ThusQ is disjoint from
P∪R, andP∪Q∪R is a coprime set.

Next, the coid generated byP∪Q∪R containsb/c0d1d2 · · ·dm (via Q), c0 (via Q), and
eachdn (via Pn), so it containsb. It also containscn/d2n−1

n and thuscn (via Pn), plus
ppo(a,b) (via R), so it containsc0c1 · · ·cmppo(a,b) = a by Theorem 12.2.

Finally, naturalness follows from Theorem 7.3.

Algorithm 13.2. Given(a,b), to print cb{a,b}:
1. If b = 1: Printa if a 6= 1. Stop.
2. Compute(a, r)← (ppi,ppo)(a,b) by Algorithm 11.3.
3. Printr if r 6= 1.
4. Compute(g,h,c)← (gcd,ppg,pple)(a,b) by Algorithm 11.4.
5. Setc0← c. Setx← c0.
6. Setn← 1.
7. Compute(g,h,c)← (gcd,ppg,pple)(h,g2) by Algorithm 11.4.
8. Setd← gcd{c,b}. (Now (g,h,c,d) = (gn,hn,cn,dn).)
9. Setx← xd. (Now x = c0d1d2 · · ·dn.)

10. Computey← d2n−1
by Algorithm 10.1.

11. Recursively apply Algorithm 13.2 to(c/y,d).
12. If h 6= 1: Setn← n+1. Return to Step 7.
13. Recursively apply Algorithm 13.2 to(b/x,c0).

Beware that, even though cb{a,b}= cb{b,a}, theM-time used by Algorithm 13.2 may
depend on the order of inputs. The order of arguments in Algorithm 13.2’s recursive calls
is important for the time analysis below.
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Theorem 13.3. Algorithm 13.2 computescb{a,b} in M-time at most

λ(a,b)(4m2 +12m+4)(lgab)µ(3lgab)

if m≥ 1 and2m−1≥ lgab.

Proof. If b = 1 then Algorithm 13.2 stops immediately in Step 1, using noM-time; and
λ(a,b)(4m2 +12m+4)(lgab)µ(3lgab)≥ 0. So assume thatb 6= 1.

The point is thatλ(a,b) decreases at each level of recursion:λ(c/y,d)≤ λ(a,b)−1 in
Step 11, andλ(b/x,c0) ≤ λ(a,b)−1 in Step 13, by Theorem 12.3. So induct onλ(a,b).
The product of all the inputs in Steps 11 and 13 isb∏n≥1(cn/d2n−1

n ), which dividesab
by Theorem 12.2. Hence the inputsa′,b′ to the recursive calls satisfy∑ lga′b′ ≤ lgab; in
particular, 2m−1 ≥ lga′b′. By induction, the recursive call fora′,b′ usesM-time at most
(λ(a,b)−1)(4m2+12m+4)(lga′b′)µ(3lga′b′); so all the recursive calls together useM-
time at most(λ(a,b)−1)(4m2 +12m+4)(lgab)µ(3lgab).

It therefore suffices to prove that the non-recursive work in Algorithm 13.2 takesM-time
at most(4m2 +12m+4)(lgab)µ(3lgab).

By Theorem 11.5, Step 2 usesM-time at most(3m+(2m+2) lga+ lgb)µ(lgab); this is
at most((2m+2) lga+(3m+1) lgb)µ(lgab) since 1≤ lgb. Similarly, by Theorem 11.6,
Step 4 usesM-time at most((2m+2) lga+(3m+1) lgb)µ(lgab).

Steps 7 through 12 are performed forn∈ {1,2, . . . ,m} at most, sincehm = 1 by Theorem
12.4.

The squaring ofg in Step 7 usesM-time at most(1+ 2lgg)µ(2lgg) per iteration. The
total across iterations is at most(2mlga+mlgb)µ(2lga) sinceg dividesa.

By Theorem 11.6, the invocation of Algorithm 11.3 in Step 7 usesM-time at most
(3m+(2m+2) lgh+ lgg2)µ(lghg2) per iteration, since 2m−1≥ lga≥ lgh. The total across
iterations is at most(m(2m+4) lga+3m2 lgb)µ(3lga) sinceg andh dividea.

Step 8 usesM-time at most(1+ lgab)µ(lgab) per iteration sincec dividesa. The total
across iterations is at most(mlga+2mlgb)µ(lgab).

Step 9 usesM-time at most(1+ lgb)µ(lgb) per iteration since the final value ofx divides
b. The total across iterations is at most(2mlgb)µ(lgb).

Step 10 usesM-time at most(n− 1+ 2(2n−1− 1) lgd)µ(2n−1 lgd) by Theorem 10.2;
this is at most(2lga+mlgb)µ(lga) since 2n−1 lgd≤ lga. The total across iterations is at
most(2mlga+m2 lgb)µ(lga).

The division in Step 11 usesM-time at most(1+ lga)µ(lga) per iteration sincec divides
a. The total across iterations is at most(mlga+mlgb)µ(lga).

The division in Step 13 usesM-time at most(1+ lgb)µ(lgb)≤ (2lgb)µ(lgb).
The grand total is at mostµ(3lgab) times(2m2+14m+4) lga+(4m2+12m+4) lgb≤

(4m2 +12m+4) lga+(4m2 +12m+4) lgb = (4m2 +12m+4) lgabas claimed.

Theorem 13.4. Algorithm 13.2 computescb{a,b} in M-time at most8m(m2 + 3m+ 1) ·
(lgab)µ(3lgab) if m≥ 1 and2m−1≥ lgab.

Proof. λ(a,b)≤ 2m by Theorem 9.3.
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PART III. FINITE SETS

14. Computingprod

The following algorithm is the standard way to compute prodSin essentially linear time.
See [7, Section 12] for credits.

Algorithm 14.1. Given a finite setS, to print prodS:
1. If S= {}: Print 1. Stop.
2. If #S= 1: Finda∈ S. Printa. Stop.
3. SelectT ⊆ Swith #T = b#S/2c.
4. ComputeX← prodT by Algorithm 14.1 recursively.
5. ComputeY← prod(S−T) by Algorithm 14.1 recursively.
6. PrintXY.

Theorem 14.2.Algorithm 14.1 computesprodS in M-time at most(#S−1+mlgprodS) ·
µ(lgprodS) if 2m≥ #S≥ 1.

Proof. Induct onm.
Case 1: #S= 1. Algorithm 14.1 uses noM-time; and #S−1+mlgprodS≥ 0.
Case 2: #S≥ 2. Thenm≥ 1. Now #T = b#S/2c, so #T ≤ 2m−1 and #(S−T) ≤ 2m−1.

In Steps 4 and 5, by induction, Algorithm 14.1 usesM-time at most

(#T−1+(m−1) lgprodT)µ(lgprodT)
+(#(S−T)−1+(m−1) lgprod(S−T))µ(lgprod(S−T))

≤ (#S−2+(m−1) lgprodS)µ(lgprodS)

since lgprodT + lgprod(S− T) = lgprodS. In Step 6, Algorithm 14.1 usesM-time at
most(1+ lgprodS)µ(lgprodS). Add: #S−2+(m−1) lgprodS+1+ lgprodS= #S−1+
mlgprodS.

15. Thesplit function

Define split(a,P) = {(p,ppi(a, p)) : p∈ P} whenP is coprime. This section presents a
fast algorithm to compute split(a,P). See Sections 16 and 21 for applications.

Theorem 15.1. Let b be an element of a free coid H. Let P be a finite coprime subset of
H. Then b= ppo(b,prodP)∏p∈P ppi(b, p).

Proof. Write x = prodP. I will show that ordq b = ordq ppo(b,x)+∑p∈P ordqppi(b, p) for
every primeq: one of the terms on the right side is ordq b while the others are all 0.

Case 1:q divides somep ∈ P. Then ordq x > 0 so ordqppo(b,x) = 0, and ordq p > 0
so ordq ppi(b, p) = ordq b. If p′ ∈ P with p′ 6= p thenp′ is coprime top by hypothesis, so
ordq p′ = 0, so ordq ppi(b, p′) = 0.

19



Case 2:q does not divide anyp∈P. Then ordq p= 0 so ordq ppi(b, p) = 0. Also ordq x=
0, so ordq ppo(b,x) = ordqb.

Theorem 15.2. Let a be an element of a free coid H. Let P be a finite coprime subset of
H. Define b= ppi(a,prodP). Thensplit(a,P) = split(b,P), and split(a,P) = {(p,b)} if
P = {p}.

Proof. Fix p∈P. If q is a prime then ordq b= (ordqa)[ordqprodP> 0] so ordqppi(b, p) =
(ordq a)[ordq prodP > 0][ordq p > 0] = (ordqa)[ordq p > 0] = ordqppi(a, p). Therefore
ppi(a, p) = ppi(b, p).

If P = {p} then prodP = p sob = ppi(a, p) so split(a,P) = {(p,b)}.

Algorithm 15.3. Given(a,P) with P coprime, to print split(a,P):
1. If P = {}: Stop.
2. Computeb← ppi(a,prodP) by Algorithm 14.1 and Algorithm 11.3.
3. If #P = 1: find p∈ P, print (p,b), and stop.
4. SelectQ⊆ P with #Q = b#P/2c.
5. Print split(b,Q) by Algorithm 15.3 recursively.
6. Print split(b,P−Q) by Algorithm 15.3 recursively.

Theorem 15.4. Write x= prodP and b= ppi(a,x). Algorithm 15.3 computessplit(a,P)

in M-time at most((2k+4)(lga+2mlgb)+ (m+1)(m+2)
2 lgx+(6k+m+5)#P−3k−2) ·

µ(lgax) if k ≥ 0, 2k ≥ lga, and2m≥ #P≥ 1.

Proof. Induct onm.
Step 2 usesM-time at most(#P− 1+ mlgx)µ(lgx) to computex by Theorem 14.2,

andM-time at most(3k+3+(2k+4) lga+ lgx)µ(lgax) to computeb by Theorem 11.5. I

claim that the rest of Algorithm 15.3 usesM-time at most(2k+4)(2mlgb)+ m(m+1)
2 lgx+

(6k+m+4)#P−6k−4 timesµ(lgax).
Case 1: #P = 1. Then Algorithm 15.3 stops in Step 3, so there is no additionalM-time;

and(2k+4)(2mlgb)+ m(m+1)
2 lgx+(6k+m+4)#P−6k−4≥ 0 sincem≥ 0.

Case 2: #P ≥ 2. Write y = prodQ and z = prod(P−Q). Theny is coprime toz, so
b = ppo(b,yz)ppi(b,y)ppi(b,z) by Theorem 15.1; hence lgppi(b,y)+ lgppi(b,z) ≤ lgb.
By induction, Step 5 usesM-time at most

(2k+4)(lgb+2(m−1) lgppi(b,y))+
m(m+1)

2
lgy+(6k+m+4)#Q−3k−2

timesµ(lgby)≤ µ(lgax), and Step 6 usesM-time at most

(2k+4)(lgb+2(m−1) lgppi(b,z))+
m(m+1)

2
lgz+(6k+m+4)#(P−Q)−3k−2

timesµ(lgbz)≤ µ(lgax), so Steps 5 and 6 together useM-time at most

(2k+4)(2lgb+2(m−1) lgb)+
m(m+1)

2
lgx+(6k+m+4)#P−6k−4
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timesµ(lgax) as claimed.

16. Extending a coprime base

Algorithm 16.2 finds cb(P∪{b}) whenP is coprime.
Bach, Driscoll, and Shallit considered this problem in [2, page 211]. They used elements

of P = {p0, p1, . . .} one at a time: factorb and p0 into coprimes, all of which dividep0

except for a divisorb1 of b; then factorb1 and p1 into coprimes, all of which dividep1

except for a divisorb2 of b1; and so on. This strategy inherently takes quadratic time.
Algorithm 16.2 instead uses Algorithm 15.3 to quickly factorb into one part for each

element ofP and one remaining part; see Theorem 15.1. Algorithm 16.2 then handles each
part independently.

Theorem 16.1.Let b be an element of a free coid H. Let P be a finite coprime subset of H.
Define x= prodP. For each p∈P define Qp = cb{p,ppi(b, p)}. Define R= cb{ppo(b,x)}.
Then Q=

S

Qp is a disjoint union; Q∪R is a disjoint union; and Q∪R= cb(P∪{b}).

Proof. If p and p′ are distinct elements ofP then p is coprime top′ so pppi(b, p) is
coprime top′ppi(b, p′). ThusQp andQp′ are disjoint, andQ is a coprime set.

If p∈ P thenp dividesx so bothp and ppi(b, p) are coprime to ppo(b,x). ThusQ and
R are disjoint, andQ∪R is a coprime set.

The coid generated byQ∪Rcontains eachp∈P (via Qp). It also contains each ppi(b, p)
and ppo(b,x), henceb by Theorem 15.1.

Naturalness follows from Theorem 7.3.

Algorithm 16.2. Given(P,b) with P coprime, to print cb(P∪{b}):
1. If P = {}: Print b if b 6= 1. Stop.
2. Computex← prodP by Algorithm 14.1.
3. Compute(a, r)← (ppi,ppo)(b,x) by Algorithm 11.3.
4. Printr if r 6= 1.
5. ComputeS← split(a,P) by Algorithm 15.3.
6. For each(p,c) ∈ S: Apply Algorithm 13.2 to(p,c).

Theorem 16.3.Write x= prodP. Algorithm 16.2 computescb(P∪{b}) in M-time at most
(8m3 +28m2 +18m+4)(lgbx)µ(3lgbx) if 1 /∈ P, m≥ 1, and2m−1≥ lgbx.

Proof. If P= {} then Algorithm 16.2 uses noM-time; and(8m3+28m2+18m+4) lgbx≥
0. So assume that #P≥ 1. Note that #P≤ lgx≤ 2m−1 since 1/∈ P.

By Theorem 14.2, Step 2 takesM-time at most(#P−1+mlgx)µ(lgx).
By Theorem 11.5, Step 3 takesM-time at most(3m+(2m+2) lgb+ lgx)µ(lgbx).
By Theorem 15.4, Step 5 takesM-time at mostµ(lgbx) times(2m+ 2)(2m+ 1) lgb+

1
2(m+1)(m+2) lgx+(7m−1)#P−3m+1.

By Theorem 13.4, the application of Algorithm 13.2 to(p,c) in Step 6 takesM-time at
most 8m(m2 +3m+1)(lgcp)µ(3lgcp). The product ofc’s dividesb by Theorem 15.1, so
the sum of lgcp is at most lgbx.
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Add:

#P−1+mlgx+3m+(2m+2) lgb+ lgx
+(2m+2)(2m+1) lgb+ 1

2(m+1)(m+2) lgx+(7m−1)#P−3m+1
+8m(m2 +3m+1)(lgbx)

= (8m3 +28m2 +16m+4) lgb+(8m3 +24.5m2 +10.5m+2) lgx+7m#P
≤ (8m3 +28m2 +16m+4) lgb+(8m3 +24.5m2 +17.5m+2) lgx
≤ (8m3 +28m2 +18m+4) lgbx.

17. Merging coprime bases

Algorithm 17.3 finds cb(P∪Q) if P is coprime andQ is coprime.
This algorithm combines an old idea with a new idea. The old idea is to hitP with

one element ofQ at a time. For example, cb(P∪ {q0,q1,q2,q3}) can be computed as
cb(cb(cb(cb(P∪{q0})∪{q1})∪{q2})∪{q3}) with four applications of Algorithm 16.2.
This is how Bach, Driscoll, and Shallit compute cbQ for arbitrary setsQ in [2, page 211];
this idea does not needQ to be a coprime set.

The problem with the old idea is that it inherently takes quadratic time if #Q is large.
The new idea is to first replaceQ with a new set that has far fewer elements but hasQ as
its natural coprime base. See Theorem 17.1. The new set takes morespace thanQ, but the
expansion is only logarithmic.

Define biti k, wherei andk are nonnegative integers, as theith bit ink’s binary expansion.
In other words, writek as∑i≥0 2i biti k with biti k∈ {0,1}.

Theorem 17.1. Let q0,q1, . . . ,qn−1 be distinct elements of a free coid, with qj coprime to
qk for j 6= k. Let b≥ 1 be an integer with2b≥ n. Define x(e, i) = prod{qk : biti k = e}. If a
coprime set P is a base for{x(0,0),x(0,1), . . . ,x(0,b−1),x(1,0),x(1,1), . . . ,x(1,b−1)}
then it is a base for{q0, . . . ,qn−1}.

Proof. If j,k∈ {0,1, . . . ,n−1} satisfy biti k = biti j for all i ∈ {0,1, . . . ,b−1} then j = k.
Thus

gcd{x(biti j , i) : 0≤ i < b}
= gcd

{

∏k q[biti k=biti j]
k : 0≤ i < b

}

by definition ofx

= ∏k qmin{[biti k=biti j]:0≤i<b}
k by Theorem 6.6

= ∏k q[k= j]
k = q j .

HenceP is a base forq j by Theorem 7.2.

Theorem 17.2.Let H be a free coid. Let P be a finite coprime subset of H. Let q0, . . . ,qn−1

be distinct elements of H, with qj coprime to qk for j 6= k. Let b≥ 1 be an integer with

22



2b≥ n. Define x(e, i) = prod{qk : biti k = e}. Define

S0 = P

S1 = cb
(

cb
(

S0∪{x(0,0)}
)

∪{x(1,0)}
)

S2 = cb
(

cb
(

S1∪{x(0,1)}
)

∪{x(1,1)}
)

S3 = cb
(

cb
(

S2∪{x(0,2)}
)

∪{x(1,2)}
)

...

Sb = cb
(

cb
(

Sb−1∪{x(0,b−1)}
)

∪{x(1,b−1)}
)

.

Then Sb = cb(P∪{q0,q1, . . . ,qn−1}).

Proof. Sb is a base forP∪{x(0,0),x(0,1), . . . ,x(0,b−1),x(1,0),x(1,1), . . . ,x(1,b−1)}
and is coprime. By Theorem 17.1,Sb is a base forP∪{q0, . . . ,qn−1}. Naturalness follows
from Theorem 7.3.

Algorithm 17.3. Given(P,Q), with P coprime andQ coprime, to print cb(P∪Q):
1. Setn = #Q. Label the elements ofQ asq0,q1, . . . ,qn−1.
2. Find the smallestb≥ 1 with 2b≥ n. SetS← P. Seti← 0.
3. (NowS= Si .) If i = b: PrintS. Stop.
4. Computex← prod{qk : biti k = 0} by Algorithm 14.1.
5. ComputeT← cb(S∪{x}) by Algorithm 16.2.
6. Computex← prod{qk : biti k = 1} by Algorithm 14.1.
7. ComputeS← cb(T ∪{x}) by Algorithm 16.2.
8. Seti← i +1. Return to Step 3.

Theorem 17.4. Write z= (prodP)(prodQ)2. Algorithm 17.3 computescb(P∪Q) in M-
time at most2m(8m3 +28m2 +19m+4)(lgz)µ(3lgz) if 1 /∈ P, m≥ 1, and2m−1≥ lgz.

Proof. Write n = #Q. Thenn− 1≤ lgprodQ≤ lgz≤ 2m−1, so n≤ 1+ 2m−1 ≤ 2m, so
b≤m in Step 2. Thus there are at mostm iterations of Steps 4 through 7.

By Theorem 7.5, prodSand prodT divide(prodP)(prodQ); also,x divides prodQ. Thus
Step 5 and Step 7 each useM-time at most(8m3 + 28m2 + 18m+ 4)(lgz)µ(3lgz) per
iteration by Theorem 16.3. Step 4 and Step 6 each useM-time at mostm(lgz)µ(lgz) by
Theorem 14.2. The total is at most 2(8m3 + 28m2 + 19m+ 4)(lgz)µ(3lgz) per iteration.

18. Computing a coprime base for a finite set

Algorithm 18.1 computes the natural coprime base for any finite subset of a free coid. It
uses Algorithm 17.3 to merge coprime bases for halves of the set.

Algorithm 18.1. GivenS, to print cbS:
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1. If S= {}: Stop.
2. If #S= 1: Finda∈ S. Printa if a 6= 1. Stop.
3. SelectT ⊆ Swith #T = b#S/2c.
4. ComputeP← cbT by Algorithm 18.1 recursively.
5. ComputeQ← cb(S−T) by Algorithm 18.1 recursively.
6. Print cb(P∪Q) by Algorithm 17.3.

Theorem 18.2. Write x= prodS. Algorithm 18.1 computescbS in M-time at most

4mk(8m3 +28m2 +19m+4)(lgx)µ(6lgx)

if m≥ 1, 2m−1≥ 2lgx, and2k ≥ #S≥ 1.

Proof. If #S= 1 then Algorithm 18.1 uses noM-time. Otherwise, by induction onk, Step
4 usesM-time at most 4m(k−1)(8m3 + 28m2 + 19m+ 4)(lgprodT)µ(6lgx), and Step 5
usesM-time at most 4m(k−1)(8m3 + 28m2 + 19m+ 4)(lgprod(S−T))µ(6lgx). Step 6
usesM-time at most 2m(8m3 + 28m2 + 19m+ 4)(2lgx)µ(6lgx) by Theorem 17.4. Add.

PART IV. FACTORIZATION

19. Thereducefunction

Let p and a be elements of a free coid, withp 6= 1. Define reduce(p,a) = (i,a/pi),
wherei is the largest integer such thatpi dividesa.

Algorithm 19.2 computes reduce(p,a). It is a simplified version of one of the algorithms
that I outlined in [6, Section 22].

Theorem 19.1. Let p,a be elements of a free coid, with p6= 1. Assume that p divides a.
Define( j,b) = reduce(p2,a/p). If p divides b thenreduce(p,a)= (2 j +2,b/p). Otherwise
reduce(p,a) = (2 j +1,b).

Proof. a/p = (p2) jb, with p2 not dividing b, by definition of( j,b). If p dividesb then
a = p2 j+2(b/p), with p not dividingb/p, so reduce(p,a) = (2 j +2,b/p). Otherwisea =
p2 j+1b, with p not dividingb, so reduce(p,a) = (2 j +1,b).

Algorithm 19.2. Given(p,a) with p 6= 1, to print reduce(p,a):
1. If p does not dividea: Print (0,a) and stop.
2. Compute( j,b)← reduce(p2,a/p) by Algorithm 19.2 recursively.
3. If p dividesb: Print (2 j +2,b/p) and stop.
4. Print(2 j +1,b).

Theorem 19.3. Write (i,c) = reduce(p,a). Algorithm 19.2 computes(i,c) in M-time at
most(4k−3)(1+ lgap)µ(lgap) if 2k > i +1.
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Proof. Induct onk. Note thatk≥ 1 since 2k ≥ i +2≥ 2.
Case 1:i = 0. Algorithm 19.2 usesM-time at most(1+ lgap)µ(lgap) in Step 1; it then

stops, sincep does not dividea. Also 4k−3≥ 1.
Case 2:i > 0. Then j ≤ (i−1)/2 in Step 2 soj +1≤ (i +1)/2 < 2k−1. By induction,

the recursive call in Algorithm 19.2 usesM-time at most(4k−7)(1+ lgap)µ(lgap). The
algorithm also usesM-time at most(1+ lgap)µ(lgap) for the divisibility test in Step 1,
(1+ lg p2)µ(lg p2) for the computation ofp2 in Step 2,(1+ lga)µ(lga) for the computation
of a/p in Step 2,(1+ lgbp)µ(lgbp) for the divisibility test in Step 3, and(1+ lgb)µ(lgb)
for the division in Step 3, if that division happens. The total is at mostµ(lgap) times
(4k− 3)(1+ lgap) + 2lgb− 2lga+ 1; and 2lgb− 2lga+ 1≤ 2lg(a/p)− 2lga+ 1 =
1−2lgp < 0 since lgp≥ 1.

20. Factoring over a coprime base

Let a be an element of a free coid, and letP be a finite coprime set with 1/∈P. Algorithm
20.1 factorsa as a product of powers of elements ofP if possible; otherwise it proclaims
failure. Algorithm 20.1 prints the factorization ofa as a list of pairs(p,n) meaningpn

wherep∈ P.
The conventional approach to this problem, as in [2, Theorem 7], is to divide a by one

element ofP at a time. This approach inherently takes quadratic time. What I do instead
is separatea into two pieces for two halves ofP, and then handle each piece recursively,
as in Algorithm 15.3.

Algorithm 20.1. Given (a,P), with P coprime and 1/∈ P, to print the factorization ofa
overP:

1. If P = {}: Proclaim failure ifa 6= 1. Stop.
2. If #P = 1: Find p ∈ P. Compute(n,c)← reduce(p,a) by Algorithm 19.2. If

c 6= 1, proclaim failure and stop. Otherwise print(p,n) and stop.
3. SelectQ⊆ P with #Q = b#P/2c.
4. Computey← prodQ by Algorithm 14.1.
5. Compute(b,c)← (ppi,ppo)(a,y) by Algorithm 11.3.
6. Apply Algorithm 20.1 to(b,Q) recursively. If Algorithm 20.1 fails, proclaim

failure and stop.
7. Apply Algorithm 20.1 to(c,P−Q) recursively. If Algorithm 20.1 fails, proclaim

failure and stop.

Theorem 20.2. Let H be a free coid. Let P be a finite coprime subset of H with1 /∈ P. Let
a be an element of H. If P is a base for{a} then Algorithm 20.1 prints the factorization of
a over P. Otherwise Algorithm 20.1 proclaims failure.

Proof. Induct on #P.
Case 1:P = {}. Algorithm 20.1 correctly proclaims failure fora 6= 1, and correctly

prints nothing fora = 1.
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Case 2:P = {p}. If Algorithm 20.1 does not proclaim failure, then it prints(p,n); and
a/pn = c = 1 soa = pn. Conversely, ifa = pn for somen, then Algorithm 19.2 returns
(n,1), so Algorithm 20.1 does not proclaim failure.

Case 3: #P≥ 2. SayP is a base for{a}. P is also a base for{y}, so P is a base for
{b,c} by Theorem 7.2. Ifp /∈ Q then p is coprime toy so p is coprime tob; thusQ is a
base for{b}. Similarly P−Q is a base for{c}. By induction, Algorithm 20.1 prints the
factorizations ofb andc into elements ofQ andP−Q respectively, which together form a
factorization ofa sincebc= a; and Algorithm 20.1 does not proclaim failure.

Conversely, if Algorithm 20.1 does not proclaim failure, thenP is a base for{b,c} by
induction, hence for{a}.

Theorem 20.3.Write x= prodP. Algorithm 20.1 finishes in M-time at most µ(lgax) times

(4k−3+m(2k+4)) lga+

(

4k−3+
m(m+1)

2

)

lgx+
(

7k−1+
m
2

)

#P−3k−2

if 2m≥ #P≥ 1 and2k > lga+1.

Proof. Induct onm.
Case 1:P = {p}. The claimed bound is at least

((4k−3) lga+(4k−3) lgx+7k−1−3k−2)µ(lgax) = (4k−3)(1+ lgap)µ(lgap)

sincem≥ 0. Step 2 usesM-time at most(4k−3)(1+ lgap)µ(lgap) by Theorem 19.3.
Case 2: #P≥ 2. Thenm≥ 1, 2m−1 ≥ #Q≥ 1, and 2m−1 ≥ #(P−Q) ≥ 1. Definey =

prodQ andz= prod(P−Q). Also writeT = 4k−3+(m−1)(2k+4) andU = 4k−3+
(m−1)m/2.

By Theorem 14.2, Step 4 usesM-time at most

(#Q−1+(m−1) lgy)µ(lgy)≤
(

1
2#P−1+(m−1) lgx

)

µ(lgx)

since #Q≤ 1
2#P and lgy≤ lgx.

By Theorem 11.5, Step 5 usesM-time at most(3k+3+(2k+4) lga+ lgx)µ(lgax).
Step 6 usesM-time at most

(

T lgb+U lgy+
(

7k−1+ 1
2(m−1)

)

#Q−3k−2
)

µ(lgby),
and Step 7 at most

(

T lgc+U lgz+
(

7k− 1+ 1
2(m− 1)

)

#(P−Q)− 3k− 2
)

µ(lgcz), by
induction.

The total is at mostµ(lgax) times

(

1
2#P−1+(m−1) lgx

)

+(3k+3+(2k+4) lga+ lgx)
+

(

T lga+U lgx+
(

7k−1+ 1
2(m−1)

)

#P−6k−4
)

,

which equals the claimed bound.
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21. Factoring a set over a coprime base

Let Sbe a finite set, and letP be a finite coprime set with 1/∈ P. Algorithm 21.2 factors
each elementa∈ SoverP if P is a base forS; otherwise it proclaims failure.

The conventional approach to this problem, as in [2, Theorem 7], is to separately factor
each element ofS. This approach inherently takes quadratic time. What I do instead is
factor one number, prodS, to identify the relevant elements ofP; then I splitS into two
parts to handle separately.

Theorem 21.1. Let S be a finite subset of a free coid. Let P be a finite coprime base for S
with 1 /∈ P. Define x= prodP, y= prodS, z= ppi(x,y), and Q= {p∈ P : ppi(z, p) = p}.
Then Q is a base for S, and each element of Q divides y.

Proof. Take anyp∈ P that divides some element ofS. If q is a prime dividingp thenq
dividesy so ordq z= ordq x so ordqppi(z, p) = ordq x = ordq p; if q is a prime not dividing
p then ordq ppi(z, p) = 0 = ordq p. Thus ppi(z, p) = p; i.e., p∈Q. ThusQ is a base forS.

Now write y as a productq1q2 · · ·qn whereq1,q2, . . . ,qn ∈ Q. If p∈ P does not divide
y, then p /∈ {q1,q2, . . . ,qn}, so p is coprime toq1,q2, . . . ,qn, hence toy. Find a primeq
dividing p; then ordq y = 0, so ordq z= 0, so ordq ppi(z, p) = 0 6= ordq p, so p /∈ Q. Thus
each element ofQ dividesy.

Algorithm 21.2. Given(S,P), with P coprime and 1/∈P, to print the factorization of each
element ofSoverP:

1. If S= {}: Stop.
2. Computex← prodP by Algorithm 14.1.
3. Computey← prodSby Algorithm 14.1.
4. Computez← ppi(x,y) by Algorithm 11.3.
5. ComputeD← split(z,P) by Algorithm 15.3.
6. ComputeQ← {p∈ P : (p, p) ∈ D}. (Now Q contains only the elements ofP

that are relevant toS, by Theorem 21.1.)
7. If #S= 1: Apply Algorithm 20.1 to(y,Q), proclaiming failure if Algorithm 20.1

fails. Stop.
8. SelectT ⊆ Swith #T = b#S/2c.
9. Apply Algorithm 21.2 to(T,Q) recursively.

10. Apply Algorithm 21.2 to(S−T,Q) recursively.

Theorem 21.3. Write x= prodP and y= prodS. Assume that P is a coprime base for S.
Then Algorithm 21.2 finishes in M-time at most µ(lgx2y) times

3m+3+(6k+6)(#S−1)+(4.5m2+21.5m+15) lgx
+((9k2 +44k+32)n+2.5k2 +21k−5) lgy

if 2n≥ #S≥ 1, 2k > lgy+1, 2m≥ lgx, and m≥ 0.
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Proof. Induct onn. Note that #S− 1≤ lgy. Similarly #P≤ lgx since 1/∈ P, and #Q≤
lgprodQ≤ lgy by Theorem 21.1. Writez= ppi(x,y).

Step 2 usesM-time at most(m+ 1)(lgx)µ(lgx). This follows from Theorem 14.2 for
#P≥ 1. (For #P = 0, Algorithm 14.1 uses noM-time.) Similarly, Step 3 usesM-time at
most(k+1)(lgy)µ(lgy).

Step 4 usesM-time at most(3m+3+(2m+4) lgx+ lgy)µ(lgxy) by Theorem 11.5.
Step 5 usesM-time less than(4.5m2 + 18.5m+ 10)(lgx)µ(lgx2). This follows from

Theorem 15.4 for #P≥ 1, since lgz≤ lgx. (For #P = 0, Algorithm 15.3 uses noM-time.)
The total so far is at most(3m+ 3+(4.5m2 + 21.5m+ 15) lgx+(k+ 2) lgy)µ(lgx2y),

which is exactly
(

(6k+6)(#S−1)+((9k2+44k+32)n+2.5k2+20k−7) lgy
)

µ(lgx2y)
below the claimed bound.

Case 1: #S= 1. Then Step 7 usesM-time at most(2.5k2 +20k−7) lgy timesµ(lgx2y).
This follows from Theorem 20.3 for #Q≥ 1, since 2k ≥ #Q. (For #Q = 0, Algorithm 20.1
uses noM-time; note that 2.5k2 +20k−7 > 0 sincek≥ 1.)

Case 2: #S≥ 2. Then Step 9 usesM-time at mostµ(lgx2y) times

3k+3+(6k+6)(#T−1)+
(

4.5k2 +21.5k+15
)

lgy
+

(

(9k2 +44k+32)(n−1)+2.5k2+21k−5
)

lgprodT

by induction since 2k ≥ lgprodQ. Similarly, Step 10 usesM-time at mostµ(lgx2y) times

3k+3+(6k+6)(#(S−T)−1)+
(

4.5k2 +21.5k+15
)

lgy
+

(

(9k2 +44k+32)(n−1)+2.5k2+21k−5
)

lgprod(S−T).

Add.
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