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Abstract

Let Sbe a finite set of positive integers. A “coprime baseSomeans a seP of positive integers
such that (1) each element®is coprime to every other element®fand (2) each element &fis a
product of powers of elements Bf There is a natural coprime base #®rThis paper introduces an
algorithm that computes the natural coprime baseShoressentially linear time. The best previous
result was a quadratic-time algorithm of Bach, Driscoll, and Shallit. Thigpajso shows how
to factorSinto elements oP in essentially linear time. The algorithms use solely multiplication,
exact division, gcd, and equality testing, so they apply to any free caativel monoid with fast
algorithms for those four operations; for example, given a finiteSsgtmonic polynomials over a
finite field, the algorithms factdBinto coprimes in essentially linear time. These algorithms can be
used as a substitute for prime factorization in many applications.
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1. Introduction

It appears to be difficult to factor most integers into primes. The pdittiis paper is
that it is easy to factor integers intmprimes

Given a finite se of positive integers, | can construct a $&twith any two distinct
elements ofP coprime, and factor every element 8finto elements oP, in essentially
linear time. The best previous result was a quadratic-time algorithm bk, Bdscoll,
and Shallit in [2].

Similarly, given a finite se§ of monic polynomials in one variable over a finite field,
| can factorS into coprimes in essentially linear time. For comparison, an algorithm of
Kaltofen and Shoup in [21] factors polynomials into primes in subqued@ndom time.

This paper presents my algorithms and proves that they run in essentiaby time.
Priority dates: | announced these results without proof in Novemb@s,1&nd posted a
complete draft of this paper in October 1997.
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Warning: The algorithms in this paper amet designed to be as fast as possible. They
are designed to be agnpleas possible, under the constraints of (1) running in essentially
linear time and (2) using a limited set of arithmetic operations. There arg mays to
save more time; these speedups are important but are beyond tleso$tlois paper.

Applications. Factoring into coprimes is often an adequate substitute for factoring into
primes. See, e.g., [13]; [4]; [20, Section 3]; [14] and [33, SetB8dl]; [16, Remark 6.8]
and [2, page 201]; [27]; [28, Section 4.6] and [9]; [29]; [17Hd8]; [5]; [31, Theorem 5];

and [22, page 427].

Notation and terminology. General-purpose notatiofif means the empty set. Wh&is
a set, means the cardinality & WhenSandT are setsS— T means{x e S: x¢ T}.
WhenSis a finite set, pro® meang]y.sXx. When a proposition appears inside brackets, it
means 1 if the proposition is true, 0 otherwise; for exam|2le; 3] = 1.
Notation and terminology specific to this paper: bitis defined in Section 1ig;dfined
in Section 7; coprime bases are defined in Sectionigdefined in Section 9; Ig is defined
in Section 8; Is is defined in Section 1¥-time is defined in Section §) is defined in
Section 8; ord is defined in Section 6; pmoo, ppg pple are defined in Section 11; reduce
is defined in Section 19; split is defined in Section L& defined in Section 9.
“Essentially linear time” means timet°1) whereb is the number of input bits.

Acknowledgments.The author was supported by the National Science Foundation under
grant DMS-9600083.
Thanks to Igor Shparlinski and two anonymous referees for theinoamis.

2. Outline of the paper

This paper is organized into four parts.

Part I. Existence and uniquenessSection 4 proves that every finite sehas a finite
“coprime base.” The proof uses greatest common divisors ardd dixésion (i.e., division
where the remainder is known to be 0) to construct the coprime base.

Sections 6 and 7 show that there is only one coprime base that can lreeddi@m
Svia multiplication, exact division, and greatest common divisors: tlauiral coprime
base” forS, written cbS.

Bach, Driscoll, and Shallit stated their results twice, once for integers and for
polynomials. | have instead abstracted the algebraic properties of istmgydpolynomials
that make the constructions work. The setting for the Bach-Driscoll-Shéjlitrithm is a
“Noetherian coid with cancellation,” defined in Section 3. The setting feunahcoprime
bases, and for my algorithms, is a “free coid,” defined in Section Sd&sanot interested
in maximum generality can skip Sections 3 and 5, and instead remembexiltveirig
facts: the set of positive integers is a free coid; the set of monic palyais in one variable
over a field is a free coid; every free coid is a Noetherian coid with céatizead.



Part Il. Two-element sets.Sections 10 through 13 give several constructions culminating
in Algorithm 13.2, which finds the natural coprime base for any two-eldgrset. The
most important idea is explained in Section 9. Algorithm 13.2 takes eskeriti@ar
time, given essentially-linear-time subroutines for multiplication, exacsidin, and gcd,

as discussed in Section 8.

Part lll. Finite sets. Sections 14 through 18 give several further constructions culminating
in Algorithm 18.1, which finds the natural coprime base for any finite sesgentially
linear time.

Part IV. Factorization. To factor a seSinto coprimes, first construct a coprime badse
for S, and then factoBinto elements oP. Sections 19 through 21 show how to carry out
the factorization, giveisandP, in essentially linear time.

PART |. EXISTENCE AND UNIQUENESS
3. Coids and maximal common divisors

A coidis a set with a commutative associative binary operation, writign — ab, and
a neutral element, written 1. Commutativity meas= ba. Associativity meangab)c =
a(bc). Neutrality meansd=a=al.

The word “coid” is nonstandard. It is an abbreviation of “commutatiamd,” and an
abbreviation of “commutative semigroup with identity”; hesesmigroupmeans a set with
an associative binary operation, ameénoid means a semigroup with a neutral element.
“Coid,” like “monoid,” should be pronounced to rhyme with “overjoyed.

Divisibility. Whena = bqfor someq, a is amultiple of b; a is divisible by b; b divides
a; bis adivisor of a. If adividesb andb dividesc thena dividesc.

Cancellation. A coid has cancellationif q=r wheneveibq= br. In other words, when
cis a multiple ofb, there is a uniqug such that = bq; this q is denoted/b.

Noetherian coids.Let S be a subset of a coid. An element $is minimal if it is not
divisible by any other elements &8f An element ofSis maximal if it does not divide any
other elements db. An element ofSis greatestif it is divisible by all elements oS&.

A coid H is Noetherianif every nonempty subset ¢f has a minimal element.

Combinatorial coids. Elementsa, b of a coid areassociatesf a dividesb andb divides
a. A coid iscombinatorial if a= b whenever andb are associates. Observe that every
Noetherian coid is combinatorial: & andb are associates with# b then{a,b} has no
minimal element.

One can systematically replace “equal”’ by “associate,” replace fmahliby “minimal
up to associates,” etc., obtaining definitions and results that apply t@ombinatorial
coids. | prefer to avoid unnecessary complexity: given a geneid, one can simply
consider the combinatorial coid of classes of associates.



Examples.The set of positive integers, with integer multiplication, is a Noetherian coid
with cancellation. Equivalently: The set of nonzero idealZ pivith ideal multiplication,
is a Noetherian coid with cancellation.
Let k be a field. The set of monic polynomials in the univariate polynomial Kixg
with polynomial multiplication, is a Noetherian coid with cancellation. Equivalefithe
set of nonzero ideals &fx| is a Noetherian coid with cancellation.
Generalizing both examples: The set of nonzero ideals of a Dedekim@idas a
Noetherian coid with cancellation. Even more generally, the set ofetiabte ideals of
a Noetherian domain is a Noetherian coid with cancellation. See [8].

Theorem 3.1. Let B be a nonempty subset of a Noetherian coid with cancellation. Then
there exists a maximal common divisor of B.

Here acommon divisor of B means a divisor of every elementBf

Proof. Selectb € B. DefineS= {b/d : d is a common divisor oB}. Observe thab € S
ThusShas some minimal element, shyg, whereg is a common divisor oB. If g divides
another common divisad of B, thenb/d dividesb/g; butb/d € S sob/d = b/g by
minimality of b/g, sod = g. Henceg is a maximal common divisor . O

Theorem 3.2. Let ab,g be elements of a Noetherian coid with cancellation. If g is a
maximal common divisor dfa, b} then &g is coprime to Bg.

Herec is coprime to d if the only common divisor ofc,d} is 1. Some authors say
“relatively prime tod” or simply “prime tod.”

Proof. If d dividesa/g andb/g thendg dividesa andb. Certainlyg dividesdg, so by
maximalityg = dg, sod = 1 by cancellation. O

Theorem 3.3. Every element of a Noetherian coid with cancellation can be written as a
product qgz- - - gy for some n> 0 and some irreducibles;gdp, . . . , Gn.

Herepis anirreducible if p# 1 andp cannot be written in the forrmbwith a # 1 and
b#£1.

Proof. Suppose that the coid has elements that are not products of irredutiiede a
minimal such element.

Case 1z= 1. Thenzis the product of O irreducibles. Contradiction.

Case 2z = ab for somea,b with a # 1 andb # 1. Thena dividesz anda # z The
minimality of z implies thata is a product of irreducibles. Similarlyy is a product of
irreducibles. Thugis a product of irreducibles. Contradiction.

Case 3zis irreducible. Therzis the product of 1 irreducible. Contradiction. O

Theorem 3.4. Let p a be elements of a Noetherian coid with cancellation. Assume that
p # 1. Then there is a unique integer mO such that §' divides a and B*! does not
divide a.



Proof. Suppose thagy™* dividesa for everym> 0. Then the sefa/p,a/p?, ...} does not
have a minimal elemen&/p™ is divisible bya/p™?, anda/p™ # a/p™? sincep # 1.
Contradiction.

Find the smallest integen > 0 such thap™* does not divide. If m= 0 thenp™ =1
so p™ dividesa. If m> 1 thenp™ dividesa by minimality of m.

Uniquenessp®, pt, ..., p™ divide a, while p™1, p™2 ... do not. O

4. Coprime bases

Let P andS be subsets of a Noetherian cdidwith cancellation. Theoid generated
by P is the smallest subset f that containd®U {1} and is closed under multiplication;
more concretely, it is the set of products of powers of elemenis Bfis abase forSif S
Is contained in the coid generated Byi.e., each element &is a product of powers of
elements ofP.

Pis coprime if each element oP is coprime to every other element®f(Some authors
instead sayP is pairwise coprime,” savingP is coprime” for the less important concept
that gcdP = 1. A few authors sayP is gcd-free,” as if elements & were somehow
immune to the gcd operation.)

P is acoprime base forSif P is coprime and is a base fofs.

Theorem 4.1. Let H be a Noetherian coid with cancellation. Every finite subset of H has
a finite coprime base.

Proof. Suppose not. Select a finite subSetf H, without a finite coprime base, in such a
way that prodsis minimal.

Scannot be coprime—otherwise it is a finite coprime base for itself. Thare thre two
distinct elements, b € Swith a not coprime tdo.

By Theorem 3.1, there is a maximal common divigoof {a,b}. If g= 1 thenais
coprime tob; thusg # 1. DefineT = (S—{a,b}) U{g,a/g,b/g}. Then prod divides
((prodS)/ab)g(a/g)(b/g) = (prodS)/g; so prodr is a divisor of procb different from
prodS. The minimality of prodsimplies thatT has a finite coprime base, sBy

Now a = g(a/g) andb = g(b/g) are products of elements af, and thus are in the
coid generated bf. All other elements of are elements of, and thus are in the coid
generated by. HenceP is a base fo. Contradiction. O

5. Free coids and greatest common divisors

A free coidis a Noetherian coid with cancellation in whiahs coprime tdoc whenever
ais coprime to bottb andc.

Bach, Driscoll, and Shallit suggested in [2, page 216] (in differentdagg) that free
coids would form a “suitable abstract setting” for factoring into copririé® algorithms
in [2] actually work for arbitrary Noetherian coids with cancellation, toeé coids are the
setting for most of this paper.



Examples.The set of nonzero ideals in a Dedekind domain is a free coid. The point is
that, in a Dedekind domain, the susn- b of two idealsa andb is a maximal common
divisor of {a,b}. Therefore, ifais coprime to bottb andc, thena+b =1 anda+c =1,
soa+bc=1la+bc=(1+b)a+bc=a-+ba+bc=a+b(a+c)=a+bl=a+b=1by
elementary ideal arithmetic, $as coprime tabc.

In particular, the set of positive integers is a free coid, ankdisfa field then the set of
monic polynomials irk[x] is a free coid.

Theorem 5.1. Let a b,c be elements of a free coid. If a divides bc, with a coprime to b,
then a divides c.

Proof. By Theorem 3.1{a, c} has a maximal common divisgr By Theorem 3.2a/g is
coprime toc/g. By hypothesisa/gis coprime tdb. Thusa/gis coprime tdb(c/g) = bc/g.
Buta/g dividesbc/g, soa/g must be 1. Thua = g dividesc. n

Theorem 5.2. Let x Y,z h be elements of a free coid. If x and y divide z, and h is a maximal
common divisor ofx,y}, then xyh divides z.

Proof. By hypothesisx/h dividesz/h = (z/y)(y/h). By Theorem 3.2x/h andy/h are
coprime. Thux/h dividesz/y by Theorem 5.1. Hence/h)y divides(z/y)y = z O

Theorem 5.3. Let B be a nonempty subset of a free coid. Then there exists a greatest
common divisor of B.

The greatest common divisor Bfis denoted gcB.

Proof. By Theorem 3.1, there is a maximal common divigoof B. | claim that every
common divisod of B is a divisor ofg. Indeed, leth be a maximal common divisor of
{g,d}. By Theorem 5.2gd/h is a common divisor oB. But g is maximal, say = gd/h,
sod = h, sod dividesg as claimed. O

Theorem 5.4. Let z be an element of a free coid. Let», ..., x, be divisors of z such
that X is coprime to x whenever i~ j. Then xx; - - - X, divides z.

Proof. Induct onn. Forn=0: 1 dividesz. Forn = 1: By hypothesix; dividesz. Forn > 2:
By hypothesis 1 is a maximal common divisor{of,x2}, soxix, dividesz by Theorem
5.2. Define(y1,Y¥2,Y3,---,Yn-1) = (X1X2,X3,X4, ..., Xn). Thenyy,yo, ..., yn—1 divide z, and
yi is coprime tay; whenever # j, soy1y» - - -yn—1 dividesz by induction; i.e. Xy XoX3 - - - Xn
dividesz. O

Theorem 5.5. Every irreducible in a free coid is a prime.

Herepis aprime if p# 1 and the non-multiples g are closed under multiplication:
l.e., If pdividesabthenp dividesa or p dividesb.



Proof. Let p be an irreducible in the coid. L&t b be elements of the coid such that
dividesab. Defineg = gcd{ p,a}. Thenp= (p/g)g. By definition of irreduciblesp/g =1
org=1.If p/g=1theng = p sopdividesa as desired. Iy = 1 thenp is coprime toa
so p dividesb by Theorem 5.1. O

Theorem 5.6. Every element of a free coid can be written as a proqgtye, p* where
each g is a nonnegative integer anp : a, # 0} is finite.

Proof. By Theorem 3.3, every element can be written as a proghagt: - - g, where each
gi is an irreducible. By Theorem 5.5, eaghis a prime. Define, = #{i : g, = p}; then
0202 - On = [Tprimep PP, @nd{p:ap # 0} = {01,0Q2, .- -, 0n}- O

6. Theordfunction

Let p be a prime in a free coid, and latbe an element of the coid. By Theorem 3.4,
there is a unique integen > 0 such thap™ dividesa and p™* does not. This integer is
denoted orgm.

Theorem 6.1. Let a b, p be elements of a free coid. If p is a prime tlved, ab= ord,a+
ordyb.

Proof. Write e= ordyaandf = ordyb. Thenp® dividesaand p’ dividesbsop®tf divides
ab. Furthermorep divides neither/p® norb/p'; by definition of prime p does not divide
(a/p%)(b/p"); sop® 1 does not divideb. O

Theorem 6.2. Let a b, p be elements of a free coid. If p is a prime tleed, gcd{a, b} =
min{ord,a, ordy, b}.

Proof. Write e= ordya and f = ord, b. Without loss of generality assunee< f. Thenp®
divides botha andb so p® divides gcda, b}. Furthermorep®™ does not divide, sop®*!
does not divide gcfh, b}. O

Theorem 6.3. Let a be an element of a free coid. Thgaimep : ordya # 0} is finite, and
a= [primep pordpa_

Consequently, if orgla = ord, b for every primep, thena = b.

Proof. By Theorem 5.6a can be written as a produglyimep P* Where eacta, is a
nonnegative integer ar{g : a, # 0} is finite. If gis a prime then orgly =1 and ord p=0
for all primesp # g, SO orga = 3 primep ApOrcy p = 3. Hence{p: ordpa # O} is finite
anda = [Mprimep pordpa_ o

Theorem 6.4. Let ab be elements of a free coid. rtiin{ordya,ord, b} = O for every
prime p then a is coprime to b.



Proof. If pis a prime then orglgcd{a,b} = 0 by Theorem 6.2. Hence gfal b} = 1 by
Theorem 6.3. O

Theorem 6.5. Let a b be elements of a free coid.dfd,a < ordy b for every prime p then
a divides b.

Proof. If pis a prime then orglgcd{a, b} = ord,a by Theorem 6.2. Hence g¢d,b} = a
by Theorem 6.3. O

Theorem 6.6. Let P be a coprime subset of a free coid. Define ] ,cp p® where each
ap is a nonnegative integer anh : a, # 0} is finite. Define b= []pcp p° where each p
is a nonnegative integer anh : by # 0} is finite. Thergcd{a, b} = [ pep pmin{ap.bp}

Proof. | will show for every primeq that org, [], p™"@ e} = ord;gcd{a,b}. Hence
[Mpep PMME e} = ged{a, b} by Theorem 6.3.

If g does not divide any € P then or¢a= 0, ord,b = 0, and org ], p™"{@Pe} =0 =
ordqgcd{a,b}. Assume from now on thafdivides some < P.

If ' e P—{r}thengcdr,r'} =1 somirordyr,ordyr'} =0 by Theorem 6.2 so ogd’ =
0. Thus orda=a, ordgr, ordgb= by ordyr, and org [, p™"@Pe} = min{a,, by } ordyr =
min{ordya,ordyb} = ordygcd{a, b}. O

Theorem 6.7. Let P be a coprime subset of a free coid. Define ] ,.p p® where each
ap is a nonnegative integer anh : a, # 0} is finite. Define b= []pcp p° where each p
is a nonnegative integer anf : by # 0} is finite. If a divides b then a< by, for every

peP— {1} and ba=[pep (1) PP .

Proof. Selectr ¢ P—{1}. Select a prime dividingr. Then ordr >0, so ord p=0 for all
pe P—{r}. Thus orda=a; ordyr and org,b = by ordyr; but ord,a < ordyq b, soa, <by.
Also apep_ (1) PP = pep_{1) PP TP ~2 =D, O

7. The natural coprime base

Fix a subset of a free coid. Theslosure of Sis the smallest subsat of the free coid
such that
e SU{1} CT;
e abeTifabeT,
e acTifabbeT;and
e gc{a,b} € TifabeT.
Thenatural coprime base for S, denoted clS, is the set of minimal elements ®f— {1}.
This is, in fact, a coprime base f& see Theorem 7.1. It is the only coprime baseSor
insideT — {1}; see Theorem 7.3.
There are other ways to characterizeScin drafts of this paper | defined &as the
set of maximal quasiprimes f& herep is aquasiprime for Sif every element of5Scan



be written in the formup™ with p coprime tou. A referee suggested defining Slas a
minimal subset of that is a base fof. Bach, Driscoll, and Shallit proved in [2, Theorem
3] that there is a maximum coprime base $on a particular ordering of coprime bases for
S and that this maximum coprime base is a subsét ef{1}. Another characterization
appears without proof in [20, Lemma 3.2]. An incorrect characiion appears without
proof in [16, Remark 6.8].

Theorem 7.1. Let S be a subset of a free coid. Thela® is a coprime base for S.

Proof. DefineT as the closure db. DefineP = cbS.

P is coprime: Saya € Pis not coprime td € P. Defineg = gcd{a,b}. Thenge T — {1},
andg divides a; but a is a minimal element off — {1} by definition of P, sog = a.
Similarly g=b. Thusa=Dh.

P is a base foil (hence forS): Suppose not. Find a minimal elemerdf T outside the
coid generated bl. Thenz ¢ P. Thuszis not a minimal element of — {1}, by definition
of P; butze T — {1}; sozhas a divisoy € T — {1} withy # z Alsoz/y € T — {1} and
z/y # z. The minimality ofz implies that bothy andz/y are in the coid generated I;
hencezis in the coid generated . Contradiction. O

Theorem 7.2. Let S and Q be subsets of a free coid. If Q is a coprime base for S then Q
Is a base for the closure of S.

Proof. Define T’ as the intersection of with the coid generated b§. Then 1e T;
abeT'ifabeT'; SCT sinceQis abase fos;ac T’ if ab,b e T’, by Theorem 6.7;
and gcda,b} e T'if a,be T’, by Theorem 6.6. Thus C T'; i.e.,Qis abase fol. O

Theorem 7.3. Let S be a subset of a free coid. Let P be a coprime base for S. Let E be th
closure of S. If IZ T — {1} then P= cbsS.

Proof. P is a base foil by Theorem 7.2, s® is a base for cB, so each element of &
is divisible by an element d?. Furthermore, cBis a base foP, so each element &t is
divisible by an element of ci

Starting from anyp € P, find q € cbS such thaf divides p, and then findo’ € P such
thatp’ dividesq. Thenp' dividesp, so by coprimalityy’ = p, soq= p, sop € cbS. Hence
P C cbS. Similarly chSC P. O

Theorem 7.4. Let S be a finite subset of a free coid. TledS is a finite coprime base for
S.

Proof. The proof of Theorem 4.1 recursively constructs a finite coprime Q@der Susing
exact division and gcd. Th©@@C T, whereT is the closure o8 DefineP = Q—{1}. Then
Pis a finite coprime base f@, andP C T — {1}, soP = cbSby Theorem 7.3, so Bis a
finite coprime base fos. O

Theorem 7.5. Let S be a finite subset of a free coid H. Let z be an element of H.rif eve
element of S divides z th¢lyccpsp divides z.



Proof. Takep € cbS. If pdoes not divide any element8thenpis coprime to all elements
of S sopis coprime to all elements of the closure®Bop is coprime top, contradiction.
Thusp dividesz. By Theorem 5.4[ pcchs P dividesz. O

PART Il. TWO-ELEMENT SETS
8. Logarithms and M-time

The algorithms in this paper work for any free caid They are given elements éf

(represented in some way as strings) and oracles that perform theifaloperations:

e Multiplication: computeab € H givena,b € H.

e Exact division: computa € H givenab,b € H.

e Greatest common divisor: compute gedb} € H givena,b € H.

e Equality testing: comput@ = b] € {0,1} givena,b € H.
The algorithms combine these four operations to perform more compulicgerations.
For example, Algorithm 10.1 compute$ € H, givena € H, by first feedinga, a to the
multiplication oracle to obtaim?, and then feeding?,a? to the multiplication oracle to
obtaina®. As another example, to check whethés a divisor ofb, Algorithm 19.2 checks
whether gcda, b} equalsa.

Definition of M-time. | count the number of multiplications, divisions, and gcds in each
algorithm, with a weight of(1 + Igab)u(lgab) for each multiplicationa,b — ab, each
exact divisionab, b — a, and each greatest common divisob — gcd{a, b}. The total is
calledM-time. Herep: R — R is any nondecreasing positive function, and tj+— R is
any function satisfying (1) lgb=Iga+Igb and (2) Iga > 1 for everya # 1. Note that
lgl=0.

Each algorithm is accompanied by a theorem stating an upper bounchgiared by Ig
andy, on theM-time used by that algorithm. In particularyifx) € x°Y), then theM-time
to compute cl$is essentially linear in Ig pra8by Theorem 18.2, and thé-time to factor
Sover any coprime base for Sis essentially linear in Igpro8+ IgprodP by Theorem
21.3.

Why M-time is useful. These bounds oM-time imply bounds on algorithm time for
various coid$ that arise in practice.

In particular, ifH is the set of positive integers (represented in the usual way as base-
2 strings), then there are algorithms (for, e.g., multitape Turing mashthat perform
multiplication, exact division, and gcd in time at mo$t-lgab)pu(lgab). Herelg:H — R
is the usual logarithm base 2, apds a nondecreasing positive function witiix) €
XD, The time spent by my algorithms inside these subroutines for multiplicatiaat e
division, and gcd is bounded y-time for these functions Ig; the reader can check that
my algorithms spend negligible time in other operations; Nhéime for factoring into
coprimes is essentially linear in the input size. Conclusion: factoring pesitiegers into
coprimes takes time essentially linear in the input size.
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Similarly, if H is the set of monic polynomials in one variable over a finite field, then
there are algorithms that perform multiplication, exact division, and gdohia at most
(1+Igab)pu(lgab). Here Ig :H — R is the degree map, andis a nondecreasing positive
function with p(x) € XM, Conclusion: factoring monic polynomials into coprimes takes
time essentially linear in the input size.

See my paper [7] for a survey of the standard essentially-linear-tinoeitons for
multiplication, exact division, and gcd.

Integers and polynomials support many other useful arithmetic opesatitvision with
remainder, for example, and size inspection (approximation of Ig). riklgus that save
time by using these extra operations are beyond the scope of this pagplained in
Section 1. MyM-time bounds are expressed in much more detail than “essentially linear
time” solely because those details simplify the proofs; the level of detailtisneant to
suggest that these are near-optimal bounds for near-optimal algerith

Termination. Another consequence of thd-time bounds is that each of these algorithms
terminates for any free coil. Proof: Definep(x) = 1. Define Ig :H — R by setting

lg p =1 for each primep in H. TheM-time bounds are then upper bounds on the number
of multiplications, divisions, and gcds in the algorithm. Every algorithnplowolves at
least one multiplication, division, or gcd. Hence the algorithm terminates.

Another way to prove termination is to observe that the relevant subcéid(thfe coid
generated by a finite coprime base for the inputs to the algorithm) is isomadpla
subcoid of the set of positive integers. The algorithm terminates fotiysitegers, so it
terminates foH.

9. From CBA to DCBA

The natural coprime base fép®, p' }is {p%} — {1} whereg = gcd{e, f}. Thusnatural
coprime bases act on exponents as greatest common divisors

This section compares two algorithms to computgecb}. One algorithm, which | call
CBA (the “coprime base algorithm”), is the quadratic-time algorithm intrediuzy Bach,
Driscoll, and Shallit in [2]. The other algorithm, which | call DCBA, is thesestially-
linear-time algorithm introduced in this paper.

CBA replaces(a,b) with (a/gcd{a,b},gcd{a,b},b/gcd{a,b}); it focuses on the left
pair in this vector and then focuses on the right pair. In particular, iaogs(p®, p') with
(p*f,p" 1) if ex> for(1,p% p'®) if e< f. The exponent paife, f) has been replaced
with (e— f,f) or (e, f —e). ThusCBA uses Euclid’s subtractive algorithm to compute
greatest common divisors of exponents.

Euclid’s subtractive algorithm is a dangerous way to compute great@shoa divisors:
the number of steps is the sum of the quotients in the continued fracti@ foA much
safer alternative is Euclid’s repeated-division algorithm, where thebeurof steps is at
worst logarithmic ine+ f. See generally [26, Sections 4.5.2 and 4.5.3].

Writing out the standard base-2 integer-division algorithm inside Euclefeated-
division algorithm produces Brent’s left-shift binary gcd algorithm, vihieplacese, f)
with (e— 2Xf, f) for the largest possible value &f or with (f,e) if e < f. It will turn
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out thatDCBA uses Brent’s left-shift algorithm to compute greatest common dsvegor
exponents.

DCBA actually uses a slightly different exponent transformation, mathe functiont
defined below, to simplify the computations.

The exponent transformation. Define a functiont on pairs of nonnegative integers as

follows:
((f—ee) ife<f

(
(e—f,f) if f<e<2f
(e—2f,f) if2f <e<4f
(

e f)=1q (e—4af, f) ifaf <e<8f

{ (e,0) fo=f<e
Write 1" for the nth iterate oft.

DefineA(a, b) as the smallest > 0 such that the second componentord, a, ord, b)
is O for every primep. Existence of(a,b) follows from Theorem 9.3.

Theorem 9.1. Let e f,n be nonnegative integers. If=£ 0 or e+ /2f < \/§n+1 then
1"(e, f) has second componet

Proof. Induct onn. Forn=0: If e+ +/2f < v/2 thenf < 1, so in any casd =0, so
1"(e, f) = (e,0) as desired. Fan > 1: Define(€, ') = t(e, f). | will show thatf’ =0 or
d+2f <2 hencet"(e, f) = t"1(¢, ') has second component 0 by induction.

Case 1:f =0ande=0. Then(€, f’') = (f — e e) = (0,0) by definition ofr.

Case 2:f =0ande> 0. Then(€, f') = (e 0) by definition oft.

Case 3:f > 0ande< f. Then(€, f') = (f — e e) by definition oft, so\/2¢ +2f" —
e—2f = (1-v/2)e<0, so€ +v2f' < (e+v2f)/vV2< V2.

Case 4:f > 0 ande > f. Then Xf < e < 21 f for some integek > 0. Now (¢, f') =
(e— 2f, f) by definition oft, so

V2e +2f —e—/2f = (V2—-1)e— (2XV2++/2-2)f

242 1) f — (2XV2++/2-2)f
(1-2(2-v2)f <0,

I VAN

so agaire + v2f' < 2" O
Theorem 9.2. Let a be an element of a free coid. Thend,a < Iga for every prime p.

Proof. Write n = ordya. Thena = up" for someu, and Igp > 1 sincep # 1, so lga =
lgu+nigp>nlgp > n. O

Theorem 9.3. Let a b be elements of a free coid. Let n be a nhonnegative intedgia i
V2lgb < J2"t thenA(a,b) < n.

12



Proof. Definee = ordya and f = ord,b wherep is a prime. By Theorem 9.2+ V2f <
lga++v/2lgb < \/§n+l. By Theorem 9.11"(e, f) has second component O. O

Theorem 9.4. Let a b be elements of a free coid Nfa, b) = 0 then b= 1.

Proof. If pis a prime then orglb = O by definition ofA. Henceb = 1. O

10. Computing powers
Algorithm 10.1. Given(a,n), with n a nonnegative integer, to pria%”:
1. If n=0: Printaand stop.
2. Seta — a°. Setn — n— 1. Return to Step 1.
Theorem 10.2. Algorithm 10.1 uses M-time at mast+2(2" — 1) lga)u(2"lga).

Proof. Forn =0, Algorithm 10.1 uses nb-time, andn+2(2" —1)lga=0.
Forn> 1, Algorithm 10.1 first computes?, usingM-time at most{1+2lga)u(2lga) <

(1+2Iga)p(2"lga). It then computea?)2” *, usingM-time at most
(n—1+2(2"1—1)Ilga®)u(2"tiga?) = (n—1+2(2"—2)Iga)u(2"lga)

by induction. Finally 1 2lga+n—1+2(2"—2)lga=n+2(2"—1)lga. O

11. Theppi, ppo ppg and pplefunctions

The defining properties of pf@, b), ppaa,b), ppga,b), and ppléa, b) are that

ordy ppi(a,b) = (ordya)[ordy b > 0]
ordy ppo(a, b) = (ordya)[ordy,b = 0]
ordpppg(a,b) = (ordya)[ord,a > ord, b
ordppple(a, b) = (ordya)[ordya < ordy b]

for all primesp. Existence of ppppo, ppg pple is proven constructively in Theorem 11.1
and Theorem 11.2. Uniqueness follows from Theorem 6.3.

The notation pgia, b) stands for “powers i of primes insideéb”; ppo(a, b) is “powers
in a of primes outsidé”; ppg(a,b) is “prime powers ina greater than those ib"; and
pple(a, b) is “prime powers ina less than or equal to those i’ | originally used the
notation gcda,b™} for ppi(a,b), but the shorter name ppi will be helpful later.

The ppg function is the subject of [30, Chapter 1, Section 19]; Stielt@gisrithm in
[30] takes quadratic time on input@™,2"). The ppo function is the subject of [27];
Luneburg’s algorithm in [27] takes quadratic time on inpl&§ 2).
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Theorem 11.1. Let a c be elements of a free coid. Define=xgcd{a, c} and y = a/xo.
Forn> 0define ;1 =X1gcd{Xn, Yn} and %h+1 = Yn/ gcd{Xn,yn}. (1) fn>0and2" > Iga
thengcd{Xn,yn} = 1. (2) If gcd{xn,yn} = 1 then x = ppi(a, c) and y, = ppa(a,c).

Proof. Write e= ordyaandf = ord, c wherepis a prime. Note that,y, = a by induction
onn, so orgy X, +ordpyn = €.

The point is that orglx, = min{e,2"f} for all n > 0. Proof: orgXo = min{e, f}. For
n> 1, assume inductively that gg&,_1 = min{e,2"1f}.If e<2"1f thenorgyx,_1 =€
S0 orthyn—1 = 0 so orggcd{xn_1,Yn—1} = min{e,0} = 0 so org x, = e =min{e,2"f }.
If e>2""1f then orghx,—1 = 2""1f so orghyn_1 = e—2""1f so ordygc{ xn-1,Yn-1} =
min{2"~1f,e—2"1f} so orchx, = 2" 1 f + min{e— 2", 2" 1f } = min{e, 2"f}.

(1) If f =0then org)xn =0=o0rdpXn.1. If f >0then2f > 2" >Iga> eby Theorem
9.2 S0 orgh Xy = e= ordy n+1. In both cases, ogycd{Xn, yn} = 0ordpxn41 — ordp X, = 0.

(2) By hypothesist, = X1, S0 min{e, 2"f} = min{e, 2" }. If f =0 then or¢)x, =
min{e,0} = 0. If f > 0 then 2f < 2"t1f soe < 2"f; thus orgx, = e. In both cases,
ordy X, = €[f > 0] and orghyn = e—ordyx, = e[f =0]. O

Theorem 11.2. Let a b be elements of a free coid. Defingy gcd{a,b} and % = a/yo.
For n> 0define x;+1 =X, 9cd{ Xy, ¥n} and ¥o+1 =Yn/ 9K xn, Yn}. (1) Ifn>0and2" > Iga
thengcd{Xn, yn} = 1. (2) If gcd{xn,yn} = 1 then x = ppg(a,b) and y, = pple(a, b).

Proof. Definec = xp. Thenxg = gcd{a, c} andyg = a/xo.

(1) If n>0and 2 > Igathen gcdx,,yn} = 1 by Theorem 11.1.

(2) If gcd{xn,yn} = 1 thenx, = ppi(a,c) andy, = ppo(a,c) by Theorem 11.1. Write
e=ordya and f = ord,b wherep is a prime. Then orglyo = min{e, f}, so org,c is 0
exactly where < f. Thus org,x, = e[ord,c > 0] = €[e > f] and org¢yy, = e{ord,c=0] =
ee< f]. O

The following two algorithms includa solely for expository purposes.

Algorithm 11.3. Given(a,c), to print gcd a,c}, ppi(a,c), and ppda,c):
1. Setx — gcd{a,c}. Printx. Sety — a/x. Setn «— 0.
2. (Now (x,¥) = (Xn,Yn) in Theorem 11.1.) Seg < gcd{x,y}. If g= 1: printx,
printy, and stop.
3. Setx« xgandy < y/g. Setn <+ n+ 1. Return to Step 2.

Algorithm 11.4. Given(a,b), to print gcd a, b}, ppga,b), and ppléa,b):
1. Sety < gcd{a,b}. Printy. Setx «— a/y. Setn — 0.
2. (Now (X,¥) = (Xn,¥n) in Theorem 11.2.) Sey < gcd{x,y}. If g = 1: printX,
printy, and stop.
3. Setx«+ xgandy < y/g. Setn < n+ 1. Return to Step 2.

Theorem 11.5. Algorithm 11.3 computegcd{a, c}, ppi(a, c), ppa(a,c) in M-time at most
(3k+3+ (2k+4)lga+Igc)u(lgac) if k > 0and2¢ > Iga.
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Proof. By Theorem 11.1, gcik, Yk} = 1, so the algorithm stops when= k if not earlier.
It thus performs Step 2 fare€ {0,1,...,k} at most, and Step 3 fore {0,1,...,k—1} at
most.

Step 1 useMl-time at mos{1+Igac)u(lgac) to compute gcdla, c} andM-time at most
(1+Ilga)u(lga) to computea/x.

Each iteration of Step 2 uséé-time at most1+Iga)p(lga) sincexy = x,y, = a. The
total is at mostk+1)(1+Iga)p(lga).

Each iteration of Step 3 uség-time at most(1+ Igxg)u(lgxg) + (1 +1gy)u(lgy) <
(24 1gXn+1+lgyn)u(lga). The total forn € {0,1,2,... ., k— 1} telescopes to

(2k+lgxc+ (k—1)lga+Igyo)u(lga) < (2k+ (k+1)lga)u(lga).

Add: (1+Ilgac)+ (1+Iga) + (k+1)(1+Iga) + (2k+ (k+1)lga) = 3k+3+Igc+
(2k+4)lga. O

Theorem 11.6. Algorithm 11.4 computegcd{a,b},ppg(a,b),pple(a,b) in M-time at
most(3k+ 3+ (2k+4)Iga+Igb)u(lgab) if k > 0 and 2¢ > Iga.

Proof. Same analysis as in Theorem 11.5. O

12. Thels function

Fix a,b in a free coid. Define |ga, b) as(gn, hn,¢n), where

(9o, ho, co) = (gcd ppg pple) (ppi(a, b),b),
(On+1,Mn+1,Cnr1) = (ged ppg pple) (hn, 7).

The name |s stands for “left shift.” This function separates the primasimdb according
to the cases in the definition ofin Section 9.

Theorem 12.1.Let a b be elements of a free coid. Define-@erdya and f= ord, b where
p is a prime. Definégn, hn, cn) = Isn(a,b). Then

(ordp gn, 0rdp hy,0rdy cn) = [0 < 2" < €] (min{e, 2"}, ele > 2"f], ele < 2"f])
forn> 1.

Proof. Notice that orggn1, ordyhn1, and orgycny1 are all bounded by oghy; so if
ordp hym = 0 then org gn = ordy hn = ordyc, = 0 for alln > m.

Case 1:f = 0. Then org ppi(a,b) = 0 so org,gn = ordyhy = ordy ¢, = 0 for all n.

Case 2e< f. Then org ppi(a,b) = e so orgyhg = efe > f| =0, so or¢hgn = ordy hn =
ord,ch =0 foralln> 1.

Case 3:e> f > 0. Then orglppi(a,b) = e, so org,hp = e and orgygo = f. Thus
ordp g1 = min{e, 2f }; ordyh; = efe > 2f]; and org,c; = efe < 2f].
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Assume inductively that oggty, = [2"1f < €/ min{e,2"f} and org h, = e[e > 2"f]. If
e <2"f then orgyhn = 0 so orghgn;1 = ordyhn 1 = ordy i1 = 0 as desired. e > 2" f
then (ordy gn, ordphn) = (2"f,€) so orgygn1 = min{e, 2"} as desired; ofghny1 =
ele > 2"1f] as desired; and opetn.1 = €le < 2""1f] as desired. O

Theorem 12.2. Let a b be elements of a free coid. Defifgg, hy, ¢,) = Isp(a,b). fm>1
and hy, = 1then a= cocy - - - cpppo(a, b). Furthermore, any two members of the sequence
Co,C1,- - - ,Cm, PPO(a, b) are coprime.

Proof. Write e = ordpa and f = ord,b wherep is a prime. | will show that the sum of
the numbers orglcy, ordy Cy, ..., 0rd, cm, 0rd, ppo(a, b) is e, and that at most one of the
numbers is nonzero.

Case 1:f = 0. Then orgppi(a,b) = 0 so orgcy = 0; ordycy = 0 for n > 1; and
ordpppa(a,b) =e.

Case 2e< f. Then orgyppo(a, b) = 0; ord,cop =€ele < f| =e; and orgyc, =0 forn> 1.

Case 3:e> f > 0. Then or¢co = O; ordyc, = e[2"1f < e< 2"f] for n> 1; and
ord, ppa(a,b) = 0. There is exactly one value &f> 1 for which 2~1f < e < 2¢f; and
ordphm =0 soe < 2™f sok <m. O

Theorem 12.3. Let a b be elements of a free coid. Defif@, hn,cn) = Isn(a,b). Define
dn=gcd{cy, b} forn>1. Thend" " divides ¢; A(cn/d2" *,dy) <A(a,b) —1ifb# 1; and
Cod1dz - - - dy divides b. Furthermore, if ¢ 1 and hy, = 1, then bydidy - - - dy is coprime to
a/co, andA(b/cod1dz - - - dm,Co) < A(a,b) —1if b # 1.

Proof. Write e= ord,a and f = ord,b wherep is a prime.

By Theorem 12. 1 orglc, = e[2"~ 1f < e< 2], so orgydy = f[2" lf <e<2'],s
2"ordydy < €27 L’ <e< 2"f] = ordycCn. Thusd2" " dividesc,.

Next, ord,Codsdy---dy = ele < f] + f[ <e< 2”f] < fle<f]4+f[f <e<2'f] =
fle<2"f] < f. Thuscedidz - - - dy dividesb.

If hm=1thenf =0o0re<2™f, soorg,didz---dm= f[f <€, soorgy(b/d1dy---dn) =
fle < f]; but ordy(a/co) = eje > f|. Thusb/did, - - - dyy anda/cq are coprime.

Assume from now on thdi# 1. Writek = A(a,b). ThentX(e, f) = (..., 0) by definition
of A, andk > 1 by Theorem 9.4.

If2"-1f <e<2"f then(ordp(cn/dﬁnfl),ordpdn) = (e—2""1f, f)=1(e,f) so
™ L(ordy(cn/dZ" ), 0rdpdy) = ™(e, ) = (..., 0).
Otherwise(ordy(c,/d2" "), ordydn) = (0,0) soT*(ordy(cn/dZ" '), ordydy) = (0,0).
Finally, if hn, =1 ande < f then(ordp(b/cod1d2 - - - dm),0rdyco) = (f —e,e) =1(e, f);
if hm =1 ande > f then(ordp(b/cod1d; - - - dm),0rdy o) = (0, 0); in either case, as above,
™1(ordy(b/codidy - - - dm),0rdp Co) = (..., 0). ]

Theorem 12.4. Let a b be elements of a free coid. Defifgg, hn, ch) = Isn(a,b). fm>1
and2™ 1 > Igathen k= 1.
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Proof. Write e = ordy,a and f = ord,b wherep is a prime. There < Iga < 2™ py
Theorem 9.2. Iff = 0 then or¢hhy = 0; if f > 1 thene < 2m-1f 50 orghhm = 0. O

13. Computing a coprime base for a two-element set

This section introduces a fast algorithm to computgacb}.

Theorem 13.1. Let a b be elements of a free coid. Defif@, hn,cn) = Isn(a,b). Define
dn = gcd{cy, b} for n > 1. Assume thath= 1 with m> 1. Define R = cb{cn/dﬁnfl,dn}
for 1 < n < m. Define Q= cb{b/cpd1dz---dm,Co}. Define R= cb{ppo(a,b)}. Then P=
UPn is a disjoint union; RJQUR is a disjoint union; and P QUR = cb{a, b}.

Proof. By constructiord, dividesc,, so each element &%, dividesc,. Hence, by Theorem
12.2, elements d®, are coprime to elements Bf for k # n. Natural coprime bases do not
contain 1, sd™, P, ..., Py, are disjoint, and their unioR is a coprime set.

Next, by Theorem 12.2 agaiig,Cy,...,Cy are coprime to pp@,b), soP is disjoint
from R, andPURIs a coprime set.

Next, each element d dividesb/d;d,---dm, hence is coprime ta/co by Theorem
12.3, hence is coprime @ Cy - - -cmppa(a,b) by Theorem 12.2. Thu® is disjoint from
PUR, andPUQURIs a coprime set.

Next, the coid generated U QU R containsb/cod1ds - - - dy (Via Q), ¢o (via Q), and
eachd, (via P,), so it containsh. It also containscn/dr%”_l and thusc, (via By), plus
ppo(a,b) (viaR), so it containgycy - - - Cmppo(a, b) = a by Theorem 12.2.

Finally, naturalness follows from Theorem 7.3. O

Algorithm 13.2. Given(a,b), to print ck{a, b}:
1. If b= 1: Printaif a# 1. Stop.
2. Computega, r) < (ppi,ppo)(a,b) by Algorithm 11.3.
3. Printrif r #£ 1.
4. Computgg,h,c) < (gcd ppg pple)(a,b) by Algorithm 11.4.
5. Seftcy + C. Setx «— ¢p.
6. Setn«+ 1.

7. Computg(g, h,c) < (gcd ppg pple) (h,g?) by Algorithm 11.4.

8. Setd « gcd{c,b}. (Now (g,h,c,d) = (gn,hn,Cn,dn).)

9. Setx+«+ xd. (Now x = cod1dy---dy.)

10. Computey « d2" " by Algorithm 10.1.

11. Recursively apply Algorithm 13.2 {@/y,d).

12. Ifh= 1. Setn — n+ 1. Return to Step 7.

13. Recursively apply Algorithm 13.2 {dv/x, Co).

Beware that, even though & b} = cb{b,a}, theM-time used by Algorithm 13.2 may
depend on the order of inputs. The order of arguments in Algorithmisli@@ursive calls
Is important for the time analysis below.
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Theorem 13.3. Algorithm 13.2 computesb{a, b} in M-time at most
A(a,b) (4P + 12m+-4)(Igab)u(3lgab)
ifm>1and2™ ! > Igab.

Proof. If b= 1 then Algorithm 13.2 stops immediately in Step 1, usingMtime; and
A(a, b)(4nm? +12m+4)(Igab)u(3lgab) > 0. So assume that£ 1.

The point is thai\ (a,b) decreases at each level of recursid(t/y,d) < A(a,b) —1in
Step 11, and(b/x,co) < A(a,b) —1in Step 13, by Theorem 12.3. So inductX(@,b).
The product of all the inputs in Steps 11 and 13)iqn21(cn/d§nfl), which dividesab
by Theorem 12.2. Hence the inputsb’ to the recursive calls satisfylga’b’ <Igab; in
particular, 21 > Iga’b’. By induction, the recursive call fa',b’ usesM-time at most
(AM(a,b) — 1) (4P 4+ 12m+4)(Iga’b’)u(3lga’l’); so all the recursive calls together Ude
time at most(A(a,b) — 1)(4n? + 12m+4)(Igab)u(3lgab).

It therefore suffices to prove that the non-recursive work in Algarift8.2 take$/-time
at most(4n? + 12m+4)(Igab)u(3lgab).

By Theorem 11.5, Step 2 uskktime at mos{3m+ (2m+2)lga+Igb)p(lgab); this is
at most((2m+2)lga—+ (3m+1)lgb)u(lgab) since 1< Igb. Similarly, by Theorem 11.6,
Step 4 useM-time at most(2m+2)lga+ (3m+1)lgb)u(lgab).

Steps 7 through 12 are performed fof {1,2,...,m} at most, sincéy, =1 by Theorem
12.4.

The squaring ofy in Step 7 used$/-time at most(1+ 2Igg)u(21gg) per iteration. The
total across iterations is at mg@mlga+ migb)(21ga) sinceg dividesa.

By Theorem 11.6, the invocation of Algorithm 11.3 in Step 7 uSkme at most
(3m+(2m+2)Igh+Igg?)u(lghg?) per iteration, since? ! > Iga > Igh. The total across
iterations is at mostm(2m+ 4)Iga+ 3n?lgb)u(3lga) sinceg andh divide a.

Step 8 used-time at most(1+ Igab)p(lgab) per iteration since dividesa. The total
across iterations is at moghlga+ 2mligb)u(lgab).

Step 9 usebI-time at most{1+Igb)u(lgb) per iteration since the final value »tlivides
b. The total across iterations is at m@2migb)p(lgb).

Step 10 used-time at most(n — 1+ 2(2"~1 — 1)Igd)u(2"tlgd) by Theorem 10.2;
this is at most2Iga+ migb)u(lga) since 2-tlgd < Iga. The total across iterations is at
most(2miga+ n?igb)u(lga).

The division in Step 11 uséd-time at most1+Iga)u(lga) per iteration since divides
a. The total across iterations is at m@stiga-+ migb)u(lga).

The division in Step 13 uséd-time at most{1+Igb)u(lgb) < (2lgb)u(lgb).

The grand total is at mogi3Igab) times(2m? 4 14m+4)Iga+ (4nm? +12m+4)lgb <
(4P 4-12m+4)lga+ (4m? + 12m+ 4)Igb = (4m? + 12m+ 4)Igab as claimed. O

Theorem 13.4. Algorithm 13.2 computesb{a, b} in M-time at mos8m(n? + 3m+1) -
(lgab)u(3lgab) if m> 1 and2™1 > Igab.

Proof. A(a,b) < 2mby Theorem 9.3. O
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PART IIl. FINITE SETS
14. Computingprod

The following algorithm is the standard way to compute Bodessentially linear time.
See [7, Section 12] for credits.

Algorithm 14.1. Given a finite se§, to print prods.

If S= {}: Print 1. Stop.

If #£S= 1: Finda € S. Printa. Stop.

SelecfT C Swith #T = |#S/2].

ComputeX < prodT by Algorithm 14.1 recursively.
ComputeY — prodS—T) by Algorithm 14.1 recursively.
PrintXY.

ogh~wdE

Theorem 14.2. Algorithm 14.1 computgsrodS in M-time at most#S— 1+ mlgprodsS) -
H(lgprods) if 2M > #S> 1.

Proof. Induct onm.

Case 1: £= 1. Algorithm 14.1 uses nbl-time; and &— 1+ mlgprodS> 0.

Case 2: 8> 2. Thenm> 1. Now #T = |#S/2|, so #T < 2™l and #S—T) < 2m1,
In Steps 4 and 5, by induction, Algorithm 14.1 usdégime at most

(#T — 14 (m—1)IgprodT )p(lgprodT)
+#S—T)—1+(m—1)lgprodS—T))u(lgprodS—T))
< (#S—2+ (m—1)IgprodS)p(lg prodS)

since Igprod + IgprodS— T) = IgprodS. In Step 6, Algorithm 14.1 uselsl-time at
most(1-+IgprodS)u(lgprodS). Add: #S— 2+ (m—1)IgprodS+ 1+ IgprodS=#S— 1+
mig prodS. O

15. Thesplitfunction

Define splita, P) = {(p, ppi(a, p)) : p € P} whenP is coprime. This section presents a
fast algorithm to compute spld, P). See Sections 16 and 21 for applications.

Theorem 15.1. Let b be an element of a free coid H. Let P be a finite coprime subset of
H. Then b= ppoa(b, prodP) [ cp PPi(b, p).

Proof. Write x = prodP. | will show that org,b = ordy ppa(b, X) + ¥ ,cp ordy ppi(b, p) for
every primeg: one of the terms on the right side is glxwhile the others are all 0.

Case 1q divides somep € P. Then ordx > 0 so orgppa(b,x) =0, and ordp > 0
so org,ppi(b, p) = ordyb. If p’ € P with p’ # p thenp' is coprime top by hypothesis, so
ordy p' =0, so ord ppi(b, p’) = 0.
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Case 2r does not divide anp € P. Then ord p= 0 so org ppi(b, p) = 0. Also orgyx =
0, so ord ppa(b, x) = ordyb. O

Theorem 15.2. Let a be an element of a free coid H. Let P be a finite coprime subset of
H. Define b= ppi(a,prodP). Thensplit(a, P) = split(b,P), and split(a,P) = {(p,b)} if
P={p}.

Proof. Fix p € P. If gis a prime then orgb = (ordya)[ordq prodP > 0] so org,ppi(b, p) =
(ordya)[ordyprodP > O][ordy p > 0] = (ordqa)[ordy p > 0] = ordyppi(a, p). Therefore
ppi(a, p) = ppi(b, p).

If P={p} then prod® = p sob = ppi(a, p) so splifa,P) = {(p,b)}. m

Algorithm 15.3. Given(a,P) with P coprime, to print splita, P):

If P={}: Stop.

Computeb < ppi(a, prodP) by Algorithm 14.1 and Algorithm 11.3.
If #P = 1. find p € P, print (p,b), and stop.

SelecQ C P with #Q = [#P/2].

Print splitb, Q) by Algorithm 15.3 recursively.

Print splitb, P — Q) by Algorithm 15.3 recursively.

oghs~wWNE

Theorem 15.4. Write x= prodP and b= ppi(a, x). Algorithm 15.3 computesplit(a, P)
in M-time at mos{((2k+ 4)(lga+ 2mlgb) + w lgx+ (6k+ m+5)#P — 3k —2) -
u(lgax) ifk > 0, 2¢ > Iga, and2™ > #P > 1.

Proof. Induct onm.

Step 2 usedM-time at most(#P — 1+ mlgx)u(lgx) to computex by Theorem 14.2,
andM-time at mos{(3k+ 3+ (2k+4)lga+Ilgx)pu(lgax) to computeb by Theorem 11.5. |
claim that the rest of Algorithm 15.3 uskbktime at mos{2k+4)(2migb) + m(Terl) lgx+
(6k+ m-+ 4)#P — 6k — 4 timesp(lgax).

Case 1: £ = 1. Then Algorithm 15.3 stops in Step 3, so there is no additibhéime;
and(2k+4)(2migb) + m lgx+ (6Kk+ m+4)#P — 6k — 4 > 0 sincem > 0.

Case 2: P > 2. Writey = prodQ andz = prodP — Q). Theny is coprime toz, so

b = ppa(b,yz) ppi(b,y) ppi(b,z) by Theorem 15.1; hence Iggpiy) + Igppi(b,z) < Igb.
By induction, Step 5 usdd-time at most

m(m+1)

(2k+4)(Igb+2(m—1)Igppi(b,y)) + >

lgy+ (6k+m+4)#Q —3k—2

timesp(lgby) < p(lgax), and Step 6 usdd-time at most

m(m+1)

(2k+4)(Ilgb+2(m—1)lg ppi(b,z)) + lgz+ (6k+m+4)#(P—Q) —3k—2

timesy(lgbz) < p(lgax), so Steps 5 and 6 together udetime at most

(2k+4)(2Igb+2(m—1)Igb) + m(m+1)

5 19X+ (6k+ M 4)#P — 6k — 4
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timesp(lgax) as claimed. m

16. Extending a coprime base

Algorithm 16.2 finds cbPU {b}) whenP is coprime.

Bach, Driscoll, and Shallit considered this problemin [2, page 21y Tised elements
of P = {po, p1,...} one at a time: factob and pp into coprimes, all of which dividgy
except for a divisob; of b; then factorb; and p; into coprimes, all of which dividep;
except for a divisoby of by; and so on. This strategy inherently takes quadratic time.

Algorithm 16.2 instead uses Algorithm 15.3 to quickly fackointo one part for each
element o and one remaining part; see Theorem 15.1. Algorithm 16.2 then reaealdd
part independently.

Theorem 16.1.Let b be an element of a free coid H. Let P be a finite coprime subset of H.
Define x= prodP. For each pe P define Q = cb{ p, ppi(b, p) }. Define R= cb{ppa(b,x)}.
Then Q= UQy is a disjoint union; QJR is a disjoint union; and Q@ R= cb(PU {b}).

Proof. If p and p’ are distinct elements d? then p is coprime top’ so pppi(b, p) is
coprime top’ ppi(b, p'). ThusQp andQy are disjoint, and) is a coprime set.

If p € P thenp dividesx so bothp and ppib, p) are coprime to ppd, x). ThusQ and
R are disjoint, andQURis a coprime set.

The coid generated YUR contains eaclp € P (via Qp). It also contains each (i, p)
and ppdb, x), henceb by Theorem 15.1.

Naturalness follows from Theorem 7.3. O

Algorithm 16.2. Given (P,b) with P coprime, to print cbPU {b}):
If P={}: Printbif b+ 1. Stop.

Computex < prodP by Algorithm 14.1.

Computea, r) < (ppi, ppo) (b, x) by Algorithm 11.3.
Printr if r # 1.

ComputeS + split(a, P) by Algorithm 15.3.

For each{p,c) € S: Apply Algorithm 13.2 to(p,c).

oA~ wWNPE

Theorem 16.3. Write x= prodP. Algorithm 16.2 computeh(PU {b}) in M-time at most
(8m?® + 28m? + 18m+-4) (Igbx)u(3Igbx) if 1¢ P, m> 1, and2™ 1 > Igbx.

Proof. If P = {} then Algorithm 16.2 uses nd-time; and(8m®+ 287 +18m-+4) lgbx >
0. So assume thafP%> 1. Note that # < Igx < 21 since 1¢ P.

By Theorem 14.2, Step 2 tak&time at most{#P — 1+ migx)pu(lgx).

By Theorem 11.5, Step 3 tak&ttime at most{3m+ (2m—+ 2) Igb -+ Igx)p(lg bx).

By Theorem 15.4, Step 5 také&-time at mostu(lgbx) times(2m+2)(2m+1)Igb+
$(m+1)(m+2)lgx+ (7m— 1)#P — 3m+ 1.

By Theorem 13.4, the application of Algorithm 13.2(fm c) in Step 6 take$/-time at
most 8n(m? +3m+ 1)(Igcp)u(3lgcp). The product ot’s dividesb by Theorem 15.1, so
the sum of I pis at most Idx.
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Add:

#P — 1+ mlgx+ 3m+ (2m+2)Igb+Igx
+(2m+2)(2m+1)Igb+ £ (m+1)(m+2)Igx+ (7m— 1)#P — 3m+ 1
+8m(m? + 3m+ 1) (Igbx)
= (8m3 + 287 + 16m-+4)Igb -+ (8m3 4 24.5m? + 10.5m+ 2) Ig X+ 7miP
< (8m3+ 287 + 16m+4) Igb + (8m® + 24.5m? + 17.5m+ 2) Ig X
< (8m3+ 287 + 18m+4) Igbx.

17. Merging coprime bases

Algorithm 17.3 finds cbPU Q) if P is coprime and) is coprime.

This algorithm combines an old idea with a new idea. The old idea is t@ kith
one element of) at a time. For example, ¢BU {qo,01,02,03}) can be computed as
ch(cb(cb(cb(PU{qo})U{a1}) U{az}) U{as}) with four applications of Algorithm 16.2.
This is how Bach, Driscoll, and Shallit computeQ@lfor arbitrary set®) in [2, page 211];
this idea does not nedg@to be a coprime set.

The problem with the old idea is that it inherently takes quadratic tim&ifs#arge.
The new idea is to first replac@ with a new set that has far fewer elements butQas
its natural coprime base. See Theorem 17.1. The new set takespamethalQ), but the
expansion is only logarithmic.

Define bitk, wherei andk are nonnegative integers, as ttrebit in k's binary expansion.
In other words, writék as ¥ i~ 2' bitj k with bitk € {0, 1}.

Theorem 17.1.Let i, qq, . ..,0n—1 be distinct elements of a free coid, withapprime to
ok for j #k. Let b> 1 be an integer witl2® > n. Define xe,i) = prod{qgx : bittk=€}. If a

coprime set P is a base fdx(0,0),x(0,1),...,x(0,b—1),x(1,0),x(1,1),...,x(1,b—1)}

then it is a base fofqo,...,0n-1}-

Proof. If j,ke {0,1,...,n—1} satisfy bitk=bit; j foralli € {0,1,...,b— 1} thenj =k.
Thus
ged{x(bit; j,i) : 0<i < b}

_ gcd{ Mo =240 <i < b} by definition ofx
_ l_lquﬂn{[biti k=bitj j]:0<i<b} by Theorem 6.6
= I'qu|[<k:” =q;j.
HenceP is a base fon; by Theorem 7.2. O

Theorem 17.2.Let H be a free coid. Let P be a finite coprime subset of H. ket q gn—1
be distinct elements of H, withy goprime to ¢ for j # k. Let b> 1 be an integer with
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2° > n. Define Xe,i) = prod{qy : bit;k = }. Define

Then % = Cb(PU {q07 q17 te aCIn—l})-

Proof. § is a base foPU {x(0,0),x(0,1),...,x(0,b—1),x(1,0),x(1,1),...,x(1,b—1)}
and is coprime. By Theorem 17.9, is a base foPU{qp, . ..,0n—1}. Naturalness follows
from Theorem 7.3. O

Algorithm 17.3. Given(P,Q), with P coprime andQ coprime, to print cbPUQ):
Setn = #Q. Label the elements @ asqp,qs1,...,qn_1-

Find the smalleds > 1 with 2° > n. SetS«— P. Seti — 0.
(NowS=§.) If i = b: PrintS. Stop.

Computex < prod{ gk : bitjk = 0} by Algorithm 14.1.

Computel «— cb(SuU {x}) by Algorithm 16.2.

Computex — prod{gx : bitik = 1} by Algorithm 14.1.

ComputeS«— cb(T U {x}) by Algorithm 16.2.

Seti — i+ 1. Return to Step 3.

NGOk wWDNE

Theorem 17.4. Write z= (prodP)(prodQ)?. Algorithm 17.3 computesb(PU Q) in M-
time at mos2m(8m? + 2807 + 19m+4)(Ig2)u(31g2) if 1 ¢ P, m> 1, and2™ 1 > Igz.

Proof. Write n = #Q. Thenn—1 < IgprodQ < Igz< 2™1 son< 1+ 2™1 <2M so
b < min Step 2. Thus there are at masiterations of Steps 4 through 7.

By Theorem 7.5, pro8and prodr divide (prodP)(prodQ); also,x divides prodQ. Thus
Step 5 and Step 7 each ubktime at most(8m® 4 2817 + 18m+ 4)(Ig2)u(3lgz) per
iteration by Theorem 16.3. Step 4 and Step 6 eachMigiene at mostm(lgz)p(lgz) by
Theorem 14.2. The total is at most82® + 28m? + 19m+ 4)(Ig2)u(31gz) per iteration.

L]

18. Computing a coprime base for a finite set

Algorithm 18.1 computes the natural coprime base for any finite subsdt®e coid. It
uses Algorithm 17.3 to merge coprime bases for halves of the set.

Algorithm 18.1. GivenS§, to print cbS
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If S={}: Stop.

If #S=1: Finda € S Printa if as# 1. Stop.

Selecfl C Swith #T = [#S/2].

ComputeP «— cbT by Algorithm 18.1 recursively.
ComputeQ < cb(S—T) by Algorithm 18.1 recursively.
Print ciPU Q) by Algorithm 17.3.
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Theorem 18.2. Write x= prodS. Algorithm 18.1 compute&bS in M-time at most
Amk(8m® + 287 + 19m+ 4) (Igx)u(61gx)
ifm>1,2™1> 2|gx, and2¢ > #S> 1.

Proof. If #S= 1 then Algorithm 18.1 uses nd-time. Otherwise, by induction ok Step
4 usesM-time at most M(k — 1)(8m? + 287 + 19m+ 4) (Ig prodT )(61gx), and Step 5
usesM-time at most a(k — 1)(8m> + 28mP + 19m+ 4)(Igprod(S— T))u(61gx). Step 6
usesM-time at most 2n(8m?> + 28m? + 19m+ 4)(21gx)u(61gx) by Theorem 17.4. Add.
0

PART IV. FACTORIZATION
19. Thereducefunction

Let p anda be elements of a free coid, with # 1. Define reducg,a) = (i,a/p'),
wherei is the largest integer such thaltdividesa.

Algorithm 19.2 computes reduge a). It is a simplified version of one of the algorithms
that | outlined in [6, Section 22].

Theorem 19.1. Let p a be elements of a free coid, with#41. Assume that p divides a.
Define(j,b) =reducép?,a/p). If p divides b themeducép,a) = (2j +2,b/p). Otherwise
reducép,a) = (2j +1,b).

Proof. a/p = (p?)!b, with p? not dividing b, by definition of(j,b). If p dividesb then
a= p?I*2(b/p), with p not dividingb/p, so reducép,a) = (2j +2,b/p). Otherwisea =
p?+1b, with p not dividingb, so reducép,a) = (2j + 1,b). O

Algorithm 19.2. Given(p,a) with p # 1, to print reducép, a):
1. If pdoes not dividea: Print (0,a) and stop.
2. Computg j,b) < reducép?,a/p) by Algorithm 19.2 recursively.
3. If pdividesb: Print(2j + 2,b/p) and stop.
4. Print(2j+1,b).

Theorem 19.3. Write (i,c) = reducép,a). Algorithm 19.2 compute§, ¢) in M-time at
most(4k — 3)(1+Igap)u(lgap) if 2 > i+ 1.
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Proof. Induct onk. Note thatk > 1 since > i+2 > 2.

Case 1i = 0. Algorithm 19.2 useM-time at most{1+Igap)u(lgap) in Step 1; it then
stops, since does not divide. Also 4k— 3> 1.

Case 2i > 0. Thenj < (i—1)/2in Step 2sg +1 < (i +1)/2 < 21, By induction,
the recursive call in Algorithm 19.2 us&&-time at most{4k —7)(1+Ilgap)u(lgap). The
algorithm also useM-time at most(1+ Igap)u(lgap) for the divisibility test in Step 1,
(1+1g p?)u(lg p?) for the computation op? in Step 2,(1+Iga)u(lga) for the computation
of a/pin Step 2,(1+Igbp)u(lgbp) for the divisibility test in Step 3, anL+ Igb)u(lgb)
for the division in Step 3, if that division happens. The total is at npdkfap) times
(4k—3)(1+Igap) +2lgb—2lga+ 1; and 2Ip— 2Ilga+ 1 < 2lg(a/p) — 2lga+ 1 =
1-2lgp<O0sincelgp> 1. O

20. Factoring over a coprime base

Letabe an element of a free coid, andReibe a finite coprime set with¢ P. Algorithm
20.1 factorsa as a product of powers of elementsPif possible; otherwise it proclaims
failure. Algorithm 20.1 prints the factorization efas a list of pairgp,n) meaningp"
wherep € P.

The conventional approach to this problem, as in [2, Theorem 7], isvridetk by one
element ofP at a time. This approach inherently takes quadratic time. What | do instead
Is separata into two pieces for two halves d¢?, and then handle each piece recursively,
as in Algorithm 15.3.

Algorithm 20.1. Given (a,P), with P coprime and ¥ P, to print the factorization o&
overP:

=

If P={}: Proclaim failure ifa # 1. Stop.

If #P = 1: Find p € P. Compute(n,c) < reducé¢p,a) by Algorithm 19.2. If
¢ # 1, proclaim failure and stop. Otherwise pr{it n) and stop.

SelecQ C P with #Q = |#P/2].

Computey <+ prodQ by Algorithm 14.1.

Computgb,c) < (ppi,ppo)(a,y) by Algorithm 11.3.

Apply Algorithm 20.1 to(b, Q) recursively. If Algorithm 20.1 fails, proclaim
failure and stop.

7. Apply Algorithm 20.1 ta(c, P— Q) recursively. If Algorithm 20.1 fails, proclaim
failure and stop.

N

oA W

Theorem 20.2. Let H be a free coid. Let P be a finite coprime subset of H wighP. Let
a be an element of H. If P is a base f} then Algorithm 20.1 prints the factorization of
a over P. Otherwise Algorithm 20.1 proclaims failure.

Proof. Induct on #.
Case 1:P = {}. Algorithm 20.1 correctly proclaims failure fax # 1, and correctly
prints nothing fora = 1.
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Case 2P = {p}. If Algorithm 20.1 does not proclaim failure, then it prints, n); and
a/p" =c=1soa= p". Conversely, ifa= p" for somen, then Algorithm 19.2 returns
(n,1), so Algorithm 20.1 does not proclaim failure.

Case 3: # > 2. SayP is a base fof{a}. P is also a base fofy}, soP is a base for
{b,c} by Theorem 7.2. Ifp ¢ Q thenp is coprime toy so p is coprime tob; thusQ is a
base for{b}. Similarly P — Q is a base fofc}. By induction, Algorithm 20.1 prints the
factorizations ob andc into elements ofQ andP — Q respectively, which together form a
factorization ofa sincebc = a; and Algorithm 20.1 does not proclaim failure.

Conversely, if Algorithm 20.1 does not proclaim failure, tHeis a base fofb,c} by
induction, hence fofa}. ]

Theorem 20.3. Write x= prodP. Algorithm 20.1 finishes in M-time at mogtgax) times
(4K — 3+ m(2k+4)) lga+ (4k—3+ m> g+ (Tk—1+ g) P — 3k—2

if 2" > #P > 1and2X > Iga+ 1.

Proof. Induct onm.
Case 1P = {p}. The claimed bound is at least

((4k—3)lga+ (4k—3)lgx+ 7k —1— 3k —2)p(lgax) = (4k—3)(1+Igap)u(lgap)

sincem > 0. Step 2 useb!-time at most4k — 3)(1+ Igap)pu(lgap) by Theorem 19.3.
Case 2: # > 2. Thenm> 1, 21 > #Q > 1, and 2*! > #(P - Q) > 1. Definey =
prodQ andz = prod P — Q). Also write T = 4k— 3+ (m—1)(2k+4) andU = 4k — 3+
(m—1)m/2.
By Theorem 14.2, Step 4 uskbtime at most

(#Q— 1+ (m—1)lgy)u(lgy) < (3#P— 1+ (m—1)Igx) u(lgx)

since #) < 3#P and Igy < Igx.

By Theorem 11.5, Step 5 usk&time at most(3k+ 3+ (2k+4)lga+ Igx)p(lgax).

Step 6 usedl-time at most(T Igb+ U Igy+ (7k— 1+ 3(m—1))#Q — 3k — 2) p(Ig by),
and Step 7 at moT Igc+U Ilgz+ (7k— 1+ 3(m—1))#(P— Q) — 3k— 2)u(lgc2), by
induction.

The total is at mogt(lgax) times

(3#P — 1+ (m—1)Igx) + (3k+ 3+ (2k+4)Iga+Igx)
+(Tlga+Ulgx+ (7k— 14 3(m—1)) #P —6k—4),

which equals the claimed bound. O
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21. Factoring a set over a coprime base

Let Sbe a finite set, and l&? be a finite coprime set with ¢ P. Algorithm 21.2 factors
each elemerd € SoverP if P is a base fof5, otherwise it proclaims failure.
The conventional approach to this problem, as in [2, Theorem 7], iparately factor

each element o8. This approach inherently takes quadratic time. What | do instead is

factor one number, prd§ to identify the relevant elements Bf then | splitSinto two
parts to handle separately.

Theorem 21.1. Let S be a finite subset of a free coid. Let P be a finite coprime base for S

with 1 ¢ P. Define x= prodP, y= prodS, z= ppi(x,y), and Q= {p € P: ppi(z p) = p}.
Then Q is a base for S, and each element of Q divides y.

Proof. Take anyp € P that divides some element &f If g is a prime dividingp thenq
dividesy so ordyz = ordyx so org,ppi(z p) = ordyx = ordy p; if qis a prime not dividing
p then ord ppi(z, p) = 0= ordy p. Thus ppiz, p) = p; i.e., p€ Q. ThusQ is a base fofs.
Now write y as a product1gz- - - 0 whereqs, 0z, ...,0s € Q. If p € P does not divide
y, thenp ¢ {Q1,02,...,0n}, SO p is coprime toqs,dp, . ..,0n, hence toy. Find a primeq
dividing p; then or¢y = 0, so ordz= 0, so ordppi(z p) = 0 # ordy p, sop ¢ Q. Thus
each element o dividesy. O

Algorithm 21.2. Given(S P), with P coprime and ¥ P, to print the factorization of each
element ofSoverP:
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If S= {}: Stop.

Computex < prodP by Algorithm 14.1.

Computey <+ prodShby Algorithm 14.1.

Computez < ppi(x,y) by Algorithm 11.3.

ComputeD « split(z, P) by Algorithm 15.3.

ComputeQ < {p€ P: (p,p) € D}. (Now Q contains only the elements &f
that are relevant t§, by Theorem 21.1.)

If #S= 1: Apply Algorithm 20.1 to(y, Q), proclaiming failure if Algorithm 20.1
fails. Stop.

SelecfT C Swith #T = |#S/2].

Apply Algorithm 21.2 to(T, Q) recursively.

Apply Algorithm 21.2 toS— T, Q) recursively.

Theorem 21.3. Write x= prodP and y= prodS. Assume that P is a coprime base for S.
Then Algorithm 21.2 finishes in M-time at mogigx®y) times

3m+ 3+ (6k+ 6)(#S— 1) + (4.5m? + 21.5m+ 15) Igx
+ ((9K? + 44k + 32)n+ 2.5k? + 21k — 5)Igy

if 2" >#S>1, 2> Igy+1, 2™ > Igx, and m> 0.
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Proof. Induct onn. Note that &— 1 < Igy. Similarly #? < Igx since 1¢ P, and #) <
lgprodQ < Igy by Theorem 21.1. Write = ppi(X,y).

Step 2 used/-time at most(m+ 1)(Igx)u(lgx). This follows from Theorem 14.2 for
#P > 1. (For #P = 0, Algorithm 14.1 uses nM-time.) Similarly, Step 3 uselsl-time at
most(k+1)(lgy)u(lgy).

Step 4 useM-time at most{3m+ 3+ (2m+4)lgx+ lgy)u(lgxy) by Theorem 11.5.

Step 5 used-time less than4.5m? + 18.5m+- 10)(Igx)u(lgx?). This follows from
Theorem 15.4 forB > 1, since Ig < Igx. (For #2 = 0, Algorithm 15.3 uses nbl-time.)

The total so far is at mogBm+ 3+ (4.5m? + 21.5m+ 15) lgx+ (k+ 2) Igy)u(lg x2y),
which is exactly((6k+ 6) (#S— 1) + ((9k?+ 44k + 32)n+ 2.5k? + 20k — 7) Igy) H(Igx?y)
below the claimed bound.

Case 1: 8= 1. Then Step 7 used-time at most2.5k? 4 20k — 7) Igy timesp(lg x%y).
This follows from Theorem 20.3 for@> 1, since 5> #Q. (For #Q = 0, Algorithm 20.1
uses ndvi-time; note that Bk? + 20k — 7 > 0 sincek > 1)

Case 2: $> 2. Then Step 9 uséd-time at mosi(Igx?y) times

3k+ 3+ (6k+6)(#T — 1) + (4.5k? 4-21.5k+ 15) Igy
+ ((9K? + 44k +32)(n— 1) + 2.5k* + 21k — 5) Ig prodT

by induction since 2> IgprodQ. Similarly, Step 10 usel-time at mos(lg x2y) times

3K+ 3+ (6k+6)(#(S—T) — 1) + (4.5k*+ 215k + 15) Igy
+ ((9K? + 44k +32)(n— 1) + 2.5k* + 21k — 5) Ig prodS—T).

Add. O
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