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1 Introduction

“NaCl” (pronounced “salt”) is the CACE Networking and Cryptography library,
a new easy-to-use high-speed high-security public-domain software library for
network communication, encryption, decryption, signatures, etc. Of course, other
libraries already exist for these core operations; NaCl advances the state of the
art by improving security, by improving usability, and by improving speed.

The most fundamental operation in a cryptographically protected network
protocol is public-key authenticated encryption. The sender, Alice, has a
packet of data to send to the receiver, Bob. Alice scrambles the packet using
her own secret key and Bob’s public key. Bob unscrambles the packet using his
secret key and Alice’s public key. An attacker monitoring the network is unable
to understand the scrambled packet; an attacker modifying network packets is
unable to change the packet produced by Bob’s unscrambling.

With typical cryptographic libraries, public-key authenticated encryption
takes several steps. Here is a typical series of steps:

• Generate a random AES key.
• Use the AES key to encrypt the packet.
• Hash the encrypted packet using SHA-256.
• Read Alice’s RSA secret key from “wire format.”
• Use Alice’s RSA secret key to sign the hash.
• Read Bob’s RSA public key from wire format.
• Use Bob’s public key to encrypt the AES key, hash, and signature.
• Convert the encrypted key, hash, and signature to wire format.
• Concatenate with the encrypted packet.

NaCl provides a high-level function crypto_box that does everything in one step,
converting a packet into a boxed packet that is protected against espionage and
sabotage. Programmers can use lower-level functions but are encouraged to use
crypto_box.

In particular, crypto_box_curve25519xsalsa20poly1305 is a specific high-
speed high-security combination of the Curve25519 elliptic-curve-Diffie–Hellman
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function, the Salsa20 stream cipher, and the Poly1305 message-authentication
code. This combination is designed for universal use and is shipped in NaCl as
the default definition of crypto_box.

This document specifies exactly what this combination does: i.e., exactly
how the boxed packet produced by crypto_box_curve25519xsalsa20poly1305
relates to the inputs. The specification is expressed as a step-by-step procedure
for Alice to encrypt and authenticate a packet; NaCl might compute the boxed
packet in a different way but produces exactly the same results. Three of the
steps are packet-independent precomputation:
• Section 2: Alice creates a 32-byte secret key a and a 32-byte public key A.

These keys can be reused for other packets to Bob, for packets to other
receivers, and for packets sent back from the receivers.

• Section 2, continued: Bob creates a 32-byte secret key b and a 32-byte public
key B. These keys can be reused for other packets from Alice, for packets
from other senders, and for packets sent back to the senders.

• Section 5: Alice, using Alice’s secret key a and Bob’s public key B, computes
a 32-byte secret k. Bob can compute the same secret using Bob’s secret key
b and Alice’s public key A.

The remaining three steps are specific to one packet:
• Section 7: Alice, using a 24-byte nonce (unique packet number) n that will

never be reused for other packets to (or from) Bob, expands the shared secret
k into a long stream of secret bytes. Bob, given the nonce, can compute the
same stream.

• Section 9: Alice uses the long stream, except for the first 32 bytes, to encrypt
the packet m.

• Section 9, continued: Alice uses the first 32 bytes of the long stream to
compute an authenticator of the encrypted packet.

Each section includes security notes and pointers to the relevant literature.
This document also contains, in Sections 3, 4, 6, 8, and 10, a complete step-by-

step example to illustrate the specification. The intermediate results are printed
by various C NaCl programs shown here.

This document also contains several tests showing that C NaCl is producing
the same results as independent programs in other languages. Some of the tests
rely on scripts using the Sage computer-algebra system [20], and some of the
tests rely on Python scripts contributed by Matthew Dempsky. This document
can be used as a starting point for more comprehensive NaCl validation and
verification.

In this document, a byte is an element of {0, 1, . . . , 255}. NaCl works with
all keys, packets, etc. as strings of bytes. For example, the set of 32-byte strings
is the set {0, 1, . . . , 255}32.

2 Secret keys and public keys

Alice’s secret key is a string a ∈ {0, 1, . . . , 255}32. Alice’s public key is a string
Curve25519(ClampC(a), 9) ∈ {0, 1, . . . , 255}32. Similarly, Bob’s secret key is a



string b ∈ {0, 1, . . . , 255}32, and Bob’s public key is Curve25519(ClampC(b), 9) ∈
{0, 1, . . . , 255}32.

This section defines the functions ClampC and Curve25519 and the constant
9. Many of the definitions here are copied from [8, Section 2]; in particular,
Curve25519 here is the same as the Curve25519 function defined in [8].

Section 3 gives an example of a secret key and corresponding public key that
Alice might choose. Section 4 gives an example of a secret key and corresponding
public key that Bob might choose. These examples are reused in subsequent
sections.

The base field and the elliptic curve. Define p = 2255 − 19. This integer is
prime:

sage: p=2^255-19
sage: p.is_prime()
True

Define Fp as the prime field Z/p = Z/(2255− 19). Note that 2 is not a square in
Fp:

sage: p=2^255-19
sage: k=GF(p)
sage: k(2).is_square()
False

Define Fp2 as the field (Z/(2255−19))[
√

2]. Define a2 = 486662. Note that a2
2−4

is not a square in Fp:

sage: p=2^255-19
sage: k=GF(p)
sage: a2=486662
sage: (k(a2)^2-4).is_square()
False

Define E as the elliptic curve y2 = x3 + a2x
2 + x over Fp, and define E(Fp2)

as the group of points of E with coordinates in Fp2 . Readers not familiar with
elliptic curves can find a self-contained definition of E(Fp2) in [8, Appendix A].

Define X0 : E(Fp2)→ Fp2 as follows: X0(∞) = 0; X0(x, y) = x.

The Curve25519 function. Write s 7→ s for the standard little-endian bi-
jection from

{
0, 1, . . . , 2256 − 1

}
to {0, 1, . . . , 255}32. In other words, for each

integer s ∈
{

0, 1, . . . , 2256 − 1
}

, define

s = (s mod 256, bs/256c mod 256, . . . ,
⌊
s/25631

⌋
mod 256).

For example, the constant 9 is (9, 0, 0, . . . , 0) ∈ {0, 1, . . . , 255}32.
The set of Curve25519 secret keys is, by definition, {0, 8, 16, 24, . . . , 248}×

{0, 1, . . . , 255}30 × {64, 65, 66, . . . , 127}. If n ∈ 2254 + 8
{

0, 1, 2, 3, . . . , 2251 − 1
}



then n is a Curve25519 secret key; and every Curve25519 secret key can be
written as n for a unique n ∈ 2254 + 8

{
0, 1, 2, 3, . . . , 2251 − 1

}
.

Now the function

Curve25519 : {Curve25519 secret keys} × {0, 1, . . . , 255}32 → {0, 1, . . . , 255}32

is defined as follows. Fix an integer n ∈ 2254 + 8
{

0, 1, 2, 3, . . . , 2251 − 1
}

and an
integer q ∈

{
0, 1, . . . , 2256 − 1

}
. By [8, Theorem 2.1] there is a unique integer

s ∈
{

0, 1, . . . , 2255 − 20
}

such that X0(nQ) = s for all Q ∈ E(Fp2) such that
X0(Q) = q mod 2255 − 19. Finally, Curve25519(n, q) is defined as s.

The ClampC function. The function

ClampC : {0, 1, . . . , 255}32 → {Curve25519 secret keys}

maps (a0, a1, . . . , a30, a31) to (a0− (a0 mod 8), a1, . . . , a30, 64+(a31 mod 64)). In
other words, ClampC clears bits (7, 0, . . . , 0, 0, 128) and sets bit (0, 0, . . . , 0, 0, 64).

Specialization of Curve25519 for secret keys. Note that 93 + a2 · 92 + 9 =
39420360:

sage: a2=486662
sage: 9^3+a2*9^2+9
39420360

If n ∈ 2254 + 8
{

0, 1, 2, 3, . . . , 2251 − 1
}

then Curve25519(n, 9) = s, where s is
the unique integer in

{
0, 1, . . . , 2255 − 20

}
such that X0(n(9,±

√
39420360)) = s.

Consequently, if Alice’s secret key a satisfies ClampC(a) = n, then Alice’s public
key is s.

The range of n implies that n(9,±
√

39420360) 6=∞, so ∞ could be omitted
from the definition of X0 for purposes of computing secret keys. However, Alice
also applies Curve25519 to network inputs, as discussed in subsequent sections,
and there are several ways that attacker-chosen inputs can lead to the ∞ case.

ECDLP security notes. The following notes assume additional familiarity
with elliptic curves.

Write Q = (9,
√

39420360). The choice of square root is not relevant here.
This point Q is in the subgroup E(Fp) of E(Fp2):

sage: p=2^255-19
sage: k=GF(p)
sage: k(39420360).is_square()
True

Furthermore, Q has p1th multiple equal to ∞ in E(Fp), where p1 is the prime
number 2252 + 27742317777372353535851937790883648493:

sage: p=2^255-19
sage: k=GF(p)
sage: p1=2^252+27742317777372353535851937790883648493



sage: p1.is_prime()
True
sage: E=EllipticCurve([k(0),486662,0,1,0])
sage: Q=[k(9),sqrt(k(39420360))]
sage: p1*E(Q)
(0 : 1 : 0)

Consequently all multiples of Q are in the subgroup of E(Fp) of order p1.
If Alice’s secret key a is a uniform random 32-byte string then ClampC(a) is

a uniform random Curve25519 secret key; i.e., n, where n/8 is a uniform random
integer between 2251 and 2252− 1. Alice’s public key is nQ compressed to the x-
coordinate (as recommended in [17, page 425, fourth paragraph] in 1986). Note
that n is not a multiple of p1; this justifies the statement above that nQ 6=∞.

The problem of finding Alice’s secret key from Alice’s public key is exactly
the elliptic-curve 251-bit-discrete-logarithm problem for the subgroup of E(Fp)
of order p1 ≈ 2252. The curve E meets all of the standard security criteria, as
discussed in detail in [8, Section 3]. The fastest known attacks use, on average,
about 2125 additions in E(Fp), and have success chance degrading quadratically
as the number of additions decreases.

It is standard in the literature to restrict attention to uniform random secret
keys. What if the key distribution is not uniform? The answer depends on the
distribution. For example, a key derived from an 8-byte string can be found by
brute-force search in roughly 264 operations; and a key derived in an extremely
weak way from a 16-byte string, for example by concatenating a 16-byte public
constant, can also be found in roughly 264 operations. On the other hand, it
is easy to prove that slightly non-uniform keys have essentially full security.
Furthermore, I am not aware of any feasible attacks against 32-byte keys of
the form (s, MD5(s)), where s is a uniform random 16-byte string; none of the
weaknesses of MD5 seem relevant here. Constructions of this type allow secret-
key compression and might merit further study if there are any applications
where memory is filled with secret keys.

3 Example of the sender’s keys

The following program uses C NaCl to compute the public key corresponding to
a particular secret key:

#include <stdio.h>
#include "crypto_scalarmult_curve25519.h"

unsigned char alicesk[32] = {
0x77,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d

,0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45
,0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a
,0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x2a
} ;



unsigned char alicepk[32];

main()
{

int i;
crypto_scalarmult_curve25519_base(alicepk,alicesk);
for (i = 0;i < 32;++i) {

if (i > 0) printf(","); else printf(" ");
printf("0x%02x",(unsigned int) alicepk[i]);
if (i % 8 == 7) printf("\n");

}
return 0;

}

The secret key bytes 0xc7,0x6e,... embedded into the program were copied
from output of od -t x1 /dev/urandom | head -2. The output of the program
is the corresponding public key:

0x85,0x20,0xf0,0x09,0x89,0x30,0xa7,0x54
,0x74,0x8b,0x7d,0xdc,0xb4,0x3e,0xf7,0x5a
,0x0d,0xbf,0x3a,0x0d,0x26,0x38,0x1a,0xf4
,0xeb,0xa4,0xa9,0x8e,0xaa,0x9b,0x4e,0x6a

The remaining sections of this document will reuse this example, assuming that
Alice’s keys are the particular secret key and public key shown here.

Testing: Sage vs. scalarmult_curve25519_base. A short Sage script clamps
Alice’s secret key shown above, converts the result to an integer n, computes
n(9,
√

39420360) in E(Fp), and checks that the resulting x-coordinate matches
the public key computed by C NaCl:

sage: sk=[0x77,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d
....: ,0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45
....: ,0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a
....: ,0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x2a]
sage: clampsk=sk
sage: clampsk[0]=clampsk[0]-(clampsk[0]%8)
sage: clampsk[31]=64+(clampsk[31]%64)
sage: n=sum(clampsk[i]*256^i for i in range(32))
sage: p=2^255-19
sage: k=GF(p)
sage: E=EllipticCurve([k(0),486662,0,1,0])
sage: s=lift((n*E([k(9),sqrt(k(39420360))]))[0])
sage: pk=[0x85,0x20,0xf0,0x09,0x89,0x30,0xa7,0x54
....: ,0x74,0x8b,0x7d,0xdc,0xb4,0x3e,0xf7,0x5a
....: ,0x0d,0xbf,0x3a,0x0d,0x26,0x38,0x1a,0xf4
....: ,0xeb,0xa4,0xa9,0x8e,0xaa,0x9b,0x4e,0x6a]



sage: s == sum(pk[i]*256^i for i in range(32))
True

Testing: Python vs. scalarmult_curve25519_base. This Python script, con-
tributed by Matthew Dempsky, includes self-contained Curve25519 functions
independent of the Sage implementation of elliptic curves:

P = 2 ** 255 - 19
A = 486662

def expmod(b, e, m):
if e == 0: return 1
t = expmod(b, e / 2, m) ** 2 % m
if e & 1: t = (t * b) % m
return t

def inv(x):
return expmod(x, P - 2, P)

# Addition and doubling formulas taken
# from Appendix D of "Curve25519:
# new Diffie-Hellman speed records".

def add((xn,zn), (xm,zm), (xd,zd)):
x = 4 * (xm * xn - zm * zn) ** 2 * zd
z = 4 * (xm * zn - zm * xn) ** 2 * xd
return (x % P, z % P)

def double((xn,zn)):
x = (xn ** 2 - zn ** 2) ** 2
z = 4 * xn * zn * (xn ** 2 + A * xn * zn + zn ** 2)
return (x % P, z % P)

def curve25519(n, base):
one = (base,1)
two = double(one)
# f(m) evaluates to a tuple
# containing the mth multiple and the
# (m+1)th multiple of base.
def f(m):

if m == 1: return (one, two)
(pm, pm1) = f(m / 2)
if (m & 1):
return (add(pm, pm1, one), double(pm1))

return (double(pm), add(pm, pm1, one))
((x,z), _) = f(n)



return (x * inv(z)) % P

def unpack(s):
if len(s) != 32:

raise ValueError(’Invalid Curve25519 argument’)
return sum(ord(s[i]) << (8 * i) for i in range(32))

def pack(n):
return ’’.join([chr((n >> (8 * i)) & 255) for i in range(32)])

def clamp(n):
n &= ~7
n &= ~(128 << 8 * 31)
n |= 64 << 8 * 31
return n

def crypto_scalarmult_curve25519(n, p):
n = clamp(unpack(n))
p = unpack(p)
return pack(curve25519(n, p))

def crypto_scalarmult_curve25519_base(n):
n = clamp(unpack(n))
return pack(curve25519(n, 9))

After this script the extra commands

sk=[0x77,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d
,0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45
,0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a
,0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x2a]

n=’’.join([chr(sk[i]) for i in range(32)])
pk=[0x85,0x20,0xf0,0x09,0x89,0x30,0xa7,0x54

,0x74,0x8b,0x7d,0xdc,0xb4,0x3e,0xf7,0x5a
,0x0d,0xbf,0x3a,0x0d,0x26,0x38,0x1a,0xf4
,0xeb,0xa4,0xa9,0x8e,0xaa,0x9b,0x4e,0x6a]

s=’’.join([chr(pk[i]) for i in range(32)])
print s == crypto_scalarmult_curve25519_base(n)

print True.

4 Example of the receiver’s keys

The following program uses C NaCl to compute the public key corresponding to
another secret key:



#include <stdio.h>
#include "crypto_scalarmult_curve25519.h"

unsigned char bobsk[32] = {
0x5d,0xab,0x08,0x7e,0x62,0x4a,0x8a,0x4b

,0x79,0xe1,0x7f,0x8b,0x83,0x80,0x0e,0xe6
,0x6f,0x3b,0xb1,0x29,0x26,0x18,0xb6,0xfd
,0x1c,0x2f,0x8b,0x27,0xff,0x88,0xe0,0xeb
} ;

unsigned char bobpk[32];

main()
{

int i;
crypto_scalarmult_curve25519_base(bobpk,bobsk);
for (i = 0;i < 32;++i) {

if (i > 0) printf(","); else printf(" ");
printf("0x%02x",(unsigned int) bobpk[i]);
if (i % 8 == 7) printf("\n");

}
return 0;

}

As in the previous section, the secret key bytes embedded into the program were
copied from output of od -t x1 /dev/urandom | head -2. The output of the
program is the corresponding public key:

0xde,0x9e,0xdb,0x7d,0x7b,0x7d,0xc1,0xb4
,0xd3,0x5b,0x61,0xc2,0xec,0xe4,0x35,0x37
,0x3f,0x83,0x43,0xc8,0x5b,0x78,0x67,0x4d
,0xad,0xfc,0x7e,0x14,0x6f,0x88,0x2b,0x4f

The remaining sections of this document will reuse this example, assuming that
Bob’s keys are the particular secret key and public key shown here.

Testing: Sage vs. scalarmult_curve25519_base. A short Sage script clamps
Bob’s secret key shown above, converts the result to an integer n, computes
n(9,
√

39420360) in E(Fp), and checks that the resulting x-coordinate matches
the public key computed by C NaCl:

sage: sk=[0x5d,0xab,0x08,0x7e,0x62,0x4a,0x8a,0x4b
....: ,0x79,0xe1,0x7f,0x8b,0x83,0x80,0x0e,0xe6
....: ,0x6f,0x3b,0xb1,0x29,0x26,0x18,0xb6,0xfd
....: ,0x1c,0x2f,0x8b,0x27,0xff,0x88,0xe0,0xeb]
sage: clampsk=sk
sage: clampsk[0]=clampsk[0]-(clampsk[0]%8)
sage: clampsk[31]=64+(clampsk[31]%64)



sage: n=sum(clampsk[i]*256^i for i in range(32))
sage: p=2^255-19
sage: k=GF(p)
sage: E=EllipticCurve([k(0),486662,0,1,0])
sage: s=lift((n*E([k(9),sqrt(k(39420360))]))[0])
sage: pk=[0xde,0x9e,0xdb,0x7d,0x7b,0x7d,0xc1,0xb4
....: ,0xd3,0x5b,0x61,0xc2,0xec,0xe4,0x35,0x37
....: ,0x3f,0x83,0x43,0xc8,0x5b,0x78,0x67,0x4d
....: ,0xad,0xfc,0x7e,0x14,0x6f,0x88,0x2b,0x4f]
sage: s == sum(pk[i]*256^i for i in range(32))
True

Testing: Python vs. scalarmult_curve25519_base. After the Python script
shown in Section 3, the extra commands

sk=[0x5d,0xab,0x08,0x7e,0x62,0x4a,0x8a,0x4b
,0x79,0xe1,0x7f,0x8b,0x83,0x80,0x0e,0xe6
,0x6f,0x3b,0xb1,0x29,0x26,0x18,0xb6,0xfd
,0x1c,0x2f,0x8b,0x27,0xff,0x88,0xe0,0xeb]

n=’’.join([chr(sk[i]) for i in range(32)])
pk=[0xde,0x9e,0xdb,0x7d,0x7b,0x7d,0xc1,0xb4

,0xd3,0x5b,0x61,0xc2,0xec,0xe4,0x35,0x37
,0x3f,0x83,0x43,0xc8,0x5b,0x78,0x67,0x4d
,0xad,0xfc,0x7e,0x14,0x6f,0x88,0x2b,0x4f]

s=’’.join([chr(pk[i]) for i in range(32)])
print s == crypto_scalarmult_curve25519_base(n)

print True.

5 Shared secret

At this point Alice has a secret key a ∈ {0, 1, . . . , 255}32 and a public key A =
Curve25519(ClampC(a), 9) ∈ {0, 1, . . . , 255}32. Similarly, Bob has a secret key b
and a public key B = Curve25519(ClampC(b), 9).

Assume that Alice knows Bob’s public key from a previous secure channel—
for example, from meeting privately with Bob. Similarly assume that Bob knows
Alice’s public key. There is no hope of security if the previous channel allows
forgeries: for example, if an attacker can replace Bob’s public key with the at-
tacker’s public key then Alice will end up encrypting a packet to the attacker
instead of to Bob.

Alice computes Curve25519(ClampC(a), B) from her secret key a and Bob’s
public key B. Bob computes Curve25519(ClampC(b), A) from his secret key b
and Alice’s public key A. The definition of Curve25519 immediately implies that
Curve25519(ClampC(a), B) = Curve25519(ClampC(b), A), so at this point Alice
and Bob have computed the same 32-byte string.



In the next step, described in Section 7, Alice will convert this 32-byte shared
secret k into a 32-byte string HSalsa20(k, 0), which is then used to encrypt and
authenticate packets. Bob similarly uses HSalsa20(k, 0) to verify and decrypt
the packets. No other use is made of k. One can thus view HSalsa20(k, 0) as the
shared secret rather than k.

Security notes beyond ECDLP. An attacker who can solve the elliptic-curve
discrete-logarithm problem can figure out Alice’s secret key from Alice’s public
key, and can then compute the shared secret the same way Alice does; or figure
out Bob’s secret key from Bob’s public key, and can then compute the shared
secret the same way Bob does.

Computing the shared secret from the two public keys—the “Diffie–Hellman
problem”—is widely conjectured to be as difficult as computing discrete log-
arithms. There are weak theorems along these lines, stating that (for typical
elliptic curves) a reliable algorithm to solve the Diffie–Hellman problem can be
converted into a discrete-logarithm algorithm costing about ten thousand times
as much.

It is much easier to compute some information about the 32-byte string k.
There are only p1 ≈ 2251 possibilities for k, and the set of possibilities for k
is an easy-to-recognize set: for example, the last bit of k is always 0. However,
HSalsa20(k, 0) is conjectured to be indistinguishable from HSalsa20(k′, 0) where
k′ is a uniform random Curve25519 output.

It is often conjectured that the “decision Diffie–Hellman problem” is hard:
i.e., that k is indistinguishable from k′. However, this DDH conjecture is overkill.
What matters is that HSalsa20(k, 0) is indistinguishable from HSalsa20(k′, 0).

Alice can reuse her secret key and public key for communicating with many
parties. Some of those parties may be attackers with fake public keys—32-byte
strings that are not of the form Curve25519(ClampC(. . . ), 9). The corresponding
points can be in the “twist group” E(Fp2) ∩ ({∞} ∪ (Fp ×

√
2Fp)); even if

the points are in E(Fp), they can be outside the subgroup of order p1. If the
points have small order then they can reveal Alice’s secret n modulo that order.
Fortunately, E(Fp) has order 8p1 by the Hasse–Weil theorem, and the twist
group has order 4p2 where p2 is the prime number

2253 − 55484635554744707071703875581767296995 = (p + 1)/2− 2p1.

The following Sage transcript captures the relevant facts about p2:

sage: p=2^255-19
sage: p1=2^252+27742317777372353535851937790883648493
sage: p2=2^253-55484635554744707071703875581767296995
sage: p2.is_prime()
True
sage: 8*p1+4*p2-2*(p+1)
0

Consequently the only possible small orders are 1, 2, 4, and 8, and an attacker
can learn at most Alice’s n mod 8, which is always 0 by construction. See [8,
Section 3] for further discussion of active attacks and twist security.



6 Example of the shared secret

The following program, starting from Section 3’s example of Alice’s secret key
and Section 4’s example of Bob’s public key, uses C NaCl to compute the secret
shared between Alice and Bob:

#include <stdio.h>
#include "crypto_scalarmult_curve25519.h"

unsigned char alicesk[32] = {
0x77,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d

,0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45
,0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a
,0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x2a
} ;

unsigned char bobpk[32] = {
0xde,0x9e,0xdb,0x7d,0x7b,0x7d,0xc1,0xb4

,0xd3,0x5b,0x61,0xc2,0xec,0xe4,0x35,0x37
,0x3f,0x83,0x43,0xc8,0x5b,0x78,0x67,0x4d
,0xad,0xfc,0x7e,0x14,0x6f,0x88,0x2b,0x4f
} ;

unsigned char k[32];

main()
{

int i;
crypto_scalarmult_curve25519(k,alicesk,bobpk);
for (i = 0;i < 32;++i) {

if (i > 0) printf(","); else printf(" ");
printf("0x%02x",(unsigned int) k[i]);
if (i % 8 == 7) printf("\n");

}
return 0;

}

The program produces the following output:

0x4a,0x5d,0x9d,0x5b,0xa4,0xce,0x2d,0xe1
,0x72,0x8e,0x3b,0xf4,0x80,0x35,0x0f,0x25
,0xe0,0x7e,0x21,0xc9,0x47,0xd1,0x9e,0x33
,0x76,0xf0,0x9b,0x3c,0x1e,0x16,0x17,0x42

The following program, starting from Section 4’s example of Bob’s secret key
and Section 3’s example of Alice’s public key, uses C NaCl to compute the secret
shared between Alice and Bob:



#include <stdio.h>
#include "crypto_scalarmult_curve25519.h"

unsigned char bobsk[32] = {
0x5d,0xab,0x08,0x7e,0x62,0x4a,0x8a,0x4b

,0x79,0xe1,0x7f,0x8b,0x83,0x80,0x0e,0xe6
,0x6f,0x3b,0xb1,0x29,0x26,0x18,0xb6,0xfd
,0x1c,0x2f,0x8b,0x27,0xff,0x88,0xe0,0xeb
} ;

unsigned char alicepk[32] = {
0x85,0x20,0xf0,0x09,0x89,0x30,0xa7,0x54

,0x74,0x8b,0x7d,0xdc,0xb4,0x3e,0xf7,0x5a
,0x0d,0xbf,0x3a,0x0d,0x26,0x38,0x1a,0xf4
,0xeb,0xa4,0xa9,0x8e,0xaa,0x9b,0x4e,0x6a
} ;

unsigned char k[32];

main()
{

int i;
crypto_scalarmult_curve25519(k,bobsk,alicepk);
for (i = 0;i < 32;++i) {

if (i > 0) printf(","); else printf(" ");
printf("0x%02x",(unsigned int) k[i]);
if (i % 8 == 7) printf("\n");

}
return 0;

}

This program produces the same output as the previous program.

Testing: Sage vs. scalarmult_curve25519. A short Sage script clamps Alice’s
secret key, converts the result to an integer n, clamps Bob’s secret key, converts
the result to an integer m, computes mn(9,

√
39420360) in E(Fp), and checks

that the x-coordinate of the result matches the shared secret computed by C
NaCl:

sage: alicesk=[0x77,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d
....: ,0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45
....: ,0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a
....: ,0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x2a]
sage: clampsk=alicesk
sage: clampsk[0]=clampsk[0]-(clampsk[0]%8)
sage: clampsk[31]=64+(clampsk[31]%64)
sage: n=sum(clampsk[i]*256^i for i in range(32))



sage: bobsk=[0x5d,0xab,0x08,0x7e,0x62,0x4a,0x8a,0x4b
....: ,0x79,0xe1,0x7f,0x8b,0x83,0x80,0x0e,0xe6
....: ,0x6f,0x3b,0xb1,0x29,0x26,0x18,0xb6,0xfd
....: ,0x1c,0x2f,0x8b,0x27,0xff,0x88,0xe0,0xeb]
sage: clampsk=bobsk
sage: clampsk[0]=clampsk[0]-(clampsk[0]%8)
sage: clampsk[31]=64+(clampsk[31]%64)
sage: m=sum(clampsk[i]*256^i for i in range(32))
sage: p=2^255-19
sage: k=GF(p)
sage: E=EllipticCurve([k(0),486662,0,1,0])
sage: s=lift((m*n*E([k(9),sqrt(k(39420360))]))[0])
sage: shared=[0x4a,0x5d,0x9d,0x5b,0xa4,0xce,0x2d,0xe1
....: ,0x72,0x8e,0x3b,0xf4,0x80,0x35,0x0f,0x25
....: ,0xe0,0x7e,0x21,0xc9,0x47,0xd1,0x9e,0x33
....: ,0x76,0xf0,0x9b,0x3c,0x1e,0x16,0x17,0x42]
sage: s == sum(shared[i]*256^i for i in range(32))
True

Testing: Python vs. scalarmult_curve25519. After the Python script shown
in Section 3, the extra commands

alicesk=[0x77,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d
,0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45
,0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a
,0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x2a]

a=’’.join([chr(alicesk[i]) for i in range(32)])
bobpk=[0xde,0x9e,0xdb,0x7d,0x7b,0x7d,0xc1,0xb4

,0xd3,0x5b,0x61,0xc2,0xec,0xe4,0x35,0x37
,0x3f,0x83,0x43,0xc8,0x5b,0x78,0x67,0x4d
,0xad,0xfc,0x7e,0x14,0x6f,0x88,0x2b,0x4f]

b=’’.join([chr(bobpk[i]) for i in range(32)])
shared=[0x4a,0x5d,0x9d,0x5b,0xa4,0xce,0x2d,0xe1

,0x72,0x8e,0x3b,0xf4,0x80,0x35,0x0f,0x25
,0xe0,0x7e,0x21,0xc9,0x47,0xd1,0x9e,0x33
,0x76,0xf0,0x9b,0x3c,0x1e,0x16,0x17,0x42]

s=’’.join([chr(shared[i]) for i in range(32)])
print s == crypto_scalarmult_curve25519(a,b)

print true, and the extra commands

bobsk=[0x5d,0xab,0x08,0x7e,0x62,0x4a,0x8a,0x4b
,0x79,0xe1,0x7f,0x8b,0x83,0x80,0x0e,0xe6
,0x6f,0x3b,0xb1,0x29,0x26,0x18,0xb6,0xfd
,0x1c,0x2f,0x8b,0x27,0xff,0x88,0xe0,0xeb]

b=’’.join([chr(bobsk[i]) for i in range(32)])
alicepk=[0x85,0x20,0xf0,0x09,0x89,0x30,0xa7,0x54



,0x74,0x8b,0x7d,0xdc,0xb4,0x3e,0xf7,0x5a
,0x0d,0xbf,0x3a,0x0d,0x26,0x38,0x1a,0xf4
,0xeb,0xa4,0xa9,0x8e,0xaa,0x9b,0x4e,0x6a]

a=’’.join([chr(alicepk[i]) for i in range(32)])
shared=[0x4a,0x5d,0x9d,0x5b,0xa4,0xce,0x2d,0xe1

,0x72,0x8e,0x3b,0xf4,0x80,0x35,0x0f,0x25
,0xe0,0x7e,0x21,0xc9,0x47,0xd1,0x9e,0x33
,0x76,0xf0,0x9b,0x3c,0x1e,0x16,0x17,0x42]

s=’’.join([chr(shared[i]) for i in range(32)])
print s == crypto_scalarmult_curve25519(b,a)

print true.

7 Nonce and stream

At this point Alice and Bob have a shared secret k ∈ {0, 1, . . . , 255}32. This
secret can be used to protect a practically infinite sequence of packets exchanged
between Alice and Bob.

Alice and Bob assign to each packet a nonce n ∈ {0, 1, . . . , 255}24: a unique
message number that will never be reused for other packets exchanged between
Alice and Bob. For example, the nonce can be chosen as a simple counter: 0
for Alice’s first packet, 1 for Bob’s first packet, 2 for Alice’s second packet, 3
for Bob’s second packet, 4 for Alice’s third packet, 5 for Bob’s third packet,
etc. Choosing the nonce as a counter followed by (e.g.) 32 random bits helps
protect some protocols against denial-of-service attacks. In many applications it
is better to increase the counter to, e.g., the number of nanoseconds that have
passed since a standard epoch in the local clock, so that the current value of
the counter does not leak the traffic rate. Note that “increase” does not mean
“increase or decrease”; if the clock jumps backwards, the counter must continue
to increase.

Alice uses the shared secret k to expand the nonce n into a long stream.
Specifically, Alice computes a first-level key HSalsa20(k, 0); uses the first 16 bytes
n1 of the nonce to compute a second-level key HSalsa20(HSalsa20(k, 0), n1);
and uses the remaining 8 bytes n2 of the nonce to compute a long stream
Salsa20(HSalsa20(HSalsa20(k, 0), n1), n2). This stream is then used to encrypt
and authenticate the packet, as described in subsequent sections.

This section defines HSalsa20 and Salsa20. Many of the definitions here are
copied from the original Salsa20 specification [7]. Section 8 gives an example of
nonce expansion, starting from the key examples used in Sections 4, 3, and 6.

Words. A word is an element of
{

0, 1, . . . , 232 − 1
}

.
The sum of two words u, v is u+v mod 232. The sum is denoted u+v; there

is no risk of confusion. For example, 0xc0a8787e + 0x9fd1161d = 0x60798e9b.
The exclusive-or of two words u, v, denoted u⊕v, is the sum of u and v with

carries suppressed. In other words, if u =
∑

i 2iui and v =
∑

2ivi then u⊕ v =∑
i 2i(ui + vi − 2uivi). For example, 0xc0a8787e⊕ 0x9fd1161d = 0x5f796e63.



For each c ∈ {0, 1, 2, 3, . . .}, the c-bit left rotation of a word u, denoted
u <<< c, is the unique nonzero word congruent to 2cu modulo 232 − 1, except
that 0 <<< c = 0. In other words, if u =

∑
i 2iui then u <<< c =

∑
i 2i+c mod 32ui.

For example, 0xc0a8787e <<< 5 = 0x150f0fd8.

The quarterround function. If y = (y0, y1, y2, y3) ∈
{

0, 1, . . . , 232 − 1
}4 then

quarterround(y) ∈
{

0, 1, . . . , 232 − 1
}4 is defined as (z0, z1, z2, z3) where

z1 = y1 ⊕ ((y0 + y3) <<< 7),
z2 = y2 ⊕ ((z1 + y0) <<< 9),
z3 = y3 ⊕ ((z2 + z1) <<< 13),
z0 = y0 ⊕ ((z3 + z2) <<< 18).

The rowround function. If y = (y0, y1, y2, y3, . . . , y15) ∈
{

0, 1, . . . , 232 − 1
}16

then rowround(y) ∈
{

0, 1, . . . , 232 − 1
}16 is defined as (z0, z1, z2, z3, . . . , z15)

where
(z0, z1, z2, z3) = quarterround(y0, y1, y2, y3),
(z5, z6, z7, z4) = quarterround(y5, y6, y7, y4),

(z10, z11, z8, z9) = quarterround(y10, y11, y8, y9),
(z15, z12, z13, z14) = quarterround(y15, y12, y13, y14).

The columnround function. If x = (x0, x1, . . . , x15) ∈
{

0, 1, . . . , 232 − 1
}16

then columnround(x) ∈
{

0, 1, . . . , 232 − 1
}16 is defined as (y0, y1, y2, y3, . . . , y15)

where
(y0, y4, y8, y12) = quarterround(x0, x4, x8, x12),
(y5, y9, y13, y1) = quarterround(x5, x9, x13, x1),

(y10, y14, y2, y6) = quarterround(x10, x14, x2, x6),
(y15, y3, y7, y11) = quarterround(x15, x3, x7, x11).

Equivalent formula: (y0, y4, y8, y12, y1, y5, y9, y13, y2, y6, y10, y14, y3, y7, y11, y15) =
rowround(x0, x4, x8, x12, x1, x5, x9, x13, x2, x6, x10, x14, x3, x7, x11, x15).

The doubleround function. If x ∈
{

0, 1, . . . , 232 − 1
}16 then doubleround(x)

∈
{

0, 1, . . . , 232 − 1
}16 is defined as rowround(columnround(x)).

The littleendian function. If b = (b0, b1, b2, b3) ∈ {0, 1, 2, 3, . . . , 255}4 then
littleendian(b) ∈

{
0, 1, . . . , 232 − 1

}
is defined as b0 + 28b1 + 216b2 + 224b3. More

generally, if b = (b0, b1, . . . , b4k−1) ∈ {0, 1, . . . , 255}4k then littleendian(b) ∈{
0, 1, . . . , 232 − 1

}k is defined as

(b0 + 28b1 + 216b2 + 224b3, b4 + 28b5 + 216b6 + 224b7, . . . ).

Note that littleendian is invertible.



The HSalsa20 function. The function

HSalsa20 : {0, 1, . . . , 255}32 × {0, 1, . . . , 255}16 → {0, 1, . . . , 255}32

is defined as follows.
Fix k ∈ {0, 1, . . . , 255}32 and n ∈ {0, 1, . . . , 255}16. Define (x0, x1, . . . , x15) ∈{

0, 1, . . . , 232 − 1
}16 as follows:

• (x0, x5, x10, x15) = (0x61707865, 0x3320646e, 0x79622d32, 0x6b206574); in
other words, (x0, x5, x10, x15) is the Salsa20 constant.
• (x1, x2, x3, x4, x11, x12, x13, x14) = littleendian(k); and
• (x6, x7, x8, x9) = littleendian(n).

Define (z0, z1, . . . , z15) = doubleround10(x0, x1, . . . , x15). Then HSalsa20(k, n) =
littleendian−1(z0, z5, z10, z15, z6, z7, z8, z9).

The Salsa20 expansion function. The function

Salsa20 : {0, 1, . . . , 255}32 × {0, 1, . . . , 255}16 → {0, 1, . . . , 255}64

is defined as follows.
Fix k ∈ {0, 1, . . . , 255}32 and n ∈ {0, 1, . . . , 255}16. Define (x0, x1, . . . , x15) ∈{

0, 1, . . . , 232 − 1
}16 as follows:

• (x0, x5, x10, x15) is the Salsa20 constant;
• (x1, x2, x3, x4, x11, x12, x13, x14) = littleendian(k); and
• (x6, x7, x8, x9) = littleendian(n).

Define (z0, z1, . . . , z15) = doubleround10(x0, x1, . . . , x15). Then Salsa20(k, n) =
littleendian−1(x0 + z0, x1 + z1, . . . , x15 + z15).

The Salsa20 streaming function. The function

Salsa20 : {0, 1, . . . , 255}32 × {0, 1, . . . , 255}8 → {0, 1, . . . , 255}2
70

is defined as follows: Salsa20(k, n) = Salsa20(k, n, 0), Salsa20(k, n, 1), . . . . Here b
means the 8-byte string (b mod 256, bb/256c mod 256, . . .).

Security notes. ECRYPT, a consortium of European research organizations,
issued a Call for Stream Cipher Primitives in November 2004, and received
34 submissions from 97 cryptographers in 19 countries. In April 2008, after
two hundred papers and several conferences, ECRYPT selected a portfolio of 4
software ciphers and 4 lower-security hardware ciphers.

I submitted Salsa20. Later I suggested the reduced-round variants Salsa20/12
and Salsa20/8 (replacing doubleround10 with doubleround6 and doubleround4

respectively) as higher-speed options for users who value speed more highly than
confidence. Four attack papers by fourteen cryptanalysts ([12], [13], [21], and [3])
culminated in a 2184-operation attack on Salsa20/7 and a 2251-operation attack
on Salsa20/8. The eSTREAM portfolio recommended Salsa20/12: “Eight and
twenty round versions were also considered during the eSTREAM process, but we



feel that Salsa20/12 offers the best balance, combining a very nice performance
profile with what appears to be a comfortable margin for security.”

The standard (“PRF”) security conjecture for Salsa20 is that the Salsa20
output blocks, for a uniform random secret key k, are indistinguishable from
independent uniform random 64-byte strings. This conjecture implies the analo-
gous security conjecture for HSalsa20: by [10, Theorem 3.3], any attack against
HSalsa20 can be converted into an attack against Salsa20 having exactly the
same effectiveness and essentially the same speed.

This conjecture also implies an analogous security conjecture for the cas-
cade (n1, n2) 7→ Salsa20(HSalsa20(HSalsa20(k, 0), n1), n2): by [10, Theorem 3.1],
any q-query attack against the cascade can be converted into an attack against
Salsa20 having at least 1/(2q + 1) as much effectiveness and essentially the same
speed.

A Curve25519 output k is not a uniform random 32-byte string, but any
attack against a uniform random Curve25519 output can be converted into an
attack against a uniform random 32-byte string having at least 1/32 as much
effectiveness and essentially the same speed—and therefore an attack against
Salsa20 having at least 1/(64q + 32) as much effectiveness and essentially the
same speed.

8 Example of the long stream

The following program starts from Section 6’s example of a shared secret k and
uses C NaCl to compute the first-level key k1 = HSalsa20(k, 0):

#include <stdio.h>
#include "crypto_core_hsalsa20.h"

unsigned char shared[32] = {
0x4a,0x5d,0x9d,0x5b,0xa4,0xce,0x2d,0xe1
,0x72,0x8e,0x3b,0xf4,0x80,0x35,0x0f,0x25
,0xe0,0x7e,0x21,0xc9,0x47,0xd1,0x9e,0x33
,0x76,0xf0,0x9b,0x3c,0x1e,0x16,0x17,0x42
} ;

unsigned char zero[32] = { 0 };

unsigned char c[16] = {
0x65,0x78,0x70,0x61,0x6e,0x64,0x20,0x33
,0x32,0x2d,0x62,0x79,0x74,0x65,0x20,0x6b
} ;

unsigned char firstkey[32];

main()
{



int i;
crypto_core_hsalsa20(firstkey,zero,shared,c);
for (i = 0;i < 32;++i) {

if (i > 0) printf(","); else printf(" ");
printf("0x%02x",(unsigned int) firstkey[i]);
if (i % 8 == 7) printf("\n");

}
return 0;

}

The program prints the following output:

0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4
,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7
,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2
,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89

The following program starts from this k1 example and a sample nonce prefix
n1, and uses C NaCl to compute the second-level key k2 = HSalsa20(k1, n1):

#include <stdio.h>
#include "crypto_core_hsalsa20.h"

unsigned char firstkey[32] = {
0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4

,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7
,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2
,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89
} ;

unsigned char nonceprefix[16] = {
0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6
} ;

unsigned char c[16] = {
0x65,0x78,0x70,0x61,0x6e,0x64,0x20,0x33

,0x32,0x2d,0x62,0x79,0x74,0x65,0x20,0x6b
} ;

unsigned char secondkey[32];

main()
{

int i;
crypto_core_hsalsa20(secondkey,nonceprefix,firstkey,c);
for (i = 0;i < 32;++i) {



if (i > 0) printf(","); else printf(" ");
printf("0x%02x",(unsigned int) secondkey[i]);
if (i % 8 == 7) printf("\n");

}
return 0;

}

The program prints the following output:

0xdc,0x90,0x8d,0xda,0x0b,0x93,0x44,0xa9
,0x53,0x62,0x9b,0x73,0x38,0x20,0x77,0x88
,0x80,0xf3,0xce,0xb4,0x21,0xbb,0x61,0xb9
,0x1c,0xbd,0x4c,0x3e,0x66,0x25,0x6c,0xe4

The following program starts from this k2 example and an example of a nonce
suffix n2, and uses C NaCl to print (in binary format) the first 4194304 bytes of
Salsa20(k2, n2):

#include <stdio.h>
#include "crypto_core_salsa20.h"

unsigned char secondkey[32] = {
0xdc,0x90,0x8d,0xda,0x0b,0x93,0x44,0xa9

,0x53,0x62,0x9b,0x73,0x38,0x20,0x77,0x88
,0x80,0xf3,0xce,0xb4,0x21,0xbb,0x61,0xb9
,0x1c,0xbd,0x4c,0x3e,0x66,0x25,0x6c,0xe4
} ;

unsigned char noncesuffix[8] = {
0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37

} ;

unsigned char c[16] = {
0x65,0x78,0x70,0x61,0x6e,0x64,0x20,0x33

,0x32,0x2d,0x62,0x79,0x74,0x65,0x20,0x6b
} ;

unsigned char in[16] = { 0 } ;

unsigned char outputblock[64];

main()
{

int i;
for (i = 0;i < 8;++i) in[i] = noncesuffix[i];
do {

do {



crypto_core_salsa20(outputblock,in,secondkey,c);
for (i = 0;i < 64;++i) putchar(outputblock[i]);

} while (++in[8]);
} while (++in[9]);
return 0;

}

662b9d0e3463029156069b12f918691a98f7dfb2ca0393c96bbfc6b1fbd630a2 is
the SHA-256 checksum of the output.

Testing: core_salsa20 vs. stream_salsa20. The following program has the
same output as the previous program, but uses crypto_stream_salsa20 to gen-
erate the entire output stream at once:

#include <stdio.h>
#include "crypto_stream_salsa20.h"

unsigned char secondkey[32] = {
0xdc,0x90,0x8d,0xda,0x0b,0x93,0x44,0xa9

,0x53,0x62,0x9b,0x73,0x38,0x20,0x77,0x88
,0x80,0xf3,0xce,0xb4,0x21,0xbb,0x61,0xb9
,0x1c,0xbd,0x4c,0x3e,0x66,0x25,0x6c,0xe4
} ;

unsigned char noncesuffix[8] = {
0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37

} ;

unsigned char output[4194304];

main()
{

int i;
crypto_stream_salsa20(output,4194304,noncesuffix,secondkey);
for (i = 0;i < 4194304;++i) putchar(output[i]);
return 0;

}

Testing: core_salsa20 vs. stream_xsalsa20. The following program has the
same output as the previous two programs, but uses crypto_stream_xsalsa20
to generate the entire output stream starting from the first-level key k1 and the
complete nonce n = (n1, n2):

#include <stdio.h>
#include "crypto_stream_xsalsa20.h"

unsigned char firstkey[32] = {



0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4
,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7
,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2
,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89
} ;

unsigned char nonce[24] = {
0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6
,0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37
} ;

unsigned char output[4194304];

main()
{

int i;
crypto_stream_xsalsa20(output,4194304,nonce,firstkey);
for (i = 0;i < 4194304;++i) putchar(output[i]);
return 0;

}

Testing: Python vs. core_hsalsa20. The following Python script, based in
part on a script contributed by Matthew Dempsky, computes HSalsa20(k, 0) and
compares the result to the k1 computed by C NaCl:

import struct

def rotate(x, n):
x &= 0xffffffff
return ((x << n) | (x >> (32 - n))) & 0xffffffff

def step(s, i, j, k, r):
s[i] ^= rotate(s[j] + s[k],r)

def quarterround(s, i0, i1, i2, i3):
step(s, i1, i0, i3, 7)
step(s, i2, i1, i0, 9)
step(s, i3, i2, i1, 13)
step(s, i0, i3, i2, 18)

def rowround(s):
quarterround(s, 0, 1, 2, 3)
quarterround(s, 5, 6, 7, 4)
quarterround(s, 10, 11, 8, 9)
quarterround(s, 15, 12, 13, 14)



def columnround(s):
quarterround(s, 0, 4, 8, 12)
quarterround(s, 5, 9, 13, 1)
quarterround(s, 10, 14, 2, 6)
quarterround(s, 15, 3, 7, 11)

def doubleround(s):
columnround(s)
rowround(s)

def hsalsa20(n,k):
n=’’.join([chr(n[i]) for i in range(16)])
n = struct.unpack(’<4I’, n)
k=’’.join([chr(k[i]) for i in range(32)])
k = struct.unpack(’<8I’, k)
s = [0] * 16
s[::5] = struct.unpack(’<4I’, ’expand 32-byte k’)
s[1:5] = k[:4]
s[6:10] = n
s[11:15] = k[4:]
for i in range(10): doubleround(s)
s = [s[i] for i in [0,5,10,15,6,7,8,9]]
return struct.pack(’<8I’,*s)

k = [0x4a,0x5d,0x9d,0x5b,0xa4,0xce,0x2d,0xe1
,0x72,0x8e,0x3b,0xf4,0x80,0x35,0x0f,0x25
,0xe0,0x7e,0x21,0xc9,0x47,0xd1,0x9e,0x33
,0x76,0xf0,0x9b,0x3c,0x1e,0x16,0x17,0x42]

n = [0] * 16

expected=[0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4
,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7
,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2
,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89]

expected = ’’.join([chr(expected[i]) for i in range(32)])

print hsalsa20(n,k) == expected

The script prints True.
The following extra commands compute HSalsa20(k1, n1), where n1 is the

nonce prefix shown above, and compare the result to the k2 computed by C
NaCl:

k=[0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4
,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7
,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2



,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89]
n=[0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6]

expected = [0xdc,0x90,0x8d,0xda,0x0b,0x93,0x44,0xa9
,0x53,0x62,0x9b,0x73,0x38,0x20,0x77,0x88
,0x80,0xf3,0xce,0xb4,0x21,0xbb,0x61,0xb9
,0x1c,0xbd,0x4c,0x3e,0x66,0x25,0x6c,0xe4]

expected = ’’.join([chr(expected[i]) for i in range(32)])

print hsalsa20(n,k) == expected

These commands print True.

Testing: Python vs. stream_salsa20. The following Python script, based in
part on a script contributed by Matthew Dempsky, computes the first 4194304
bytes of Salsa20(k2, n2), for the sample k2, n2 shown above:

import struct
import sys

def rotate(x, n):
x &= 0xffffffff
return ((x << n) | (x >> (32 - n))) & 0xffffffff

def step(s, i, j, k, r):
s[i] ^= rotate(s[j] + s[k],r)

def quarterround(s, i0, i1, i2, i3):
step(s, i1, i0, i3, 7)
step(s, i2, i1, i0, 9)
step(s, i3, i2, i1, 13)
step(s, i0, i3, i2, 18)

def rowround(s):
quarterround(s, 0, 1, 2, 3)
quarterround(s, 5, 6, 7, 4)
quarterround(s, 10, 11, 8, 9)
quarterround(s, 15, 12, 13, 14)

def columnround(s):
quarterround(s, 0, 4, 8, 12)
quarterround(s, 5, 9, 13, 1)
quarterround(s, 10, 14, 2, 6)
quarterround(s, 15, 3, 7, 11)

def doubleround(s):



columnround(s)
rowround(s)

def rounds(s, n):
s1 = list(s)
while n >= 2:

doubleround(s1)
n -= 2

for i in range(16): s[i] = (s[i] + s1[i]) & 0xffffffff

o = struct.unpack(’<4I’, ’expand 32-byte k’)

def block(i, n, k):
i = i / 64
i = (i & 0xffffffff, i >> 32)
s = [0] * 16
s[::5] = o
s[1:5] = k[:4]
s[6:10] = n + i
s[11:15] = k[4:]
rounds(s, 20)
return struct.pack(’<16I’, *s)

def print_salsa20(l, n, k):
n = struct.unpack(’<2I’, n)
k = struct.unpack(’<8I’, k)
for i in xrange(0, l, 64):

sys.stdout.write(block(i, n, k)[:l-i])

k=[0xdc,0x90,0x8d,0xda,0x0b,0x93,0x44,0xa9
,0x53,0x62,0x9b,0x73,0x38,0x20,0x77,0x88
,0x80,0xf3,0xce,0xb4,0x21,0xbb,0x61,0xb9
,0x1c,0xbd,0x4c,0x3e,0x66,0x25,0x6c,0xe4]

k = ’’.join([chr(k[i]) for i in range(32)])

n=[0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37]
n = ’’.join([chr(n[i]) for i in range(8)])

print_salsa20(4194304,n,k)

The output is the same as the 4194304-byte output from the C NaCl program
shown earlier.

Testing: Salsa20 specification vs. core_salsa20. The following program
uses C NaCl to compute the first Salsa20 example in [7, Section 9]:

#include <stdio.h>



#include "crypto_core_salsa20.h"

unsigned char k[32] = {
1, 2, 3, 4, 5, 6, 7, 8

, 9, 10, 11, 12, 13, 14, 15, 16
,201,202,203,204,205,206,207,208
,209,210,211,212,213,214,215,216
} ;

unsigned char in[16] = {
101,102,103,104,105,106,107,108

,109,110,111,112,113,114,115,116
} ;

unsigned char c[16] = {
101,120,112, 97,110,100, 32, 51

, 50, 45, 98,121,116,101, 32,107
} ;

unsigned char out[64];

main()
{

int i;
crypto_core_salsa20(out,in,k,c);
for (i = 0;i < 64;++i) {

if (i > 0) printf(","); else printf(" ");
printf("%3d",(unsigned int) out[i]);
if (i % 8 == 7) printf("\n");

}
return 0;

}

The output of the program is

69, 37, 68, 39, 41, 15,107,193
,255,139,122, 6,170,233,217, 98
, 89,144,182,106, 21, 51,200, 65
,239, 49,222, 34,215,114, 40,126
,104,197, 7,225,197,153, 31, 2
,102, 78, 76,176, 84,245,246,184
,177,160,133,130, 6, 72,149,119
,192,195,132,236,234,103,246, 74

matching the output shown in [7, Section 9].

Testing: core_salsa20 vs. core_hsalsa20. The following program uses C
NaCl to compute HSalsa20 on a sample input:



#include <stdio.h>
#include "crypto_core_hsalsa20.h"

unsigned char k[32] = {
0xee,0x30,0x4f,0xca,0x27,0x00,0x8d,0x8c

,0x12,0x6f,0x90,0x02,0x79,0x01,0xd8,0x0f
,0x7f,0x1d,0x8b,0x8d,0xc9,0x36,0xcf,0x3b
,0x9f,0x81,0x96,0x92,0x82,0x7e,0x57,0x77
} ;

unsigned char in[16] = {
0x81,0x91,0x8e,0xf2,0xa5,0xe0,0xda,0x9b

,0x3e,0x90,0x60,0x52,0x1e,0x4b,0xb3,0x52
} ;

unsigned char c[16] = {
101,120,112, 97,110,100, 32, 51

, 50, 45, 98,121,116,101, 32,107
} ;

unsigned char out[32];

main()
{

int i;
crypto_core_hsalsa20(out,in,k,c);
for (i = 0;i < 32;++i) {

printf(",0x%02x",(unsigned int) out[i]);
if (i % 8 == 7) printf("\n");

}
return 0;

}

Here is the output of the program:

,0xbc,0x1b,0x30,0xfc,0x07,0x2c,0xc1,0x40
,0x75,0xe4,0xba,0xa7,0x31,0xb5,0xa8,0x45
,0xea,0x9b,0x11,0xe9,0xa5,0x19,0x1f,0x94
,0xe1,0x8c,0xba,0x8f,0xd8,0x21,0xa7,0xcd

The following program uses C NaCl to compute Salsa20 on the same sample
input, and then converts the Salsa20 output to HSalsa20 output:

#include <stdio.h>
#include "crypto_core_salsa20.h"

unsigned char k[32] = {



0xee,0x30,0x4f,0xca,0x27,0x00,0x8d,0x8c
,0x12,0x6f,0x90,0x02,0x79,0x01,0xd8,0x0f
,0x7f,0x1d,0x8b,0x8d,0xc9,0x36,0xcf,0x3b
,0x9f,0x81,0x96,0x92,0x82,0x7e,0x57,0x77
} ;

unsigned char in[16] = {
0x81,0x91,0x8e,0xf2,0xa5,0xe0,0xda,0x9b

,0x3e,0x90,0x60,0x52,0x1e,0x4b,0xb3,0x52
} ;

unsigned char c[16] = {
101,120,112, 97,110,100, 32, 51

, 50, 45, 98,121,116,101, 32,107
} ;

unsigned char out[64];

void print(unsigned char *x,unsigned char *y)
{

int i;
unsigned int borrow = 0;
for (i = 0;i < 4;++i) {

unsigned int xi = x[i];
unsigned int yi = y[i];
printf(",0x%02x",255 & (xi - yi - borrow));
borrow = (xi < yi + borrow);

}
}

main()
{

crypto_core_salsa20(out,in,k,c);
print(out,c);
print(out + 20,c + 4); printf("\n");
print(out + 40,c + 8);
print(out + 60,c + 12); printf("\n");
print(out + 24,in);
print(out + 28,in + 4); printf("\n");
print(out + 32,in + 8);
print(out + 36,in + 12); printf("\n");
return 0;

}

This program produces the same output as the previous program.



9 Plaintext, ciphertext, and authenticator

To encrypt a packet m ∈ {0, 1, . . . , 255}{0,1,...,270−32} using the packet’s nonce
n ∈ {0, 1, . . . , 255}24 and the shared secret k ∈ {0, 1, . . . , 255}32, Alice xors the
packet with part of the long stream computed in the previous section. Alice then
uses a different part of the long stream to authenticate the ciphertext. Alice’s
boxed packet is the authenticator followed by the ciphertext.

Specifically, write the nonce n as (n1, n2) with n1 ∈ {0, 1, . . . , 255}16 and
n2 ∈ {0, 1, . . . , 255}8, and write Salsa20(HSalsa20(HSalsa20(k, 0), n1), n2) as
(r, s, t, . . . ) where r, s ∈ {0, 1, . . . , 255}16 and len t = len m. Define c = m ⊕ t ∈
{0, 1, . . . , 255}len m and a = Poly1305(ClampP(r), c, s) ∈ {0, 1, . . . , 255}16. The
boxed packet is then (a, c) ∈ {0, 1, . . . , 255}16+len m.

This section defines Poly1305 and ClampP. Some of the definitions here
are copied from the original Poly1305 specification [6]; Poly1305(r, c, s) here
is Poly1305r(c, s) in the notation of [6].

The ClampP function. The function

ClampP : {0, 1, . . . , 255}16 → {0, 1, . . . , 255}16

maps (r0, r1, . . . , r15) to

(r0, r1, r2, r3 mod 16,

r4 − (r4 mod 4), r5, r6, r7 mod 16,

r8 − (r8 mod 4), r9, r10, r11 mod 16,

r12 − (r12 mod 4), r13, r14, r15 mod 16).

The Poly1305 function. Fix ` ∈
{

0, 1, . . . , 270 − 32
}

, fix c ∈ {0, 1, . . . , 255}`,
fix R ∈

{
0, 1, . . . , 2128 − 1

}
, and fix S ∈

{
0, 1, . . . , 2128 − 1

}
. Write q = d`/16e.

Write c as (c[0], c[1], . . . , c[` − 1]). Define C1, C2, . . . , Cq ∈
{

1, 2, 3, . . . , 2129
}

as
follows: if 1 ≤ i ≤ b`/16c then

Ci = c[16i− 16] + 28c[16i− 15] + 216c[16i− 14] + · · ·+ 2120c[16i− 1] + 2128;

if ` is not a multiple of 16 then

Cq = c[16q − 16] + 28c[16q − 15] + · · ·+ 28(` mod 16)−8c[`− 1] + 28(` mod 16).

In other words: Pad each 16-byte chunk of the ciphertext to 17 bytes by append-
ing a 1. If the ciphertext has a final chunk between 1 and 15 bytes, append 1
to the chunk, and then zero-pad the chunk to 17 bytes. Either way, treat the
resulting 17-byte chunk as an unsigned little-endian integer.

Now Poly1305(R, c, S) = A where

A = (((C1R
q + C2R

q−1 + · · ·+ CqR
1) mod 2130 − 5) + S) mod 2128.



Here A means the 16-byte string (A mod 256, bA/256c mod 256, . . .); R and S
are defined in the same way.

Security notes. The constructions in this section—xor for encryption and
Poly1305 for authentication—are provably secure. If the attacker cannot distin-
guish the stream (r, s, t) from a uniform random string then the attacker learns
nothing about the original packet m, aside from its length, and has negligible
chance of replacing the boxed packet (a, c) with a different packet (a′, c′) that
satisfies a′ = Poly1305(ClampP(r), c′, s). Of course, this guarantee says nothing
about an attacker who can distinguish (r, s, t) from a uniform random string—
for example, an attacker who uses a quantum computer to break elliptic-curve
cryptography has as much power as Alice and Bob.

A security proof for Poly1305 appears in [6]. The proof shows that if packets
are limited to L bytes then the attacker’s success chance for a forgery attempt
(a′, c′) is at most 8dL/16e/2106. Here are some of the critical points in the proof:
2130 − 5 is prime; ClampP(r) is uniformly distributed among 2106 possibilities;
and distinct strings c produce distinct polynomials C1x

q + C2x
q−1 + · · ·+ Cqx

1

modulo 2130 − 5.
What happens if an attacker is astonishingly lucky and succeeds at a forgery

attempt? Presumably this success will be visible from the receiver’s behavior.
The attacker can then, by polynomial root-finding, easily determine ClampP(r)
and s, or at worst a short list of possibilities for ClampP(r) and s, allowing
the attacker to generate “re-forgeries” (a′′, c′′) under the same nonce. However,
if the receiver follows the standard practice of insisting on a strictly increasing
sequence of nonces, then the receiver will reject all of these “re-forgeries,” as
pointed out in 2005 by Nyberg, Gilbert, and Robshaw and independently in
2006 by Lange. See [19] and [9, Section 2.5].

If r were reused from one nonce to another, with s generated anew for each
nonce, then the first forgery would still be difficult (as pointed out by Wegman
and Carter in [24, Section 4]), but after seeing a successful forgery the attacker
would be able to generate “re-forgeries” under other nonces. If >100-bit security
were scaled down to much lower security then the attacker could reasonably hope
for this situation to occur. Many authentication systems in the literature have
this problem. The following comment appears in [5, Section 8] and was already
online in 2000:

Some writers claim that forgery probabilities around 1/232 are adequate
for most applications. The attacker’s cost of 232 forgery attempts, they
say, is much larger than the attacker’s benefit from forging a single mes-
sage. Unfortunately, even if all attackers acted on the basis of rational
economic analyses, this argument would be wrong, because it wildly un-
derestimates the attacker’s benefit. In a typical authentication system, as
soon as the attacker is lucky enough to succeed at a few forgeries, he can
immediately figure out enough secret information to let him forge mes-
sages of his choice. (This does not contradict the information-theoretic
security expressed by Theorem 8.2; the attacker is gaining information



from the receiver, not from the sender.) It is crucial for the forgery prob-
ability to be so small that attackers have no hope.

(Emphasis added.) Detailed explanations of various re-forgery attacks appeared
in [16], [15], and [11].

Attacks of that type do not apply to Poly1305 as used in NaCl. There is
a new Poly1305 key (r, s) for each nonce; the standard security conjecture for
Salsa20 implies that the keys (r, s) for different nonces are indistinguishable from
independent uniform random keys. More importantly, the >100-bit security level
of Poly1305 prevents forgery attempts from succeeding in the first place.

10 Example of the plaintext, ciphertext, and
authenticator

The following program starts from Section 3’s example of Alice’s secret key a
Section 4’s example of Bob’s public key B, Section 8’s example of a nonce n,
and a sample 131-byte packet, and uses C NaCl to compute the corresponding
boxed packet:

#include <stdio.h>
#include "crypto_box_curve25519xsalsa20poly1305.h"

unsigned char alicesk[32] = {
0x77,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d

,0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45
,0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a
,0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x2a
} ;

unsigned char bobpk[32] = {
0xde,0x9e,0xdb,0x7d,0x7b,0x7d,0xc1,0xb4

,0xd3,0x5b,0x61,0xc2,0xec,0xe4,0x35,0x37
,0x3f,0x83,0x43,0xc8,0x5b,0x78,0x67,0x4d
,0xad,0xfc,0x7e,0x14,0x6f,0x88,0x2b,0x4f
} ;

unsigned char nonce[24] = {
0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6
,0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37
} ;

// API requires first 32 bytes to be 0
unsigned char m[163] = {

0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0, 0, 0



, 0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0, 0, 0
,0xbe,0x07,0x5f,0xc5,0x3c,0x81,0xf2,0xd5
,0xcf,0x14,0x13,0x16,0xeb,0xeb,0x0c,0x7b
,0x52,0x28,0xc5,0x2a,0x4c,0x62,0xcb,0xd4
,0x4b,0x66,0x84,0x9b,0x64,0x24,0x4f,0xfc
,0xe5,0xec,0xba,0xaf,0x33,0xbd,0x75,0x1a
,0x1a,0xc7,0x28,0xd4,0x5e,0x6c,0x61,0x29
,0x6c,0xdc,0x3c,0x01,0x23,0x35,0x61,0xf4
,0x1d,0xb6,0x6c,0xce,0x31,0x4a,0xdb,0x31
,0x0e,0x3b,0xe8,0x25,0x0c,0x46,0xf0,0x6d
,0xce,0xea,0x3a,0x7f,0xa1,0x34,0x80,0x57
,0xe2,0xf6,0x55,0x6a,0xd6,0xb1,0x31,0x8a
,0x02,0x4a,0x83,0x8f,0x21,0xaf,0x1f,0xde
,0x04,0x89,0x77,0xeb,0x48,0xf5,0x9f,0xfd
,0x49,0x24,0xca,0x1c,0x60,0x90,0x2e,0x52
,0xf0,0xa0,0x89,0xbc,0x76,0x89,0x70,0x40
,0xe0,0x82,0xf9,0x37,0x76,0x38,0x48,0x64
,0x5e,0x07,0x05
} ;

unsigned char c[163];

main()
{

int i;
crypto_box_curve25519xsalsa20poly1305(

c,m,163,nonce,bobpk,alicesk
);
for (i = 16;i < 163;++i) {

printf(",0x%02x",(unsigned int) c[i]);
if (i % 8 == 7) printf("\n");

}
printf("\n");
return 0;

}

The program prints a 147-byte boxed packet:

,0xf3,0xff,0xc7,0x70,0x3f,0x94,0x00,0xe5
,0x2a,0x7d,0xfb,0x4b,0x3d,0x33,0x05,0xd9
,0x8e,0x99,0x3b,0x9f,0x48,0x68,0x12,0x73
,0xc2,0x96,0x50,0xba,0x32,0xfc,0x76,0xce
,0x48,0x33,0x2e,0xa7,0x16,0x4d,0x96,0xa4
,0x47,0x6f,0xb8,0xc5,0x31,0xa1,0x18,0x6a
,0xc0,0xdf,0xc1,0x7c,0x98,0xdc,0xe8,0x7b
,0x4d,0xa7,0xf0,0x11,0xec,0x48,0xc9,0x72



,0x71,0xd2,0xc2,0x0f,0x9b,0x92,0x8f,0xe2
,0x27,0x0d,0x6f,0xb8,0x63,0xd5,0x17,0x38
,0xb4,0x8e,0xee,0xe3,0x14,0xa7,0xcc,0x8a
,0xb9,0x32,0x16,0x45,0x48,0xe5,0x26,0xae
,0x90,0x22,0x43,0x68,0x51,0x7a,0xcf,0xea
,0xbd,0x6b,0xb3,0x73,0x2b,0xc0,0xe9,0xda
,0x99,0x83,0x2b,0x61,0xca,0x01,0xb6,0xde
,0x56,0x24,0x4a,0x9e,0x88,0xd5,0xf9,0xb3
,0x79,0x73,0xf6,0x22,0xa4,0x3d,0x14,0xa6
,0x59,0x9b,0x1f,0x65,0x4c,0xb4,0x5a,0x74
,0xe3,0x55,0xa5

The following program starts from Section 4’s example of Bob’s secret key b,
Section 3’s example of Alice’s public key A, Section 8’s example of a nonce n,
and the 147-byte boxed packet shown above, and uses C NaCl to open the box:

#include <stdio.h>
#include "crypto_box_curve25519xsalsa20poly1305.h"

unsigned char bobsk[32] = {
0x5d,0xab,0x08,0x7e,0x62,0x4a,0x8a,0x4b

,0x79,0xe1,0x7f,0x8b,0x83,0x80,0x0e,0xe6
,0x6f,0x3b,0xb1,0x29,0x26,0x18,0xb6,0xfd
,0x1c,0x2f,0x8b,0x27,0xff,0x88,0xe0,0xeb
} ;

unsigned char alicepk[32] = {
0x85,0x20,0xf0,0x09,0x89,0x30,0xa7,0x54

,0x74,0x8b,0x7d,0xdc,0xb4,0x3e,0xf7,0x5a
,0x0d,0xbf,0x3a,0x0d,0x26,0x38,0x1a,0xf4
,0xeb,0xa4,0xa9,0x8e,0xaa,0x9b,0x4e,0x6a
} ;

unsigned char nonce[24] = {
0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6
,0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37
} ;

// API requires first 16 bytes to be 0
unsigned char c[163] = {

0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0, 0, 0
,0xf3,0xff,0xc7,0x70,0x3f,0x94,0x00,0xe5
,0x2a,0x7d,0xfb,0x4b,0x3d,0x33,0x05,0xd9
,0x8e,0x99,0x3b,0x9f,0x48,0x68,0x12,0x73
,0xc2,0x96,0x50,0xba,0x32,0xfc,0x76,0xce



,0x48,0x33,0x2e,0xa7,0x16,0x4d,0x96,0xa4
,0x47,0x6f,0xb8,0xc5,0x31,0xa1,0x18,0x6a
,0xc0,0xdf,0xc1,0x7c,0x98,0xdc,0xe8,0x7b
,0x4d,0xa7,0xf0,0x11,0xec,0x48,0xc9,0x72
,0x71,0xd2,0xc2,0x0f,0x9b,0x92,0x8f,0xe2
,0x27,0x0d,0x6f,0xb8,0x63,0xd5,0x17,0x38
,0xb4,0x8e,0xee,0xe3,0x14,0xa7,0xcc,0x8a
,0xb9,0x32,0x16,0x45,0x48,0xe5,0x26,0xae
,0x90,0x22,0x43,0x68,0x51,0x7a,0xcf,0xea
,0xbd,0x6b,0xb3,0x73,0x2b,0xc0,0xe9,0xda
,0x99,0x83,0x2b,0x61,0xca,0x01,0xb6,0xde
,0x56,0x24,0x4a,0x9e,0x88,0xd5,0xf9,0xb3
,0x79,0x73,0xf6,0x22,0xa4,0x3d,0x14,0xa6
,0x59,0x9b,0x1f,0x65,0x4c,0xb4,0x5a,0x74
,0xe3,0x55,0xa5
} ;

unsigned char m[163];

main()
{

int i;
if (crypto_box_curve25519xsalsa20poly1305_open(

m,c,163,nonce,alicepk,bobsk
) == 0) {

for (i = 32;i < 163;++i) {
printf(",0x%02x",(unsigned int) m[i]);
if (i % 8 == 7) printf("\n");

}
printf("\n");

}
return 0;

}

The program prints the original 131-byte packet:

,0xbe,0x07,0x5f,0xc5,0x3c,0x81,0xf2,0xd5
,0xcf,0x14,0x13,0x16,0xeb,0xeb,0x0c,0x7b
,0x52,0x28,0xc5,0x2a,0x4c,0x62,0xcb,0xd4
,0x4b,0x66,0x84,0x9b,0x64,0x24,0x4f,0xfc
,0xe5,0xec,0xba,0xaf,0x33,0xbd,0x75,0x1a
,0x1a,0xc7,0x28,0xd4,0x5e,0x6c,0x61,0x29
,0x6c,0xdc,0x3c,0x01,0x23,0x35,0x61,0xf4
,0x1d,0xb6,0x6c,0xce,0x31,0x4a,0xdb,0x31
,0x0e,0x3b,0xe8,0x25,0x0c,0x46,0xf0,0x6d
,0xce,0xea,0x3a,0x7f,0xa1,0x34,0x80,0x57
,0xe2,0xf6,0x55,0x6a,0xd6,0xb1,0x31,0x8a



,0x02,0x4a,0x83,0x8f,0x21,0xaf,0x1f,0xde
,0x04,0x89,0x77,0xeb,0x48,0xf5,0x9f,0xfd
,0x49,0x24,0xca,0x1c,0x60,0x90,0x2e,0x52
,0xf0,0xa0,0x89,0xbc,0x76,0x89,0x70,0x40
,0xe0,0x82,0xf9,0x37,0x76,0x38,0x48,0x64
,0x5e,0x07,0x05

Testing: box vs. secretbox. The following program computes the same 147-
byte boxed packet, but starts from the first-level key k1 computed in Section
8:

#include <stdio.h>
#include "crypto_secretbox_xsalsa20poly1305.h"

unsigned char firstkey[32] = {
0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4

,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7
,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2
,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89
} ;

unsigned char nonce[24] = {
0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6
,0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37
} ;

// API requires first 32 bytes to be 0
unsigned char m[163] = {

0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0, 0, 0
,0xbe,0x07,0x5f,0xc5,0x3c,0x81,0xf2,0xd5
,0xcf,0x14,0x13,0x16,0xeb,0xeb,0x0c,0x7b
,0x52,0x28,0xc5,0x2a,0x4c,0x62,0xcb,0xd4
,0x4b,0x66,0x84,0x9b,0x64,0x24,0x4f,0xfc
,0xe5,0xec,0xba,0xaf,0x33,0xbd,0x75,0x1a
,0x1a,0xc7,0x28,0xd4,0x5e,0x6c,0x61,0x29
,0x6c,0xdc,0x3c,0x01,0x23,0x35,0x61,0xf4
,0x1d,0xb6,0x6c,0xce,0x31,0x4a,0xdb,0x31
,0x0e,0x3b,0xe8,0x25,0x0c,0x46,0xf0,0x6d
,0xce,0xea,0x3a,0x7f,0xa1,0x34,0x80,0x57
,0xe2,0xf6,0x55,0x6a,0xd6,0xb1,0x31,0x8a
,0x02,0x4a,0x83,0x8f,0x21,0xaf,0x1f,0xde
,0x04,0x89,0x77,0xeb,0x48,0xf5,0x9f,0xfd



,0x49,0x24,0xca,0x1c,0x60,0x90,0x2e,0x52
,0xf0,0xa0,0x89,0xbc,0x76,0x89,0x70,0x40
,0xe0,0x82,0xf9,0x37,0x76,0x38,0x48,0x64
,0x5e,0x07,0x05
} ;

unsigned char c[163];

main()
{

int i;
crypto_secretbox_xsalsa20poly1305(

c,m,163,nonce,firstkey
);
for (i = 16;i < 163;++i) {

printf(",0x%02x",(unsigned int) c[i]);
if (i % 8 == 7) printf("\n");

}
printf("\n");
return 0;

}

The following program opens the same box, again starting from the first-level
key k1:

#include <stdio.h>
#include "crypto_secretbox_xsalsa20poly1305.h"

unsigned char firstkey[32] = {
0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4

,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7
,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2
,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89
} ;

unsigned char nonce[24] = {
0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6
,0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37
} ;

// API requires first 16 bytes to be 0
unsigned char c[163] = {

0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0, 0, 0
,0xf3,0xff,0xc7,0x70,0x3f,0x94,0x00,0xe5
,0x2a,0x7d,0xfb,0x4b,0x3d,0x33,0x05,0xd9



,0x8e,0x99,0x3b,0x9f,0x48,0x68,0x12,0x73
,0xc2,0x96,0x50,0xba,0x32,0xfc,0x76,0xce
,0x48,0x33,0x2e,0xa7,0x16,0x4d,0x96,0xa4
,0x47,0x6f,0xb8,0xc5,0x31,0xa1,0x18,0x6a
,0xc0,0xdf,0xc1,0x7c,0x98,0xdc,0xe8,0x7b
,0x4d,0xa7,0xf0,0x11,0xec,0x48,0xc9,0x72
,0x71,0xd2,0xc2,0x0f,0x9b,0x92,0x8f,0xe2
,0x27,0x0d,0x6f,0xb8,0x63,0xd5,0x17,0x38
,0xb4,0x8e,0xee,0xe3,0x14,0xa7,0xcc,0x8a
,0xb9,0x32,0x16,0x45,0x48,0xe5,0x26,0xae
,0x90,0x22,0x43,0x68,0x51,0x7a,0xcf,0xea
,0xbd,0x6b,0xb3,0x73,0x2b,0xc0,0xe9,0xda
,0x99,0x83,0x2b,0x61,0xca,0x01,0xb6,0xde
,0x56,0x24,0x4a,0x9e,0x88,0xd5,0xf9,0xb3
,0x79,0x73,0xf6,0x22,0xa4,0x3d,0x14,0xa6
,0x59,0x9b,0x1f,0x65,0x4c,0xb4,0x5a,0x74
,0xe3,0x55,0xa5
} ;

unsigned char m[163];

main()
{

int i;
if (crypto_secretbox_xsalsa20poly1305_open(

m,c,163,nonce,firstkey
) == 0) {

for (i = 32;i < 163;++i) {
printf(",0x%02x",(unsigned int) m[i]);
if (i % 8 == 7) printf("\n");

}
printf("\n");

}
return 0;

}

Testing: secretbox vs. stream. The following program starts from the first-
level key k1 shown above, computes the first 163 bytes of the corresponding
stream as in Section 8, skips the first 32 bytes, and xors the remaining bytes
with the 131-byte packet shown above:

#include <stdio.h>
#include "crypto_stream_xsalsa20.h"

unsigned char firstkey[32] = {
0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4



,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7
,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2
,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89
} ;

unsigned char nonce[24] = {
0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6
,0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37
} ;

unsigned char m[163] = {
0, 0, 0, 0, 0, 0, 0, 0

, 0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0, 0, 0
, 0, 0, 0, 0, 0, 0, 0, 0
,0xbe,0x07,0x5f,0xc5,0x3c,0x81,0xf2,0xd5
,0xcf,0x14,0x13,0x16,0xeb,0xeb,0x0c,0x7b
,0x52,0x28,0xc5,0x2a,0x4c,0x62,0xcb,0xd4
,0x4b,0x66,0x84,0x9b,0x64,0x24,0x4f,0xfc
,0xe5,0xec,0xba,0xaf,0x33,0xbd,0x75,0x1a
,0x1a,0xc7,0x28,0xd4,0x5e,0x6c,0x61,0x29
,0x6c,0xdc,0x3c,0x01,0x23,0x35,0x61,0xf4
,0x1d,0xb6,0x6c,0xce,0x31,0x4a,0xdb,0x31
,0x0e,0x3b,0xe8,0x25,0x0c,0x46,0xf0,0x6d
,0xce,0xea,0x3a,0x7f,0xa1,0x34,0x80,0x57
,0xe2,0xf6,0x55,0x6a,0xd6,0xb1,0x31,0x8a
,0x02,0x4a,0x83,0x8f,0x21,0xaf,0x1f,0xde
,0x04,0x89,0x77,0xeb,0x48,0xf5,0x9f,0xfd
,0x49,0x24,0xca,0x1c,0x60,0x90,0x2e,0x52
,0xf0,0xa0,0x89,0xbc,0x76,0x89,0x70,0x40
,0xe0,0x82,0xf9,0x37,0x76,0x38,0x48,0x64
,0x5e,0x07,0x05
} ;

unsigned char c[163];

main()
{

int i;
crypto_stream_xsalsa20_xor(c,m,163,nonce,firstkey);
for (i = 32;i < 163;++i) {

printf(",0x%02x",(unsigned int) c[i]);
if (i % 8 == 7) printf("\n");

}



printf("\n");
return 0;

}

This program prints

,0x8e,0x99,0x3b,0x9f,0x48,0x68,0x12,0x73
,0xc2,0x96,0x50,0xba,0x32,0xfc,0x76,0xce
,0x48,0x33,0x2e,0xa7,0x16,0x4d,0x96,0xa4
,0x47,0x6f,0xb8,0xc5,0x31,0xa1,0x18,0x6a
,0xc0,0xdf,0xc1,0x7c,0x98,0xdc,0xe8,0x7b
,0x4d,0xa7,0xf0,0x11,0xec,0x48,0xc9,0x72
,0x71,0xd2,0xc2,0x0f,0x9b,0x92,0x8f,0xe2
,0x27,0x0d,0x6f,0xb8,0x63,0xd5,0x17,0x38
,0xb4,0x8e,0xee,0xe3,0x14,0xa7,0xcc,0x8a
,0xb9,0x32,0x16,0x45,0x48,0xe5,0x26,0xae
,0x90,0x22,0x43,0x68,0x51,0x7a,0xcf,0xea
,0xbd,0x6b,0xb3,0x73,0x2b,0xc0,0xe9,0xda
,0x99,0x83,0x2b,0x61,0xca,0x01,0xb6,0xde
,0x56,0x24,0x4a,0x9e,0x88,0xd5,0xf9,0xb3
,0x79,0x73,0xf6,0x22,0xa4,0x3d,0x14,0xa6
,0x59,0x9b,0x1f,0x65,0x4c,0xb4,0x5a,0x74
,0xe3,0x55,0xa5

matching the final 131 bytes of the 147-byte boxed packet shown above.

Testing: secretbox vs. onetimeauth. The following program starts from the
first-level key k1 shown above and prints the first 32 bytes of the corresponding
stream:

#include <stdio.h>
#include "crypto_stream_xsalsa20.h"

unsigned char firstkey[32] = {
0x1b,0x27,0x55,0x64,0x73,0xe9,0x85,0xd4

,0x62,0xcd,0x51,0x19,0x7a,0x9a,0x46,0xc7
,0x60,0x09,0x54,0x9e,0xac,0x64,0x74,0xf2
,0x06,0xc4,0xee,0x08,0x44,0xf6,0x83,0x89
} ;

unsigned char nonce[24] = {
0x69,0x69,0x6e,0xe9,0x55,0xb6,0x2b,0x73

,0xcd,0x62,0xbd,0xa8,0x75,0xfc,0x73,0xd6
,0x82,0x19,0xe0,0x03,0x6b,0x7a,0x0b,0x37
} ;

unsigned char rs[32];



main()
{

int i;
crypto_stream_xsalsa20(rs,32,nonce,firstkey);
for (i = 0;i < 32;++i) {

printf(",0x%02x",(unsigned int) rs[i]);
if (i % 8 == 7) printf("\n");

}
return 0;

}

The output of the program is a Poly1305 key (r, s):

,0xee,0xa6,0xa7,0x25,0x1c,0x1e,0x72,0x91
,0x6d,0x11,0xc2,0xcb,0x21,0x4d,0x3c,0x25
,0x25,0x39,0x12,0x1d,0x8e,0x23,0x4e,0x65
,0x2d,0x65,0x1f,0xa4,0xc8,0xcf,0xf8,0x80

The following program starts from this Poly1305 key (r, s) and the 131-
byte suffix c of the boxed packet shown above, and uses C NaCl to compute
Poly1305(ClampP(r), c, s):

#include <stdio.h>
#include "crypto_onetimeauth_poly1305.h"

unsigned char rs[32] = {
0xee,0xa6,0xa7,0x25,0x1c,0x1e,0x72,0x91

,0x6d,0x11,0xc2,0xcb,0x21,0x4d,0x3c,0x25
,0x25,0x39,0x12,0x1d,0x8e,0x23,0x4e,0x65
,0x2d,0x65,0x1f,0xa4,0xc8,0xcf,0xf8,0x80
} ;

unsigned char c[131] = {
0x8e,0x99,0x3b,0x9f,0x48,0x68,0x12,0x73

,0xc2,0x96,0x50,0xba,0x32,0xfc,0x76,0xce
,0x48,0x33,0x2e,0xa7,0x16,0x4d,0x96,0xa4
,0x47,0x6f,0xb8,0xc5,0x31,0xa1,0x18,0x6a
,0xc0,0xdf,0xc1,0x7c,0x98,0xdc,0xe8,0x7b
,0x4d,0xa7,0xf0,0x11,0xec,0x48,0xc9,0x72
,0x71,0xd2,0xc2,0x0f,0x9b,0x92,0x8f,0xe2
,0x27,0x0d,0x6f,0xb8,0x63,0xd5,0x17,0x38
,0xb4,0x8e,0xee,0xe3,0x14,0xa7,0xcc,0x8a
,0xb9,0x32,0x16,0x45,0x48,0xe5,0x26,0xae
,0x90,0x22,0x43,0x68,0x51,0x7a,0xcf,0xea
,0xbd,0x6b,0xb3,0x73,0x2b,0xc0,0xe9,0xda
,0x99,0x83,0x2b,0x61,0xca,0x01,0xb6,0xde
,0x56,0x24,0x4a,0x9e,0x88,0xd5,0xf9,0xb3



,0x79,0x73,0xf6,0x22,0xa4,0x3d,0x14,0xa6
,0x59,0x9b,0x1f,0x65,0x4c,0xb4,0x5a,0x74
,0xe3,0x55,0xa5
} ;

unsigned char a[16];

main()
{

int i;
crypto_onetimeauth_poly1305(a,c,131,rs);
for (i = 0;i < 16;++i) {

printf(",0x%02x",(unsigned int) a[i]);
if (i % 8 == 7) printf("\n");

}
return 0;

}

The program prints

,0xf3,0xff,0xc7,0x70,0x3f,0x94,0x00,0xe5
,0x2a,0x7d,0xfb,0x4b,0x3d,0x33,0x05,0xd9

matching the first 16 bytes of the boxed packet shown above.

Testing: C++ vs. onetimeauth. The following C++ program starts from the
same Poly1305 key (r, s) and the same c as above, and uses GMP (through
GMP’s C++ interface) to compute Poly1305(ClampP(r), c, s):

#include <stdio.h>
#include <gmpxx.h>

void poly1305_gmpxx(unsigned char *out,
const unsigned char *r,
const unsigned char *s,
const unsigned char *m,unsigned int l)

{
unsigned int j;
mpz_class rbar = 0;
for (j = 0;j < 16;++j) {

mpz_class rj = r[j];
if (j % 4 == 3) rj = r[j] % 16;
if (j == 4) rj = r[j] & 252;
if (j == 8) rj = r[j] & 252;
if (j == 12) rj = r[j] & 252;
rbar += rj << (8 * j);

}
mpz_class h = 0;



mpz_class p = (((mpz_class) 1) << 130) - 5;
while (l > 0) {

mpz_class c = 0;
for (j = 0;(j < 16) && (j < l);++j)
c += ((mpz_class) m[j]) << (8 * j);

c += ((mpz_class) 1) << (8 * j);
m += j; l -= j;
h = ((h + c) * rbar) % p;

}
for (j = 0;j < 16;++j)

h += ((mpz_class) s[j]) << (8 * j);
for (j = 0;j < 16;++j) {

mpz_class c = h % 256;
h >>= 8;
out[j] = c.get_ui();

}
}

unsigned char rs[32] = {
0xee,0xa6,0xa7,0x25,0x1c,0x1e,0x72,0x91

,0x6d,0x11,0xc2,0xcb,0x21,0x4d,0x3c,0x25
,0x25,0x39,0x12,0x1d,0x8e,0x23,0x4e,0x65
,0x2d,0x65,0x1f,0xa4,0xc8,0xcf,0xf8,0x80
} ;

unsigned char c[131] = {
0x8e,0x99,0x3b,0x9f,0x48,0x68,0x12,0x73

,0xc2,0x96,0x50,0xba,0x32,0xfc,0x76,0xce
,0x48,0x33,0x2e,0xa7,0x16,0x4d,0x96,0xa4
,0x47,0x6f,0xb8,0xc5,0x31,0xa1,0x18,0x6a
,0xc0,0xdf,0xc1,0x7c,0x98,0xdc,0xe8,0x7b
,0x4d,0xa7,0xf0,0x11,0xec,0x48,0xc9,0x72
,0x71,0xd2,0xc2,0x0f,0x9b,0x92,0x8f,0xe2
,0x27,0x0d,0x6f,0xb8,0x63,0xd5,0x17,0x38
,0xb4,0x8e,0xee,0xe3,0x14,0xa7,0xcc,0x8a
,0xb9,0x32,0x16,0x45,0x48,0xe5,0x26,0xae
,0x90,0x22,0x43,0x68,0x51,0x7a,0xcf,0xea
,0xbd,0x6b,0xb3,0x73,0x2b,0xc0,0xe9,0xda
,0x99,0x83,0x2b,0x61,0xca,0x01,0xb6,0xde
,0x56,0x24,0x4a,0x9e,0x88,0xd5,0xf9,0xb3
,0x79,0x73,0xf6,0x22,0xa4,0x3d,0x14,0xa6
,0x59,0x9b,0x1f,0x65,0x4c,0xb4,0x5a,0x74
,0xe3,0x55,0xa5
} ;



unsigned char a[16];

main()
{

int i;
poly1305_gmpxx(a,rs,rs + 16,c,131);
for (i = 0;i < 16;++i) {

printf(",0x%02x",(unsigned int) a[i]);
if (i % 8 == 7) printf("\n");

}
return 0;

}

The program prints

,0xf3,0xff,0xc7,0x70,0x3f,0x94,0x00,0xe5
,0x2a,0x7d,0xfb,0x4b,0x3d,0x33,0x05,0xd9

matching the output of the previous program.
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