
Cost analysis of hash collisions:
Will quantum computers
make SHARCS obsolete?

Daniel J. Bernstein ?

Department of Computer Science (MC 152)
The University of Illinois at Chicago

Chicago, IL 60607–7053
djb@cr.yp.to

Abstract. Current proposals for special-purpose factorization hardware
will become obsolete if large quantum computers are built: the number-
field sieve scales much more poorly than Shor’s quantum algorithm for
factorization. Will all special-purpose cryptanalytic hardware become
obsolete in a post-quantum world?

A quantum algorithm by Brassard, Høyer, and Tapp has frequently been
claimed to reduce the cost of b-bit hash collisions from 2b/2 to 2b/3.
This paper analyzes the Brassard–Høyer–Tapp algorithm and shows that
it has fundamentally worse price-performance ratio than the classical
van Oorschot–Wiener hash-collision circuits, even under optimistic as-
sumptions regarding the speed of quantum computers.

Keywords. hash functions, collision-search algorithms, table lookups,
parallelization, rho, post-quantum cryptanalysis

1 Introduction

The SHARCS (Special-Purpose Hardware for Attacking Cryptographic
Systems) workshops have showcased a wide variety of hardware designs
for factorization, brute-force search, and hash collisions. These hardware
designs often achieve surprisingly good price-performance ratios and are
among the top threats against currently deployed cryptosystems, such as
RSA-1024.

Would any of this work be useful for a post-quantum attacker—an
attacker equipped with a large quantum computer? The power of today’s
cryptanalytic hardware is of tremendous current interest, but will the
? Permanent ID of this document: 971550562a76ba87a7b2da14f71ca923. Date of this

document: 2009.08.23. This work was supported by the National Science Foundation
under grant ITR–0716498.



2 Daniel J. Bernstein

same hardware designs remain competitive in a world full of quantum
computers, assuming that those computers are in fact built?

One might guess that the answer to both of these questions is no:
that large quantum computers will become the tool of choice for all large
cryptanalytic tasks. Should SHARCS prepare for a transition to a post-
quantum SHARCS?

Case study: Factorization. Today’s public efforts to build factoriza-
tion hardware are focused on the number-field sieve. The number-field
sieve is conjectured to factor b-bit RSA moduli in time 2b

1/3+o(1)
; older

algorithms take time 2b
1/2+o(1)

and do not appear to be competitive with
the number-field sieve once b is sufficiently large. Detailed analyses show
that “sufficiently large” includes a wide range of b’s of real-world crypto-
graphic interest, notably b = 1024.

The standard advertising for quantum computers is that they can
factor much more efficiently than the number-field sieve. Specifically, Shor
in [15] and [16] introduced an algorithm to factor a b-bit integer in bΘ(1)

operations on a quantum computer having bΘ(1) qubits. For a detailed
analysis of the number of qubit operations inherent in Shor’s algorithm
see, e.g., [19].

Simulating this quantum computer on traditional hardware would
make it exponentially slower. The goal of quantum-computer engineer-
ing is to directly build qubits as physical devices that can efficiently and
reliably carry out quantum operations. Note that, thanks to “quantum
error correction,” perfect reliability is not required; for example, [4, Sec-
tion 5.3.3.3] shows that an essentially perfect qubit can be simulated by
an essentially constant number of 99.99%-reliable qubits.

Assume that this goal is achieved, and that a quantum computer
can be built for bΘ(1) Euros to factor a b-bit integer in bΘ(1) seconds.
This quantum computer will be much more scalable than number-field-
sieve hardware, and therefore much more cost-effective than number-field-
sieve hardware for large b—including b’s of cryptographic interest if the
exponents Θ(1) are reasonably small.

Case study: Preimage search. Similar comments apply to hardware
for brute-force search, i.e., hardware to compute preimages.

Consider a function H that can be computed by a straight-line se-
quence of h bit operations. Assume for simplicity that there is a unique
b-bit string x satisfying H(x) = 0. Grover in [8] and [9] presented a
quantum algorithm to find this x with high probability in approximately
2b/2h operations on Θ(h) qubits. A real-world quantum computer with



Cost analysis of hash collisions 3

similar performance would scale much more effectively than traditional
hardware using 2bh operations, and would therefore be much more cost-
effective than traditional hardware for large b—again possibly including
b’s of cryptographic interest. Grover’s speedup from 2bh to 2b/2h is not as
dramatic as Shor’s speedup from 2b

1/3+o(1)
to bΘ(1), but it is still a clear

speedup when b is large.
More generally, assume that there are exactly p preimages of 0 under

H. Traditional hardware finds a preimage with high probability using ap-
proximately (2b/p)h operations. Boyer, Brassard, Høyer, and Tapp in [5]
presented a minor extension of Grover’s algorithm to find a preimage with
high probability using approximately (2b/2/p1/2)h quantum operations on
Θ(h) qubits. It is not necessary for p to be known in advance.

If quantum search is run for only ε(2b/2/p1/2)h operations then it has
approximately an ε2 chance of success.

Case study: Collision search. The point of this paper is that all known
quantum algorithms to find collisions in hash functions are less cost-
effective than traditional cryptanalytic hardware, even under optimistic
assumptions regarding the speed of quantum computers. Quantum com-
puters win for sufficiently large factorizations, and for sufficiently large
preimage searches, but they do not win for collision searches.

This conclusion does not depend on the engineering difficulty of build-
ing quantum computers; it will remain true even in a world full of quan-
tum computers. This conclusion also does not depend on real-world limits
on interesting input sizes. Within the space of known quantum collision
algorithms, the most cost-effective algorithms are tantamount to non-
quantum algorithms, and it is clear that non-quantum algorithms should
be implemented with standard bits rather than with qubits.

In particular, this paper shows that the quantum collision method
introduced in [6] by Brassard, Høyer, and Tapp is fundamentally less
cost-effective than the collision-search circuits that had been introduced
years earlier by van Oorschot and Wiener in [17]. There is a popular myth
that the Brassard–Høyer–Tapp algorithm reduces the cost of b-bit hash
collisions from 2b/2 to 2b/3; this myth rests on a nonsensical notion of cost
and is debunked in this paper.

Figures 1.1 and 1.2 summarize the asymptotic speeds of the attack
machines considered in this paper. The horizontal axis is machine size,
from 20 to 2b/2. The vertical axis is (typical) time to find a collision, from
20 to 2b. Figure 1.1 assumes a realistic two-dimensional communication
mesh; Figure 1.2 makes the naive assumption that communication is free.



4 Daniel J. Bernstein

2b seconds

2b/2 seconds

2b/2 Euros2b/3 Euros2b/6 Euros

• guessing (§2)

• quantum guessing (§2)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

tables (§3)

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

parallel guessing
(§4)

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

parallel tables
(§4)YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

parallel
quantum

guessing (§4)
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

parallel rho (§5)

Fig. 1.1. Asymptotic collision-search time assuming realistic communication costs.
Parallel rho is 1994 van Oorschot–Wiener [17]. Parallel quantum guessing is 2003
Grover–Rudolph [10].

2 Guessing a collision

A collision in a function H is, by definition, a pair (x, y) such that x 6= y
and H(x) = H(y). The simplest way to find a collision is to simply guess
a pair (x, y) in the domain of H and see whether it is a collision.

Assume, for concreteness, that H maps (b + c)-bit strings to b-bit
strings, where c ≥ 1. Assume that x and y are uniform random (b+ c)-bit
strings. What is the chance that (x, y) is a collision in H? The answer
depends on the distribution of output values of H but is guaranteed to
be at least 1/2b − 1/2b+c. The proof is a standard calculation: say the 2b

output values of H have p0, p1, . . . , p2b−1 preimages respectively, where
p0 + p1 + · · ·+ p2b−1 = 2b+c; then the number of collisions (x, y) is

p0(p0 − 1) + p1(p1 − 1) + · · ·+ p2b−1(p2b−1 − 1)

= p2
0 + p2

1 + · · ·+ p2
2b−1 − (p0 + p1 + · · ·+ p2b−1)

≥
(p0 + p1 + · · ·+ p2b−1)2

2b
− (p0 + p1 + · · ·+ p2b−1)

= 2b+2c − 2b+c

by Cauchy’s inequality.
A sequence of N independent guesses succeeds with probability at

least 1− (1− (1/2b − 1/2b+c))N and involves at worst 2N computations



Cost analysis of hash collisions 5

2b seconds

2b/2 seconds

2b/2 Euros2b/3 Euros2b/6 Euros

• guessing (§2)

• quantum guessing (§2) TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

tables (§3) or
parallel guessing (§4)

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

parallel tables
(§4)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

BHT claim (§3) or
parallel quantum

guessing (§4)

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

parallel quantum tables (§4)
or parallel rho (§5)

Fig. 1.2. Asymptotic collision-search time assuming free communication. Parallel rho
is 1994 van Oorschot–Wiener [17]. “BHT claim” is 1998 Brassard–Høyer–Tapp [6].
Parallel quantum guessing is 2003 Grover–Rudolph [10].

of H. In particular, a sequence of
⌈
1/(1/2b − 1/2b+c)

⌉
≈ 2b independent

guesses succeeds with probability more than 1 − exp(−1) ≈ 0.63 and
involves (at worst) ≈ 2b+1 computations of H. This attack can be im-
plemented on a very small circuit, typically dominated by the size of a
circuit to compute H.

The impact of quantum computers. A collision in H is exactly a
preimage of 0 under the (2b+2c)-bit-to-1-bit function F defined as follows:
F (x, y) = 0 if H(x) = H(y) and x 6= y; F (x, y) = 1 if H(x) 6= H(y) or
x = y. One can find a preimage by quantum search instead of by guessing.
Quantum search uses approximately 2b/2h quantum operations on Θ(h)
qubits, where h is the cost of evaluating the function. (To understand
the appearance of 2b/2 here, recall that quantum search finds one out of p
b-bit preimages in time approximately 2b/2/p1/2; now replace b by 2b+2c,
and replace p by 2b+2c − 2b+c.)

One could summarize this change by claiming that quantum comput-
ers reduce collision-search time from 2b to 2b/2, saving a factor of 2b/2.
There are two reasons that the actual speedup factor is much smaller.
The first reason is that, even in the most optimistic visions of quantum
computing, qubits will be larger and slower than bits. The second rea-
son is that there are many other ways to reduce the time far below 2b,
and in fact far below 2b/2, without quantum computing. There are also



6 Daniel J. Bernstein

faster quantum collision-search algorithms, but—as shown in subsequent
sections of this paper—the non-quantum algorithms are the most cost-
effective algorithms known.

3 Table lookups

There is a classic way to use large tables to reduce the number of H
evaluations:

• Generate many inputs x1, x2, . . . , xM .
• Compute H(x1), H(x2), . . . ,H(xM ), and lexicographically sort the M

pairs (H(x1), x1), (H(x2), x2), . . . , (H(xM ), xM ).
• Generate many more inputs y1, y2, . . . , yN . After generating yj , com-

pute H(yj) and look it up in the sorted list, hoping to find a collision.

This attack has the same effect as searching all MN pairs (xi, yj) for
collisions H(xi) = H(yj). In particular, the attack has a high probability
of success if M ≈ N ≈ 2b/2. What makes the attack interesting is that it
is faster than considering each pair (xi, yj) separately—although it also
requires a large attack machine with M(2b+ c) bits of memory.

In a naive model of communication, random access to a huge array
takes constant time; looking up H(yi) in the sorted list takes approx-
imately lgM memory accesses; and sorting in the first place takes ap-
proximately M lgM memory accesses. The table-lookup attack thus takes
M+N evaluations of H and additional time approximately (M+N) lgM
for memory access. For example, if M ≈ N ≈ 2b/2, then the attack takes
2b/2+1 evaluations of H and additional time approximately 2b/2b for mem-
ory access.

In a realistic two-dimensional model of communication, random access
to an M -element array takes time M1/2. The table-lookup attack thus
takes M +N evaluations of H and additional time approximately (M +
N)M1/2 lgM for memory access. For example, if M ≈ N ≈ 2b/2, then the
attack takes 2b/2+1 evaluations of H and additional time approximately
23b/4b for memory access. Memory access is the dominant cost here for
typical choices of H.

To summarize, a size-M machine finds collisions in time roughly 2b/M
in a naive model of communication, or time roughly 2b/M1/2 in a realistic
model of communication. If this machine is run for only ε times as long
then it has approximately an ε chance of success.

The impact of quantum computers. Fix x1, x2, . . . , xM . Consider the
b-bit-to-1-bit function F defined as follows: F (y) = 0 if there is a collision



Cost analysis of hash collisions 7

among (x1, y), (x2, y), . . . , (xM , y); otherwise F (y) = 1. The above attack
guesses a preimage of 0 under F .

Brassard, Høyer, and Tapp in [6] propose instead finding a preimage
of F by quantum search. They claim in [6, Section 3] that this quantum
attack takes “expected time O((k +

√
N/rk)(T + log k))” where “N”

is the number of hash-function inputs (i.e., 2b+c), “N/r” is the number
of hash-function outputs (i.e., 2b), “k” is the table size (i.e., M), and
“T” is the cost of evaluating the hash function (i.e., h). In other words,
they state that quantum search finds a preimage of F in expected time
O((M + 2b/2/M1/2)(h+ logM)).

There are several reasons to question the Brassard–Høyer–Tapp claim.
Quantum search uses 2b/2/M1/2 evaluations of F , not merely 2b/2/M1/2

evaluations of H. Computing F (y) requires not only computing H(y)
but also comparing H(y) to H(x1), H(x2), . . . ,H(xM ). There are two
obstacles to performing these comparisons efficiently when M is large:

• Realistic two-dimensional models of quantum computation, just like
realistic models of non-quantum computation, need time M1/2 for
random access to a table of size M . This M1/2 loss is as large as the
M1/2 speedup claimed by Brassard, Høyer, and Tapp.
• A straight-line circuit to compare H(y) to H(x1), H(x2), . . . ,H(xM )

uses Θ(Mb) bit operations, so a quantum circuit has to use Θ(Mb)
qubit operations. Sorting the table H(x1), H(x2), . . . ,H(xM ) does not
reduce the size of a straight-line comparison circuit, so it does not
reduce the number of quantum operations. The underlying problem
is that, inside the quantum search, the input to the comparison is a
quantum superposition of b-bit strings, so the output depends on all
Mb bits in the precomputed table.

There are much simpler quantum collision-search algorithms that reach
the speed that Brassard, Høyer, and Tapp claim for their algorithm; see
the next section of this paper. Unfortunately, as discussed later, this speed
is still not competitive with non-quantum collision hardware.

4 Parallelization

There is a much simpler way to build a machine of size M that finds
collisions in time 2b/M . The machine consists of M small independent
collision-guessing units (each unit being one of the circuits described in
Section 2), all running in parallel. This machine does as much work in
time T as a single collision-guessing machine would do in time MT . In



8 Daniel J. Bernstein

particular, it has high probability of finding a collision in time 2b/M—
not just in a naive model of communication, but in a realistic model of
communication. This machine, unlike the table-lookup machine described
in the previous section, does not have trouble with communication as M
grows.

A more sophisticated size-M machine sorts H(x1), H(x2), . . . ,H(xM )
and H(y1), H(y2), . . . ,H(yM ) in time Θ(bM1/2) using a two-dimensional
mesh-sorting algorithm; see, e.g., [14] and [13]. Computing the H val-
ues takes time Θ(h); the sorting dominates if M is large. This machine
has probability approximately M2/2b of finding a collision, assuming
M ≤ 2b/2. Repeating the same procedure 2b/M2 times takes time only
Θ(2bb/M3/2) and has high probability of finding a collision.

To summarize, this size-M machine finds collisions in time roughly
2b/M3/2 in a realistic model of communication. For example, a machine
of size 2b/3 finds collisions in time roughly 2b/2. If this machine is run for
ε times as long then it has approximately an ε chance of success.

The impact of quantum computers. Consider a size-M quantum
computer that consists of M small independent collision-searching units,
all running in parallel. After approximately 2b/2hε quantum operations,
each collision-searching unit has approximately an ε2 chance of success, so
the entire machine has approximately an Mε2 chance of success. In par-
ticular, the machine has a high probability of success after approximately
2b/2h/M1/2 quantum operations.

For example, a quantum computer of size 2b/3 can find collisions in
time approximately 2b/3, as claimed in [6]. The fact that mindless par-
allelism would achieve the same performance as [6] was pointed out by
Grover and Rudolph in [10].

One can also try to build the quantum analogue of the more so-
phisticated size-M machine discussed above. Consider the function F
that, given 2Mb bits (x1, x2, . . . , xM , y1, y2, . . . , yM ), outputs 0 if and
only if some (xi, yj) is a collision in H. Quantum search finds a preim-
age of F using approximately 2b/2/M quantum evaluations of F , saving
a factor of M1/2 compared to the previous algorithm. A standard two-
dimensional mesh-sorting algorithm to compute F can be converted into a
two-dimensional mesh-sorting quantum algorithm taking time Θ(bM1/2)
on a machine of size M .

This more sophisticated machine might be slightly better than the
mindlessly parallel quantum machine if H is expensive, but its overall
time is still on the scale of 2b/2/M1/2. The benefit of considering M inputs
together is that M operations produce M2 collision opportunities, a factor



Cost analysis of hash collisions 9

M better than mindless parallelism—but this speeds up quantum search
by only M1/2, while communication costs also grow by a factor M1/2.

The same idea would be an improvement over [6] and [10] in a three-
dimensional model of parallel quantum computation, or in a naive parallel
model without communication delays. The function F can be evaluated
by a straight-line sequence of essentially bM bit operations (by standard
sorting algorithms), and if communication were free then a machine of
size M could carry out all of those bit operations in essentially constant
time. For example, a quantum computer of size 2b/3 would be able to find
collisions in time approximately 2b/6 in a naive model.

5 The rho method

Let me review. The best size-M non-quantum machine described so far
takes time roughly 2b/M3/2 to find a collision: for example, 27b/10 if M =
2b/5. Quantum search reduces 2b/M3/2 to 2b/2/M1/2: for example, 24b/10 if
M = 2b/5. All of these results are for a realistic model of communication;
a naive model would save a factor of M1/2.

“But what about the rho method?” the cryptographers are screaming.
“What kind of idiot would build a machine of size 2b/5 to find collisions
in time 24b/10, when everybody knows how to build a machine of size only
2b/10 to find collisions just as quickly?”

Recall that the rho method iterates the function H. Choose a (b+ c)-
bit string x0, compute the b-bit string H(x0), apply an injective padding
function π to produce a (b+c)-bit string x1 = π(H(x0)), compute H(x1),
compute x2 = π(H(x1)), etc. After approximately 2b/2 steps one can
reasonably expect to find a “distinguished point”: a string xi whose first
b/2 bits are all 0. (In practice very simple functions π such as “append
c zero bits” seem to work for every function H of cryptographic interest,
although theorems obviously require more randomness in π.)

Now consider another such sequence y0, y1, . . ., again iterated until
a distinguished point. There are approximately 2b pairs (xi, yj) before
those distinguished points, so one can reasonably expect that those pairs
include a collision. Furthermore, if those pairs do include a collision, then
the distinguished points will be identical; the sequence lengths will then
reveal the difference i − j, and an easy recomputation of the sequences
will find the collision.

More generally, consider a machine with M parallel iterating units,
and redefine a “distinguished point” as a string xi whose first b/2−dlgMe
bits are all 0. In time approximately 2b/2/M this machine will have consid-



10 Daniel J. Bernstein

ered Θ(2b/2) inputs to H and will have found Θ(M) distinguished points.
The inputs have a good chance of including a collision, and that collision
is easily found from a match in the distinguished points. Sorting the dis-
tinguished points takes time only Θ(M1/2); this is not a bottleneck for
M ≤ 2b/3.

To summarize, this size-M machine finds collisions in time roughly
2b/2/M . For example, a machine of size 1 finds collisions in time roughly
2b/2; a machine of size 2b/6 finds collisions in time roughly 2b/3; and a
machine of size 2b/3 finds collisions in time roughly 2b/6. All of these
results hold in a realistic model of communication.

The special case M = 1 was introduced by Pollard in [12] in 1975.
The general case, finding collisions in time 2b/2/M , was introduced by
van Oorschot and Wiener in [17] in 1994.

The impact of quantum computers. All of the quantum-collision
algorithms in the literature are steps backwards from the non-quantum
algorithm of [17].

The best time claimed—by Brassard, Høyer, and Tapp in [6], and by
Grover and Rudolph in [10]—is 2b/2/M1/2 on a size-M quantum com-
puter. This is no better than running M parallel copies of Pollard’s 1975
method, and is much worse than the van Oorschot–Wiener method.

The previous section of this paper explains how to achieve time 2b/2/M
on a size-M quantum computer, but only in a naive model allowing free
communication. The design has to evaluate H as many times as the van
Oorschot–Wiener method, and has to evaluate it on qubits rather than
on bits. The lack of iteration in this design might be pleasing for purists
who insist on proofs of performance, but this feature is of no practical
interest.

Of course, one can also achieve quantum time 2b/2/M by viewing
the van Oorschot–Wiener algorithm as a quantum algorithm. However,
replacing bits with qubits certainly does not save time! There are several
obvious ways to combine quantum search with the rho method, but I
have not found any such combinations that improve performance, and I
conjecture that—in a suitable generic model—no such improvements are
possible. Quantum search allows N operations to search N2 possibilities,
but the rho method already has the same efficiency.

Many authors have claimed that quantum computers will have an
impact on the complexity of hash collisions, reducing time 2b/2 to time
2b/3. In fact, time 2b/3 had already been achieved by non-quantum ma-
chines of size just 2b/6, and smaller time 2b/4 had already been achieved
by non-quantum machines of size 2b/4. Anyone afraid of quantum hash-



Cost analysis of hash collisions 11

collision algorithms already has much more to fear from non-quantum
hash-collision algorithms.

References

1. — (no editor), Proceedings of the 18th annual ACM symposium on theory of com-
puting, Association for Computing Machinery, New York, 1986. ISBN 0–89791–
193–8. See [14].

2. — (no editor), 2nd ACM conference on computer and communication security,
Fairfax, Virginia, November 1994, Association for Computing Machinery, 1994.
See [17].

3. — (no editor), Proceedings of the twenty-eighth annual ACM symposium on the
theory of computing, held in Philadelphia, PA, May 22–24, 1996, Association for
Computing Machinery, 1996. ISBN 0-89791-785-5. MR 97g:68005. See [8].

4. Panos Aliferis, Level reduction and the quantum threshold theorem (2007). URL:
http://arxiv.org/abs/quant-ph/0703230. Citations in this document: §1.

5. Michel Boyer, Gilles Brassard, Peter Høyer, Alain Tapp, Tight bounds on quantum
searching (1996). URL: http://arxiv.org/abs/quant-ph/9605034v1. Citations in
this document: §1.

6. Gilles Brassard, Peter Høyer, Alain Tapp, Quantum cryptanalysis of hash and claw-
free functions, in [11] (1998), 163–169. MR 99g:94013. Citations in this document:
§1, §1.2, §1.2, §3, §3, §4, §4, §4, §5.

7. Shafi Goldwasser (editor), 35th annual IEEE symposium on the foundations of
computer science. Proceedings of the IEEE symposium held in Santa Fe, NM,
November 20–22, 1994, IEEE, 1994. ISBN 0-8186-6580-7. MR 98h:68008. See [15].

8. Lov K. Grover, A fast quantum mechanical algorithm for database search, in [3]
(1996), 212–219. MR 1427516. Citations in this document: §1.

9. Lov K. Grover, Quantum mechanics helps in searching for a needle in a haystack,
Physical Review Letters 79 (1997), 325–328. Citations in this document: §1.

10. Lov K. Grover, Terry Rudolph, How significant are the known collision and element
distinctness quantum algorithms?, Quantum Information & Computation 4 (2003),
201–206. MR 2005c:81037. URL: http://arxiv.org/abs/quant-ph/0309123. Ci-
tations in this document: §1.1, §1.1, §1.2, §1.2, §4, §4, §5.

11. Claudio L. Lucchesi, Arnaldo V. Moura (editors), LATIN’98: theoretical informat-
ics. Proceedings of the 3rd Latin American symposium held in Campinas, April
20–24, 1998, Lecture Notes in Computer Science, 1380, Springer, 1998. ISBN ISBN
3-540-64275-7. MR 99d:68007. See [6].

12. John M. Pollard, A Monte Carlo method for factorization, BIT 15 (1975), 331–
334. ISSN 0006–3835. MR 52:13611. URL: http://cr.yp.to/bib/entries.html#
1975/pollard. Citations in this document: §5.

13. Manfred Schimmler, Fast sorting on the instruction systolic array, report 8709,
Christian-Albrechts-Universität Kiel, 1987. Citations in this document: §4.

14. Claus P. Schnorr, Adi Shamir, An optimal sorting algorithm for mesh-connected
computers, in [1] (1986), 255–261. Citations in this document: §4.

15. Peter W. Shor, Algorithms for quantum computation: discrete logarithms and fac-
toring., in [7] (1994), 124–134; see also newer version [16]. MR 1489242. Citations
in this document: §1.



12 Daniel J. Bernstein

16. Peter W. Shor, Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer, SIAM Journal on Computing 26 (1997), 1484–
1509; see also older version [15]. MR MR 98i:11108. Citations in this document:
§1.

17. Paul C. van Oorschot, Michael Wiener, Parallel collision search with application
to hash functions and discrete logarithms, in [2] (1994), 210–218; see also newer
version [18]. Citations in this document: §1, §1.1, §1.1, §1.2, §1.2, §5, §5.

18. Paul C. van Oorschot, Michael Wiener, Parallel collision search with cryptanalytic
applications, Journal of Cryptology 12 (1999), 1–28; see also older version [17].
ISSN 0933–2790. URL: http://members.rogers.com/paulv/papers/pubs.html.

19. Christof Zalka, Fast versions of Shor’s quantum factoring algorithm (1998). URL:
http://arxiv.org/abs/quant-ph/9806084. Citations in this document: §1.


