
Date: 2003.09.28. Permanent ID of this document: b4795a4f12863c26de5b7afe9296ffd8. Refereed. Will be printed

in Primes and misdemeanours: lectures in honour of the sixtieth birthday of Hugh Cowie Williams, 2004.

Doubly focused enumeration of

locally square polynomial values

Daniel J. Bernstein
Department of Mathematics, Statistics, and Computer Science (M/C 249)

The University of Illinois at Chicago
Chicago, IL 60607–7045

djb@cr.yp.to

Abstract. Let f be a nonconstant squarefree polynomial. Which of
the values f(c + 1), f(c + 2), . . . , f(c + H) are locally square at all small
primes? This paper presents an algorithm that answers this question
in time H/M2+o(1) for an average small c as H → ∞, where M =

H1/log
2

log H . In contrast, the usual method takes time H/M 1+o(1). This
paper also presents the results of two record-setting computations: an
enumeration of locally square integers up to 24 ·264, and an enumeration
of locally square values of x3 + y7 for small x and y.

1 Introduction

A rational number is locally square at a prime p if it is a square in the p-adic
field Qp. In particular:

• A nonzero integer is locally square at 2 if and only if it is a square modulo
2, 4, 8, 16, . . . : equivalently, it has the form 22es where s is an odd square
modulo 8, i.e., s mod 8 = 1.

• A nonzero integer is locally square at an odd prime p if and only if it is a
square modulo p, p2, p3, p4, . . . : equivalently, it has the form p2es where s is
a nonzero square modulo p, i.e., s(p−1)/2 mod p = 1.

A nonnegative rational number is a square if and only if it is locally square at every
prime p.

Consider the problem of enumerating all integers x in a specified interval such
that a specified polynomial in x is locally square at all primes below a specified
bound. Consider, for example, the problem of enumerating all integers x between
0 and 1017 − 1 such that x3 + 1 is locally square at all primes in {2, 3, . . . , 251}.

One can simply check, for each of the 1017 values of x, the local squareness of
x3 + 1. This is an example of what I call “unfocused enumeration.”

2000 Mathematics Subject Classification. Primary 11Y16. Secondary 11Y70.

c©2003 Daniel J. Bernstein

1



2 Daniel J. Bernstein

A standard improvement is to first compute the possibilities for x modulo
some small integer m, then focus on the corresponding arithmetic progressions.
For example, x mod 5 must be in {0, 2, 4}, so one can focus attention on the 1017/5
values of x with x mod 5 = 0, then the 1017/5 values of x with x mod 5 = 2, and
finally the 1017/5 values of x with x mod 5 = 4, avoiding 40% of the work. Even
better, there are only 18 possibilities for x mod 55, so one can focus attention on
18 arithmetic progressions modulo 55, avoiding more than 67% of the work. These
are examples of what I call “focused enumeration.”

The number of x’s drops exponentially with the number of prime divisors of
m: each additional prime reduces the number of x’s by a factor of approximately
2. But the number of arithmetic progressions, and thus the overhead of considering
each arithmetic progression, grows more than exponentially with the number of
prime divisors. The minimum computation time is achieved for m somewhere
around 1014; the best choice of m depends on the relative costs of considering an
arithmetic progression and considering an x.

The point of this paper is that another technique, which I call “doubly focused
enumeration,” makes the overhead much smaller, allowing m to be chosen much
larger. For example, one can reasonably take m ≈ 3.1 · 1025 as 8 times the product
of all primes between 3 and 67, reducing the number of x’s by a factor of about
66123.

Section 2 of this paper explains doubly focused enumeration in a more general
setting. Section 3 returns to locally square polynomial values:

• It presents an algorithm that uses doubly focused enumeration to figure out
which of f(c+1), f(c+2), . . . , f(c+H) are locally square at all primes p ≤ h,
given a nonconstant squarefree polynomial f , an integer c, a positive integer
H, and an integer h ≥ 2 log H.

• It proves that this algorithm typically takes time H/M 2+o(1) where M =
H1/lg log H ; here lg = log2 as usual. More precisely: The average time for
the algorithm, when c is a uniform random element of an interval of length
about H2, is H/M2+o(1) for fixed f as H → ∞, provided that c has at most
Mo(1) digits and h is in Mo(1). I do not know how to prove the same bound
for a fixed c.

For comparison: Focused enumeration takes time H/M 1+o(1).
Section 4 and Section 5 report, as examples of doubly focused enumeration,

two record-setting computations. The first computation (December 2001) showed
that every non-square positive integer below 24 · 264 is locally non-square at some
prime in {2, 3, . . . , 283}; this is numerical evidence for a standard conjecture related
to fast deterministic primality proving. The second computation (February 2003
through April 2003) scanned 2 · 1020 small pairs (x, y) to find locally square values
of x3 + y7 with x, y coprime.

2 Doubly focused enumeration

Consider the general problem of finding all integers x ∈ [1, H] such that x mod
m1 ∈ S1 and x mod m2 ∈ S2. Here H is a positive integer; m1 and m2 are coprime
positive integers; S1 is a subset of Z/m1; and S2 is a subset of Z/m2.

This section presents three solutions to this problem. The solutions do not have
standard names; I call them “unfocused enumeration,” “focused enumeration,” and
“doubly focused enumeration,” as in Section 1.



Doubly focused enumeration of locally square polynomial values 3

In common applications, focused enumeration is asymptotically faster than
unfocused enumeration, and doubly focused enumeration is asymptotically faster
than focused enumeration.

The following sizes are typical for applications: H ≈ 1020; m1 ≈ m2 ≈ 1014;
and #S1 ≈ #S2 ≈ 1011, so that H(#S1/m1)(#S2/m2) ≈ 1014. In many situations,
one can prove that the number of outputs is approximately H(#S1/m1)(#S2/m2);
see, for example, Section 3.

Unfocused enumeration. The first method is to consider the possibilities
x = 1, x = 2, x = 3, and so on, checking for each x in turn whether x mod m1 ∈ S1

and x mod m2 ∈ S2.
The sets S1 and S2 can be represented in the obvious way as circular arrays

of m1 and m2 bits respectively. There is very little work for each new x: check
the next bit in each array, and record x on the rare occasions that both bits are 1.
Common general-purpose computers can check 32 or 64 values of x simultaneously.

Focused enumeration. The second method is to generate, for each r ∈ S1,
the arithmetic progression of x ∈ [1, H] such that x mod m1 = r, and then check
for each x successively whether x mod m2 ∈ S2.

The advantage of focused enumeration over unfocused enumeration is that the
number of operations drops from H to about H(#S1/m1)+m1. The disadvantage
is that S2 is no longer checked sequentially.

Doubly focused enumeration. The third method uses the following special
case of the explicit Chinese remainder theorem: every integer x ∈ [1, H] may be
written as a difference between a reasonably small multiple of m1 and a reasonably
small multiple of m2. More precisely: x may be written in the form a1 − a2, where
a1 is a multiple of m1 in [m1, H + (m1 − 1)m2] and a2 is a multiple of m2 in
[0, (m1 − 1)m2]. Notice that x mod m1 ∈ S1 if and only if −a2 mod m1 ∈ S1, and
x mod m2 ∈ S2 if and only if a1 mod m2 ∈ S2.

Here is the algorithm. Enumerate, in increasing order, the multiples a1 of m1

in [m1, H + (m1 − 1)m2] such that a1 mod m2 ∈ S2. Simultaneously enumerate, in
increasing order, the multiples a2 of m2 in [0, (m1−1)m2] such that −a2 mod m1 ∈
S1. Merge these two lists to see all differences a1 − a2 in [1, H].

The advantage of doubly focused enumeration over focused enumeration is that
the number of operations drops from about H(#S1/m1) + m1 to, typically, about
H(#S1/m1)(#S2/m2)+m1 +m2. The disadvantage is that each operation is fairly
complicated: for example, a multidigit comparison.

This idea is so simple that it must have been written down before. However,
I have not been able to locate it in the literature, and it is certainly not widely
known in the context of enumerating locally square polynomial values.

Further factorization. In most applications, one can factor m1 and m2 into
much smaller pieces, and correspondingly factor S1 and S2. Consider, for example,
coprime positive integers m11 and m12 and sets S11 and S12 such that m = m11m12

and S1 = {r : r mod m11 ∈ S11, r mod m12 ∈ S12}.
For unfocused enumeration: One can store S11 and S12 instead of S1, using

m11 + m12 bits of memory instead of m1 bits of memory. One then checks bits of
S1 by checking the corresponding bits of S11 and S12.

For focused enumeration: One can enumerate values r ∈ S1 more quickly than
trying each r ∈ Z/m1, by applying the explicit Chinese remainder theorem to



4 Daniel J. Bernstein

each pair in S11 × S12. This well-known technique again avoids the need to store
S1, and reduces the number of operations from about H(#S1/m1) + m1 to about
H(#S1/m1) + #S1 + m11 + m12.

For doubly focused enumeration: The only extra difficulty is that values r ∈ S1

need to be enumerated in increasing order. This can be done without much memory;
see, e.g., [4].

3 Enumeration of locally square polynomial values

Fix a nonconstant squarefree polynomial f in one variable over Z. Consider the
problem of finding all integers x ∈ [1, H] such that f(c + x) is locally square at all
primes p ≤ h, given a positive integer H, an integer c, and an integer h ≥ 2 log H.

Here is an algorithm for solving this problem. Select coprime positive integers
m1 and m2 such that p ≤ h for every prime p dividing m1m2. Define S1 as the set
of r ∈ Z/m1 such that f(c + r) is a square in Z/m1, and define S2 as the set of
r ∈ Z/m2 such that f(c+ r) is a square in Z/m2. Enumerate all integers x ∈ [1, H]
such that x mod m1 ∈ S1 and x mod m2 ∈ S2, as explained in Section 2. Check,
for each such x, whether f(c + x) is locally square at all primes p ≤ h.

The rest of this section shows that this algorithm takes time H/M 2+o(1) for
an average c under mild assumptions, if m1 and m2 are selected properly. Here
M = H1/lg log H , as in Section 1, and o(1) is as H → ∞ for f fixed.

Assume for simplicity that m1 and m2 are squarefree; that they are each in
H/M2+o(1); that each prime p dividing m1m2 is smaller than 2 log H; and that the
number of p’s is in (2+o(1))(log H)/log log H = (2+o(1)) lg M . Theorem 3.1 below
explains one way to construct m1 and m2 satisfying these conditions.

Assume also that c has at most M o(1) digits and that h is in Mo(1). The basic
operations in the algorithm—checking whether f(c+x) is a square modulo various
primes, or is locally square at various primes—then take time M o(1) with negligible
memory. (One can speed up the algorithm by using more memory, as discussed in
Section 2, and by choosing m1 and m2 somewhat larger. However, the speedup is
only Mo(1), which is not visible at the level of precision of this analysis.)

There are three bottlenecks in the algorithm:

• Checking whether f(c + x) is locally square at all primes p ≤ h, for each
x ∈ [1, H] such that x mod m1 ∈ S1 and x mod m2 ∈ S2, i.e., for each
x ∈ [1, H] such that f(c + x) is a square modulo m1m2. If c is a uniform
random element of an interval of length m1m2 then the average number
of candidates x is at most H/2(2+o(1)) lg M = H/M2+o(1) by Theorem 3.3
below.

• Checking whether a1 mod m2 is in S2, for each multiple a1 of m1 between
m1 and H + (m1 − 1)m2. There are H/M2+o(1) multiples to check.

• Checking whether −a2 mod m1 is in S1, for each multiple a2 of m2 between
0 and (m1 − 1)m2. There are H/M2+o(1) multiples to check.

The total time is H/M2+o(1) if c is a uniform random element of an interval of
length m1m2 ≈ H2.

Theorem 3.1 Let H be a positive integer. Define u = log H; assume that

2u ≥ 41. Define M = exp(u/lg u). Let v be the largest integer such that the product

m of the primes in [1, v] satisfies m ≤ H2/M4. Let v1 be the largest integer such

that the product m1 of the primes in [1, v1] satisfies m1 ≤ H/M2. Then there are



Doubly focused enumeration of locally square polynomial values 5

(2 + o(1))u/log u prime divisors of m; all prime divisors of m are smaller than 2u;

and both m1 and m/m1 are in H/M2+o(1).

One can quickly compute four possibilities for (v, v1, m1, m/m1) by computing
approximations to u and M .

Proof The prime number theorem implies that v is in (1+o(1)) log(H2/M4) =
(2 + o(1))u. Thus there are (2 + o(1))u/log 2u = (2 + o(1))u/log u prime divisors
of m. Furthermore, m(v + 1) > H2/M4 by definition of v, so m is in H2/M4+o(1);
by the same argument, m1 is in H/M2+o(1); so m/m1 is also in H/M2+o(1).

Apply one of the Rosser-Schoenfeld theorems (see [16, Theorem 4]): the product
of the primes in [1, 2u] is larger than exp(2u(1 − 1/ log 2u)) since 2u ≥ 41. But
log 2u > log u > (1/2) lg u, so exp(2u/log 2u) < exp(4u/ lg u) = M 4; hence the
product of the primes in [1, 2u] is larger than H2/M4. Consequently v < 2u.

Theorem 3.2 Let d be a positive integer. Let f be a polynomial of degree d over

Z. Let p be an odd prime number that does not divide the leading coefficient of f and

does not divide the discriminant of f . Then there are at most (p+(d−1)
√

p+d)/2
elements r of Z/p such that f(r) is a square in Z/p.

Proof Define χ : Z/p → {−1, 0, 1} as the Legendre symbol modulo p; Xi as
{r ∈ Z/p : χ(f(r)) = i}; a as the leading coefficient of f ; and g as the polynomial
a−1f over the field Z/p.

Check the conditions of Weil’s theorem, as stated in [12, Theorem 5.41]: χ is
a multiplicative character of Z/p of order 2; g is a monic polynomial over Z/p of
positive degree (namely, degree d); g is not a square, because otherwise p would
divide the discriminant of f ; and g has at most d (in fact, exactly d) distinct roots
in its splitting field over Z/p.

Conclusion: X1 −X
−1 =

∑

r χ(f(r)) =
∑

r χ(ag(r)) is at most (d− 1)
√

p. But
X1 + X0 + X

−1 is exactly p; and X0 is exactly the number of roots of f in Z/p,
which is at most d. Add: 2X1 + 2X0 ≤ p + (d − 1)

√
p + d.

Theorem 3.3 Let f be a nonconstant squarefree polynomial over Z. Then

there is a function ε : N → R, with ε ∈ o(1), such that f(r) is a square in Z/m
with probability at most 2−(1+ε(k))k if m is a squarefree positive integer, k is the

number of prime divisors of m, and r is a uniform random element of Z/m.

Proof Write d = deg f ≥ 1. Note that the discriminant of f is nonzero. Define
α as the maximum of the following quantities: d;

√
2;

√
p for the primes p dividing

the discriminant of f ; and
√

p for the primes p dividing the leading coefficient of f .
I claim that if p is prime and r mod p is uniform then f(r) is a square modulo

p with probability at most (1 + α/
√

p)/2. Indeed, if p > d2 is an odd prime
that divides neither the discriminant of f nor the leading coefficient of f , then the
probability is at most

1

2

(

1 +
d − 1√

p
+

d

p

)

<
1

2

(

1 +
d√
p

)

≤ 1

2

(

1 +
α√
p

)

by Theorem 3.2. Otherwise
√

p ≤ α by definition of α; the probability is at most
1 ≤ (1 + α/

√
p)/2.

The probability that f(r) is a square modulo m is the product, over the primes
p dividing m, of the probability that f(r) is a square modulo p; which is at most
the product of (1 + α/

√
p)/2 for these k primes p; which is, in turn, at most



6 Daniel J. Bernstein

(1 + α/
√

2)(1 + α/
√

3)(1 + α/
√

4) · · · (1 + α/
√

k + 1)/2k; in other words, at most
2−(1+ε(k))k, where ε(0) = 0 and

ε(k) =
−1

k

(

lg

(

1 +
α√
2

)

+ lg

(

1 +
α√
3

)

+ · · · + lg

(

1 +
α√

k + 1

))

for k ≥ 1. The sum log(1+α/
√

2)+· · ·+log(1+α/
√

k + 1) ≤ α/
√

2+· · ·+α/
√

k + 1
is bounded by a multiple of

√
k + 1, so ε(k) → 0 as k → ∞.

4 Example: locally square integers

Let x be a positive non-square integer in 1 + 8Z. What is the smallest odd
prime r such that x(r−1)/2 mod r 6= 1? In other words, what is the smallest odd
prime r such that x is divisible by r or locally non-square at r or both?

It is widely conjectured that r/log r is at most (1 + o(1)) lg x, where lg = log2.
In fact, no examples are known in which r/log r is larger than lg x. A proof of an
explicit bound such as r/log r ≤ 2 lg x would imply, among other things, that there
is a deterministic primality-proving algorithm taking essentially cubic time. See
[8], [2], [14, pages 130–136], and [15, Section 2].

I have verified that r ≤ 283 for all x < 24 · 264 ≈ 4.4 · 1020. Here are the cutoffs
for each r between 181 and 281 inclusive:

r ≤ r/log r < if x <

181 34.818 696161110209049 ≈ 1.237 · 249

193 36.674 2854909648103881 ≈ 1.268 · 251

197 37.288 6450045516630769 ≈ 1.432 · 252

211 39.426 11641399247947921 ≈ 1.292 · 253

227 41.844 190621428905186449 ≈ 1.323 · 257

229 42.145 196640248121928601 ≈ 1.364 · 257

233 42.745 712624335095093521 ≈ 1.236 · 259

239 43.642 1773855791877850321 ≈ 1.539 · 260

241 43.940 2327687064124474441 ≈ 1.009 · 261

251 45.427 6384991873059836689 ≈ 1.385 · 262

257 46.315 8019204661305419761 ≈ 1.739 · 262

263 47.199 10198100582046287689 ≈ 1.106 · 263

277 49.254 69848288320900186969 ≈ 1.893 · 265

281 49.838 208936365799044975961 ≈ 1.416 · 267

283 50.129 24 · 264 = 1.5 · 268(not maximal)

This computation took ten days, about 1.2 · 1015 clock cycles, on a Pentium 4
running at 1406MHz.

Another way to phrase the same result: Every non-square positive integer
below 24 · 264 is locally non-square at some prime in {2, 3, . . . , 283}. Indeed, write
the integer in the form xy2 where x is squarefree. If x is a square then the original
integer is a square, contradiction. If x /∈ 1 + 8Z then xy2 is locally non-square
at 2. If x is a non-square in 1 + 8Z then, by this computation, there is an odd
prime r ≤ 283 for which x(r−1)/2 mod r 6= 1. If x(r−1)/2 mod r = r − 1 then x is
locally non-square at r. If x(r−1)/2 mod r = 0 then x is divisible by r but, being
squarefree, not by r2, so it is locally non-square at r.

A series of previous computations, initiated by Kraitchik in 1924 and continued
by Lehmer, Lehmer, Shanks, Patterson, Williams, Stephens, and Lukes, showed
with considerably more effort that r ≤ 281 for all x up to about 7 · 1019 ≈ 266. See



Doubly focused enumeration of locally square polynomial values 7

[9], [10], [11], [17], [14, page 134], and [15]. For example, the computation of Lukes,
Patterson, and Williams in [15] was a focused enumeration of all small y such that
1 + 24y is a non-unit square modulo m1 = 5 · 7 · 11 · 13; there are about H/27 such
values of y in [1, H].

My computation was a doubly focused enumeration, as explained in Section 2
and Section 3, of all small y such that 1 + 24y is a non-unit square modulo both
m1 = 41 · 43 · 47 · 53 · 59 · 61 · 71 · 73 and m2 = 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 67.
There are about H/1386487 such values of y in [1, H].

Further speed improvements are possible. I could use somewhat larger moduli
m1 and m2, for example, especially if I balance the primes.

A note on terminology: pseudosquares. Lehmer in [10] defined, for each
prime q ≥ 3, the corresponding “pseudo-square” Lq as the smallest positive non-

square integer x ∈ 1 + 8Z for which r > q, i.e., for which x(p−1)/2 mod p = 1 for all
primes p ≤ q. The same terminology is used in [18, page 522], [14], and [15].

On the other hand, Lehmer, Lehmer, and Shanks in [11] defined a “pseudo-
square” for q as any non-square integer x ∈ 1 + 8Z for which r > q. The same
terminology is used in [5]. The “Table of Pseudo-Squares” in [11, page 434] includes
one “least solution” column and one “least prime solution” column. A “prime
pseudo-square” in this terminology does not have a short name in the previous
terminology.

“Pseudo-squares” have an unrelated definition in [1] and [3]: a sequence of
“pseudo-squares” is a sequence of integers in which the nth integer is close to n2 in
the usual metric.

5 Example: locally square values of x3 + y7

The problem here is to find all small coprime integer pairs (x, y) such that
x3 + y7 is locally square at all primes p < 300. This is inspired by the well-known
problem, discussed in [6], of finding all coprime integer pairs (x, y) for which x3 +y7

is a square.
I searched 2 · 1020 + 2 pairs (x, y): the range x ∈ [−y3, 1017 − 1 − y3] for each

y ∈ [1, 1000], the range x ∈ [0, 1017 − 1] for each y ∈ [−1000,−1], and the range
x ∈ {−1, 1} for y = 0. Results:

151636056616521213 + (−980)7 = non-square (new)
334087369518583263 + (−503)7 = non-square (new)
817379178551331933 + (−236)7 = non-square (new)
143800865190664983 + (−47)7 = non-square (new)

13 + (−1)7 = 02

13 + 07 = 12

(−1)3 + 17 = 02

03 + 17 = 12

23 + 17 = 32

173 + 27 = 712

762713 + 177 = 210639282 (Beukers and Zagier, 1993)
(−1414)3 + 657 = 22134592 (Beukers and Zagier, 1993)
(−9262)3 + 1137 = 153122832 (Beukers and Zagier, 1993)

381139066965770863 + 2257 = non-square (new)
456221464107002573 + 8927 = non-square (new)
21290858741688813 + 9407 = non-square (new)



8 Daniel J. Bernstein

Computational details: Define m = 3 · 5 · 7 · 8 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 ·
43 · 47 · 53 · 59 · 61 · 67 ≈ 3.1433 · 1025. For each y separately, I did a doubly focused
enumeration of x coprime to gcd {y, m} such that x3 + y7 is a square modulo m.
This enumeration produced only a small fraction of the original 1020 pairs (x, y). I
then checked, for each enumerated x, whether x3 +y7 is locally square at all primes
p < 300, and whether x is coprime to y.

References

[1] A. O. L. Atkin, On pseudo-squares, Proceedings of the London Mathematical Society, Third
Series 14a (1965), 22–27. ISSN 0024–6115. MR 34:2547.

[2] Eric Bach, Lorenz Huelsbergen, Statistical evidence for small generating sets, Mathematics of
Computation 61 (1993), 69–82. ISSN 0025–5718. MR 93k:11089. Available from http://www.

jstor.org/sici?sici=0025-5718(199307)61:203<69:SEFSGS>2.0.CO;2-3.
[3] R. Balasubramanian, D. S. Ramana, Atkin’s theorem on pseudo-squares, Institut Mathé-

matique, Publications, Nouvelle Série 63 (1998), 21–25. ISSN 0350–1302. MR 99e:11012.
[4] Daniel J. Bernstein, Enumerating solutions to p(a) + q(b) = r(c) + s(d), Mathematics of

Computation 70 (2001), 389–394. ISSN 0025–5718. Available from http://cr.yp.to/papers.

html.
[5] Nathan D. Bronson, Duncan A. Buell, Congruential sieves on FPGA computers, in [7] (1994),

547–551. MR 95k:11165.
[6] Henri Darmon, Andrew Granville, On the equations zm = F (x, y) and Axp + Byq = Czr,

Bulletin of the London Mathematical Society 27 (1995), 513–543. ISSN 0024–6093. MR
96e:11042. Available from http://www.math.mcgill.ca/~darmon/pub/pub.html.

[7] Walter Gautschi (editor), Mathematics of Computation 1943–1993: a half-century of com-

putational mathematics, American Mathematical Society, Providence, 1994. ISBN 0–8218–
0291–7. MR 95j:00014.

[8] Marshall Hall, Quadratic residues in factorization, Bulletin of the American Mathematical
Society 39 (1933), 758–763. ISSN 0273–0979. Available from http://cr.yp.to/bib/entries.

html#1933/hall.
[9] Derrick H. Lehmer, The mechanical combination of linear forms, American Mathemat-

ical Monthly 35 (1928), 114–121. ISSN 0002–9890. Available from http://links.jstor.

org/sici?sici=0002-9890(192803)35:3<114:TMCOLF>2.0.CO;2-Z.
[10] Derrick H. Lehmer, A sieve problem on “pseudo-squares”, Mathematical Tables and Other

Aids to Computation 8 (1954), 241–242. ISSN 0891–6837. MR 16,113e. Available from
http://links.jstor.org/sici?sici=0891-6837(195410)8:48<237:N>2.0.CO;2-R.

[11] Derrick H. Lehmer, Emma Lehmer, Daniel Shanks, Integer sequence having prescribed

quadratic character, Mathematics of Computation 24 (1970), 433–451. ISSN 0025–5718.
MR 42:5889. Available from http://links.jstor.org/sici?sici=0025-5718(197004)24:110

<433:ISHPQC>2.0.CO;2-G.

[12] Rudolf Lidl, Harald Niederreiter, Finite fields, 2nd edition, Encyclopedia of Mathematics
and its Applications, 20, Cambridge University Press, Cambridge, 1997. ISBN 0–521–39231–
4. MR 97i:11115.

[13] John H. Loxton (editor), Number theory and cryptography, London Mathematical Society
Lecture Note Series, 154, Cambridge University Press, Cambridge, 1990. ISBN 0–521–39877–
0. MR 90m:11003.

[14] Richard F. Lukes, C. D. Patterson, Hugh C. Williams, Numerical sieving devices: their his-

tory and some applications, Nieuw Archief voor Wiskunde Series 4 13 (1995), 113–139. ISSN
0028–9825. MR 96m:11082. Available from http://cr.yp.to/bib/entries.html#1995/lukes.

[15] Richard F. Lukes, C. D. Patterson, Hugh C. Williams, Some results on pseudosquares, Math-
ematics of Computation 65 (1996), 361–372. ISSN 0025–5718. MR 96e:11010. Available from
http://www.ams.org/jourcgi/jour-getitem?pii=S0025571896006783.

[16] J. Barkley Rosser, Lowell Schoenfeld, Approximate formulas for some functions of prime

numbers, Illinois Journal of Mathematics 6 (1962), 64–94. ISSN 0019–2082. MR 25:1139.
Available from http://cr.yp.to/bib/entries.html#1962/rosser.

[17] A. J. Stephens, Hugh C. Williams, An open architecture number sieve, in [13] (1990), 38–75.
[18] Hugh C. Williams, Jeffrey O. Shallit, Factoring integers before computers, in [7] (1994),

481–531. MR 95m:11143.


