Target: Mathematics of Computation. New version of paper in preparation, with 4.5 for reciprocal, 6.5 for quotient, 5.5 for square root, and 8.5 for exponential. See http://cr.yp.to/fastnewton.html.

REMOVING REDUNDANCY IN HIGH-PRECISION NEWTON ITERATION

DANIEL J. BERNSTEIN

ABSTRACT. This paper speeds up Brent’s algorithms for various high-precision computations in the power series ring $\mathbb{C}[[t]]$. If it takes time 3 to compute a product then it takes time roughly 5.6 to compute a reciprocal; roughly 8.2 to compute a quotient or a logarithm; roughly 6.5 to compute a square root; roughly 9 to compute both a square root and a reciprocal square root; and roughly 10.4 to compute an exponential. The same ideas apply to approximate computations in $\mathbb{R}, \mathbb{Q}_p,$ etc.

1. INTRODUCTION

Let $f \in \mathbb{C}[[t]]$ be a power series with constant coefficient 1. How can one compute f^{-1}? The standard answer is Newton’s method, which shows how to compute $f^{-1} \bmod t^{2n}$ from $f^{-1} \bmod t^n$ with a few size-n multiplications: $f^{-1} \bmod t^{2n} = g_0 + (1 - f g_0) g_0 \bmod t^{2n}$ where $g_0 = f^{-1} \bmod t^n$. One can compute g_0 by the same method recursively. (This algorithm is sometimes credited to Sieveking, who published it in [8]; Kung in [6] pointed out that Sieveking’s method was an example of Newton’s method.) Similar comments apply to computing $f^{1/2}$, $\log f$, et al.

Using FFTs one can multiply polynomials of degree up to n with $3kn \log n + O(n)$ arithmetic operations in \mathbb{C} for some constant k. Brent in [5] showed that one can compute the first n coefficients of f^{-1} with $9kn \log n + O(n)$ operations, $\log f$ with $12kn \log n + O(n)$ operations, $f^{-1/2}$ with $13.5kn \log n + O(n)$ operations, both $f^{1/2}$ and $f^{-1/2}$ with $16.5kn \log n + O(n)$ operations, and $\exp f$ with $22kn \log n + O(n)$ operations.

The point of this paper is that some obvious redundancies account for a large fraction of the run time of Brent’s algorithms. Sections 2, 3, 4, and 5 present several streamlined examples of Newton’s method, culminating in an algorithm to compute n coefficients of $\exp f$ with only $10.4kn \log n + O(n)$ operations. Section 6 gives implementation results.

Generalizations. Newton’s method is not limited to $\mathbb{C}[[t]]$; it is also used for high-precision computations in $k[[t]]$ where k is a finite field, in the p-adic numbers \mathbb{Q}_p, in \mathbb{R}, and so on. See [3] for a survey of relevant multiplication methods. Roundoff error analysis is typically required for \mathbb{Q}_p, where it is easy, and for \mathbb{R}, where it is not so easy; see, e.g., [2, section 8 and section 21]. Some functions, such as \log, require completely different methods for \mathbb{R}; see, e.g., [5].

Brent’s methods can be streamlined in all of these situations. I have focused on $\mathbb{C}[[t]]$ in this paper since it is the simplest case. It is also the case used in [4].

Date: DRAFT 19980627.
1991 Mathematics Subject Classification. Primary 68Q40; Secondary 65Y20.
The author was supported by the National Science Foundation under grant DMS-960083.
Notation and terminology. Throughout this paper, n is a positive integer. Subscripted variables such as f_0, f_1, \ldots refer to polynomials of degree below n. Thus every power series can be written uniquely in the form $f_0 + t^n f_1 + t^{2n} f_2 + \cdots$.

A transform means a size-2n FFT or a size-2n inverse FFT. If p is a polynomial of degree below $2n$ then p^* means the result of applying a size-2n FFT to p. Recall that one can compute a bilinear form such as $f_0 g_2 + f_1 g_1 + f_2 g_0$, given $f_0^*, f_1^*, f_2^*, g_0^*, g_1^*, g_2^*$, with a single transform plus $O(n)$ operations.

If f is a power series then $D(f)$ means t times the derivative of f. If f is a power series with constant coefficient 0 then $I(f)$ means the integral of f/t.

2. Reciprocals

Let f and g be power series with $fg = 1$. This section considers the problem of computing g given f.

Write $f = f_0 + f_1 t^n + f_2 t^{2n} + \cdots$ and $g = g_0 + g_1 t^n + g_2 t^{2n} + \cdots$. Define q_1 and r_1 by $1 + q_1 t^n = f_0 g_0$ and $r_1 = f_1 g_0 \mod t^n$. Then $q_1 = -(q_1 + r_1) g_0 \mod t^n$.

Given f_0, f_1, g_0, Brent suggested computing $f_0 g_0$, hence $q_1; f_1 g_0$, hence r_1; and then $(q_1 + r_1) g_0$, hence g_1. Each multiplication can be done with 3 transforms, for a total of 9 transforms to compute $g \mod t^{2n}$ given $g \mod t^n$. The work to compute $g \mod t^n$ by the same method recursively is comparable to $9/2 + 9/4 + \cdots = 9$ transforms.

However, each multiplication uses the same intermediate result g_0^*, so only 7 transforms are required: $f_0^*, f_1^*, g_0^*, f_0 g_0, f_1 g_0, (q_1 + r_1)^*$, and $(q_1 + r_1) g_0$.

Higher-order iterations. Define q_2, q_3, r_2, r_3 by $(f_0 + f_1 t^n)(g_0 + g_1 t^n) = 1 + q_2 t^n + q_3 t^{3n}$ and $r_2 + r_3 t^n = (f_2 + f_3 t^n)(g_0 + g_1 t^n) \mod t^{2n}$. Then $g_2 + g_3 t^n = -(q_2 + r_2 + (q_3 + r_3) t^n)(g_0 + g_1 t^n) \mod t^{2n}$.

Brent suggested first computing g_1 as discussed above, then using size-4n FFTs to multiply $f_0 + f_1 t^n$, $f_2 + f_3 t^n$, and $q_2 + r_2 + (q_3 + r_3) t^n \mod g_0 + g_1 t^n$.

However, it is wasteful to feed f_0 and g_0 to two different sizes of FFTs. One can do better by sticking with size-2n FFTs: compute $g_1^*, f_1 g_0 + f_0 g_1, f_2 g_0, f_2 g_0, f_2 g_0, g_2 g_0, (q_2 + r_2)^*, (q_3 + r_3)^*, (q_4 + r_4) g_0$, and $(q_2 + r_2) g_0 + (q_3 + r_3) g_0$.

The total is 18 transforms to compute $g \mod t^{4n}$ from $g \mod t^n$. The work to compute $g \mod t^n$ by the same method recursively is comparable to $18/4 + 18/16 + \cdots = 6$ transforms.

The same idea can be applied repeatedly. One can compute $g \mod t^{8n}$ from $g \mod t^n$ with just 40 transforms, for example. The work to compute $g \mod t^n$ recursively is comparable to $5.5 + 1.5/(2^e - 1)$ transforms with an order-2e iteration. One should select e as a function of n to avoid excessive overhead.

Notes. The idea of using transforms is standard. For example, it is well known that squaring takes only 2 transforms while multiplication takes 3. See [3, section 12] for references.

A 6-transform bound for reciprocals, presumably using an order-4 iteration as above, was announced by Schönhage, Grotefeld, and Vetter in [7, page 213].

3. Quotients

Let f, g, h be power series with $fg = 1$. This section considers the problem of computing hg given h and f.
Brent suggested computing \(g \mod t^n \), as discussed above, and then multiplying \(g \mod t^n \) by \(h \mod t^n \). This takes time comparable to 8.6 transforms if \(g \mod t^n \) is computed with an order-16 iteration. However, one can do better by reusing the intermediate results from the computation of \(g \).

Write \(g = g_0 + g_1 t^n + g_2 t^{2n} + \cdots \). Section 2 shows how to compute \(g_0 \) in time comparable to 5.6 transforms, and then \(g_0^*, g_1^*, g_2^*, g_3^*, g_4^*, g_5^*, g_6^*, g_7^* \) in 40 transforms. Then computing \(g_4^*, g_5^*, g_6^*, g_7^* \) takes just 4 more transforms, and computing \(h g \mod t^{2n} \) takes 16 more transforms.

The upshot is that computing \(h g \mod t^n \) takes time comparable to 8.2 transforms.

Logarithms. Let \(f \) be a power series with constant coefficient 1. Then one can compute \(\log f = I(D(f)/f) \) in time comparable to 8.2 transforms.

4. Square roots

Let \(f, g, h \) be power series with \(fg = 1 \) and \(h = f^2 \). This section considers two problems: computing \(f \) and \(g \) given \(h \); and computing \(f \) given \(h \).

Write \(f = f_0 + f_1 t^n + f_2 t^{2n} + \cdots \), \(g = g_0 + g_1 t^n + g_2 t^{2n} + \cdots \), and \(h = h_0 + h_1 t^n + h_2 t^{2n} + \cdots \). Brent suggested (among other techniques) computing \(f \) from the standard Newton iteration: \(f_1 t^n = -(f_0^2 - h)/2f_0 \mod t^{2n} \); \(f_2 t^{2n} + f_3 t^{3n} = -((f_0 + f_1 t^n)^2 - h)/2(f_0 + f_1 t^n) \mod t^{4n} \); etc. However, there is some overlap between each step and the next. For example, one can reuse \(g_0 = 1/f_0 \mod t^n \) in the computation of \(g_0 + g_1 t^n = 1/(f_0 + f_1 t^n) \mod t^{2n} \).

So define \(q_1, r_1 \) as in section 2. Define \(s_1 \) by \(s_1 t^n = f_0^2 - h_0 - h_1 t^n \); \(s_2 \) and \(s_3 \) by \(s_2 t^{2n} + s_3 t^{3n} = (f_0 + f_1 t^n)^2 - h_0 - h_1 t^n - h_2 t^{2n} + h_3 t^{3n} \); and so on. Then

\[
f_1 = (-1/2)s_1 g_0 \mod t^n, \quad f_2 + f_3 t^n = (-1/2)(s_2 + s_3 t^n)(g_0 + g_1 t^n) \mod t^{2n},
\]

Starting from \(f_0, g_0, h_0, h_1 \), one can compute \(f_1 \) with 5 transforms: \(f_0^*, f_0^2, f_1^*, g_0^*, s_1 g_0 \). One can then compute \(g_1 \) with 5 transforms: \(f_1^*, f_0 g_0, f_1 g_0, (q_1 + r_1)^*, (q_1 + r_1)g_0 \). One can then compute \(f_2, f_3 \) with 7 transforms; then \(g_2, g_3 \) with 10 transforms; and so on.

The work to compute both \(f \mod t^n \) and \(g \mod t^n \) recursively is comparable to 9 transforms with an order-4 iteration. The work to compute \(f \mod t^n \) is comparable to 6.5 transforms.

Notes. Bailey in [1] reported a square root time comparable to 21 transforms.

5. Exponentials

Let \(f, g, h \) be power series with \(fg = 1 \) and \(f = \exp h \). This section considers the problem of computing \(f \) and \(g \) given \(h \).

Write \(f = f_0 + f_1 t^n + f_2 t^{2n} + \cdots \), \(g = g_0 + g_1 t^n + g_2 t^{2n} + \cdots \), \(h = h_0 + h_1 t^n + h_2 t^{2n} + \cdots \), \(D(f) = a_0 + a_1 t^n + a_2 t^{2n} + \cdots \), and \(D(h) = b_0 + b_1 t^n + b_2 t^{2n} + \cdots \). Define \(q_1, r_1 \) as in section 2. Define \(s_1 \) by \(s_1 t^n = h - I(a_0 g_0 - b_0 q_1 t^n) \mod t^{2n} \); define \(s_2, s_3 \) by

\[
s_2 t^{2n} + s_3 t^{3n} = h - I((a_0 + a_1 t^n)(g_0 + g_1 t^n) - (b_0 + b_1 t^n)(q_2 t^{2n} + q_3 t^{3n})) \mod t^{4n},
\]

and so on. Then \(f_1 = f_0 s_1 \mod t^n \); \(f_2 + f_3 t^n = (f_0 + f_1 t^n)(s_2 + s_3 t^n) \mod t^{2n} \); etc. XXX still have to check these run times.

Starting from \(f_0, g_0, h_0, h_1 \), one can compute \(f_1 \) with 10 transforms: \(f_0^*, f_0^2, f_0 g_0, a_0^*, a_0 g_0, b_0^*, b_0 q_1, s_1^*, f_0 s_1 \). One can then compute \(g_1 \) with 4 transforms: \(f_1^* \),
\(f_1 g_0, (q_1 + r_1)^*, (q_1 + r_1) g_0 \). One can then compute \(f_2, f_3 \) with 15 transforms; then \(g_2, g_3 \) with 8 transforms; and so on.

The work to compute both \(f \mod t^n \) and \(g \mod t^n \) recursively is comparable to \(37/3 \) transforms with an order-4 iteration. The work to compute \(f \mod t^n \) is comparable to \(31/3 \) transforms.

6. Implementation results

XXX This is a first draft! But presumably the timings will be in line with the theoretical estimates shown below.

recip: (9, 6) 5.6
quo or log: (12, 9) 8.2
sqrt: (16, 5) 6.5
sqrt and isqrt: (16, 5) 9
exp: (22) 31/3

I also still have to analyze “natural” order-3 and order-4 iterations.

References