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HOW TO FIND SMOOTH PARTS OF INTEGERS

DANIEL J. BERNSTEIN

Abstract. Let P be a finite set of primes, and let S be a finite sequence
of positive integers. This paper presents an algorithm to find the largest P -
smooth divisor of each integer in S. The algorithm takes time b(lg b)2+o(1),
where b is the total number of bits in P and S. A previous algorithm by the
author takes time b(lg b)3+o(1) to find all the factors from P of each integer
in S; a variant by Franke, Kleinjung, Morain, and Wirth usually takes time
b(lg b)2+o(1) to find the largest P -smooth divisor of each integer in S; the

algorithm in this paper always takes time b(lg b)2+o(1) to find the largest P -
smooth divisor of each integer in S.
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This paper presents an algorithm that, given a finite set P of primes and a
finite sequence S of positive integers, identifies the P -smooth elements of S. Here
a positive integer is P -smooth if it is a product of powers of elements of P . The
algorithm takes time b(lg b)2+o(1), where b is the total number of bits in P and S.

The algorithm actually obtains more information: namely, the P -smooth part of
each element of S. Here the P -smooth part of a positive integer is the largest P -
smooth divisor of that integer; for example, the {2, 3, 5}-smooth part of 235171231

is 2351.
Section 2 presents the algorithm. Section 3 presents various improvements in

the o(1). Another section will present details of, and concrete speed reports for, an
improved algorithm.

Genealogy. My previous algorithm in [8] produces more information, namely all
the factors from P of each element of S, but takes time b(lg b)3+o(1).

Franke, Kleinjung, Morain, and Wirth in [21] introduced an algorithm variant
that usually takes time b(lg b)2+o(1) to find the largest P -smooth divisor of each
element of S. The algorithm takes much more time for nasty inputs.

The algorithm in this paper is a slight further variant that always takes time
b(lg b)2+o(1); see Section 2. In typical applications, the algorithm in this paper is
slightly faster than the algorithm of Franke et al.; see Section 3.

Competition. There are several previous algorithms that find the P -smooth part
of each element of S separately, in the important special case that P is the set of
prime numbers below some limit:

• Trial division takes time at most b2+o(1).
• Pollard’s fast-factorial method in [29] takes time at most b1.5+o(1).
• Conjectured to work: Pollard’s rho method in [30] takes time at most

b1.5+o(1), with a smaller o(1) than in [29]. See [14] and [15] for improve-
ments, and [3] for some progress towards proving the conjecture.
• Conjectured to work: Lenstra’s smooth-sized-elliptic-curve method in [23],

improving upon Pollard’s smooth-(p − 1) method in [29] and Williams’s
smooth-(p + 1) method in [37], takes time b1+o(1)—more precisely, time at

most b exp
√

(2 + o(1)) log b log log b. For further discussion see [16], [27],
[22], [17], [28], [1], [35], [31], [13], and [18]. The variants in [2] and [24]
appear to be slower, although the variant in [24] has the virtue of being
proven to work with negligible error probability.

None of these methods can be reasonably conjectured—never mind proven—to work
in time b(lg b)O(1) for typical input distributions. Furthermore, in practice, none of
these methods are competitive with the algorithm in this paper.

Applications. Given a finite set P of primes and a finite sequence S of positive
integers, one can identify and factor the P -smooth elements of S as follows:

• Use the algorithm in this paper to compute the P -smooth part of each
element of S. This takes time b(lg b)2+o(1).
• List the elements of S that equal their P -smooth parts. These are the

P -smooth elements of S.
• Use the algorithm in [8] to factor the P -smooth elements of S. This takes

time at most b(lg b)2+o(1) if the smooth elements, together with P , occupy
at most b/(lg b)1+o(1) bits. In typical applications, S is substantially larger
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than P , and only a tiny fraction of the elements of S are smooth, so this
step takes negligible time.

This type of computation—identifying and factoring the P -smooth elements of
a sequence—is a bottleneck in the Lehmer-Powers-Brillhart-Morrison continued-
fraction method of factoring integers, and in many newer algorithms for factoring
integers, computing discrete logarithms, computing regulators, etc. See, e.g., [32].

In the same way, one can identify and factor the elements of S that are nearly

smooth: smooth numbers times apparent prime numbers. This is a bottleneck
in proving primality with elliptic curves. Franke, Kleinjung, Morain, and Wirth
stated their algorithm in this context. See [21].

Sieving. In many applications, S is the sequence of values f(0), f(1), f(2), . . . of
a low-degree polynomial f on consecutive inputs 0, 1, 2, . . . . The goal, typically, is
to find a specified number of smooth values of f as quickly as possible.

For each prime p, the set of i such that p divides f(i) is a union of a small number
of arithmetic progressions. Sieving zooms through those arithmetic progressions
to compute the factors from P of all f(i)’s simultaneously.

Sieving can be profitably combined with non-sieving algorithms, such as the
algorithm in this paper, if P is not very small. The combination is explained
and analyzed in my companion paper [11]. The bottom line is that each order-of-
magnitude speedup in non-sieving algorithms produces a somewhat smaller speedup
in the combined algorithm.

A note on models of computation. I am, of course, measuring algorithm time
in the traditional way, as the number of steps on a conventional von Neumann
computer, i.e., on a processor with fast access to a large bank of memory.

This is not the most cost-effective architecture for large computers. There is a
huge literature showing that mesh architectures achieve better price-performance
exponents than von Neumann architectures for a wide variety of problems. I pointed
out in 2001 that smoothness detection was one of those problems; see [4], [5], and [6].
In the long run, the analysis of algorithm time on von Neumann architectures will
be far less important than the analysis of algorithm cost on mesh architectures.
For the moment, however, conventional von Neumann computers are sufficiently
popular to justify continued analysis of their capabilities.

2. The algorithm

Algorithm 2.1. Given prime numbers p1, . . . , pm and positive integers x1, . . . , xn,
to print the {p1, . . . , pm}-smooth part of each xk:

1. Compute z ← p1 · · · pm using a product tree.
2. Compute z mod x1, . . . , z mod xn using a remainder tree.
3. For each k ∈ {1, . . . , n}: Compute yk ← (z mod xk)2

e

mod xk by repeated
squaring, where e is the smallest nonnegative integer such that 22e

≥ xk.
4. For each k ∈ {1, . . . , n}: Print gcd{xk, yk}.

Theorem 2.2. Algorithm 2.1 prints the {p1, . . . , pm}-smooth part of each xk.

One can generalize Algorithm 2.1 to arbitrary positive integers p1, . . . , pm. Then
the kth output is the largest divisor of xk that is a product of powers of primes
dividing p1 · · · pm.
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Proof. The kth output is gcd{xk, yk} = gcd
{

xk, z2e
}

where e is the smallest non-

negative integer such that 22e

≥ xk.
If q is a prime number outside {p1, . . . , pm} then ordq z = 0 so ordq gcd{xk, z2e

} =
0. Thus the kth output is a product of powers of {p1, . . . , pm}.

If q ∈ {p1, . . . , pm} then ordq z2e

≥ 2e ≥ ordq xk. (If ordq xk were larger than 2e

then xk would be larger than q2e

≥ 22e

.) Hence ordq gcd
{

xk, z2e
}

= ordq xk. Thus
the kth output divides xk, and the quotient is not divisible by any of p1, . . . , pm. �

Theorem 2.3. Algorithm 2.1 takes time O(b(lg b)2 lg lg b) where b is the number

of input bits.

Proof. Step 1 takes time O(b(lg b)2 lg lg b). See [9, Section 12].
Step 2 takes time O(b(lg b)2 lg lg b) since z, x1, x2, . . . , xn together have O(b) bits.

See [9, Section 18].
Write bk for the number of bits in xk. Then the computation of yk in Step 3 takes

time O(bk(lg b)2 lg lg b) since e ∈ O(lg b). The total over all k is O(b(lg b)2 lg lg b).
The computation of gcd{xk, yk} in Step 4 takes time O(bk(lg b)2 lg lg b). See [9,

Section 22]. The total over all k is O(b(lg b)2 lg lg b). �

This proof suggests that the speed of each step is critical. However, Step 3 and
Step 4 are not bottlenecks in the typical case that each xk has far fewer than b bits.

History. My batch factorization algorithm in [8]

• computes x1 · · ·xn;
• computes (x1 · · ·xn) mod p1, . . . , (x1 · · ·xn) mod pm;
• discards the primes that don’t divide x1 · · ·xn;
• chops the sequence x1, . . . , xm in half; and
• handles each half recursively.

Franke, Kleinjung, Morain, and Wirth in [21] introduced a “simplified version” of
my algorithm in the context of batch smoothness detection for proving primality
with elliptic curves. In fact, their algorithm has a different structure: it begins by
computing (p1 · · · pm) mod x1, . . . , (p1 · · · pm) mod xn, and then handles each xk

independently. Algorithm 2.1 follows this structure.
(Here is another potentially useful structure, following the philosophy that the

relevant primes should be discovered, as in [7], rather than specified in advance:
compute ((x1 · · ·xn)/x1) mod x1, ((x1 · · ·xn)/x2) mod x2, etc. One fast way to
do this, suggested by Borodin and Moenck, is to first compute (x1 · · ·xn) mod x2

1,
(x1 · · ·xn) mod x2

2, etc.; see [9, Section 23] for further discussion.)
To handle xk, Franke et al. repeatedly replace xk by xk/ gcd{p1 · · · pm, xk} until

gcd{p1 · · · pm, xk} = 1; the ratio between the original xk and the final xk is the
smooth part of the original xk. The general problem of computing gcd{x, z∞} has
appeared in several contexts other than batch smoothness detection; the strategy
used by Franke et al. is the same as the strategy used in, e.g., [26]. The problem
with this strategy is that the number of iterations can be very large.

One way to limit the number of iterations is to square z after each iteration,
as in, e.g., [7, Section 11] and [34, page 797]. Algorithm 2.1 instead does several
squarings so that a single gcd suffices, as in [33]. See Section 3 for comments on
combined strategies.
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3. Speedups

This section describes several ways to save time in Algorithm 2.1. These speedups
are not visible at the level of detail of b(lg b)2+o(1) but are nevertheless valuable in
practice.

This section is only an outline for the moment; I’ll add more comments later.

Removing redundancy in product trees. Robert Kramer has recently intro-
duced a technique, which I call “FFT doubling,” that saves time in the computation
of product trees. The speedup factor is 1.5+o(1) for a large balanced product tree.

Balancing trees. Here I’ll comment on Strassen’s speedup when the entropy of
the input size distribution is unusually small.

Removing redundancy in division. One can use FFT caching, FFT addition,
etc. to save time inside (and outside) division. See [10].

Allowing a wider remainder range. Instead of forcing remainders to be in the
range {0, 1, . . . , xk − 1} (or a similar range balanced around 0), one can allow re-
mainders to be a few bits larger than xk. This saves a surprising amount of time
in division.

Removing redundancy in remainder trees. The remainder-tree computation
involves, for example, computing approximate reciprocals of x1, x2, and x1x2. For
x1x2 one should start Newton’s method at the product of approximate reciprocals
of x1 and x2, rather than at 1.

Reducing the exponent. Christine Swart has pointed out that the exponent e
in Step 3 can be reduced: for example, instead of using z = 2 ·3 ·5 · · · with 22e

≥ xk,
one can use z = 16 · 27 · 25 · · · with 162e

≥ xk.

Skipping the gcd. In many applications, one simply wants to know whether xk

is smooth. Step 4 can then be simplified: one has gcd{xk, yk} = xk if and only if
yk = 0.

Balancing gcd and powering. One can compute a moderate power, then a gcd,
then a moderate power, then a gcd, and so on. I’ll comment here on the speed ratio
in practice between the optimum combination and the all-gcd approach of Franke
et al.

Eliminating tiny primes. A very small amount of trial division is helpful. In
particular, one can save time by removing all factors of 2 from each xk.

The 2-adic variant. 2-adic division is slightly faster and simpler than real divi-
sion.
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