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Abstract. This paper introduces GMP-EECM, a fast implementation
of the elliptic-curve method of factoring integers. GMP-EECM is based
on, but faster and more effective than, the well-known GMP-ECM soft-
ware. The main changes are as follows: (1) use Edwards curves instead of
Montgomery curves; (2) use twisted inverted Edwards coordinates; (3)
use signed-sliding-window addition chains; (4) batch primes to increase
the window size; (5) choose curves with small parameters a, d, X1, Y1, Z1;
(6) choose curves with larger torsion.
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1 Introduction

Factorization of integers is one of the most studied problems in algorithmic
number theory and cryptology. One of the best factorization methods available
is the Elliptic-Curve Method (ECM), introduced by Hendrik W. Lenstra, Jr., in
[17] twenty years ago. ECM plays an important role in factoring the “random”
integers of interest to number theorists: it is not as fast as trial division and
Pollard’s rho method for finding tiny prime factors but it is the method of
choice for finding medium-size prime factors. ECM also plays an important role
in factoring the “hard” integers of interest to cryptologists: those integers are
attacked by sieving methods, which use ECM to find large prime factors of
auxiliary integers. ECM can also be used directly to find “large” prime factors;
the current record, reported in [27], was the discovery by Dodson of a 222-bit
factor of the 1266-bit number 10381 + 1.
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Implementations of ECM are available in most computer-algebra packages
and have been the subject of countless papers. The state-of-the-art implemen-
tation is GMP-ECM, described in detail in the paper [26] by Zimmermann and
Dodson.

We have built a faster program, which we call GMP-EECM, by adding various
improvements to GMP-ECM. We thank Zimmermann et al. for making their
software freely available! In this paper we present the background and initial
speed results for GMP-EECM.

1.1. Representations of elliptic curves. Elliptic curves can be expressed in
many forms, and elliptic-curve computations can be carried out in many ways.
Two fast options reigned supreme for twenty years of elliptic-curve factoring,
elliptic-curve primality proving, and elliptic-curve cryptography:

– Short Weierstrass curves y2 = x3 + a4x + a6, with Jacobian coordinates
(X : Y : Z) representing (X/Z2, Y/Z3), were the representation of choice for
most computations.

– Montgomery curves By2 = x3 + Ax2 + x, with Montgomery coordinates
(X : Z) representing two points (X/Z,± · · · ), were the representation of
choice for single-scalar multiplication, and in particular for stage 1 of ECM.

The picture changed in 2007 with the advent of Edwards curves. A sequence
of papers [5, 2, 6, 7] showed that, for cryptographic applications, Edwards curves
involve significantly fewer multiplications than short Weierstrass curves in Ja-
cobian coordinates, and — for sufficiently large scalar multiplications — fewer
multiplications than Montgomery curves in Montgomery coordinates. Note that
larger scalars benefit from larger windows, reducing the number of additions per
bit for Edwards coordinates but not for Montgomery coordinates.

1.2. Contributions of this paper. In this paper we analyze the impact of
Edwards curves on ECM, not just in multiplication counts but also in real-world
software speeds. Section 2 reviews Edwards curves, twisted Edwards curves, Ed-
wards coordinates, and inverted Edwards coordinates; GMP-EECM uses twisted
inverted Edwards coordinates. Section 3 explains exactly how GMP-EECM uses
Edwards curves. Our announcement of GMP-EECM in January 2008 marked
the first time that Edwards curves had been demonstrated to achieve software
speed records.

A large portion of this paper is devoted to explaining which curves we used
in GMP-EECM. Curves having 12 or 16 torsion points over Q are guaranteed
to have 12 or 16 as divisors of their group orders modulo primes (of good reduc-
tion), improving the smoothness chance of the group orders and thus improving
the success chance of ECM. We show how to use analogous improvements for
Edwards curves; even better, we find new curves with large torsion group, small
curve parameters, and small non-torsion points.

Section 4 explains how to construct Edwards curves having torsion group
Z/12Z or Z/2Z×Z/8Z over Q; the symmetry of Edwards curves simplifies the
constructions. Section 4 also shows that twisted Edwards curves cannot have
torsion group Z/2Z×Z/6Z over Q. Section 5, adapting a construction of Atkin
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and Morain from [1] to the Edwards context, explains how to construct an infinite
family of Edwards curves having torsion group Z/2Z × Z/8Z and (as required
for ECM) an explicit non-torsion point. Section 6 describes how we found better
choices of Edwards curves to use in GMP-EECM; each of these curves has torsion
group Z/12Z or Z/2Z×Z/8Z, an explicit non-torsion point, and small (i.e., fast)
parameters.

Acknowledgements. Thanks to Paul Zimmermann for his detailed com-
ments and suggestions.

2 Edwards curves, twisted Edwards curves, Edwards
coordinates, and inverted Edwards coordinates

Edwards in [12] introduced a new normal form of elliptic curves. He showed that
every elliptic curve over a field k with 2 6= 0 can be written in this normal form
over an extension of k. To reduce the need for extensions we use the slightly
generalized form of Edwards curves introduced in [5].

An Edwards curve, at the level of generality of [5], is given by an equation
of the form x2 + y2 = 1 + dx2y2, for some number d 6∈ {0, 1}. The addition law
on an Edwards curve is given by

(x1, y1), (x2, y2) 7→
(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
.

The addition law is strongly unified; i.e., the same formulas can also be used
for doubling. The point (0, 1) is the neutral element of the addition law. The
negative of a point P = (x1, y1) can be computed by reflecting the x-coordinate
across the y-axis: −P = (−x1, y1). If d is not a square then the addition law is
complete; i.e., the addition law holds for all inputs.

The point (0,−1) has order 2. The points (1, 0) and (−1, 0) have order 4.
There are two singular points at infinity. Resolving both singularities yields
two further points of order 2 and two points of order 4 whose minimal field of
definition is k(

√
d). Therefore, there are 3 k-rational points of order 2 if and only

if d is a square.

2.1. Standard (projective) Edwards coordinates. A point in affine coordi-
nates on an Edwards curve is given by a pair (x1, y1). To avoid inversions in the
addition formulas one usually homogenizes the curve equation. This leads to the
equation (X2 + Y 2)Z2 = Z4 + dX2Y 2. A point (X1 : Y1 : Z1) that satisfies this
equation corresponds to the affine point (X1/Z1, Y1/Z1) if Z1 6= 0. The neutral
element in projective coordinates is (0 : 1 : 1).

Inversion-free formulas for addition and doubling in homogenized form were
introduced in [5]. A general addition in Edwards coordinates takes 10M + 1S +
1D + 7a; i.e., 10 field multiplications, 1 field squaring, 1 multiplication by the
curve parameter d, and 7 field additions. A doubling takes 3M + 4S + 6a.

For a collection of explicit formulas and operation counts for elliptic curves
in various representations we refer to the Explicit-Formulas Database [4].
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2.2. Inverted Edwards coordinates. We next review another representation
of points on Edwards curves: inverted Edwards coordinates, introduced in [6]. A
projective point (X1 : Y1 : Z1) in inverted Edwards coordinates corresponds to
the affine point (Z1/X1, Z1/Y1). The addition of two points in inverted Edwards
coordinates costs only 9M + 1S + 1D + 7a, which is a speedup of 1M compared
to standard Edwards coordinates. However, a doubling costs 3M+4S+1D+6a,
and is thus more expensive than in standard Edwards coordinates by 1D.

2.3. Twisted Edwards curves. We now review a generalized form of Edwards
curves that we introduced in [3] with Joye. The twisted Edwards curve EE,a,d is
given by

EE,a,d : ax2 + y2 = 1 + dx2y2,

where a, d are distinct nonzero elements of k.
If ad̄ = ād then the two curves EE,a,d and EE,ā,d̄ are quadratic twists. If

additionally ā/a is a square in k, the curves are even isomorphic, where an
isomorphism is given by (x, y) 7→ (x̄, ȳ) = (

√
(a/ā)x, y).

The addition law on the twisted Edwards curve is given by

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
.

The neutral element and negation are unchanged. See [3] for explicit formulas
for group operations on twisted Edwards curves.

For the purpose of this paper the twisted form is interesting since we will find
and use curves over Q with coefficients d of small height, i.e., small numerator
and denominator. The smallest integer congruent to d modulo n will usually
have as many bits as n, so multiplications by d, as they appear in the addi-
tion and doubling formulas of inverted Edwards coordinates, are costly while
multiplications by the numerator and denominator separately are cheap.

Additional benefits of twisted Edwards curves were pointed out recently by
Hisil, Wong, Carter, and Dawson in [14] but have not yet been integrated into
GMP-EECM and are not discussed further in this paper.

2.4. Addition with small parameters. In ECM we save time not only from
small parameters a, d but also from small base points for scalar multiplication.

Let P2 = (x2, y2) be a rational point on the Edwards curve EE,1,d̄, and write
d̄ in the form d/a, where a is a square. The point (x2/

√
a, y2) is then on the

isomorphic curve EE,a,d. Let Z2 be the least common multiple of the numera-
tors of x2/

√
a and y2 and define integers X2 and Y2 so that (Z2/X2, Z2/Y2) =

(x2/
√
a, y2). If (x2, y2) has small height and if

√
a is small then the absolute

values of X2, Y2 and Z2 are small as well, so multiplications by X2 etc. are easy.
Additions involving such a point (X2 : Y2 : Z2) need only 5M+1S+6D+6a,

where the 6D are 1 multiplication by each of a, 2d, X2, Y2, X2 + Y2, and Z2.

3 Using Edwards curves in ECM stage 1

This section discusses “stage 1” of ECM. It begins by reviewing the general idea
of stage 1 and the state-of-the-art strategies used in GMP-ECM to perform the
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elliptic-curve computations in stage 1. It then analyzes the speedups obtained
from using Edwards curves.

There are also some elliptic-curve operations in “stage 2” of ECM. We plan
to convert those operations to Edwards coordinates, and we expect even larger
relative speedups for those operations than in stage 1. However, those operations
are typically a small part of the stage-2 time, and stage 2 is typically a small
part of the overall ECM time, so our main concern is stage 1.

3.1. Overview of stage 1. “Stage 1” of ECM tries to factor a positive integer n
as follows. Choose an elliptic curve E defined over Q. Choose a rational function
ϕ : E → Q that has a pole at the neutral element of E; for example choose ϕ as
the Weierstrass x-coordinate. Choose a non-torsion element P ∈ E(Q). Choose
a positive integer s with many small prime factors. Choose a sequence of ad-
ditions, subtractions, multiplications, and divisions that, if carried out over Q,
would compute ϕ([s]P ), where [s]P denotes the sth multiple of P in E(Q). Com-
pute ϕ([s]P ) modulo n by carrying out this sequence of additions, subtractions,
multiplications, and divisions modulo n. Hope for an impossible division modulo
n. An attempt to divide by a nonzero nonunit modulo n immediately reveals a
factor of n; an attempt to divide by 0 modulo n is not quite as informative but
usually allows a factor of n to be obtained without much extra work.

If n has a prime divisor q such that [s]P is the neutral element of E(Z/qZ)
then the stage-1 ECM computation will involve an impossible division modulo n,
usually revealing a factor of n. This occurs, in particular, whenever s is a multiple
of the group size #E(Z/qZ). As E varies randomly, #E(Z/qZ) varies randomly
(with some subtleties in its distribution; see, e.g., [15]) in the Hasse interval
[q− 2

√
q+ 1, q+ 2

√
q+ 1]. What makes ECM useful is that a surprisingly small

s, allowing a surprisingly fast computation of [s]P , is a multiple of a surprisingly
large percentage of the integers in the Hasse interval, and is a multiple of the
order of P modulo q with (conjecturally) an even larger probability.

For example, one could try to factor n as follows. Choose the curve E :
y2 = x3 − 2, the Weierstrass x-coordinate as ϕ, the point (x, y) = (3, 5),
and the integer s = 420. Choose the following strategy to compute the x-
coordinate of [420](3, 5): use the standard affine-coordinate doubling formu-
las to compute [2](3, 5), then [4](3, 5), then [8](3, 5); use the standard affine-
coordinate addition formulas to compute [12](3, 5); continue similarly through
[2](3, 5), [4](3, 5), [8](3, 5), [12](3, 5), [24](3, 5), [48](3, 5), [96](3, 5), [192](3, 5),
[384](3, 5), [408](3, 5), [420](3, 5). Carry out these computations modulo n, hop-
ing for a division by a nonzero nonunit modulo n.

The denominator of the x-coordinate of [420](3, 5) in E(Q) has many small
prime factors: 2, 3, 5, 7, 11, 19, 29, 31, 41, 43, 59, 67, 71, 83, 89, 109, 163, 179,
181, 211, 223, 241, 269, 283, 383, 409, 419, 433, 523, 739, 769, 811, 839, etc.
If n shares any of these prime factors then the computation of [420](3, 5) will
encounter an impossible division modulo n. To verify the presence of (e.g.) the
primes 769, 811, and 839 one can observe that [420](3, 5) is the neutral element
in each of the groups E(Z/769Z), E(Z/811Z), E(Z/839Z); the order of (3, 5)
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turns out to be 7, 42, 35 respectively. Note that the group orders are 819, 756,
and 840, none of which divide 420.

3.2. The standard choice of s. Pollard in [20, page 527] suggested choosing
s as “the product of all the primes pi ≤ L each to some power ci ≥ 1. There
is some freedom in the choice of the ci but the smallest primes should certainly
occur to some power higher than the first.”

Pollard’s prime bound “L” is now called B1. One possibility is to choose,
for each prime π ≤ B1, the largest power of π in the interval [1, n + 2

√
n + 1].

Then [s]P is the neutral element in E(Z/qZ) if and only if the order of P is
“B1-smooth”, i.e., if and only if the order has no prime divisors larger than B1.
This possibility is theoretically pleasing but clearly suboptimal.

Brent in [10, Section 5] said that “in practice we choose” the largest power
of π in the interval [1, B1] “because this significantly reduces the cost of a trial
without significantly reducing the probability of success.” GMP-ECM uses the
same strategy; see [26, page 529].

3.3. The standard prime-by-prime strategy. Pollard in [20, page 527] said
that one “can choose between using the primes pi in succession or computing P
in advance and performing a single power operation.” Pollard’s “P” is s in the
notation of this paper.

As far as we know, all ECM implementations use the first strategy, working
with one prime at a time. Brent in [10, Section 5] wrote “Actually, E [i.e., s in
the notation of this paper] is not computed. Instead . . . repeated operations of
the form P := P k [i.e., [k]P in the notation of this paper], where k . . . is a prime
power.” Montgomery in [18, page 249] wrote “It is unnecessary to compute R
[i.e., s in the notation of this paper] explicitly.” Zimmermann and Dodson in
[26, page 529] wrote “That big product is not computed as such” and presented
the prime-by-prime loop used in GMP-ECM.

3.4. The standard elliptic-curve coordinate system. Chudnovsky and
Chudnovsky in [11] wrote “The crucial problem becomes the choice of the model
of an algebraic group variety, where computations mod p are the least time con-
suming.” They presented explicit formulas for computations on several different
shapes of elliptic curves.

Montgomery in [18, Section 10.3.1] introduced what are now called “Mont-
gomery coordinates”: a point (x1, y1) on the elliptic curve By2 = x3 +Ax2 +x is
represented as a pair (X1 : Z1) such that X1/Z1 = x1. This representation does
not distinguish (x1, y1) from (x1,−y1), so it does not allow addition, but it does
allow “differential addition,” i.e., computation of P+Q given P,Q, P−Q. In par-
ticular, Montgomery presented explicit formulas to compute P, [2k]P, [(2k+1)]P
from P, [k]P, [k+ 1]P using 6M + 4S + 1D, or 5M + 4S + 1D if P is given with
Z1 = 1, or 4M + 4S + 1D if P is a very small point such as (X1 : Z1) = (3, 5).
One can find earlier formulas for the same computation in [11, formula (4.19)],
but Montgomery’s formulas are faster.

As far as we know, all subsequent ECM implementations have used Mont-
gomery coordinates. In particular, GMP-ECM uses Montgomery coordinates for
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stage 1, with “PRAC,” a particular differential addition chain introduced by
Montgomery. Zimmermann and Dodson in [26, page 532, Figure 2] report a to-
tal cost of 2193683 differential additions to multiply an elliptic-curve point by
2 · 3 · 5 · 7 · 11 · · · 999983 ≈ 21440508.1677 in Montgomery coordinates. By adding a
few counters to the source code of GMP-ECM 6.1.3 (the current version of GMP-
ECM at the time when GMP-EECM was announced) we observed that GMP-
ECM’s stage 1, with B1 = 106 and hence s ≈ 21442098.6271, used 12982280 mul-
tiplications modulo n for 2196070 elliptic-curve additions, of which only 194155
were doublings.

3.5. Speedups in GMP-EECM. GMP-EECM breaks with stage-1 tradition
in three ways:

• GMP-EECM uses twisted Edwards curves ax2+y2 = 1+dx2y2 with inverted
Edwards coordinates with ϕ = 1/x whereas GMP-ECM uses Montgomery
curves with Montgomery coordinates.
• GMP-EECM handles the prime factors π of s in batches, whereas GMP-ECM

handles each prime factor separately. GMP-EECM computes the product t
of a batch, replaces P with [t]P , and then moves on to the next batch. We
do not insist on batching all of the primes together (although we have done
this in all computations so far); the cost of the multiplications to compute t
should be balanced against the time saved by larger t. Note, however, that
for small P there is no reason that [t]P should be small, so the advantage of
a small base point holds for only the first batch.

• GMP-EECM uses “signed sliding window” addition chains. These chains
compute P 7→ [t]P using only 1 doubling and ε additions for each bit of t.
Here ε converges to 0 as t increases in length; this is why a larger t saves
time. The savings are amplified by the fact that an addition is somewhat
more expensive than a doubling. Note that these chains are not compatible
with Montgomery coordinates; they are shorter than any differential addition
chain can be.

GMP-EECM follows tradition in its choice of s. We have considered, but not
yet analyzed or implemented, other choices of s; in particular, we comment that
allowing prime powers in the larger interval [1, B1.5

1 ] would have negligible extra
cost.

To understand the potential speedup here one can simply count multipli-
cations. GMP-ECM uses approximately 9 multiplications for each bit of s, as
illustrated by the example with B1 = 106 above.

Doubling in Edwards coordinates uses only 7 multiplications; addition in
Edwards coordinates uses 12 multiplications but occurs for only a fraction ε of
the bits of s. The total multiplication count 7 + 12ε is below 9 for ε < 1/6.

Of course, reality is more complicated than a multiplication count. One dis-
advantage of Edwards coordinates is the cost of computing products of batches
of prime factors of s— although these products can be saved and reused in a
series of ECM computations. One advantage of Edwards coordinates is that a
larger fraction of the multiplications are squarings and multiplications by curve
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constants. Using inverted Edwards coordinates on twisted Edwards curves (as
in GMP-EECM) has many more multiplications by curve constants, but this is
a good tradeoff when the parameters are small.

3.6. A numerical example. We provided n = (5367 +1)/(2 ·3 ·73219364069) as
input to GMP-ECM 6.1.3, with stage-1 bound B1 = 16384, on an Intel Pentium
M (6b8) running at 800MHz. Stage 1 used 210299 multiplications modulo n and
consumed a total of 2448 milliseconds.

We then provided the same input to our new GMP-EECM software. We used
the same stage-1 bound and the same s, but we used our new curve x2 + y2 =
1+1612x2y2/2892 (see Section 6) in inverted twisted Edwards coordinates, with
width-6 signed sliding windows. Stage 1 used only 195111 multiplications modulo
n, consumed only 2276 milliseconds, and printed the (previously known) prime
70057995652034894429. We inspected the point order and found that it has
largest prime factor 9103 and second-largest prime factor 2459.

Because GMP-EECM is very new we have not yet tried to use it to find
record-setting factorizations.

4 Edwards curves with large torsion

Mazur’s theorem [22] says that the torsion group Etor(Q) of any elliptic curve
E is isomorphic to one of the following 15 finite groups:

Etor(Q) ∼=
{

Z/mZ, m = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12,
Z/2Z× Z/2mZ, m = 1, 2, 3, 4.

Any elliptic curve in Edwards form has a point of order 4. It follows that the
torsion group of an Edwards curve is isomorphic to either Z/4Z, Z/8Z, Z/12Z,
Z/2Z× Z/4Z, or Z/2Z× Z/8Z.

The most interesting cases for ECM are Z/12Z and Z/2Z×Z/8Z, since they
force the group orders of E modulo primes p (of good reduction) to be divisible
by 12 and 16, respectively. In this section we show which conditions an Edwards
curve x2 + y2 = 1 + dx2y2 over Q must satisfy to have torsion group isomorphic
to Z/12Z or Z/2Z× Z/8Z. We give parameterizations for both cases.

One could hope to force divisibility by 12 in a different way, namely by finding
a twisted Edwards curve with Q-torsion group isomorphic to Z/2Z × Z/6Z. A
twisted Edwards curve does not need to have a point of order 4. However, at
the end of this section we show that there is no twisted Edwards curve with
Q-torsion group isomorphic to Z/2Z× Z/6Z.

4.1. Doubling and tripling on Edwards curves. We use doubling and
tripling formulas for Edwards curves, given in [2] and [5], to find points of order
8 and 12.

The double of a point (x1, y1) on x2 + y2 = 1 + dx2y2 is

[2](x1, y1) =
(

2x1y1

x2
1 + y2

1

,
y2

1 − x2
1

2− (x2
1 + y2

1)

)
, (1)
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while the triple is

[3](x1, y1) =
(

(x2
1 + y2

1)2 − (2y1)2

4(x2
1 − 1)x2

1 − (x2
1 − y2

1)2
x1,

(x2
1 + y2

1)2 − (2x1)2

−4(y2
1 − 1)y2

1 + (x2
1 − y2

1)2
y1

)
.

(2)

4.2. Torsion group Z/2Z × Z/8Z. Theorem 4.3 states a genus-0 cover of the
set of Edwards curves over Q with torsion group Z/2Z × Z/8Z. Theorem 4.4
identifies all the points of order 8 on such curves. Theorem 4.5 states a rational
cover and identifies the degree of the cover.

Theorem 4.3. The torsion group of an Edwards curve x2 +y2 = 1+dx2y2 over
Q is isomorphic to Z/2Z× Z/8Z if and only if d is a square and there exists a
rational number x8 /∈ {0,±1} satisfying (2x2

8 − 1)/x4
8 = d.

Proof. Assume that the torsion group is isomorphic to Z/2Z×Z/8Z. The point
(1, 0) has order 4, so there must be a point (x8, y8) on the curve with [2](x8, y8) =
(1, 0). This implies y2

8 − x2
8 = 0 by Formula (1), and then the curve equation

x2
8 + y2

8 = 1 + dx2
8y

2
8 implies 2x2

8 = 1 + dx4
8. In particular, x8 /∈ {0,±1} since

d 6= 1, and therefore d = (2x2
8− 1)/x4

8. Furthermore, the torsion group has three
points of order 2 and so d must be a square.

Conversely, assume that d is a square and that d = (2x2
8 − 1)/x4

8. Then the
curve (after desingularization) has three points of order 2, and it also has the
point (x8, x8) of order 8. The torsion group thus contains a copy of Z/2Z×Z/8Z.
By Mazur’s theorem the torsion group cannot be larger. ut

Theorem 4.4. Assume that d ∈ Q\{0, 1} is a square, and that x8 ∈ Q\{0,±1}
satisfies (2x2

8 − 1)/x4
8 = d. Then the set of 8 points{
(±x8,±x8) ,

(
±1/(x8

√
d),±1/(x8

√
d)
)}
,

where the signs are taken independently, is exactly the set of points of order 8
on the Edwards curve x2 + y2 = 1 + dx2y2 over Q.

Proof. We will show that these 8 points are distinct points of order 8 on the
curve. The torsion group of the curve is isomorphic to Z/2Z×Z/8Z by Theorem
4.3, so it has exactly 8 elements of order 8, which must be exactly these points.

To see that the 8 points are distinct, suppose that x8 = ±1/(x8

√
d). Then√

dx2
8 = ±1 so dx4

8 = 1 so 2x2
8 = 2 so x2

8 = 1, contradiction.
To see that the points (±x8,±x8) are on the curve, use the equation 2x2

8−1 =
dx4

8. To see that the points
(
±1/(x8

√
d),±1/(x8

√
d)
)

are on the curve, observe
that

1 + d
1

(±x8

√
d)2

1
(±x8

√
d)2

=
1 + dx4

8

dx4
8

=
2x2

8

dx4
8

=
2

(±x8

√
d)2

,

again using the equation 2x2
8 − 1 = dx4

8.
To see that all the points have order 8, observe that [2](x1,±x1) = (±1, 0)

by Formula (1), and that (±1, 0) has order 4. ut



10 Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters

Theorem 4.5. If u ∈ Q\{0,−1,−2} then the Edwards curve x2+y2 = 1+dx2y2

over Q, where

x8 =
u2 + 2u+ 2
u2 − 2

, d =
2x2

8 − 1
x4

8

,

has P8 = (x8, x8) as a point of order 8 and has torsion group isomorphic to
Z/2Z× Z/8Z.

Conversely, every Edwards curve over Q with torsion group isomorphic to
Z/2Z× Z/8Z is expressible in this way.

The parameters u, 2/u, −2(u + 1)/(u + 2), −(2 + u)/(1 + u), −(u + 2),
−2/(u+ 2), −u/(u+ 1), and −2(u+ 1)/u give the same value of d and they are
the only values giving this d.

Proof. By Theorem 4.3 the necessary and sufficient condition for Etor(Q) ∼=
Z/2Z× Z/8Z is that there exists x8 /∈ {0,±1} satisfying (2x2

8 − 1)/x4
8 = d and

that d is a square; i.e., that 2x2
8 − 1 is a square.

The equation 2x2
8 − 1 = r2 has 4 trivial solutions (1, 1), (1,−1), (−1, 1), and

(−1,−1). These tuples violate the condition x8 /∈ {0,±1}. There are no other
solutions to 2x2

8 − 1 = r2 that violate the condition on x8.
We parameterize r2 = 2x2

8 − 1 by intersecting it with lines through (1,−1);
i.e., the lines given by r = ux8 − u− 1.

0 = (ux8 − u− 1)2 − 2x2
8 + 1 = (u2 − 2)x2

8 − 2u(u+ 1)x8 + (u+ 1)2 + 1
= (u2 − 2)(x8 − 1)(x8 − (u2 + 2u+ 2)/(u2 − 2)).

A new solution to r2 = 2x2
8 − 1 in terms of u is given by (x8, r) = ((u2 + 2u2 +

2)/(u2− 2), (u2 + 4u+ 2)/(u2− 2)), where the value for r is computed using the
line.

This parameterization cannot find (1, 1), but this solution is excluded anyway.
The solutions (1,−1), (−1, 1), and (−1,−1) are found for u = −2, u = −1, and
u = 0, respectively. So u ∈ Q \ {0,−1,−2} gives a complete parameterization of
all Edwards curves with Etor(Q) ∼= Z/2Z× Z/8Z.

The identity

(d(u)− d(v))(((u+ 1)2 + 1)((v + 1)2 + 1))4

= 16(u− v)(uv − 2)((u+ 2)v + 2(u+ 1))(u+ 2 + (u+ 1)v)
· (u+ v + 2)((u+ 2)v + 2)(u+ (u+ 1)v)(uv + 2(u+ 1))

immediately shows that if v is any of the listed values u, 2/u, . . . then d(v) = d(u).
Conversely, if v is not one of those values then none of the factors u−v, uv−2, . . .
are 0 so d(v) 6= d(u). ut

4.6. Torsion group Z/12Z. Theorem 4.7 states a genus-0 cover of the set of
Edwards curves over Q with torsion group Z/12Z. Theorem 4.8 identifies all the
points of order 12 on such curves. Theorem 4.9 states a rational cover.
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Theorem 4.7. The torsion group of an Edwards curve x2 + y2 = 1 + dx2y2

over Q is isomorphic to Z/12Z if and only if there exists a rational number y6 /∈
{−2,−1/2, 0,±1} satisfying (2y6 +1)/(y3

6(y6 +2)) = d and such that −(y2
6 +2y6)

is a square.

Proof. Rational points of order 3 or 6 are exactly the points (x6, y6) for which
the x coordinate of [3](x6, y6) is 0. By formula (2) these are exactly the points
for which (x2

6 + y2
6)2 = (2y6)2. If this holds for one (x6, y6) then it also holds for

(±x6,±y6), where the signs are taken independently. Up to signs this means that
x2

6 + y2
6 = −2y6. If the curve has such a point then d must satisfy the equation

x2
6 +y2

6 = 1 +dx2
6y

2
6 , i.e., −2y6 = 1 +d(−2y6−y2

6)y2
6 . For y6 /∈ {−2,−1/2, 0,±1}

the value d = (2y6 + 1)/(y3
6(y6 + 2)) is defined and not equal to 0 or 1.

For this d we get a point of order 3 or 6 exactly if x2
6 = −(y2

6 + 2y6) has a
rational solution.

Since each Edwards curve has a point of order 4 the torsion group must
contain a copy of Z/12Z; by Mazur’s theorem the torsion group cannot be larger.

ut

Theorem 4.8. Let x2 + y2 = 1 + dx2y2 be an Edwards curve over Q with
Etor(Q) ∼= Z/12Z and let P3 = (x3, y3) be a point of order 3 on the curve.

The 12 torsion points on the curve and their respective orders are as follows:

point (0, 1) (0,−1) (±x3, y3) (±1, 0) (±x3,−y3) (±y3,±x3)
order 1 2 3 4 6 12

Proof. The points of order 6 are obtained as (±x3, y3) + (0,−1), the points of
order 12 by adding (±1, 0) to the points of order 3 and 6. ut

Theorem 4.9. If u ∈ Q \ {0,±1} then the Edwards curve x2 + y2 = 1 + dx2y2

over Q, where

x3 =
u2 − 1
u2 + 1

, y3 = − (u− 1)2

u2 + 1
, d =

(u2 + 1)3(u2 − 4u+ 1)
(u− 1)6(u+ 1)2

has P3 = (x3, y3) as a point of order 3 and has torsion group isomorphic to
Z/12Z.

Conversely, every Edwards curve over Q with torsion group isomorphic to
Z/12Z is expressible in this way.

The parameters u and 1/u give the same value of d.

Proof. The points of order 3 are determined by [2](x3, y3) = (−x3, y3) and
x3, y3 6= 0. Solving this equation gives x2

3 + y2
3 = −2y3, i.e., x2

3 + (y3 + 1)2 = 1.
Parameterization of the unit circle r2 + s2 = 1 (with r = x3 and s = y3 + 1)
yields (r, s) = (

(
(u2 − 1)/(u2 + 1), 2u/(u2 + 1)

)
and thus the point (x3, y3) =(

(u2 − 1)/(u2 + 1), 2u/(u2 + 1)− 1
)

=
(
(u2 − 1)/(u2 + 1),−(u− 1)2/(u2 + 1)

)
.

The parameterization does not find the solution (r, s) = (1, 0), i.e., (x3, y3) =
(1,−1) which is not a point of order 3. Likewise, (r, s) = (−1, 0) which is found
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for u = 0 does not lead to a point of order 3. The solutions (r, s) = (0,±1),
obtained for u = ±1 lead to x3 = 0 and are therefore excluded.

The value for d follows from Theorem 4.7. For u ∈ Q \ {0,±1} the value of
d is defined and not equal to 0 or 1.

The value of d is invariant under the change u← 1/u since

(1 + u2)3(1− 4u+ u2)
(1− u)6(1 + u)2

=
(u2 + 1)3(u2 − 4u+ 1)

(u− 1)6(u+ 1)2
.

ut

Solving the equation d(u′) = d(u) for u′ in terms of u over the rationals
shows that u← 1/u is the only rational transformation leaving d invariant that
works independently of u.

4.10. Torsion group Z/2Z × Z/6Z. The following theorem shows that the
only way for a twisted Edwards curve to have exactly 12 torsion points is to
have torsion group isomorphic to Z/12Z.

Theorem 4.11. There exists no twisted Edwards curve over Q with torsion
group isomorphic to Z/2Z× Z/6Z.

Proof. Every twisted Edwards curve is birationally equivalent to a Montgomery
curve; see [3, Section 3]. So it suffices to show that there exists no Montgomery
curve over Q with torsion group isomorphic to Z/2Z× Z/6Z.

Fix A,B ∈ Q and let E M,A,B : By2 = x3 +Ax2 + x be an elliptic curve over
Q in Montgomery form. Suppose that the torsion group of E M,A,B is isomorphic
to Z/2Z× Z/6Z.

The subgroup Z/2Z×Z/2Z forces the right-hand side of the curve equation to
be equal to (x−a1)(x−a2)x, where a1, a2 are distinct nonzero rational numbers.
Then A = −(a1 + a2) and a2 = 1/a1.

The subgroup Z/3Z forces an affine point P3 = (x3, y3) of order 3 on the
curve; i.e., [2]P3 = −P3 = (x3,−y3). Using the addition law on E M,A,B we
get x3 = Bλ2 − 2x3 − A, where λ = (3x2

3 + 2Ax3 + 1)/(2By3); i.e., x3 =
(3x2

3 + 2Ax3 + 1)2/(4By2
3) − 2x3 − A. Substitute By2

3 = x3
3 + Ax2

3 + x3 and
simplify to see that

3x4
3 + 6x2

3 − 1
4x3

3

= −A = −(a1 + 1/a1).

This can be written as a1(3x4
3 + 6x2

3 − 1) = (a2
1 + 1)4x3

3; i.e., (x3 : a1 : 1) is a
point on the projective curve

C : V (3U4 + 6U2Z2 − Z4) = (V 2 + Z2)4U3.

According to Magma [8] this curve has exactly the eight points (4/3 : 1 : 0),
(0 : 1 : 0), (0 : 0 : 1), (1 : 0 : 0), (−1/3 : 1 : 1), (1/3 : −1 : 1), (1 : 1 : 1) and
(−1 : −1 : 1). Three of the points are at infinity; the other five points give values
for x3 and A such that the corresponding Montgomery curve is singular. Hence
the torsion group cannot be isomorphic to Z/2Z× Z/6Z. ut
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5 Edwards curves with large torsion and positive rank

Atkin and Morain in [1] found an infinite family of elliptic curves over Q with
torsion group Z/2Z×Z/8Z and with explicit non-torsion points. Suyama in [24]
had earlier given an infinite sequence of Montgomery curves which have group
order divisible by 12 over any prime field, although they do not usually have Q-
torsion group Z/12Z. In this section we translate the Atkin-Morain and Suyama
constructions from Weierstrass curves to Edwards curves.

To see the impact of the Q-torsion group we considered Edwards curves with
torsion group Z/12Z as in Section 4 and computed the group order modulo
primes p in the interval [106, 2 · 106]. The average exponents of 2 and 3 in the
group order were almost exactly 11/3 and 5/3 respectively. For Suyama curves
with torsion group Z/6Z the averages were only 10/3 and 5/3, except for a few
unusual curves such as σ = 11 in the notation of Theorem 5.5 below.

5.1. Atkin and Morain’s parameterization. The Atkin-Morain family is
parameterized by points (s, t) on a particular elliptic curve T 2 = S3 − 8S − 32.
Atkin and Morain suggest computing multiples (s, t) of (12, 40), a non-torsion
point on this curve. Beware that these points have rapidly increasing height.

Theorem 5.2 (Atkin, Morain). Let (s, t) be a rational point on the curve
T 2 = S3−8S−32. Define α = ((t+ 25)/(s− 9) + 1)−1, β = 2α(4α+1)/(8α2−1),
c = (2β − 1)(β − 1)/β, and b = βc. Then the elliptic curve

Eα : Y 2 = X3 +
((c− 1)2 − 4b)

4
X2 +

b(c− 1)
2

X +
b2

4

has torsion group isomorphic to Z/2Z × Z/8Z and a point with x-coordinate
−(2β − 1)/4.

Theorem 5.3. Let (s, t) be a rational point on the curve T 2 = S3 − 8S − 32.
Define α and β as in Theorem 5.2. Define d = (2(2β − 1)2 − 1)/(2β − 1)4.
Then the Edwards curve x2 + y2 = 1 + dx2y2 has torsion group isomorphic to
Z/2Z × Z/8Z and a point (x1, y1) with x1 = (2β − 1)(4β − 3)/(6β − 5) and
y1 = (2β − 1)(t2 + 50t− 2s3 + 27s2 − 104)/(t+ 3s− 2)(t+ s+ 16).

Proof. By construction x8 = 2β − 1 satisfies (2x2
8 − 1)/x4

8 = d. Furthermore

d =
(8α2 − 1)2(8α2 + 8α+ 1)2

(8α2 + 4α+ 1)4
,

so d is a square. By Theorem 4.3, the Edwards curve has torsion group isomorphic
to Z/2Z × Z/8Z. Finally, a straightforward calculation shows that x2

1 + y2
1 =

1 + dx2
1y

2
1 . ut

The point with x-coordinate −(2β − 1)/4 in Theorem 5.2 is generically a
non-torsion point. The y-coordinate of the point is not stated explicitly in [1].
The point (x1, y1) in Theorem 5.3 is the corresponding point on the Edwards
curve.
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5.4. Suyama’s parameterization. The GMP-ECM package uses a family of
elliptic curves in Montgomery form given by Suyama’s parameterization (see
[26]). We briefly review this parameterization and show how we can obtain a
similar result for twisted Edwards curves.

Theorem 5.5 (Suyama). Let σ > 5 be an integer. Define

α = σ2 − 5, β = 4σ, U0 = α3, W0 = β3,

A = (β − α)3(3α+ β)/(4α3β)− 2, B = α/W0.

Then the elliptic curve E M,A,B : Bv2 = u3 +Au2 + u has a Q-torsion subgroup
isomorphic to Z/6Z.

Let V0 = (σ2 − 1)(σ2 − 25)(σ4 − 25). Then (u0, v0) = (U0/W0, V0/W0) is a
point on E M,A,B.

Theorem 5.6. Let σ > 5 and α, β, U0, V0,W0 as in Theorem 5.5. For a =
(β−α)3(3α+β)β2/(4α4) and d = (β+α)3(β−3α)β2/(4α4) the twisted Edwards
curve ax2 + y2 = 1 + dx2y2 has a point (x0, y0) = (α3/V0, (α3 − β3)/(α3 + β3))
and a Q-torsion subgroup isomorphic to Z/6Z.

Proof. We showed in [3] that over a non-binary field k every Montgomery curve
E M,A,B : Bv2 = u3 + Au2 + u is birationally equivalent to a twisted Edwards
curve E E,a,d : ax2 + y2 = 1 +dx2y2. The relations between the curve coefficients
are a = (A+2)/B and d = (A−2)/B and the map from E M,A,B to E E,a,d is given
by (u, v) 7→ (x, y) = (u/v, (u−1)/(u+1)). With A = (β−α)3(3α+β)/(4α3β)−2
and B = α/β3 as in Theorem 5.5 we get the desired values for a and d. Mapping
the point (u0, v0) = (α3/β3, V0/β

3) to E E,a,d yields the desired point (x0, y0):

x0 = u0/v0 = α3/V0 and y0 =
u0 − 1
u0 + 1

=
α3 − β3

α3 + β3
.

ut

6 Edwards curves with small parameters, large torsion,
and positive rank

One way to save time in computations on generalized Edwards curves is to choose
small parameters a, d and small points (X1 : Y1 : Z1); see Section 2.3. Another
way to save time is to construct curves of rank at least 1 with large torsion
over Q; see Section 5. Unfortunately, essentially all of the curves constructed in
Section 5 have large a, d,X1, Y1, Z1.

Our aim in this section is to combine these two time-saving techniques, find-
ing twisted Edwards curves that simultaneously have small parameters a, d, a
small non-torsion point (X1 : Y1 : Z1), and large torsion over Q.

Overall we found more than 100 small Edwards curves having small non-
torsion points and at least 12 torsion points over Q. Of course, one can easily
write down many more small curves if one is willing to sacrifice some torsion.
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6.1. Torsion group Z/2Z×Z/8Z. First we consider the case where the curve
has torsion group isomorphic to Z/2Z× Z/8Z, i.e. there exists a point of order
8 on the curve and d is a square.

Theorem 4.4 states all points of order 8. The other affine points of finite order
are (0,±1) and (±1, 0). Any other point (x1, y1) on the curve must have infinite
order.

Theorem 4.5 gives a complete parameterization of all curves with torsion
group isomorphic to Z/2Z × Z/8Z. Any rational point (u, x8, d, x1, y1) on the
surface described by x8 = (u2 +2u+2)/(u2−2), d = (2x2

8−1)/x4
8, and x2

1 +y2
1 =

1 + dx2
1y

2
1 for u ∈ Q \ {0,−1,−2} gives us a suitable curve for ECM as long as

we can ensure that (x1, y1) is none of the points of finite order.
We consider only u >

√
2. This does not lose any generality: if 0 < u <

√
2

then 2/u >
√

2, and 2/u produces the same curve by Theorem 4.5; if u < −2
then −(u + 2) > 0, and −(u + 2) produces the same curve by Theorem 4.5; if
−2 < u < −1 then −2(u+ 1)/(u+ 2) > 0, and −2(u+ 1)/(u+ 2) produces the
same curve by Theorem 4.5; if −1 < u < 0 then −u/(u+ 1) > 0, and −u/(u+ 1)
produces the same curve by Theorem 4.5.

Write u as a/b for positive integers a, b. Expressing x8 and d in terms of a
and b produces the denominator (a2 +2ab+2b2)4 for d and thus for dx2

1y
2
1 . Thus

we scale x1 and y1 as

x1 = (a2 + 2ab+ 2b2)/e, y1 = (a2 + 2ab+ 2b2)/f.

Expressing all variables in a, b, e, f we find that solutions (u, x8, d, x1, y1) corre-
spond to integer solutions a, b, e, f of the (1, 1, 2, 2)-weighted-homogeneous equa-
tion

(e2 − (a2 + 2ab+ 2b2)2)(f2 − (a2 + 2ab+ 2b2)2) = (4ab(a+ b)(a+ 2b))2.

We found many small solutions to this equation, and thus many of the desired
Edwards curves, as follows. We considered a range of positive integers a. For each
a we enumerated integers b between 1 and

⌊
a/
√

2
⌋
. For each (a, b) we enumerated

all divisors of (4ab(a+ b)(a+ 2b))2, added (a2 + 2ab+ 2b2)2 to each divisor, and
searched for squares.

After about a week of computation on some computers at LORIA, roughly
2 · 1016 CPU cycles in total, we had inspected more than 1014 divisors, found 25
different values of d, and checked that we had 25 different j-invariants.

Here are two examples:

– the solution (a, b, e, f) = (3, 1, 19, 33) produces the order-8 point (17/7, 17/7)
and the non-torsion point (17/19, 17/33) on the Edwards curve x2 + y2 =
1 + dx2y2 where d = 1612/174;

– the solution (a, b, e, f) = (24882, 9009, 258492663, 580153002) produces the
non-torsion point (86866/18259, 8481/4001) on the Edwards curve x2 +y2 =
1 + dx2y2 where d = 56577192/33414.

The number of d’s below height H appears to grow as roughly lgH. For
comparison, the Atkin-Morain procedure discussed in Section 5 generates only
about

√
lgH examples below height H.
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6.2. Torsion group Z/12Z. Writing u = a/b in Theorem 4.9 yields an Edwards
parameter d, a non-torsion point (x1, y1) and a point (x3, y3) of order 3 as follows:

d =
(a2 + b2)3(a2 − 4ab+ b2)

(a− b)6(a+ b)2
, x3 =

(a2 − b2)
(a2 + b2)

, y3 =
−(a− b)2

(a2 + b2)
,

x1 =
(a2 − b2)

e
, y1 =

−(a− b)2

f
.

We have to exclude x1 from being any of the torsion points stated in Theorem 4.8
and need that u ∈ Q \ {0,±1}. Writing x2

1 + y2
1 = 1 + dx2

1y
2
1 in terms of a, b, e, f

shows that we have to look for points (a, b, e, f) on the surface

(e2 − (a2 − b2)2)(f2 − (a− b)4) = 16a3b3(a2 − ab+ b2).

We found many small solutions as in Section 6.1: for each small (a, b) we
enumerated all divisors of 16a3b3(a2− ab+ b2), added (a2− b2)2 to each divisor,
and looked for squares.

After about a week of computation on some computers at LORIA we had
found 78 different values of d and checked that we had 78 different j-invariants.

Here are two examples:

– the solution (a, b, e, f) = (3, 2, 23, 7) produces the order-3 point (5/13,−1/13)
and the non-torsion point (5/23,−1/7) on the Edwards curve x2 + y2 =
1 + dx2y2 where d = −11 · 133/52;

– the solution (a, b, e, f) = (15180,−7540, 265039550, 161866240) produces the
non-torsion point (3471616/5300791,−201640/63229) on the Edwards curve
x2 + y2 = 1 + dx2y2 where d = 931391 · 3591053/1400033300482.
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