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1 Fast discrete Fourier transforms (FFTs)

My djbfft software at http://cr.yp.to/djbfft.html computes power-of-2
discrete Fourier transforms at extremely high speeds. It’s several times faster
than a typical “optimized” FFT library. It’s even faster than the Frigo-Johnson
“Fastest Fourier Transform in the West.”

FFTs have a tremendous range of applications. For example, several DVD-
playing programs (such as ogle, my favorite) now use djbfft to save time in
decompressing movies.

Haven’t FFTs been thoroughly understood for decades? From the perspective
of algebraic complexity, the answer is yes. The split-radix FFT computes a size-
2k DFT using (4k − 6)2k + 8 floating-point operations (about 1.25 times faster
than the simplest FFT method); this is conjectured to be optimal. I’ve found
improvements in the algebraic complexity of more complicated functions—see
subsequent sections of this document—but I’ll be amazed if anyone finds a way to
compute a size-2k DFT with fewer than (4k−6)2k +8 floating-point operations.

Real computers, on the other hand, have communication costs not reflected
by algebraic complexity. Real computers have a load latency, typically two or
three clock cycles; a floating-point-operation latency, typically three or four clock
cycles; and several other bottlenecks. (All floating-point operations are carried
out inside “registers,” a very small amount of high-speed memory; “loads” copy
data from slower memory to registers.) Minimizing time on real computers is
more complicated than minimizing the number of floating-point operations.

I started my FFT project by identifying the ring homomorphisms behind
every known FFT method, and thus condensing the FFT literature down to a
few pages. See Sections 7–8 of http://cr.yp.to/papers.html#m3 and Section
1 of http://cr.yp.to/papers.html#multapps. This structure made it easy for
me to spot a new FFT method, which I call “exponent −1 split-radix,” that
reduces the communication complexity of the FFT: specifically, it halves the
number of loads of precomputed FFT constants.

(For comparison, Van Loan’s book Computational frameworks for the fast

Fourier transform spends hundreds of pages describing a smaller set of FFT
methods. Van Loan uses merely the vector-space structure of the underlying
rings, whereas I also take advantage of the structure of these rings as polynomial
algebras, drastically simplifying the presentation of the algorithms. I’ve seen
similar effects in many other areas: finding the right mathematical framework



is tremendously helpful in understanding the existing algorithms and in finding
better algorithms.)

I then spent time on “instruction scheduling” and “register assignment” for
each target CPU: choosing an order of loads and floating-point operations to
minimize overall latency. Most FFT libraries trust compilers to do this, but the
unfortunate reality is that compilers do an awful job, often losing a factor of 2
in speed.

Later I started working on floatasm, a set of tools to help me schedule
(and verify) instructions for FFTs and for many other computations. I should
emphasize here that there’s a fundamental difference between the floatasm

project and typical optimizing-compiler projects described in the literature. The
goal of a compiler is to make a program faster while receiving no help from the
programmer; in contrast, I insist on ending up with top speed, and I then ask
how the programmer’s time can be minimized. Programs are not static objects;
the programmer cooperates with floatasm. The resulting code is faster than the
computer would have produced without the programmer’s help. The programmer
spends less time than he would have spent without floatasm’s help.

2 Integer multiplication

My Zmult software at http://cr.yp.to/zmult.html multiplies two integers
modulo 2393216 + 1 in 9.1 · 106 Athlon cycles. For comparison, Granlund’s GMP
library at http://swox.com/gmp takes 13.9 · 106 Athlon cycles to multiply two
196608-bit integers, and 40.7 · 106 to multiply two 393216-bit integers.

The current version of Zmult is merely proof-of-concept software, supporting
only a few input sizes, but I’m turning Zmult into general-purpose software that
supports arbitrary input sizes—including sizes that don’t even fit into RAM!
I’m providing a very simple multiplication interface so that GMP will be able
to switch to using Zmult; every program that uses GMP will then benefit from
Zmult’s speed.

Large-integer multiplication has many applications—including some recent
surprising applications to problems that do not appear to involve large integers.
One of these surprising applications is to smoothness detection in the number-
field sieve, as discussed in subsequent sections of this document; this application
is my main motivation for handling integers that don’t fit into RAM.

Underlying techniques

In 1971—see http://cr.yp.to/bib/entries.html#1971/schoenhage-mult—
Schönhage and Strassen proved that two n-bit integers can be multiplied in time
n(lg n)1+o(1) on a multitape Turing machine.

Most software uses simpler FFT-based methods that take time n(lg n)2+o(1).
The Schönhage-Strassen method, despite its asymptotic advantage, is perceived
as being slower: it is constantly multiplying integers by 21, 22, 23, etc., requiring
expensive shifts in its inner loop.



The most important point in Zmult is that almost all of the shifts in the
Schönhage-Strassen method can be eliminated. One can align almost all roots of
1 in the Schönhage-Strassen method to be powers of (e.g.) 232, in the same way
that the split-radix complex FFT aligns most roots of 1 to be powers of

√
−1.

The savings for the Schönhage-Strassen method is much larger than the savings
for the complex FFT, because there are many more aligned roots of 1.

There’s much more to say about the speed of integer multiplication. I’ve
noticed, for example, that some Fermat numbers factor more nicely than average,
so a few extra roots of 1 are available to the Schönhage-Strassen method. I’ve
also found a way to reduce the communication costs in the Schönhage-Strassen
method below what’s possible for simpler FFT-based methods, with a data flow
that violates the underlying ring structure. This improvement will be particularly
helpful for inputs that don’t fit into RAM.

Price-performance ratio for circuits

For obvious reasons, today’s popular CPUs include fast circuits (often buried
inside the floating-point unit, but sometimes more easily accessible) to multiply
small integers, usually 64-bit integers. These circuits account for a significant
part of the cost of a CPU.

I’ve noticed that CPU designers are building multiplication circuits using
the same techniques that were used in the 1960s. More recent techniques are
regularly used by (e.g.) people writing software to multiply 1024-bit integers,
but are ignored by (e.g.) people designing circuits to multiply 64-bit integers.

I’m starting to explore this area. I believe that state-of-the-art multiplication
techniques, when carefully applied, will substantially reduce the cost of building
a 64-bit multiplication circuit.

3 Factorization into coprimes

One can factor a set of positive integers into coprimes in polynomial time. The
input is a finite set (or multiset) S; the output is a finite coprime set P together
with the factorization of each element of S as a product of powers of elements
of P .

The obvious algorithm—look for a, b ∈ S whose greatest common divisor
g = gcd{a, b} is larger than 1; replace a, b with a/g, g, b/g; repeat—takes at
most cubic time.

Bach, Driscoll, and Shallit introduced an algorithm taking at most quadratic
time. See http://cr.yp.to/bib/entries.html#1993/bach-cba.

I found an algorithm that takes essentially linear time: more precisely, time
n(lg n)O(1) where n is the number of input bits. Recently I found an algorithm
that takes time at most n(lg n)4+o(1). See http://cr.yp.to/papers.html#dcba
and http://cr.yp.to/papers.html#dcba2.

My algorithms start from the Schönhage-Strassen algorithm to multiply in
time n(lg n)1+o(1) and the Lehmer-Knuth-Schönhage algorithm to compute gcd



in time n(lg n)2+o(1)—see http://cr.yp.to/papers.html#multapps, Section
22. My algorithms then add several additional ideas.

Applications

Factorization into coprimes is often an adequate substitute for factorization into
primes. See http://cr.yp.to/coprimes.html for a bibliography.

For the rest of this section I’ll focus on one important application, namely
finding small factors of integers. The problem here is to find all the prime divisors
of x below y, given x and y. This is a bottleneck in elliptic-curve primality proving
(see http://cr.yp.to/bib/entries.html#2004/morain-ants), the number-
field sieve (see the next section), et al.

It’s easy to see this problem as a highly constrained example of factoring into
coprimes, when y is small: if S contains all the primes up to y then factoring
S into coprimes will reveal, for each element x ∈ S, the prime divisors of x
below y. This view is traditionally ignored, because special-purpose techniques—
Pollard’s ρ method, for example, and Lenstra’s elliptic-curve method—appear to
be much faster. See http://cr.yp.to/bib/entries.html#1975/pollard and
http://cr.yp.to/bib/entries.html#1987/lenstra-fiec.

I was surprised to realize a few years ago that my general algorithm to
factor into coprimes had surpassed the special-purpose techniques. I showed
in http://cr.yp.to/papers.html#sf that a streamlined algorithm takes time
(lg y)3+o(1) per input bit to find all prime divisors ≤ y of an integer having
(lg y)O(1) bits, if there are at least y integers to handle simultaneously. The best
previous result was Lenstra’s elliptic-curve method, which conjecturally takes
time exp((lg y)1/2+o(1)) per input bit.

Franke, Kleinjung, Morain, and Wirth recently introduced an algorithm—
see Section 4 of http://cr.yp.to/bib/entries.html#preprint/franke—that
takes time just (lg y)2+o(1) per input bit to tell whether an integer having
(lg y)O(1) bits is y-smooth (i.e., has no prime divisors larger than y), if there are
at least y integers to handle simultaneously. They described their algorithm as a
“simplification” of mine; it is simpler, certainly, but it also has an extra idea that
saves the (lg y)1+o(1) factor. See http://cr.yp.to/papers.html#smoothparts

for a slightly better algorithm.

The main bottleneck in these algorithms is computing P mod x1, P mod
x2, . . ., given P, x1, x2, . . .. Building on previous work of Bostan, Lecerf, and
Schost (see http://cr.yp.to/bib/entries.html#2003/bostan), I’ve recently
introduced “scaled remainder trees,” making this computation faster by a factor
2.6 + o(1). See http://cr.yp.to/papers.html#scaledmod.

At a lower level, the bottleneck in these algorithms is multiplication of large
integers. The algorithms begin by computing the product of all the integers to
be factored and the product of all the primes; these products are large even if
all of the input integers are small. Every speedup in large-integer multiplication
is a speedup in finding small factors of integers.



4 Factorization into primes

Sometimes one wants to factor an integer n into primes—not merely coprimes,
and not merely small primes. The number-field sieve is conjectured to do this in
time L1.90...+o(1) where L = exp((log n)1/3(log log n)2/3). I’ve discovered several
improvements in the number-field sieve:

• Searching for a polynomial: The number-field-sieve time depends on several
parameters, notably a polynomial. A naive search for a good polynomial has
(conjecturally) the same effect as subtracting (2/5 + o(1)) log T from log n,
where T is the total number-field-sieve time. The best search method in the
literature, introduced by Murphy in 1999, replaces 2/5 with 2/3. I recently
found a method that, using 4-dimensional lattice-basis reduction, replaces
2/3 with 6/7. See http://cr.yp.to/talks.html#2004.11.15, pages 10–18.

• Estimating polynomial size: I recently introduced a fast method to compute
a good approximation to the distribution of small values of the polynomial
by numerically approximating a superelliptic integral. The best previous
method took time roughly the square root of the number of small values.
See http://cr.yp.to/talks.html#2004.11.15, pages 4–9.

• Estimating smoothness probabilities: I introduced a fast method to compute
tight bounds on the distribution of smooth elements of number fields. See
http://cr.yp.to/papers.html#psi. This allows fast, accurate evaluation
of the merit of a polynomial.

• Multiple lattices: In http://cr.yp.to/papers.html#mlnfs I analyzed the
distribution of small polynomial values in the multiple-lattice number-field
sieve, and in particular showed how to balance the lattices to find as many
small values as possible.

• Recognizing smooth numbers: See the previous section. The textbook view
is that this is more efficiently handled by sieving; the reality is that the
fastest method combines sieving with the method of the previous section, as
discussed in http://cr.yp.to/talks.html#2004.06.14.

I’ve started writing new high-speed factorization software. I’m going to publish
it for everyone to use. (I haven’t published much software in the last few years;
my department colleagues have made clear to me that they don’t value anything
other than papers. Fortunately, my promotion has now been approved by the
department and the dean, so I can return to a healthy balance between papers
and software.)

Applications

Factorization into primes is a fundamental tool within computational number
theory, but it is much more widely known as a tool to attack the most popular
public-key cryptographic systems.

Users of public-key cryptographic systems of RSA/Rabin type are betting
that factorization into primes is difficult. Each user has a “public key,” a large



integer with secret factors; an attacker who can compute the secret factors can
impersonate the user and snoop on the user’s communications. Users want to
choose small integers to save time, but users need to choose integers large enough
to resist factorization. Is a 1024-bit integer safe? 1536? 2048? Suppose an attacker
steals time on millions of computers around the Internet; how long will those
computers take to factor a 1024-bit integer with state-of-the-art factorization
software?

In my cryptographer’s hat, I hope that there’s a limit to how quickly we can
factor integers into primes, and I hope that the number-field sieve is close to that
limit. To the extent that the number-field sieve can be improved, it’s important
for us to find the improvements and warn users to move to larger keys that aren’t
vulnerable to attack.

Published high-speed factorization software is much more convincing than a
mere estimate of factorization speed. Of course, the software will also be useful
for number theorists who actually want to factor integers.

Price-performance ratio for circuits

A conventional computer of size n1+o(1) needs time n1+o(1) to sort n numbers,
or to multiply two n-bit numbers. A mesh computer of size n1+o(1) can do
the same jobs in time n0.5+o(1). There are many other calculations for which
mesh architectures—in particular, circuits—are vastly more cost-effective than
conventional computer architectures; this is the theme of thousands of articles
in the very-large-scale-integration (VLSI) research literature.

I realized in September 2000 that the number-field sieve was one of these
calculations. Specifically, a conventional number-field-sieve factorization (and
Shamir’s “TWINKLE”), as described in the literature, takes time L1.901...+o(1) on
a machine of size L0.950...+o(1). (Subsequent price-performance-ratio optimization
by Pomerance achieved time L1.754...+o(1) on a conventional computer of size
L1.006...+o(1).) A mesh computer of size L0.790...+o(1) takes time just L1.185...+o(1).
See http://cr.yp.to/papers.html#nfscircuit.

The next step is to pin down the o(1). There are now several papers with
various contradictory speculations regarding the speed of mesh factorization.
The most amusing contrast is between a paper by Lenstra, Shamir, Tomlinson,
and Tromer claiming (for absurd reasons) that mesh computers will have no
effect on sieving speed for 1024-bit integers, and a paper by Shamir and Tromer
claiming (by combining a series of wild guesses) that a ten-million-dollar mesh
computer will handle sieving for 1024-bit integers in under a year. (See my
web page http://cr.yp.to/nfscircuit.html for analysis of various Lenstra-
Shamir-Tomlinson-Tromer errors, both technical and historical.)

In the meantime, I’ve been working on verifiable upper bounds: specifically,
functioning factorization software for a mesh computer. I have convinced myself
that 1024-bit integers can be factored at tolerable cost by a streamlined mesh
implementation of the elliptic-curve method. It is important to realize that the
crossover between the elliptic-curve method and the number-field sieve is much
higher for mesh architectures than for conventional architectures.



5 Five more number-theoretic computations

Detecting perfect powers

http://cr.yp.to/papers.html#powers presents an algorithm that, given an
integer n > 1, finds the largest integer k such that n is a kth power. The
algorithm takes time b1+o(1) where b is the number of bits in n; more precisely,
time b exp(O(

√
lg b lg lg b)); conjecturally, time b(lg b)O(1). The run-time analysis

relies on transcendental number theory. The best previous result, by Bach and
Sorenson, was b2+o(1).

http://cr.yp.to/papers.html#powers2 (with Lenstra and Pila) presents
a newer algorithm for the same problem. This algorithm takes time b(lg b)O(1).
It relies on relatively complicated subroutines: specifically, on my fast algorithm
to factor integers into coprimes.

Proving primality

http://cr.yp.to/papers.html#quartic presents an algorithm that, given a
prime n, finds and verifies a proof of primality for n in random time b4+o(1).
The algorithm improves on a line of work by Agrawal, Kayal, Saxena, Macaj,
Berrizbeitia, and Cheng. See http://cr.yp.to/papers.html#prime2004 for a
picture of how this compares to previous results.

Enumerating small primes

http://cr.yp.to/papers.html#primesieves (joint with Atkin) presents an
algorithm to enumerate the primes up to n using O(n/log log n) additions and
n1/2+o(1) bits of memory. The best previous results were O(n) and n1/2+o(1), or
O(n/log log n) and n1+o(1), but not both simultaneously. Subsequent work by
Galway improved 1/2 to 1/3.

Computing logarithms to high precision

http://cr.yp.to/papers.html#logagm presents an algorithm that computes
b-bit logarithm bounds using (5+ o(1)) lg b multiplications, (2+ o(1)) lg b square
roots, and a negligible amount of extra work. The best previous results were on
the scale of lg b but with larger constants. All of these algorithms rely on the
basic theory of elliptic integrals.

Enumerating locally square polynomial values

http://cr.yp.to/papers.html#focus presents an algorithm that identifies all
the “pseudosquares” in a sequence of H small sieveable integers in average time
H1−(2+o(1))/lg log H as H → ∞. The usual method takes time H1−(1+o(1))/lg log H ;
my algorithm is about 210 times faster in practice. Williams and Wooding have
used my algorithm to compute all pseudosquares up to 280; this computation
allows fast proofs of primality for primes up to 2100.



6 Secure private communication

Secret-key message authentication

I recently introduced Poly1305-AES, a state-of-the-art message-authentication
code suitable for a wide variety of applications.

Given a variable-length message, a 16-byte nonce (unique message number),
and a 32-byte secret key, Poly1305-AES computes a 16-byte authenticator. The
security of Poly1305-AES is very close to the security of AES, the Advanced
Encryption Standard: the security gap is below 14DdL/16e/2106 if messages
have at most L bytes, the attacker sees at most 264 authenticated messages,
and the attacker attempts D forgeries. My Athlon implementation computes
Poly1305-AES in fewer than 3.625(` + 170) cycles for an `-byte message. See
http://cr.yp.to/papers.html#poly1305.

There are two big advances here over the previous state of the art. First,
previous high-speed functions use much larger inputs, typically several kilobytes
per key, so they slow down dramatically in applications that handle many keys
simultaneously. Second, previous security bounds for fast 16-byte authenticators
broke down at a smaller number of messages, often below 250.

Designing Poly1305-AES had a somewhat different flavor from most of my
work in computational number theory: I was searching not just for the best
algorithm to compute a function, but for the best function to be computed. As
usual, I found it helpful to build a mathematical framework for the literature.
See Section 10 of http://cr.yp.to/papers.html#hash127.

Public-key secret sharing

In the Diffie-Hellman protocol, each user selects a secret key and a corresponding
public key. Two users who see each other’s public keys can each compute a shared
secret suitable for use in (e.g.) the message-authentication code discussed above.
Public keys have to be protected against forgery but don’t have to be kept secret.

I’ve set speed records for the Diffie-Hellman protocol, specifically for elliptic-
curve Diffie-Hellman, specifically for Diffie-Hellman on the standard “NIST P-
224” elliptic curve selected by Jerry Solinas at NSA. My software is under
1000000 clock cycles on most popular computers; it’s between 1.6 and 6 times
faster than the previous records for NIST P-224, and far faster than comparable
uses of RSA.

Technology transfer: I’ve put a lot of effort into making this software easy
to use. My web pages http://cr.yp.to/nistp224.html contain summaries of
why the software is interesting; the software itself, with streamlined installation
instructions; details of the command-line interface; details of the C interface; an
overview of the machine-specific optimizations in the software; detailed timings
for many machines; a discussion of the raw floating-point performance of each
machine; an analysis of how much the software speed could be improved; a
list of twenty-two previous results; a discussion of the security of cryptographic
applications; and an analysis of seven specific patents (none applicable).



I can achieve somewhat better speeds using the carefully selected curve y2 =
x3 +7530x2 +x modulo 2226 − 5. I’m continuing to look for speedups in elliptic-
curve and hyperelliptic-curve cryptography. I’m also planning to rewrite my
software using floatasm.

Protecting the Internet

Cryptography on the Internet is in a sorry state. Every serious Internet protocol
now has some sort of “security” extension, but only a tiny fraction of data
on the Internet is actually cryptographically protected. Sometimes the security
extensions are too hard to use. Sometimes the extensions are usable but too slow
for busy servers.

I’m adding link-level cryptographic protection to the Internet mail system.
For each message, the SMTP client looks up the SMTP server’s public key in
DNS (which will be protected as discussed in the next section), computes a
shared secret using elliptic-curve Diffie-Hellman, and uses the shared secret to
authenticate every packet using Poly1305-AES. Unlike existing mail “security”
protocols, this will be fast enough to use for every message, and it will protect
against attackers actively misdirecting messages.

7 Secure public communication

Public-key signatures

http://cr.yp.to/sigs.html defines a state-of-the-art Rabin-type public-key
signature system. Each user of the system has a 64-byte public key and a 512-byte
secret key. A user can quickly generate a 193-byte signature of a message. Anyone
can very quickly verify that the signature matches the message and the user’s
public key. Signatures can be expanded to 385 bytes for even faster verification
(typically under 10000 clock cycles), or compressed to 97 bytes at some cost in
verification time; anyone can perform this compression and expansion on the fly,
adapting signatures to the local costs of bandwidth and CPU time.

It appears to be extremely difficult for anyone other than the user to sign
messages under the user’s public key. http://cr.yp.to/papers.html#rwtight
proves that any generic attack on the signature system—any attack that works
for all hash functions, or for a noticeable fraction of all hash functions—can
be converted into a comparably fast algorithm to factor 1536-bit integers. Of
course, there might be a fast factorization algorithm, and there might be a fast
non-generic attack on the particular hash function in use, but this is the best
type of security guarantee we have for any public-key signature system offering
fast verification.

My software isn’t ready for release yet. One reason is that I’m building a new
hash function from scratch. I was using SHA-1, but I’d like to use something
bigger after Wang’s discovery of MD5 collisions. I feel safe with SHA-256, but
SHA-256 is so slow that it has a quite noticeable impact on signature-verification
time.



Protecting the Internet

The Domain Name System is a distributed database that maps domain names,
such as cr.yp.to, to IP addresses (and other data), such as 131.193.178.160.

Today’s DNS records are not cryptographically protected. By giving fake
IP addresses to your computer, an attacker can easily steal your incoming and
outgoing mail, substitute fake web pages, etc.

DNSSEC, a project to cryptographically sign DNS records, has been under
development for ten years by a large (and obviously rather incompetent) team of
protocol developers. I’ve designed a new DNS security system, DNSSEC2, with
several advantages over DNSSEC: it’s faster; it uses much stronger cryptographic
tools; it protects against denial of service; it allows end-to-end security without
help from the centralized root servers; and, most importantly, it works with
existing DNS database software, so it’s much easier than DNSSEC to deploy.
See http://cr.yp.to/talks.html#2004.04.28. I plan to release the DNSSEC2
software this year.

8 Anti-bug programming environments

All the cryptographic protection in the world won’t stop an attacker who exploits
a bug, such as a buffer overflow, to seize control of your computer. Some of
the most widely deployed programs on the Internet—the BIND DNS server,
for example, and the Sendmail SMTP server (post-office program)—have had
thousands of bugs, including many bugs that allowed attackers to seize control.

For more than a decade I have been systematically identifying error-prone
programming habits—by reviewing the literature, by analyzing other people’s
mistakes, and by analyzing my own mistakes—and redesigning my programming
environment to eliminate those habits. For example, “escape” mechanisms, such
as backslashes in various network protocols and % in printf, are error-prone:
it’s too easy to feed “normal” strings to those functions and forget about the
escape mechanism.1 I switched long ago to explicit tagging of “normal” strings;
the resulting APIs are wordy but no longer error-prone. The combined result of
many such changes has been a drastic reduction in my own error rate.

Starting in 1997, I offered $500 to the first person to publish a verifiable
security hole in the latest version of qmail, my Internet-mail transfer agent; see
http://cr.yp.to/qmail/guarantee.html. There are now more than a million
Internet SMTP servers running qmail. Nobody has attempted to claim the $500.

Starting in 2000, I made a similar $500 offer for djbdns, my DNS software;
see http://cr.yp.to/djbdns/guarantee.html. This program is now used to
publish the IP addresses for two million .com domains: citysearch.com, for
example, and lycos.com. Nobody has attempted to claim the $500.

1 Format-string bugs were not widely appreciated until 2000; see the introduction to

www.usenix.org/publications/library/proceedings/sec01/shankar.html. Four

years before that, I had realized and publicly pointed out the security impact of a

format-string bug in logger, a standard UNIX-command-line interface to syslog;

see www.ornl.gov/lists/mailing-lists/qmail/1996/12/msg00314.html.



There were several non-security bugs in qmail, and a few in djbdns. My
error rate has continued to drop since then. I’m no longer surprised to whip up
a several-thousand-line program and have it pass all its tests the first time.

Bug-elimination research, like other user-interface research, is highly non-
mathematical. The goal is to have users, in this case programmers, make as few
mistakes as possible in achieving their desired effects. We don’t have any way
to model this—to model human psychology—except by experiment. We can’t
even recognize mistakes without a human’s help. (If you can write a program
to recognize a class of mistakes, great—we’ll incorporate your program into
the user interface, eliminating those mistakes—but we still won’t be able to
recognize the remaining mistakes.) I’ve seen many mathematicians bothered by
this lack of formalization; they ask nonsensical questions like “How can you prove
that you don’t have any bugs?” So I sneak out of the department, take off my
mathematician’s hat, and continue making progress towards the goal.

9 Extreme sandboxing

The software installed on my newest home computer contains 78 million lines of
C and C++ source code. Presumably there are hundreds of thousands of bugs
in this code. Removing all of those bugs would be quite expensive. Fortunately,
there’s a less expensive way to eliminate most security problems.

Consider, for example, a compressed music track. The UNIX ogg123 program
and underlying libraries contain 50000 lines of code whose sole purpose is to read
a compressed music track in Ogg Vorbis format and write an uncompressed music
track in wave format.

UNIX makes it possible (though unnecessarily difficult) to build a safeogg

program that does the same conversion and that has no other power over the

system. Bugs in the 50000 lines of code are then irrelevant to security: if the
input is from an attacker who seizes control of safeogg, the most the attacker
can do is write arbitrary output, which is what the input source was authorized
to do anyway.

How does safeogg eliminate all other access to the system? It eliminates its
access to the filesystem by using chroot. It eliminates its access to outside RAM
by acquiring a temporary uid not shared with any other processes; this takes
some effort but is doable. It eliminates its access to the network by setting a
hard nofile resource limit of 0. It limits its own use of RAM by setting other
resource limits. A completely different way to accomplish the same result—to
build an “extreme sandbox” for safeogg—is to run those 50000 lines of code
inside an interpreter that imposes the same constraints.

The existing ogg123 program can be converted into a small wrapper around
safeogg. Similarly, any other program that wants to uncompress music tracks
can be restructured to delegate the job to safeogg. This requires a small amount
of programming effort—much less than eliminating all the bugs in those 50000
lines of code.



The relevant property of the safeogg transformation is that the output isn’t
trusted any more highly than any of the inputs. This is a simple statement of
the security policy for music tracks: everyone authorized to affect the input, a
compressed music track, is also authorized to have complete control over the
output, an uncompressed music track.

Any transformation with the same property becomes irrelevant to security if
the system is restructured to place that transformation into an extreme sandbox.

Do all transformations have this property? Of course not. There are some
transformations that produce output trusted more highly than the input; these
transformations have to be bug-free. For example, when mail messages from
Alice and Bob are delivered to a user’s mailbox, the output (the mailbox file or
directory) is trusted to contain a correct copy of Alice’s message, even though the
output also depends on input from Bob, who isn’t trusted with Alice’s message;
and vice versa. The code that separates messages in mailboxes is security-critical;
it has to be bug-free. (There are also a few transformations that are run so often
that putting them into an extreme sandbox would impose an unacceptable speed
penalty.)

But these exceptions account for only a small fraction of the code in a system.
For example, compared to the code that separates messages in mailboxes, there
is vastly more code that transforms individual messages; the latter code can run
in an extreme sandbox and doesn’t have to be bug-free.

I should emphasize here that there’s a fundamental difference between this
project and typical sandboxing projects described in the literature. The goal of
a typical sandboxing project is to apply as many restrictions as possible to a
program while receiving no help from the programmer; the problem is that this
doesn’t stop all attacks.2 In contrast, I insist on an extreme sandbox guaranteeing
complete security, and I then ask how the programmer’s time can be minimized.
As in Section 1, programs are not static objects; the programmer cooperates with
the sandboxing tools.

I expect this strategy to produce invulnerable computer systems: restructure
programs to put almost all code into extreme sandboxes; eliminate bugs in the
small volume of remaining code. I won’t be satisfied until I’ve put the entire
security industry out of work.

2 www.usenix.org/publications/library/proceedings/sec96/goldberg.html, for

example, described a sandboxing tool that applied some restrictions to Netscape’s

“DNS helper” program. The subsequently discovered libresolv bug was a security

hole in that program despite the sandbox. Imposing heavier restrictions would have

meant changing the program.


