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Overview

• Multiprocessor h/w architecture
– Connects many processors to common large 

memory
– Useful for broad range of cryptanalytic attacks
– Asymptotically optimal

Constant factor 
of improvement 

possible

When all h/w 
costs considered,

“full cost”



Overview (cont’d)

• Define “full cost” of an algorithm
– Contrast with traditional run-time measure

• “processor cost”

• Describe multiprocessor h/w architecture
– Optimality proof outline

• Applications
– Discrete log
– Factoring

– Multiple Encryption
– Hash collisions



Processor Cost of an Algorithm

• Traditional cost measure
– # processor steps or run-time

• If multiple processors used:

# processors
# steps

or
run-time

per processor
x



Full Cost

• Used by 
– [Amirazizi, Hellman, 1981, 1988]
– [Bernstein, 2001]
– [Lenstra, Shamir, Tomlinson, Tromer, 2002]

• called it “throughput cost”

# h/w components
or

total h/w $
run-timex



Comparing Cost Measures

• Only difference:
– Traditional measure ignores all h/w 

components except processors
• Which measure is correct?

– Right or wrong discussions pointless
– Useful or not useful
– Processor cost is simpler
– Full cost gives more useful answers



Full Cost Example: Discrete Log

• EC log
– Given P, Q = kP, find k
– Prime group order n ≈ 280

• Use one PC + memory
• Compare

– Shanks’ method
– Pollard’s ρ-method



Shanks’ Method
Also called baby-step 

giant-step
• Let m = ⎡n1/2⎤ ≈ 240

• Store mP, 2mP, …, 
⎡n/m⎤mP

• Q ← Q + P until Q 
is in table

• If Q = imP after j 
steps: k = im - j

…
… 0

mP

2mP

3mP(i-1)mP

imP

Q



Shanks’ Method Costs

• Hardware
– Must store 240 points

• x coordinate only  (10 bytes)
– 10 Tbytes
– $1M assuming $100/Gbyte
– Additional cost of PC is insignificant

• Time
– Expect 1.5 x 240 EC adds



Pollard’s ρ-Method

• Choose an iterating 
function f   [Teske, 1998]

• Choose some starting 
EC point x0

• Iterate xi+1 = f(xi)
• f is constructed so that 

collision 
f(xλ-1) = f(xλ+µ-1) = xλ

reveals key k

…

…
x0

x1

xλ-1 xλ+µ-1

xλ

xλ+1
xλ+2



ρ-Method Costs

• Hardware
– Negligible memory using distinguished points 

[Rivest]
• Only store points with 30 trailing zero bits

– $1000 for PC
• Time

– Expect (π/2)1/2 x 240 EC adds



Comparison

$1000≈ 2401ρ-method
$1M≈ 2401Shanks

h/w $EC adds# processors

Processor cost: 
about the same

Full cost: 
ρ 1000x better



Which Cost Measure Makes 
Sense?

• ρ-method really is 1000x better
– Traditional measure makes no sense here
– Full cost gives a useful answer



Was this a Fair Comparison?

• Between processor cost and full cost?
– Yes
– Hardware design for Shanks is very poor

• Deserves 1000x poorer rating than ρ-method

• Between Shanks’ and ρ-methods?
– No
– Shanks with only one processor is inefficient
– For fair comparison, optimize designs

• As Lenstra et al. did for factoring



Improving Shanks Approach

• Use 100 PCs in parallel
– Connect all PCs to one large memory
– Expensive logic required to maintain high-

speed memory access
– Estimate of total cost: $2M



New Comparison

$2M≈ 240/100100Parallel Shanks
$1000≈ 2401ρ-method

$1M≈ 2401Shanks
h/w $EC adds# processors

Processor cost: 
all the same

Full cost: parallel Shanks 50x improved
ρ still 20x better



Even More Parallelism?

• Can we use more parallelism to reduce 
Shanks’ full cost to that of ρ?
– No
– Cost of connections to one large memory too 

high
– More about this later



Requirements for Many Attacks

• Large memory
• Multiple processors needed to reduce full 

cost
• Need simultaneous high-speed access to 

the large memory
– Expensive



Requirements (cont’d)

address dataWrite to
memory:

block
address

location
within block

Read from
memory:

Requires a return
switching network

processors
memory
blocks

switching
network



Multiprocessor H/W Architecture
processors

memory
blocks

XXX
0XX

1XX
00X

000

001
0XX

00X

01X

XXX
0XX

1XX
01X

010

011
1XX

10X

11X

XXX
0XX

1XX
10X

100

101
0XX

00X

01X

XXX
0XX

1XX
11X

110

111
1XX

10X

11X

Long connections to last stage are a problem.



Switching Network Cost

• n processors, n memory blocks
• Θ(n log n) switching elements
• Total wire length

– Hardware design achieves Θ(n3/2)
– This is the best that can be done

• ∴ costs are dominated by wires in the 
switching network!
– Answers open question [Amirazizi, Hellman]



Wire Length Proof Outline

• In multiprocessor architecture
– With processors, memory blocks in 2-D grid
– Θ(n log n) wires, average length Θ(n1/2/log n)
– Establishes upper bound O(n3/2)

• Full paper proves
– Must have Θ(n) processors separated from 

Θ(n) memory blocks by distance Ω(n1/2)
– Establishes lower bound Ω(n3/2)



Wires Dominate Costs –
Is this Reasonable?

• Yes
• Misleading to call it “wire”

– By this definition, internet is mostly just wire
• PCs access internal memory at Gbyte/s 

rates
– Maintaining this speed for 4 or 8 processors is 

fairly easy
– For 10,000 processors, say, must maintain 

this speed over distances (costly)



Internet Example

• Processors are PCs
• Large memory is collective RAM in PCs
• Switching network is the internet
• PCs need to read/write data to other PCs’

memories millions of times per second
– Internet is far too slow for this
– A new internet to handle this demand would 

cost orders of magnitude more than all PCs 
together



Switching Network Delays

• Is latency through switching network a 
problem?
– Usually no

• For most attacks,
– Can continue to push out more memory 

access requests before current one gets to 
memory

– Filling up memory with Shanks’ giant steps 
illustrates this



More General Case

• Total h/w cost (with switching network + wires)
– Θ(p + m + (pr)3/2)
– Proof in full paper

p processors
m memory

blocks

switching
network

memory access rate r = O(1)
lower r ⇒ cheaper switching



Full Cost

• Let T be total processor cost of an attack
– Spread across p processors

• Full cost is time  T/p  x  hardware cost:

F = Θ((T/p)(p + m + (pr)3/2))



Full Cost vs. Processor Cost

• Rewrite equation as

F = Θ(T(1 + m/p + p1/2r3/2))

• So F=Ω(T), and

F=Θ(T) iff  m = O(p)  and  r = O(p-1/3)



Applications of the 
Multiprocessor Architecture

• Discrete log
– Shanks’ method
– Parallel collision search

• Factoring
• Double encryption
• Three-key triple encryption
• Hash collisions



Notation

• Throughout discussion of applications
– Ignore constant factors
– Ignore log factors

• Distraction
• Full paper tracks log factors

• E.g.,  3n2(log n)3/2 → n2+o(1)



Discrete Log

• Group with no index calculus attack
– E.g., elliptic curves

• Prime group order n
• Both Shanks and collision search require

T = n1/2+o(1) processor steps



Full Cost (Shanks)

T = n1/2+o(1)Proc. time

F = Θ(T(1 + m/p + p1/2r3/2))
= n1/2+o(1) (1 + n1/2/p + p1/2)

Minimum: F = n2/3+o(1)

when p = n1/3+o(1)

Full cost
p = ?   (too be optimized)Processors
r = no(1) (high)Access rate
m = n1/2+o(1)Memory



Full Cost (Parallel Collision Search)

T = n1/2+o(1)Proc. time

F = Θ(T(1 + m/p + p1/2r3/2))
= n1/2+o(1) (1 + 1 + p2/n3/4)

Minimum: F = n1/2+o(1)

when p = n3/8+o(1) or less

Full cost

p = ?   (too be optimized)Processors
r = m/T = p/n1/2-o(1) (low)Access rate

m = pno(1) (each processor stores
constant # of distinguished points)

Memory



Comparison

• Shanks full cost: n2/3+o(1)

• Collision search full cost: n1/2+o(1)

• Full cost analysis reveals
– Collision search is better than Shanks
– Even though same processor cost

• Shanks advantage:
– Deterministic time
– Not important in practice, but mathematically 

pleasing



Factoring with NFS
• NFS parameters are chosen to trade-off 

costs of
– Relation collection step
– Matrix step

• For standard trade-off based on processor 
cost,
– Matrix step has higher full cost

• Rebalancing required to minimize full cost
[Lenstra, Shamir, Tomlinson, Tromer]



Matrix Step

• Run-time dominated by matrix-vector 
products (over GF(2))

• Represent columns of A as a list of row 
indices for the 1 entries

=sparse
columns

A v product



Multiprocessor Matrix Step
A v product

proc
1

proc
2

proc
p

…

proc 1

proc 2

proc p

…

mem 1

mem 2

mem m

…



Matrix-Vector Multiply

• For columns with corresponding v bit 1,
– Send row numbers to memory
– Row numbers serve as memory addresses

• Memory toggles product bit each time row 
number arrives

XX
0X

1X
0X

00

01

XX
0X

1X
1X

10

11

Send row #

Toggle 
product bit



A Problem

• For most attacks, memory accesses have 
uniformly random addresses
– Tends to balance load on memory blocks

• Top rows of matrix much denser than 
lower rows
– Memory blocks for low row numbers will be 

swamped



Partial Solution

• Switching elements take in two row 
numbers at a time

• If both equal, they cancel
– Toggling output bit twice  =  do nothing
– Just drop equal row numbers

row i

row i
no output

switching
element



Full Solution
• Top memory blocks still swamped
• Solution:

– Make top memory blocks smaller
– Change address decisions in switching 

elements to compensate



Performance

• Asymptotically optimal matrix step
– Without a fundamentally different approach, 

can only be beaten by a constant factor
– But maybe a large constant

• I have not tried doing a detained design to 
compare to other designs:
– [Bernstein]
– [Lenstra, Shamir, Tomlinson, Tromer]



Double Encryption

• Ek2(Ek1(P)) = C
• |key space| = n
• Given  (P, C)  find  (k1, k2)

– Assume enough other (P, C) pairs to uniquely 
identify key pair

• Attack approaches
– Standard meet-in-the-middle
– Parallel collision search



Meet-in-the-Middle Attack

• Let Dk(•) denote decryption
• Observe that  Ek1(P) = Dk2(C)

For each 
candidate k1

• Store  
(k1, Ek1(P))

For each candidate k2

• Look up Dk2(C) to 
get possible k1

• Test (k1, k2 ) on other 
(P, C) pairs

large
memory



Multiprocessor Meet-in-the-Middle

T = n1+o(1)Proc. time

F = Θ(T(1 + m/p + p1/2r3/2))
= n1+o(1) (1 + n/p + p1/2)

Minimum: F = n4/3+o(1)

when p = n2/3+o(1)

Full cost > processor cost

Full cost

p = ?   (too be optimized)Processors
r = no(1) (high)Access rate
m = n1+o(1)Memory



Parallel Collision Search Attack

• Uses collision search to generate many 
candidate key pairs
– Tests each key pair on multiple (P, C) pairs 

until (k1, k2) found



Parallel Collision Search Cost

m = ?   (to be optimized)Memory

F = Θ(T(1 + m/p + p1/2r3/2))
= n3/2+o(1) /m1/2 (1 + m/p + p1/2m3/4/n3/4)

Minimum: F = n6/5+o(1)

when p = n3/5+o(1)

and m = n3/5+o(1)

Full cost
p = ?   (too be optimized)Processors
r = m1/2/n1/2-o(1) (low)Access rate
T = n3/2+o(1)/m1/2Proc. time



Double Encryption Results

• Parallel collision search is better than 
standard meet-in-the-middle attack
– n6/5+o(1) vs. n4/3+o(1)

• Double encryption is widely believed to be 
no better than single encryption
– Not true
– Small advantage:  n1/5+o(1)



Three-Key Triple Encryption

• Ek3(Dk2(Ek1(P))) = C

• Best attack known:

For each candidate k1
– Perform double encryption attack using

• Ek1(P) as plaintext
• C as ciphertext



Triple Encryption Attack Cost

• Just n times double encryption attack
• Full cost:    F = n11/5+o(1)

• Ignoring the o(1),
– 3-key triple-DES:  123 bits of security



Hash Collisions

• Find two texts, x and y, such that
– x ≠ y
– H(x) = H(y)

• |output space| = n
• Approaches:

– Simple table-based attack
– ρ collision search



Table-Based Attack

Choose 
unique 
texts x
• Store  

(x, H(x))

Check for 
duplicate hash 
outputs in table

Duplicate
⇒ H(x) = H(y)

large
memory



Multiprocessor Table Attack

T = n1/2+o(1)Proc. time

F = Θ(T(1 + m/p + p1/2r3/2))
= n1/2+o(1) (1 + n1/2/p + p1/2)

Minimum:  F = n2/3+o(1)

when p = n1/3+o(1)

Full cost

p = ?   (too be optimized)Processors

r = no(1) (high)Access rate
m = n1/2+o(1)Memory



ρ Collision Search
T = n1/2+o(1)Proc. time

F = Θ(T(1 + m/p + p1/2r3/2))
= n1/2+o(1) (1 + 1 + p2/n3/4)

Minimum: F = n1/2+o(1)

when p = n3/8+o(1) or less
Better than table-based attack

Full cost
p = ?   (too be optimized)Processors
r = m/T = p/n1/2-o(1) (low)Access rate

m = pno(1) (each processor stores
constant # of distinguished points)

Memory



Conclusion

• Multiprocessor h/w architecture is 
asymptotically optimal for full cost

• Full cost better reflects reality than 
traditional processor cost

• Collision search techniques give 
best attack for several problems



Conclusion (cont’d)

n2/3+o(1)

n1/2+o(1)
n1/2+o(1)

n1/2+o(1)
Table-based method
Parallel coll. search

Hash 
collision

n7/3+o(1)

n11/5+o(1)
n2+o(1)

n2+o(1)
Meet-in-the-middle
Parallel coll. search

Triple 
encryption

n4/3+o(1)

n6/5+o(1)
n1+o(1)

n1+o(1)
Meet-in-the-middle
Parallel coll. search

Double 
encryption

n2/3+o(1)

n1/2+o(1)
n1/2+o(1)

n1/2+o(1)
Shanks

Parallel coll. search
Discrete

log

Full CostProcessor 
steps

MethodAttack


