Cryptanalytic Hardware Architecture Optimized for Full Cost

Michael J. Wiener

2005 February 25

Overview

- Multiprocessor h/w architecture
- Connects many processors to common large memory
- Useful for broad range of cryptanalytic attacks
- Asymptotically optimal

Constant factor of improvement possible

When all h/w
costs considered, "full cost"

Overview (cont'd)

- Define "full cost" of an algorithm
- Contrast with traditional run-time measure
- "processor cost"
- Describe multiprocessor h/w architecture
- Optimality proof outline
- Applications
- Discrete log - Multiple Encryption
- Factoring - Hash collisions

Processor Cost of an Algorithm

- Traditional cost measure
- \# processor steps or run-time
- If multiple processors used:

Full Cost

- Used by
- [Amirazizi, Hellman, 1981, 1988]
- [Bernstein, 2001]
- [Lenstra, Shamir, Tomlinson, Tromer, 2002]
- called it "throughput cost"

Comparing Cost Measures

- Only difference:
- Traditional measure ignores all h/w components except processors
- Which measure is correct?
- Right or wrong discussions pointless
- Useful or not useful
- Processor cost is simpler
- Full cost gives more useful answers

Full Cost Example: Discrete Log

- EC log
- Given P, Q = kP, find k
- Prime group order $n \approx 2^{80}$
- Use one PC + memory
- Compare
- Shanks' method
- Pollard's ρ-method

Shanks' Method

Also called baby-step giant-step

- Let $m=\left\lceil n^{1 / 2}\right\rceil \approx 2^{40}$
- Store mP, 2mP, ..., $\lceil\mathrm{n} / \mathrm{m} 7 \mathrm{mP}$
- $\mathrm{Q} \leftarrow \mathrm{Q}+\mathrm{P}$ until Q is in table
- If $\mathrm{Q}=\mathrm{imP}$ after j
 steps: k = im - j

Shanks' Method Costs

- Hardware
- Must store 2^{40} points
- x coordinate only (10 bytes)
- 10 Tbytes
- \$1M assuming \$100/Gbyte
- Additional cost of PC is insignificant
- Time
- Expect $1.5 \times 2{ }^{40}$ EC adds

Pollard's ρ-Method

- Choose an iterating function f [Teske, 1998]
- Choose some starting EC point x_{0}
- Iterate $x_{i+1}=f\left(x_{i}\right)$
- f is constructed so that collision
$f\left(x_{\lambda-1}\right)=f\left(x_{\lambda+\mu-1}\right)=x_{\lambda}$ reveals key k

$\rho-$ Method Costs

- Hardware
- Negligible memory using distinguished points [Rivest]
- Only store points with 30 trailing zero bits
- \$1000 for PC
- Time
- Expect $(\pi / 2)^{1 / 2} \times 2^{40}$ EC adds

Comparison

Processor cost:

 about the same

Full cost:
$\rho 1000 x$ better

Which Cost Measure Makes Sense?

- ρ-method really is $1000 x$ better
- Traditional measure makes no sense here
- Full cost gives a useful answer

Was this a Fair Comparison?

- Between processor cost and full cost?
- Yes
- Hardware design for Shanks is very poor
- Deserves 1000x poorer rating than ρ-method
- Between Shanks' and ρ-methods?
- No
- Shanks with only one processor is inefficient
- For fair comparison, optimize designs
- As Lenstra et al. did for factoring

Improving Shanks Approach

- Use 100 PCs in parallel
- Connect all PCs to one large memory
- Expensive logic required to maintain highspeed memory access
- Estimate of total cost: \$2M

New Comparison

Processor cost: all the same

Full cost: parallel Shanks 50x improved ρ still 20x better

Even More Parallelism?

- Can we use more parallelism to reduce Shanks' full cost to that of ρ ?
- No
- Cost of connections to one large memory too high
- More about this later

Requirements for Many Attacks

- Large memory
- Multiple processors needed to reduce full cost
- Need simultaneous high-speed access to the large memory
- Expensive

Requirements (cont'd)

Multiprocessor H/W Architecture

memory
processors
blocks

Long connections to last stage are a problem.

Switching Network Cost

- n processors, n memory blocks
- $\Theta(n \log n)$ switching elements
- Total wire length
- Hardware design achieves $\Theta\left(n^{3 / 2}\right)$
- This is the best that can be done
- \therefore costs are dominated by wires in the switching network!
- Answers open question [Amirazizi, Hellman]

Wire Length Proof Outline

- In multiprocessor architecture
- With processors, memory blocks in 2-D grid
$-\Theta(n \log n)$ wires, average length $\Theta\left(n^{1 / 2 /} / \log n\right)$
- Establishes upper bound $\mathrm{O}\left(\mathrm{n}^{3 / 2}\right)$
- Full paper proves
- Must have $\Theta(\mathrm{n})$ processors separated from $\Theta(\mathrm{n})$ memory blocks by distance $\Omega\left(\mathrm{n}^{1 / 2}\right)$
- Establishes lower bound $\Omega\left(\mathrm{n}^{3 / 2}\right)$

Wires Dominate Costs Is this Reasonable?

- Yes
- Misleading to call it "wire"
- By this definition, internet is mostly just wire
- PCs access internal memory at Gbyte/s rates
- Maintaining this speed for 4 or 8 processors is fairly easy
- For 10,000 processors, say, must maintain this speed over distances (costly)

Internet Example

- Processors are PCs
- Large memory is collective RAM in PCs
- Switching network is the internet
- PCs need to read/write data to other PCs' memories millions of times per second
- Internet is far too slow for this
- A new internet to handle this demand would cost orders of magnitude more than all PCs together

Switching Network Delays

- Is latency through switching network a problem?
- Usually no
- For most attacks,
- Can continue to push out more memory access requests before current one gets to memory
- Filling up memory with Shanks' giant steps illustrates this

More General Case

- Total h/w cost (with switching network + wires)
$-\Theta\left(p+m+(p r)^{3 / 2}\right)$
- Proof in full paper

Full Cost

- Let T be total processor cost of an attack
- Spread across p processors
- Full cost is time T/p x hardware cost:

$$
F=\Theta\left((T / p)\left(p+m+(p r)^{3 / 2}\right)\right)
$$

Full Cost vs. Processor Cost

- Rewrite equation as

$$
F=\Theta\left(T\left(1+m / p+p^{1 / 2} r^{3 / 2}\right)\right)
$$

- So $F=\Omega(T)$, and
$\mathrm{F}=\Theta(\mathrm{T})$ iff $\mathrm{m}=\mathrm{O}(\mathrm{p})$ and $\mathrm{r}=\mathrm{O}\left(\mathrm{p}^{-1 / 3}\right)$

Applications of the Multiprocessor Architecture

- Discrete log
- Shanks' method
- Parallel collision search
- Factoring
- Double encryption
- Three-key triple encryption
- Hash collisions

Notation

- Throughout discussion of applications
- Ignore constant factors
- Ignore log factors
- Distraction
- Full paper tracks log factors
- E.g., $3 n^{2}(\log n)^{3 / 2} \rightarrow n^{2+o(1)}$

Discrete Log

- Group with no index calculus attack
- E.g., elliptic curves
- Prime group order n
- Both Shanks and collision search require $\mathrm{T}=\mathrm{n}^{1 / 2+o(1)}$ processor steps

Full Cost (Shanks)

Proc. time	$\mathrm{T}=\mathrm{n}^{1 / 2+\mathrm{o}(1)}$
Memory	$\mathrm{m}=\mathrm{n}^{1 / 2+o(1)}$
Access rate	$\mathrm{r}=\mathrm{n}^{\mathrm{o}(1)}$ (high)
Processors	$\mathrm{p}=$? (too be optimized)
Full cost	$\begin{aligned} & F=\Theta\left(T\left(1+m / p+p^{1 / 2} r^{3 / 2}\right)\right) \\ & =n^{1 / 2+o(1)}\left(1+n^{\left.1 / 2 / p+p^{1 / 2}\right)}\right. \\ & \text { Minimum: } F=n^{2 / 3+o(1)} \\ & \text { when } p=n^{1 / 3+o(1)} \end{aligned}$

Full Cost (Parallel Collision Search)

Proc. time	$\mathrm{T}=\mathrm{n}^{1 / 2+o(1)}$
Memory	$\mathrm{m}=\mathrm{p} n^{\mathrm{o}(1)}$ (each processor stores constant \# of distinguished points)
Access rate	$\mathrm{r}=\mathrm{m} / \mathrm{T}=\mathrm{p} / \mathrm{n}^{1 / 2-o(1) \quad \text { (low) }}$
Processors	$\mathrm{p}=? \quad$ (too be optimized)

Comparison

- Shanks full cost: $n^{2 / 3+o(1)}$
- Collision search full cost: $n^{1 / 2+o(1)}$
- Full cost analysis reveals
- Collision search is better than Shanks
- Even though same processor cost
- Shanks advantage:
- Deterministic time
- Not important in practice, but mathematically pleasing

Factoring with NFS

- NFS parameters are chosen to trade-off costs of
- Relation collection step
- Matrix step
- For standard trade-off based on processor cost,
- Matrix step has higher full cost
- Rebalancing required to minimize full cost [Lenstra, Shamir, Tomlinson, Tromer]

Matrix Step

- Run-time dominated by matrix-vector products (over GF(2))

$$
\begin{gathered}
\mathrm{A} \\
{\left[\begin{array}{c}
\text { sparse } \\
\text { columns }
\end{array}\right]\left[\begin{array}{c}
\mathrm{V} \\
\end{array}\right]=\left[\begin{array}{l}
\text { product } \\
{[\square]}
\end{array}\right.}
\end{gathered}
$$

- Represent columns of A as a list of row indices for the 1 entries

Multiprocessor Matrix Step

Matrix-Vector Multiply

- For columns with corresponding v bit 1,
- Send row numbers to memory
- Row numbers serve as memory addresses
- Memory toggles product bit each time row number arrives

A Problem

- For most attacks, memory accesses have uniformly random addresses
- Tends to balance load on memory blocks
- Top rows of matrix much denser than lower rows
- Memory blocks for low row numbers will be swamped

Partial Solution

- Switching elements take in two row numbers at a time
- If both equal, they cancel
- Toggling output bit twice = do nothing
- Just drop equal row numbers

Full Solution

- Top memory blocks still swamped
- Solution:
- Make top memory blocks smaller
- Change address decisions in switching elements to compensate

Performance

- Asymptotically optimal matrix step
- Without a fundamentally different approach, can only be beaten by a constant factor
- But maybe a large constant
- I have not tried doing a detained design to compare to other designs:
- [Bernstein]
- [Lenstra, Shamir, Tomlinson, Tromer]

Double Encryption

- $E_{k_{2}}\left(E_{k_{1}}(P)\right)=C$
- |key space| = n
- Given (P, C) find $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$
- Assume enough other (P, C) pairs to uniquely identify key pair
- Attack approaches
- Standard meet-in-the-middle
- Parallel collision search

Meet-in-the-Middle Attack

- Let $D_{k}(\cdot)$ denote decryption
- Observe that $E_{k_{1}}(P)=D_{k_{2}}(C)$

For each
candidate k_{1}

- Store $\left(\mathrm{k}_{1}, \mathrm{E}_{\mathrm{k}_{1}}(\mathrm{P})\right)$

For each candidate k_{2}

- Look up $\mathrm{D}_{\mathrm{k}_{2}}(\mathrm{C})$ to get possible k_{1}
- Test ($\mathrm{k}_{1}, \mathrm{k}_{2}$) on other (P, C) pairs

Multiprocessor Meet-in-the-Middle

Proc. time	$\mathrm{T}=\mathrm{n}^{1+o(1)}$
Memory	$\mathrm{m}=\mathrm{n}^{1+o(1)}$
Access rate	$\mathrm{r}=\mathrm{n}^{\mathrm{o}(1)}$ (high)
Processors	$\mathrm{p}=? \quad$ (too be optimized)
Full cost	$\mathrm{F}=\Theta\left(\mathrm{T}\left(1+\mathrm{m} / \mathrm{p}+\mathrm{p}^{1 / 2} \mathrm{r}^{3 / 2}\right)\right.$ $=\mathrm{n}^{1+o(1)}\left(1+\mathrm{n} / \mathrm{p}+\mathrm{p}^{1 / 2}\right)$ Minimum: $\mathrm{F}=\mathrm{n}^{4 / 3+o(1)}$ when $\mathrm{p}=\mathrm{n}^{2 / 3+o(1)}$ Full cost $>$ processor cost

Parallel Collision Search Attack

- Uses collision search to generate many candidate key pairs
- Tests each key pair on multiple (P, C) pairs until ($\mathrm{k}_{1}, \mathrm{k}_{2}$) found

Parallel Collision Search Cost

Memory $\mid m=$? (to be optimized)
Proc. time $\quad \mathrm{T}=\mathrm{n}^{3 / 2+o(1) / \mathrm{m}^{1 / 2}}$
Access rate $r=m^{1 / 2 / n^{1 / 2-o(1)}}$ (low)
Processors $p=$? (too be optimized)
Full cost $\quad F=\Theta\left(T\left(1+m / p+p^{1 / 2} r^{3 / 2}\right)\right)$
$=n^{3 / 2+o(1)} / m^{1 / 2}\left(1+m / p+p^{1 / 2} m^{3 / 4} / n^{3 / 4}\right)$
Minimum: $F=n^{6 / 5+o(1)}$
when $p=n^{3 / 5+o(1)}$
and $m=n^{3 / 5+o(1)}$

Double Encryption Results

- Parallel collision search is better than standard meet-in-the-middle attack
$-n^{6 / 5+o(1)}$ vs. $n^{4 / 3+o(1)}$
- Double encryption is widely believed to be no better than single encryption
- Not true
- Small advantage: $\mathrm{n}^{1 / 5+o(1)}$

Three-Key Triple Encryption

- $E_{k_{3}}\left(D_{k_{2}}\left(E_{k_{1}}(P)\right)\right)=C$
- Best attack known:

For each candidate k_{1}

- Perform double encryption attack using
- $\mathrm{E}_{\mathrm{k}_{1}}(\mathrm{P})$ as plaintext
- C as ciphertext

Triple Encryption Attack Cost

- Just n times double encryption attack
- Full cost: $F=n^{11 / 5+o(1)}$
- Ignoring the o(1),
- 3-key triple-DES: 123 bits of security

Hash Collisions

- Find two texts, x and y, such that
$-x \neq y$
$-H(x)=H(y)$
- |output space| = n
- Approaches:
- Simple table-based attack
$-\rho$ collision search

Table-Based Attack

Choose unique texts X

- Store (x, H(x))

Check for
duplicate hash outputs in table

Duplicate

$$
\Rightarrow H(x)=H(y)
$$

Multiprocessor Table Attack

Proc. time $\quad \mathrm{T}=\mathrm{n}^{1 / 2+\mathrm{o}(1)}$
Memory $\quad m=n^{1 / 2+o(1)}$

Access rate $r=n^{\circ}(1) \quad$ (high)
Processors $p=$? (too be optimized)
Full cost $\quad F=\Theta\left(T\left(1+m / p+p^{1 / 2} r^{3 / 2}\right)\right)$

$$
=n^{1 / 2+o(1)}\left(1+n^{1 / 2 / p}+p^{1 / 2}\right)
$$

Minimum: $F=n^{2 / 3+o(1)}$
when $p=n^{1 / 3+o(1)}$

ρ Collision Search

Proc. time	$\mathrm{T}=\mathrm{n}^{1 / 2+o(1)}$
Memory	$\mathrm{m}=\mathrm{p} \mathrm{n}^{\mathrm{o}(1)}$ (each processor stores constant \# of distinguished points)
Access rate	$\mathrm{r}=\mathrm{m} / \mathrm{T}=\mathrm{p} / \mathrm{n}^{1 / 2-o(1) \quad \text { (low) })}$
Processors	$\mathrm{p}=? \quad($ too be optimized)

Conclusion

- Multiprocessor h/w architecture is asymptotically optimal for full cost
- Full cost better reflects reality than traditional processor cost
- Collision search techniques give best attack for several problems

Conclusion (cont'd)

Attack	Method	Processor steps	Full Cost
Discrete log	Shanks Parallel coll. search	$\mathrm{n}^{1 / 2+o(1)}$ $\mathrm{n}^{1 / 2+o(1)}$	$\mathrm{n}^{2 / 3+o(1)}$
$\mathrm{n}^{1 / 2+o(1)}$			
Double	Meet-in-the-middle	$\mathrm{n}^{1+o(1)}$	$\mathrm{n}^{4 / 3+o(1)}$
encryption	Parallel coll. search	$\mathrm{n}^{1+o(1)}$	$\mathrm{n}^{6 / 5+o(1)}$
Triple	Meet-in-the-middle	$\mathrm{n}^{2+o(1)}$	$\mathrm{n}^{7 / 3+o(1)}$
encryption	Parallel coll. search	$\mathrm{n}^{2+o(1)}$	$\mathrm{n}^{11 / 5+o(1)}$
Hash	Table-based method	$\mathrm{n}^{1 / 2+o(1)}$	$\mathrm{n}^{2 / 3+o(1)}$
collision	Parallel coll. search	$\mathrm{n}^{1 / 2+o(1)}$	$\mathrm{n}^{1 / 2+o(1)}$

