Cryptanalytic Hardware Architecture Optimized for Full Cost

Michael J. Wiener

2005 February 25

Overview

- Multiprocessor h/w architecture
 - Connects many processors to common large memory
 - Useful for broad range of cryptanalytic attacks
 - Asymptotically optimal

Constant factor of improvement possible When all h/w costs considered, "full cost"

Overview (cont'd)

- Define "full cost" of an algorithm
 Contrast with traditional run-time measure
- *•* "processor cost" **•** Describe multiprocessor h/w architecture
 - Optimality proof outline
- Applications
 - Discrete log
 - Factoring

Multiple Encryption
Hash collisions

Processor Cost of an Algorithm

Traditional cost measure

processor steps or run-time

If multiple processors used:

processors

steps or run-time per processor

Full Cost

- Used by
 - [Amirazizi, Hellman, 1981, 1988]
 - [Bernstein, 2001]
 - [Lenstra, Shamir, Tomlinson, Tromer, 2002]
 - called it "throughput cost"

Comparing Cost Measures

- Only difference:
 - Traditional measure ignores all h/w components except processors
- Which measure is correct?
 - Right or wrong discussions pointless
 - Useful or not useful
 - Processor cost is simpler
 - Full cost gives more useful answers

Full Cost Example: Discrete Log

EC log

- Given P, Q = kP, find k
- Prime group order n $\approx 2^{80}$
- Use one PC + memory
- Compare
 - Shanks' method
 - Pollard's ρ -method

Shanks' Method

Also called baby-step giant-step

- Let $m = \lceil n^{1/2} \rceil \approx 2^{40}$
- Store mP, 2mP, ..., [n/m]mP
- Q ← Q + P until Q is in table
- If Q = imP after j steps: k = im - j

Shanks' Method Costs

Hardware

- Must store 2⁴⁰ points
 - x coordinate only (10 bytes)
- 10 Tbytes
- \$1M assuming \$100/Gbyte
- Additional cost of PC is insignificant
- Time
 - Expect 1.5 x 2⁴⁰ EC adds

Pollard's p-Method

- Choose an iterating function f [Teske, 1998]
- Choose some starting EC point x₀
- Iterate $x_{i+1} = f(x_i)$
- f is constructed so that collision

 $f(x_{\lambda-1}) = f(x_{\lambda+\mu-1}) = x_{\lambda}$ reveals key k

ρ-Method Costs

Hardware

- Negligible memory using distinguished points [Rivest]
 - Only store points with 30 trailing zero bits
- \$1000 for PC
- Time
 - Expect ($\pi/2$)^{1/2} x 2⁴⁰ EC adds

Which Cost Measure Makes Sense?

ρ-method really is 1000x better
 Traditional measure makes no sense here
 Full cost gives a useful answer

Was this a Fair Comparison?

- Between processor cost and full cost?
 - -Yes
 - Hardware design for Shanks is very poor
 - Deserves 1000x poorer rating than ρ -method
- Between Shanks' and ρ-methods?
 - -No
 - Shanks with only one processor is inefficient
 - For fair comparison, optimize designs
 - As Lenstra et al. did for factoring

Improving Shanks Approach

Use 100 PCs in parallel

- Connect all PCs to one large memory
- Expensive logic required to maintain highspeed memory access
- Estimate of total cost: \$2M

New Comparison				
Processor cost: all the same				
	# processors	EC adds	h/w \$	
Shanks	1	≈ 2 ⁴⁰	\$1M	
Parallel Shanks	100	≈ 2 ⁴⁰ /100	\$2M	
ρ-method	1 _	≈ 2 ⁴⁰	\$1000	
Full cost: parallel Shanks 50x improved ρ still 20x better				

Even More Parallelism?

- Can we use more parallelism to reduce Shanks' full cost to that of ρ?
 - No
 - Cost of connections to one large memory too high
 - More about this later

Requirements for Many Attacks

- Large memory
- Multiple processors needed to reduce full cost
- Need simultaneous high-speed access to the large memory
 - Expensive

Requirements (cont'd)

Multiprocessor H/W Architecture

memory blocks

processors

Long connections to last stage are a problem.

Switching Network Cost

- n processors, n memory blocks
- Θ(n log n) switching elements
- Total wire length
 - Hardware design achieves $\Theta(n^{3/2})$
 - This is the best that can be done
- ... costs are dominated by wires in the switching network!
 - Answers open question [Amirazizi, Hellman]

Wire Length Proof Outline

- In multiprocessor architecture
 - With processors, memory blocks in 2-D grid
 - $-\Theta(n \log n)$ wires, average length $\Theta(n^{1/2}/\log n)$
 - Establishes upper bound $O(n^{3/2})$
- Full paper proves
 - Must have $\Theta(n)$ processors separated from $\Theta(n)$ memory blocks by distance $\Omega(n^{1/2})$
 - Establishes lower bound $\Omega(n^{3/2})$

Wires Dominate Costs – Is this Reasonable?

- Yes
- Misleading to call it "wire"
 By this definition, internet is mostly just wire
- PCs access internal memory at Gbyte/s rates
 - Maintaining this speed for 4 or 8 processors is fairly easy
 - For 10,000 processors, say, must maintain this speed over distances (costly)

Internet Example

- Processors are PCs
- Large memory is collective RAM in PCs
- Switching network is the internet
- PCs need to read/write data to other PCs' memories millions of times per second
 - Internet is far too slow for this
 - A new internet to handle this demand would cost orders of magnitude more than all PCs together

Switching Network Delays

- Is latency through switching network a problem?
 - Usually no
- For most attacks,
 - Can continue to push out more memory access requests before current one gets to memory
 - Filling up memory with Shanks' giant steps illustrates this

More General Case

Total h/w cost (with switching network + wires)

- $-\Theta(p + m + (pr)^{3/2})$
- Proof in full paper

Full Cost

Let T be total processor cost of an attack
 – Spread across p processors

• Full cost is time T/p x hardware cost:

 $F = \Theta((T/p)(p + m + (pr)^{3/2}))$

Full Cost vs. Processor Cost

Rewrite equation as

 $F = \Theta(T(1 + m/p + p^{1/2}r^{3/2}))$

• So F= $\Omega(T)$, and F= $\Theta(T)$ iff m = O(p) and r = O(p^{-1/3})

Applications of the Multiprocessor Architecture

- Discrete log
 - Shanks' method
 - Parallel collision search
- Factoring
- Double encryption
- Three-key triple encryption
- Hash collisions

Notation

Throughout discussion of applications

- Ignore constant factors
- Ignore log factors
 - Distraction
 - Full paper tracks log factors
- E.g., $3n^2(\log n)^{3/2} \rightarrow n^{2+o(1)}$

Discrete Log

- Group with no index calculus attack
 E.g., elliptic curves
- Prime group order n
- Both Shanks and collision search require

 $T = n^{1/2+o(1)}$ processor steps

Full Cost (Shanks)

Proc. time	$T = n^{1/2+o(1)}$
Memory	$m = n^{1/2+o(1)}$
Access rate	$r = n^{o(1)}$ (high)
Processors	p = ? (too be optimized)
Full cost	$F = \Theta(T(1 + m/p + p^{1/2}r^{3/2}))$ = $n^{1/2+o(1)}(1 + n^{1/2}/p + p^{1/2})$ Minimum: $F = n^{2/3+o(1)}$ when $p = n^{1/3+o(1)}$

Full Cost (Parallel Collision Search)

Proc. time	$T = n^{1/2+o(1)}$
Memory	m = pn ^{o(1)} (each processor stores constant # of distinguished points)
Access rate	$r = m/T = p/n^{1/2-o(1)}$ (low)
Processors	p = ? (too be optimized)
Full cost	$F = \Theta(T(1 + m/p + p^{1/2}r^{3/2}))$ = $n^{1/2+o(1)}(1 + 1 + p^2/n^{3/4})$ Minimum: $F = n^{1/2+o(1)}$ when $p = n^{3/8+o(1)}$ or less

Comparison

- Shanks full cost: n^{2/3+o(1)}
- Collision search full cost: n^{1/2+o(1)}
- Full cost analysis reveals
 - Collision search is better than Shanks
 - Even though same processor cost
- Shanks advantage:
 - Deterministic time
 - Not important in practice, but mathematically pleasing

Factoring with NFS

- NFS parameters are chosen to trade-off costs of
 - Relation collection step
 - Matrix step
- For standard trade-off based on processor cost,
 - Matrix step has higher full cost
- Rebalancing required to minimize full cost [Lenstra, Shamir, Tomlinson, Tromer]

Matrix Step

 Run-time dominated by matrix-vector products (over GF(2))

 Represent columns of A as a list of row indices for the 1 entries

Multiprocessor Matrix Step

Matrix-Vector Multiply

- For columns with corresponding v bit 1,
 - Send row numbers to memory
 - Row numbers serve as memory addresses
- Memory toggles product bit each time row number arrives

A Problem

- For most attacks, memory accesses have uniformly random addresses
 - Tends to balance load on memory blocks
- Top rows of matrix much denser than lower rows
 - Memory blocks for low row numbers will be swamped

Partial Solution

- Switching elements take in two row numbers at a time
- If both equal, they cancel
 - Toggling output bit twice = do nothing
 - Just drop equal row numbers

Full Solution

- Top memory blocks still swamped
- Solution:
 - Make top memory blocks smaller
 - Change address decisions in switching elements to compensate

Performance

- Asymptotically optimal matrix step
 - Without a fundamentally different approach, can only be beaten by a constant factor
 - But maybe a large constant
- I have not tried doing a detained design to compare to other designs:
 - [Bernstein]
 - [Lenstra, Shamir, Tomlinson, Tromer]

Double Encryption

- $E_{k_2}(E_{k_1}(P)) = C$
- |key space| = n
- Given (P, C) find (k_1, k_2)
 - Assume enough other (P, C) pairs to uniquely identify key pair
- Attack approaches
 - Standard meet-in-the-middle
 - Parallel collision search

Meet-in-the-Middle Attack

- Let D_k(•) denote decryption
- Observe that $E_{k_1}(P) = D_{k_2}(C)$

For each candidate k₁

Store ______ me
 (k₁, E_{k1}(P))

large memory For each candidate k₂

- Look up D_{k2}(C) to get possible k₁
- Test (k₁, k₂) on other (P, C) pairs

Multiprocessor Meet-in-the-Middle

Proc. time	$T = n^{1+o(1)}$	
Memory	$m = n^{1+o(1)}$	
Access rate	$r = n^{o(1)}$ (high)	
Processors	p = ? (too be optimized)	
Full cost	$F = \Theta(T(1 + m/p + p^{1/2}r^{3/2}))$ = n ^{1+o(1)} (1 + n/p + p ^{1/2}) Minimum: F = n ^{4/3+o(1)} when p = n ^{2/3+o(1)} Full cost > processor cost	

Parallel Collision Search Attack

 Uses collision search to generate many candidate key pairs

 Tests each key pair on multiple (P, C) pairs until (k₁, k₂) found

Parallel Collision Search Cost

Memory	m = ? (to be optimized)
Proc. time	$T = n^{3/2+o(1)}/m^{1/2}$
Access rate	$r = m^{1/2}/n^{1/2-o(1)}$ (low)
Processors	p = ? (too be optimized)
Full cost	$ \begin{split} F &= \Theta(T(1 + m/p + p^{1/2} r^{3/2})) \\ &= n^{3/2 + o(1)} / m^{1/2} \left(1 + m/p + p^{1/2} m^{3/4} / n^{3/4}\right) \\ Minimum: F &= n^{6/5 + o(1)} \\ & when p &= n^{3/5 + o(1)} \\ & and m &= n^{3/5 + o(1)} \end{split} $

Double Encryption Results

- Parallel collision search is better than standard meet-in-the-middle attack
 – n^{6/5+o(1)} vs. n^{4/3+o(1)}
- Double encryption is widely believed to be no better than single encryption
 - Not true
 - Small advantage: n^{1/5+o(1)}

Three-Key Triple Encryption

- $E_{k_3}(D_{k_2}(E_{k_1}(P))) = C$
- Best attack known:

For each candidate k₁

- Perform double encryption attack using
 - E_{k1}(P) as plaintext
 - C as ciphertext

Triple Encryption Attack Cost

- Just n times double encryption attack
- Full cost: $F = n^{11/5+o(1)}$
- Ignoring the o(1),
 - 3-key triple-DES: 123 bits of security

Hash Collisions

- Find two texts, x and y, such that
 - $-x \neq y$
 - -H(x) = H(y)
- output space = n
- Approaches:
 - Simple table-based attack
 - $-\rho$ collision search

Table-Based Attack

Multiprocessor Table Attack

Proc. time	$T = n^{1/2+o(1)}$
Memory	$m = n^{1/2+o(1)}$
Access rate	$r = n^{o(1)}$ (high)
Processors	p = ? (too be optimized)
Full cost	$F = \Theta(T(1 + m/p + p^{1/2}r^{3/2}))$ = $n^{1/2+o(1)}(1 + n^{1/2}/p + p^{1/2})$ Minimum: $F = n^{2/3+o(1)}$ when $p = n^{1/3+o(1)}$

ρ Collision Search

Proc. time	$T = n^{1/2+o(1)}$		
Memory	m = pn ^{o(1)} (each processor stores constant # of distinguished points)		
Access rate	$r = m/T = p/n^{1/2-o(1)}$ (low)		
Processors	p = ? (too be optimized)		
Full cost	$F = \Theta(T(1 + m/p + p^{1/2}r^{3/2}))$ = n ^{1/2+o(1)} (1 + 1 + p ² /n ^{3/4}) Minimum: F = n ^{1/2+o(1)} when p = n ^{3/8+o(1)} or less Better than table-based attack		

Conclusion

- Multiprocessor h/w architecture is asymptotically optimal for full cost
- Full cost better reflects reality than traditional processor cost
- Collision search techniques give best attack for several problems

Conclusion (cont'd)

Attack	Method	Processor steps	Full Cost
Discrete	Shanks	n ^{1/2+o(1)}	n ^{2/3+o(1)}
log	Parallel coll. search	n ^{1/2+o(1)}	n ^{1/2+o(1)}
Double	Meet-in-the-middle	n ^{1+o(1)}	n ^{4/3+o(1)}
encryption	Parallel coll. search	n ^{1+o(1)}	n ^{6/5+o(1)}
Triple	Meet-in-the-middle	n ^{2+o(1)}	n ^{7/3+o(1)}
encryption	Parallel coll. search	n ^{2+o(1)}	n ^{11/5+o(1)}
Hash	Table-based method	n ^{1/2+o(1)}	n ^{2/3+o(1)}
collision	Parallel coll. search	n ^{1/2+o(1)}	n ^{1/2+o(1)}