Reconfigurable Hardware Implementation of Mesh Routing in the Number Field Sieve Factorization

\Leftarrow
Sashisu Bajracharya, Deapesh Misra, Kris Gaj
George Mason University

Tarek El-Ghazawi

The George Washington University

Objective \& Outline

$$
\mathbf{N}=\mathbf{P} \cdot \mathbf{Q}
$$

factorization

\mathbf{P}, \mathbf{Q} - large integers

FPGA Array

1. Number Field Sieve (NFS) Factorization
2. Mesh Routing Architecture for the Matrix Step of NFS
3. Implementation
4. Results
5. Conclusions
6. Reconfigurable computers \& future work

Number Field Sieve (NFS) Steps

Previous work

2001
D. J. Bernstein, "Circuits for integer factorization: a proposal"

Mesh approach to the sieving and matrix steps improves asymptotic complexity for NFS performance

2002
A. K. Lenstra, A. Shamir, J. Tomlinson, E. Tromer, "Analysis of Bernstein's Factorization Circuit,"
Asiacrypt 2002
Detailed design for mesh routing

2003
W. Geiselmann, R. Steinwandt,
"Hardware to solve sparse systems of linear equations over GF(2)", CHES 2003
Distributing computations among multiple nodes

Our Objective

Design, describe in RTL VHDL,

 synthesize \& simulate existing theoretical designs for the matrix step of NFS using current generation of FPGA devices.
Matrix
 (Linear Algebra)

Focus of this paper

Input to the Matrix Step

Matrix A:

$D=$ number of the matrix columns and rows

$$
D \in\left[10^{7}, 10^{11}\right]
$$

d - column density (weight) $=$ maximum number of ones per column

$$
\begin{aligned}
& d \ll D, \\
& \text { e.g., } d=100 \text { for } D=10^{10}
\end{aligned}
$$

Function of the Matrix Step

Find linear dependency in the large sparse matrix obtained after sieving step

$$
\mathrm{c}_{\mathrm{i} 1} \oplus \mathrm{c}_{\mathrm{i} 2} \oplus \ldots \oplus \mathrm{c}_{\mathrm{iL}}=0
$$

$\mathrm{D}=$ number of the matrix columns and rows

Block Wiedemann Algorithm for the Matrix Step of NFS

1) Uses multiple matrix-by-vector multiplications of the sparse matrix A with k random vectors v_{i}

$$
\begin{gathered}
A \cdot v_{i}, A^{2} \cdot v_{i}, \quad \cdots \quad, A^{k} \cdot v_{i} \\
\text { where } k=2 D / K
\end{gathered}
$$

2) Post computations leading to the determination of the linear dependence of the matrix columns

Most time consuming operation:

$$
A_{[D x D]} \cdot \mathbf{v}_{[D x 1]}
$$

Mesh Routing Architecture for the Matrix Step

Matrix-by-Vector Multiplication

Matrix-by-Vector Multiplication for Sparse Matrices

Mesh Routing

$m \times \mathbf{m}$ mesh where $\mathbf{m}=\sqrt{D}$

Mesh corresponding to the matrix A and vector v

Routing in the Mesh

Each time a packet arrives at the target cell, the packet's vector's bit is xored with the partial result bit on the target cell

Packets generated by each cell in the mesh
Cell 1 representing Column 1

Destination address

Vector bit
(2)

(3)

3	0
8	0

6)

8

1	1
$\mathbf{4}$	$\mathbf{1}$
8	1

3	0
6	0
8	0

2	1
9	1

Only packets with non-zero vector bits need to be routed

Mesh Routing with K parallel matrix by vector multiplications

Example for $\mathrm{K}=2$
$A \cdot v_{1}$ and $A \cdot v_{\mathbf{2}}$ computed in parallel

V1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Mesh corresponding to the matrix A and vectors $\mathrm{v}_{1}, \mathrm{v}_{\mathbf{2}}$

Cell 1 representing Column 1

Packets with multiple vector bits generated by each cell in the mesh

Mesh Routing with p multiple columns and K vectors

Example for $\mathrm{p}=2, \mathrm{~K}=2$
$A \cdot \mathbf{v}_{\mathbf{1}}$ and $A \cdot \mathbf{v}_{\mathbf{2}}$ computed in parallel

V_{2}	1	0	0	1	0	1	0	1	0

V_{1}	0	1	0	1	0	0	1	0	1

p columns

Mesh with multiple columns and multiple vectors per cell

Cell 1 representing Columns 1,2

Packets generated by the mesh with multiple
columns and multiple vectors per cell
Cell 1 representing Columns 1, 2

2	0	1
5	0	1
7	0	1
4	1	0
9	1	0
		3 0 0 8 0 0 3 1 1 6 1 1 1 1 0 4 1 0 8 1 0 3 0 1 6 0 1 8 0 1

Clockwise Transposition Routing

Four iterations repeated

Compare-Exchange Cases Between Columns

-Direction of travel = direction of exchange
-Result of comparison = Exchange the packets.

Compare-Exchange Cases Between Columns

-Direction of travel \neq direction of exchange
-Result of comparison = Exchange the packets.
-Rule for Exchange: Exchange iff the distance to target of the packet which is farthest from its destination gets reduced.

Implementation

Structure of the Xilinx Virtex FPGA

Two modes of operation of CLB slices

Logic mode

Memory mode

CLB slice

Target FPGA Device

Xilinx Virtex II

Mesh parameters for single FPGA

Synthesis Results on one Virtex II XC2V8000 for Improved Mesh Routing Design

Matrix Size	\mathbf{K}	CLB slices	LUTs	FFs	Clock Period (ns)	Time for K mult (ns)	Time per 1 mult (ns)
2304×2304 $($ Mesh 12x12, $\mathrm{p}=16)$	1	6738 (14%)	10,438 (11%)	6,279 (7%)	14.5	11136	11136
2304×2304 $($ Mesh 12x12, $\mathrm{p}=16)$	32	29,938 (64%)	50,983 (54%)	19,651 (21%)	16.7	12826	401
2304×2304 $(M e s h 12 \times 12$, $\mathrm{p}=16)$	50	43,402 (93%)	74,030 (89%)	27,406 (29%)	17.7	13593	271

$$
\mathbf{f}_{\text {CLK-ROUTE }}=55.5 \mathrm{MHz} \quad \mathrm{~T}_{\text {CLK-ROUTE }}=18 \mathrm{~ns}
$$

Distributed Computation (Geiselmann, Steinwandt, CHES 2003)

A

$\mathrm{A}_{1,1}$	$\mathrm{~A}_{1,2}$	$\mathrm{~A}_{1,3}$
$\mathrm{~A}_{2,1}$	$\mathrm{~A}_{2,2}$	$\mathrm{~A}_{2,3}$
$\mathrm{~A}_{3,1}$	$\mathrm{~A}_{3,2}$	$\mathrm{~A}_{3,3}$

$$
=\begin{array}{|l|}
\hline \mathrm{A}_{1}^{\prime} \\
\mathrm{A}^{\prime}{ }_{2} \\
\mathrm{~A}^{\prime}{ }_{3} \\
\hline
\end{array}
$$

$$
\mathrm{A}_{1,1} \times \mathrm{v}_{1}+\square \mathrm{A}_{1,2} \times \mathrm{v}_{2}+\square \mathrm{A}_{1,3} \times \mathrm{v}_{3}=\square \mathrm{A}_{1}
$$

$$
\mathrm{A} \cdot \mathrm{~V}=\left(\begin{array}{c}
\sum_{j=1}^{s} A_{1, j} \cdot v_{j} \\
: \\
\sum_{j=1}^{s} A_{s, j} \cdot v_{j}
\end{array}\right)
$$

Using smaller FPGA arrays to perform the entire computation

1) FPGA array performs single sub-matrix by sub-vector multiplication
2) Reuse FPGA array for next sub-computation

Parallel Loading \& Unloading of Data

Sub matrix load-compute sequence

Time

Size of the mesh implemented using f FPGAs

Size of the matrix handled using f FPGAs

d - column density of $A=$ maximum number of ones per column of A $\mathrm{d}^{(\mathrm{f})}$ - column density of $\mathrm{A}^{(\mathrm{f})}$

Sizes and the column densities of submatrices handled using f FPGAs
$D=10^{10}, d=100$

f	$D^{(f)}$	$d^{(f)}$
1	2,304	1
100	230,400	1
256	589,824	1
1024	$2,359,296$	1
10,000	$23,040,000$	1

Mesh Cell Design for Improved Mesh Routing

Matrix Data

Matrix data

	Loading		Routing	
Status	Address	Address		
st	r_{L}	c_{L}	r_{R}	c_{R}

$1 \quad k^{(f)} \quad k^{(f)}+k_{p} k^{(f)} \quad k^{(f)}+k_{p}$

Vector data

f (\#FPGAs)	matrix data size (bits)
1	25
100	37
256	41
1024	45

Matrix Data Size $=1+4 \cdot k^{(f)}+2 \cdot k_{p}=1+4 \cdot \log _{2} m^{(f)}+2 \cdot \log _{2} p$

Format of the Packet

$$
\begin{aligned}
& \mathrm{k}^{(\mathrm{f})}=\log _{2} \mathrm{~m}^{(\mathrm{f})} \\
& \mathrm{k}_{\mathrm{p}}=\log _{2} \mathrm{p} \\
& \mathrm{~m}^{(\mathrm{f})}=\mathrm{m}^{(1)} \cdot \sqrt{ } \mathrm{f} \\
& \mathrm{~K}=50
\end{aligned}
$$

\# FPGAs	packet size
1	63
100	69
256	71
1024	73

Loading Unit

Current Packet Unit

Result Calculation

Resource Proportion for LUT Usage

Mesh of 12x12

$$
\begin{aligned}
& P=16 \\
& K=50
\end{aligned}
$$

89.7

Slowdown caused by crossing the chips boundaries

$$
\begin{aligned}
& \mathrm{x}=\text { multiplexing factor }=\frac{\text { \#bits crossing the boundary }}{\# \text { of pins per boundary }}= \\
& =\quad \frac{\mathrm{m}^{(1) * \text { packet size }^{(\mathrm{f}) * 2}}}{(\# \text { FPGA_pins } / 4)}=\frac{12 * 73 * 2}{277}=7 \\
&
\end{aligned}
$$

$4 \cdot \mathrm{~T}_{\text {CLK-IO }}+(\mathrm{x}-1) \mathrm{T}_{\text {CLK-IO }}+\mathrm{T}_{\text {CLK-ROUTE }}$
TCLK-ROUTE

$$
=\frac{10 \cdot \mathrm{~T}_{\mathrm{CLK}-\mathrm{IO}}+\mathrm{T}_{\mathrm{CLK}-\mathrm{ROUTE}}}{\mathrm{~T}_{\mathrm{CLK}-\mathrm{ROUTE}}}=4.33
$$

Results and Analysis

Results for a 512-bit number \mathbf{N}

$\mathrm{K}=$ number of concurrent multiplications $=50$
$\mathrm{D}=$ number of columns in matrix $\mathrm{A}=6.7 \times 10^{6}$
$\mathrm{m}^{(\mathrm{f})}=$ mesh dimension
$\mathrm{p}=$ number of columns handled in one cell
$\mathrm{d}^{(f)}=$ density of sub-matrix handled by mesh
$\mathrm{n}=$ number of times to repeat sub-multiplications
$\mathrm{T}_{\text {route }}=$ time for K multiplications in the mesh
$\mathrm{T}_{\text {Load }}=$ time for loading and unloading for K multiplications
$\mathrm{T}_{\text {Total }}=$ total time for the Matrix Step $=3 \cdot(\mathrm{D} / \mathrm{K}) \cdot \mathrm{n} \cdot\left(\mathrm{T}_{\text {route }}+\mathrm{T}_{\text {Load }}\right)$
$\mathrm{R}=\left(\# \mathrm{FPGAs} * \mathrm{~T}_{\text {Total }}\right) /\left(1 \mathrm{FPGA} * \mathrm{~T}_{\text {Total }}\right.$ for 1 FPGA$)$

$\begin{gathered} \hline \text { Virtex } \\ \text { II } \\ \text { chips } \\ \text { (f) } \\ \hline \end{gathered}$	D	p	$\mathrm{d}^{(f)}$	$\mathrm{m}^{(f)}$	n	$\begin{aligned} & \mathrm{T}_{\text {route }} \\ & \text { (ns) } \end{aligned}$	$\begin{gathered} \mathbf{T}_{\text {Load }} \\ \text { (ns) } \end{gathered}$	$\begin{gathered} \mathbf{T}_{\text {Total }} \\ \text { (days) } \end{gathered}$	R
1	$\begin{aligned} & 6.7 \mathrm{x} \\ & 10^{6} \end{aligned}$	16	1	12	$\begin{gathered} \hline 8.4 \mathrm{x} \\ 10^{6} \end{gathered}$	13594	1568	596.6	1.00
10^{2}	$\begin{aligned} & 6.7 x \\ & 10^{6} \end{aligned}$	14	2	120	1105	$\begin{aligned} & 8.9 \mathrm{x} \\ & 10^{5} \end{aligned}$	$\begin{array}{r} 6.1 \mathrm{x} \\ 10^{4} \end{array}$	4.9	0.82
16^{2}	$\begin{aligned} & 6.7 \mathrm{x} \\ & 10^{6} \end{aligned}$	8	3	192	516	$\begin{aligned} & 1.3 \mathrm{x} \\ & 10^{6} \end{aligned}$	1.3×10^{5}	3.3	1.42
32^{2}	$\begin{aligned} & 6.7 \mathrm{x} \\ & 10^{6} \end{aligned}$	4	6	384	129	$\begin{aligned} & 2.5 \mathrm{x} \\ & 10^{6} \end{aligned}$	$\begin{array}{r} 4.3 \mathrm{x} \\ 10^{5} \end{array}$	1.8	3.07

Results for a 1024-bit number N

$\mathrm{K}=$ number of concurrent multiplications $=50$
$\mathrm{D}=$ number of columns in matrix $\mathrm{A}=10^{10}$ $\mathrm{m}^{(\mathrm{f})}=$ mesh dimension
$\mathrm{p}=$ number of columns handled in one cell
$d^{(f)}=$ density of sub-matrix handled by mesh
$\mathrm{n}=$ number of times to repeat sub-multiplications
$\mathrm{T}_{\text {route }}=$ time for K multiplications in the mesh
$\mathrm{T}_{\text {Load }}=$ time for loading and unloading for K multiplications
$\mathrm{T}_{\text {Total }}=$ total time for the Matrix Step $=3 \cdot(\mathrm{D} / \mathrm{K}) \cdot \mathrm{n} \cdot\left(\mathrm{T}_{\text {route }}+\mathrm{T}_{\text {Load }}\right)$
$\mathrm{R}=\left(\# \mathrm{FPGAs} * \mathrm{~T}_{\text {Total }}\right) /\left(1 \mathrm{FPGA} * \mathrm{~T}_{\text {Total }}\right.$ for 1 FPGA$)$

Virtex II chips (f)	\mathbf{D}	\mathbf{p}	$\mathbf{d}^{(\mathbf{f)}}$	$\mathbf{m}^{(\mathbf{f)}}$	\mathbf{n}	$\mathbf{T}_{\text {route }}$ (ns)	$\mathbf{T}_{\text {Load }}$ (ns)	$\mathbf{T}_{\text {Total }}$ (days)	\mathbf{R}
1	10^{10}	16	1	12	1.8 x 10^{13}	13,59 3	1,568	1.9×10^{12}	1.00
10^{2}	10^{10}	16	1	120	1.8 x 10^{9}	4.8 x 10^{5}	4.5 x 10^{4}	6.9×10^{9}	0.35
16^{2}	10^{10}	16	1	192	2.8 x 10^{8}	8.2 x 10^{5}	7.5 x 10^{4}	1.8×10^{9}	0.23
32^{2}	10^{10}	16	1	384	1.8 x 10^{7}	1.7 x 10^{6}	1.6 x 10^{5}	2.3×10^{8}	0.12

Time vs. D

Time vs. \#FPGAs

Cost*Time vs. \#FPGAs

Conclusions

Summary \& Conclusions (1)

■ First practical hardware implementation of Mesh Routing for the Number Field Sieve implemented and verified using timing simulation

- Practical numbers, based on post-placing \& routing static timing analysis, obtained for an array of Xilinx Virtex II 8000 FPGAs
- A two-dimensional array of Virtex II chips can perform computations faster than a single FPGA by a factor approximately proportional to (number of FPGAs) ${ }^{3 / 2}$

Summary \& Conclusions (2)

■ Matrix step for a 512-bit RSA key takes about 5 days on the rectangular array of 100 FPGAs

■ Assuming matrix size $\mathrm{D}=10^{10}$ matrix step for a 1024-bit RSA key appears to be prohibitive from the point of view of full (throughput) cost

Mapping designs to existing reconfigurable platforms

Generic Array of FPGAs

Existing General -
Purpose Reconfigurable
SuperComputers

What is a reconfigurable computer?

Microprocessor system

FPGA system

Example: SRC 6E System http://www.srccomp.com/

SRC MAP ${ }^{\text {TM }}$ Reconfigurable Processor

SRC Hi-Bar ${ }^{\text {tw }}$ Based Systems

- Hi-Bar sustains 1.4 GB/s per port with 180 ns latency per tier
- Up to 256 input and 256 output ports with two tiers of switch
- Common Memory (CM) has controller with DMA capability
- Controller can perform other functions such as scatterlgather
- Up to 8 GB DDR SDRAM supported per CM node

Wide Area
Network

SRC Programming

HDL
(VHDL)

HLL
(C)

$\mu \mathrm{P}$ system
 FPGA system

Library
Developer

Application
Programmer

Other reconfigurable supercomputers

- Cray XD1 (formerly Octiga Bay 12 K) from Cray Inc.
- SGI Altix 3000 from Silicon Graphics
- Star Bridge Hypercomputer from Star Bridge Systems

Advantages of reconfigurable computers

- general-purpose: cost distributed among multiple users with different needs
- behave like hardware:
- parallel processing
- distributed memory
- specialized functional units, etc.
- can be programmed by mathematicians themselves using traditional programming languages or GUI environments
- encourage innovation and experimentation

Our future goal

Polynomial Selection

Sieving

(Linear Algebra)
\checkmark

Square Root

Questions?

Backup slides

Sources of optimism

- emergence of new companies supporting reconfigurable supercomputing, including major players in the area of traditional supercomputing, such as Cray Inc. and SGI
- constant progress in the capabilities, performance, and flexibility of existing reconfigurable computing platforms
- constant progress in the compiler technology, and logic synthesis of high level programming languages.

Parameters

f = number of FPGAs in the FPGA array
$\mathrm{m}^{(1)}=$ mesh dimension for one FPGA $=12$
$\mathrm{m}^{(\mathrm{f})}=$ mesh dimension for f FPGAs $=\mathrm{m}^{(1)} \cdot \sqrt{ } \mathrm{f}$
p = number of columns of matrix handled in one cell of the mesh
$D^{(f)}=$ matrix dimension handled by f FPGAs $=\left(m^{(f)}\right)^{2} \cdot p$

$$
\begin{aligned}
& =\left(\mathrm{m}^{(1)} \cdot \sqrt{ } \mathrm{V}^{2}\right)^{2} \cdot \mathrm{p} \\
& =\mathrm{f} \cdot\left(\mathrm{~m}^{(1)}\right)^{2} \cdot \mathrm{p} \\
& =\mathrm{f} \cdot \mathrm{D}^{(1)}
\end{aligned}
$$

Parameters

D = number of columns in matrix A
$D^{(1)}=$ number of columns of sub-matrix of A handled by one FPGA in the mesh
$=\left(\mathrm{m}^{(1)}\right)^{2} \cdot \mathrm{p}$
$D^{(f)}=$ number of columns of sub-matrix of A handled by f FPGAs in the mesh
$=\left(\mathrm{m}^{(\mathrm{f})}\right)^{2} \cdot \mathrm{p}=\left(\mathrm{m}^{(1)}\right)^{2} \cdot \mathrm{f} \cdot \mathrm{p}=\mathrm{D}^{(1)} \cdot \mathrm{f}$
d = column density of matrix A
$\mathrm{d}^{(1)}=$ density of sub-matrix handled by one FPGA
$=\mathrm{d} \cdot \mathrm{D}^{(1)} / \mathrm{D}$
$\mathrm{d}^{(f)}=$ density of sub-matrix handled by f FPGAs
$=d \cdot D^{(f)} / D$

Routing Parameters

$\mathrm{T}_{\text {CLK_mult }}=$ multiplication clock period
$\mathrm{T}_{\text {CLK_IO }}=$ IO clock period
$\mathrm{x} \quad=$ bits to exchange between FPGAs / (bus size between FPGAs)

$$
\left.=2 \cdot\left(1+2 \cdot \mathrm{k}^{(\mathrm{f})}+\mathrm{k}_{\mathrm{p}}+\mathrm{K}\right) \cdot\left(\mathrm{m}^{(1)}\right)^{2}\right) / 277
$$

$\mathrm{T}_{\text {step }}=$ Total time needed for transfer of packet between cells across FPGAs
$=4 \cdot \mathrm{~T}_{\text {CLK_IO }}+(\mathrm{x}-1) \mathrm{T}_{\text {CLK_IO }}+\mathrm{T}_{\text {CLK_mult }}$
$\mathrm{h}_{\mathrm{c}} \quad=$ slowdown factor due to limited inter-FPGA IO connections $=\mathrm{T}_{\text {step }} / \mathrm{T}_{\text {CLK_mult }}$
$\mathrm{T}_{\text {routne }}=$ routing time for sub-multiplication in the mesh
$=$ \#entries per cell \cdot \#steps $\cdot \mathrm{T}_{\text {CLK_mult }} \cdot \mathrm{h}_{\mathrm{c}}$
$=\mathrm{p} \cdot \mathrm{d}^{(\mathrm{f})} \cdot 4 \cdot \mathrm{~m}^{(\mathrm{f})} \cdot \mathrm{T}_{\text {CLK_mult }} \cdot \mathrm{h}_{\mathrm{c}}$

Loading Unloading Parameters

$b^{(1)}=\#$ pins for data transfer for 1 FPGAs = \#maximum FPGA IO/ 2
$\mathrm{b}^{(f)}=$ \#pins for data transfer for f FPGAs
$=(\#$ maximum FPGA IO $/ 4) \cdot \sqrt{f}$
$\mathrm{s}_{\mathrm{IO}}=$ clock stages between two FPGA connections
$\mathrm{T}_{\text {CLK_load }}=$ loading clock period
$\mathrm{T}_{\text {load }}=$ time for loading and unloading for a sub-multiplication
$=[((\#$ matrix entries bits $)+(\#$ vector bits to load $)+$ (\#vector bits to unload))/ $\mathrm{b}^{(\mathrm{f})}+$ $\mathrm{s}_{\mathrm{IO}} \circ\left(\mathrm{m}^{(\mathrm{f})}-1\right) \mathrm{m}^{(\mathrm{f}) *}$ loading packet bits/ $\left./ \mathbf{b}^{(\mathrm{f})}\right] \cdot \mathrm{T}_{\text {CLK_load }}=$
$\left(\frac{\left(\left(1+4 \cdot \boldsymbol{k}^{(f)}+2 \cdot \boldsymbol{k}_{\boldsymbol{p}}\right) \cdot \boldsymbol{d} \cdot \boldsymbol{D}^{(f)}\right)+\left(\boldsymbol{K} \cdot \boldsymbol{D}^{f)}\right)+\boldsymbol{K} \cdot \boldsymbol{D}^{(f)} \cdot \boldsymbol{D}^{(f)} \boldsymbol{D}}{\boldsymbol{b}^{(f)}}+\mathrm{S}_{10} \cdot\left(\mathrm{~m}^{f}-1\right) \mathrm{m}^{(f)}\left(1+4 \cdot \boldsymbol{k}^{(f)}+2 \cdot \boldsymbol{k}_{\boldsymbol{p}}+\boldsymbol{K}\right) / \mathrm{b}^{(f)}\right) \cdot \mathrm{T}_{\mathrm{CLK}} \operatorname{load}$

Parameters

$$
\begin{aligned}
\mathrm{n} & =\text { number of times to repeat sub-multiplications } \\
& =\mathrm{D}^{2} /\left(\mathrm{D}^{(f)}\right)^{2}=\mathrm{D}^{2} /\left(\left(\mathrm{m}^{(f)}\right)^{2} \mathrm{p}\right)^{2}
\end{aligned}
$$

$\mathrm{T}_{\text {Total }}=$ total time for a Matrix step $=3 \cdot \mathrm{D} / \mathrm{K} \cdot \mathrm{n} \cdot\left(\mathrm{T}_{\text {route }}+\mathrm{T}_{\text {load }}\right)$

$$
\begin{aligned}
\mathrm{d}^{(\mathrm{f})} \cdot \mathrm{p}= & \left\lceil\mathrm{d} \cdot \mathrm{p} \cdot \mathrm{f} \cdot\left(\mathrm{~m}^{(1)}\right)^{2} / \mathrm{D}\right\rceil \cdot \mathrm{p} \\
& \leq \text { threshold area on FPGA }
\end{aligned}
$$

total of $\mathrm{d}^{(\mathrm{f})} \cdot \mathrm{p}$
entries

Total time of routing

- Total routing takes maximum d•4•m• compare-exchange operations,
where
d - matrix density $=$ maximum number of non-zero entries per column
$m-$ mesh size $=\sqrt{D}$, where D is the matrix size

