An Efficient Hardware Architecture for Factoring Integers with the Elliptic Curve Method

Jens Franke, Thorsten Kleinjung - University of Bonn Christof Paar, Jan Pelzl - University of Bochum Christine Priplata, Colin Stahlke - EDIZONE GmbH, Bonn Martin Šimka – University of Košice

Outline

- 1. Motivation and Introduction
- 2. The Elliptic Curve Method
- 3. A Hardware Architecture for ECM
- 4. Results
- 5. Conclusions

Why factor numbers?

• Security of RSA relies on difficulty to factor large composites

 $n = p \cdot q$, known *n*, what is *p* and *q*?

(in practice: $n \sim 1024$ bit)

- Holy grail in cryptanalysis:
 - "Find efficient method for factoring (large) integers."

Running time of certain factorization methods:

Method	Running time	
Lehman's algorithm	<i>O</i> (<i>N</i> ^{1/3})	
Multiple Polynomial Quadratic Sieve (MPQS)	$O(e^{((1+o(1))\ln N \ln \ln N)^{1/2}})$	Running
Continued Fraction (CF)	$O(e^{(c\ln N \ln \ln N)^{1/2}})$	depending on N
Number Field Sieve	$O(e^{c(\ln N)^{1/3}(\ln \ln N)^{2/3}})$	
Trial Division	$O(f \cdot (\log N)^2)$	Running
Pollard's rho	$O(f^{1/2}(\log N)^2)$	time depending
Elliptic Curve Method (ECM)	$O(e^{((2+o(1))\ln f \ln \ln f)^{1/2}}(\log N)^2)$	$\int on f$

(N: composite, f: nontrivial factor)

Different algorithms for different purposes, e.g.,

- Best known method for factoring large integers: GNFS (WR in factoring random RSA modulus: 576 bit)
- Methods suited for factoring numbers of 100-200 bit, e.g.,
 - MPQS
 - ECM (small factors)
 - Trial division (very, very small factors)

Observation for, e.g., GNFS:

• Smoothness tests of "medium sized" integers required

Objective:

- Design special purpose hardware for smoothness tests
- Parameters (SHARK):
 - Factor numbers up to 200 bit with factors up to 40 bit
 - Target low area-time (AT) complexity
 - Technical feasability preferable

\Rightarrow Elliptic Curve Method (ECM)

Why ECM?

- Factor integers with relatively small factors (up to 40 bit)
- Almost ideal for hardware implementation:
 - Allows for low I/O
 - Requires little memory
 - Easy to parallelize
 - Closely related to Elliptic Curve Cryptography (ECC)

- Algorithm proposed by [H.W. Lenstra 1985]
- Principle based on Pollard's (*p*-1)-method:
 - given an elliptic curve E defined over $\mathbb{Z}/N\mathbb{Z}$ and a point $P \in E(\mathbb{Z}/N\mathbb{Z})$
 - compute point multiple $k \cdot P$ and "hope" that

 $k \cdot \mathbf{P} = \mathcal{O} \in \mathbf{E}(\mathbb{Z}/p\mathbb{Z})$ and $k \cdot \mathbf{P} \neq \mathcal{O} \in \mathbf{E}(\mathbb{Z}/N\mathbb{Z})$

(e.g., with E:
$$y^2z=x^3+axz^2+bz^3$$
 and $Q=k \cdot P=(x_Q,y_Q,z_Q)$,
 $z_Q = 0 \mod p$ and $z_Q \neq 0 \mod N$,
hence, $gcd(z_Q,N)=p$)

9 ECM Hardware Architecture

- Advantage over Pollard's (*p*-1)-method:
 - If no factor found, simply choose another curve
 - Easy to parallelize

Elliptic curves and point arithmetic:

• Use curves in Montgomery form:

 $By^2z = x^3 + Ax^2z + xz^2$

- Point addition of P+Q involves P, Q and P-Q: $x_{P+Q} = z_{P-Q} [(x_P - z_P)(x_Q + z_Q) + (x_P + z_P)(x_Q - z_Q)]^2$ $z_{P+Q} = x_{P-Q} [(x_P - z_P)(x_Q + z_Q) - (x_P + z_P)(x_Q - z_Q)]^2$
- Point duplication of P involves P, curve parameter A:

$$4x_{p}z_{p} = (x_{p}+z_{p})^{2} - (x_{p}-z_{p})^{2}$$

$$x_{2P} = (x_{p}+z_{p})^{2}(x_{p}-z_{p})^{2}$$

$$y_{2P} = 4x_{p}z_{p}[(x_{p}-z_{p})^{2} + 4x_{p}z_{p}(A+2)/4$$

11 ECM Hardware Architecture

ECM Phase 1:

Compute $Q=k \cdot P$ with $k = \prod_{p \in \mathbb{P}, p \leq B_1} p^{e_p}$ and $e_p = [\log B_1 / \log p]$

Use Montgomery ladder for point multiplication:
 Given the triple (P,nP,(n+1)P), we either compute

(P, 2nP, (2n+1)P) or (P,(2n+1)P,2(n+1)P)

by one addition and duplication in Montgomery form.

- In the case of $z_P=1$, $10[log_2k]$ multiplications are required

ECM Phase 2:

Compute $p_i \cdot Q \forall B_1 \le p_i \le B_2$ and check if $gcd(z_{pQ},N) > 1$

Efficient method for phase 2:

- Precompute small table T of multiples $k \cdot Q$
- Express all primes as $p_i = mD \pm k$ with $k \in T$ (could compute $p_i \cdot Q = mD \cdot Q \pm k \cdot Q$)
- Fact: $gcd(z_{pQ}, N) > 1$ iff $gcd(x_{mDQ}z_{kQ} x_{kQ}z_{mDQ}, N) > 1$ (hence, only sequence of mDQ has to be computed)
- Compute product $\prod (x_{mDQ}z_{kQ} x_{kQ}z_{mDQ})$ for all primes and perform a final gcd with N

Choice of "good" parameters:

- Set of parameters deduced by software experiments: $B_1 = 960, B_2 = 57\ 000, D = 30$
- Probability of success ~ 80% with 20 distinct curves per *N*
- Time complexity of ECM phases:
 - Phase 1: ~ 13740 modular multiplications/ squarings
 - Phase 2: ~ 24926 modular multiplications/ squarings
- Memory complexity: 21 registers of size of *N* per ECM unit

SHARCS Workshop, Paris, 24.2.2005

Design objectives:

- Low area-time (AT) product
- Low communication overhead
- Parallelizable architecture
- Easy to adopt to other bitlengths

17 ECM Hardware Architecture

SHARCS Workshop, Paris, 24.2.2005

Specification of a single ECM unit:

- One ECM unit handles one curve (initialized in the beginning)
- Control of both phases by (external) central logic (control sequence is identical for every unit)
- Each unit has ist own memory
- Units implement arithmetic in \mathbb{Z}_N
 - addition + subtraction: Standard carry ripple adder (wordwise)
 - multiplication and squaring: efficient multiplier with pipelining-structure [Koç et al.]

19 ECM Hardware Architecture

SHARCS Workshop, Paris, 24.2.2005

4. Results

Hardware platform: System-on-Chip (SoC), 25 MHz

20 ECM Hardware Architecture

SHARCS Workshop, Paris, 24.2.2005

4. Results

Area-time specification of running implementation (no estimates!):

330µs

- Maximum frequency: 38.132 MHz
- Device utilization (FPGA):
 - 1122 CLBs (5.8%)
 - 44 Block RAMs (27%)
- Running times (25MHz):
 - Point addition (phase 1) 333µs
 - Point addition (phase 2) 397µs
 - Point duplication
 - Phase1 912ms
 - Phase2 1879ms

5. Conclusion & Outlook

- Area-time efficient hardware architecture for ECM
- Running FPGA implementation as proof of concept
- Realistic (and realizable) circuit for supporting, e.g., the GNFS (ASIC estimates see paper)

5. Conclusions & Outlook

Future work:

- Optimize control logic
- Improvements of basic Montgomery ladder
- Analyze parallel ECM in hardware
- Use CPU core in VHDL instead of embedded ARM μ P
- ASIC simulation of ECM

5. Conclusions & Outlook

Thanks!