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In the late 1950s and early 1960s Paul Erdős and Alfred Rényi wrote a series of papers in which they founded the theory

of random graphs. They studied the space of random graphs with n distinguishable vertices and m = m(n) edges; in

particular, they identified thresholds for m(n) that make various properties likely, and used random graphs to prove the

existence of graphs with paradoxical properties. All these results carry over to the space G(n, p) of graphs with n labelled

vertices in which the edges are chosen independently, with probability p = p(n); for m(n) = p(n)(n
2 ) the two models are

practically indistinguishable.

These ‘classical’ models are ‘homogeneous’ in the sense that the degrees (for example) tend to be concentrated around

a typical value. Many graphs arising in the real world do not have this property, having, for example, power-law degree

distributions. In recent years there has been much interest in defining and studying ‘inhomogeneous’ random graph

models.

One of the most studied properties of these new models is their ‘robustness’, or, equivalently, the ‘phase transition’

as an edge density parameter is varied. These questions originate in the fundamental result Erdős and Rényi proved in

1961 that for p = c/n the graph G(n, p) undergoes a phase transition at c = 1.

Many of the new inhomogenous models are rather complicated; although there are exceptions, in most cases precise

questions such as determining exactly the critical point of the phase transition are approachable only when there is

independence between the edges. Fortunately, some models studied have this already, and others can be approximated

by models with independence.

Very recently, Svante Janson, Oliver Riordan and I introduced a very general model of an inhomogenous random

graph with independence between the edges, which scales so that the number of edges is linear in the number of vertices.
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This scaling corresponds to the p = c/n scaling for G(n, p) used to study the phase transition; also, it seems to be a

property of many large real-world graphs. Our model includes as special cases many models previously studied.

In the talk I shall present some of our results concerning this general model, with emphasis on the phase transition.
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