
A systolic architecture for
supporting Wiedemann's algorithm

Rainer Steinwandt1

(joint work with Willi Geiselmann1,
Adi Shamir2 and Eran Tromer2)

1 Universität Karlsruhe, Germany
2 Weizmann Institute of Science, Israel

NFS & (block) Wiedemann
NFS: relation collection + linear algebra (LA) step

dominating for total running time

(Block) Wiedemann for GF(2):
reduces LA step to iterated matrix-by-vector multiplications

Av, A 2v, A3v, ..., Akv
with sparse (... but potentially large) matrix A

... doing this fast could be nice for GF(p), too (→[Frey04])

1024 bit: A ∈ GF(2)1010×1010

LA hardware: basic approach
Currently most promising hardware devices for LA step:

offer methods for efficiently computing the vector chains
Av, A 2v, A 3v, ..., Akv using a 2-D mesh architecture:

2-D sorting (→[Bernstein '01])
2-D routing (→[Lenstra et al. '02])

impose another 2-D splitting for doing with small chips
(→[Geiselmann, S. '03])

... not utopian, but not as simple & efficient as desirable

..., cheap..., cheap

Multiplying with v ∈GF(p)n

CPU #2: entries of row #2
CPU #3: entries of row #3

CPU #n−1: entries in row #n−1

...

CPU #1: entries of row #1

CPU #n: entries in row #n

...
v1

v2

vn−1

vn

...

(multiply &) add when needed

Collecting rows in stations

station #u: entries of
rows #n−s u+1 ... #n

...

station #1: entries of
rows #1 ... #s1

...
v1

v2

vn−1

vn

...

Matrices to be processed are highly sparse
collect several rows into a single station

Additional parallelization
Needed arithmetics is not space-consuming

process k>1 vector components in parallel

station #u: entries of
rows #n−su+1 ... #n

... v1...vk

vk+1...v2k

vn−k+1...vn

...

station #1: entries of
rows #1 ... #s1

...

... using intra-station buses
Handling k vector components in parallel in each station:

Circular buses for intra-station transport of v-entries.

...

CP
U

#
k

CP
U

 #
1

CP
U

 #
2

Each CPU:
• si /k matrix rows
• GF(p)-multiplier

(& -adder)

Multiplying with A again
Actually needed: A⋅v, A ⋅Av, A ⋅A 2v, ...

result of multiplication must go back into vector pipeline
rearrange stations:

... have each station scan v in a different cyclic order

v

Doing another multiplication
GF(p)-addition commutative

1 complete cycle yields A⋅v
v

Device is immmediately prepared for next multiplication.

stations switch to 2nd

mem. bank holding A⋅v

Critical parameters
I/O Bandwith, number of pins:

limits the speed at which v can be fed into the stations &
therewith overall LA time

Memory:
representing the non-zero entries of A &
storing the vector(s) v requires large amount of (D)RAM

Clock rate:
simple logic allowing high clocking rate vs.
(slow) space-optimized memory

Techn(olog)ical limitations
#pins limited through chip size (>212 pins means large chips)
logic for systolic design simpler than for mesh-based designs

increasing clocking rate to 1 GHz seems doable

vector v : dense, 2×(D)RAM for m (=1010) GF(p)-entries
matrix A: GF(p)-entry, row coord. within CPU, auxiliary flags

no need for random access, DRAM sufficient

What about the memory?

Matrix handling

...

"External table" for reading v-entries:
#wait cycles "read it" flag bus no. to write on

"Internal table" for storing the matrix:
#wait cycles "read it" flag bus no. to read from
GF(p)×-entry row coord. "delete it" flag

Distributing the matrix
As with mesh based designs, we can split A into submatrices
(→[Geiselmann, S. '03]):

A1,1 A1,2 ... A1,r

A2,1 A2,2 ... A2,r

Ar,1 Ar,2 ... Ar,r

…

v =

v1,1

v1,s

vs,1

vr,r

A= ... =… … A ⋅v=

Σ A1,j ⋅v1,j

Σ Ar,j ⋅vr,j

…

store submatrix
coordinates only

, ,

Block matrix multiplication
assign a multiplication circuit to each submatrix Ai,j

distribute/load appropriate v-parts into each circuit

compute all Ai,j ⋅ vi,j –values

output all subproducts & add them in a pipeline

result must be split &
loaded into the device

Limiting factor for run time: I/O bandwidth/#pins

Systolic parallelization
Increased blocking factor without repeatedly storing A:

D
RA

M
 s

to
rin

g
A

de
vi

ce
#

1

de
vi

ce
#

2

de
vi

ce
#

r

...

v1 v2 vr

... combining it all
splitting of A into submatrices can be combined

with systolic parallelization

short vectors + small matrices + simple logic

small interconnected chips

... may be fast, but not that trivial to implement

2D-systolic looks preferable

Systolic vs. mesh based design
Features of (pure) systolic approach:

simple logic
use of small chip sizes seems doable

integration of error handling looks doable

no need for heuristic complexity bounds

simulation in software is possible

... how fast can we go?
using similar chip area as currently fastest mesh-based
proposals (→[Geiselmann et al. '05]), a significant
speed-up, say factor 2, seems realistic

various possibilites for optimization: area × time, cost, ...

Simpler and more efficient than existing proposals:
LA step for 1024 bit looks (even more) doable.

Conclusion

systolic design looks preferable to mesh-based approach:
seems to be simpler, faster and require smaller chips

topic of "optimal" parameter choice (purely systolic,
matrix splitting, ...) not fully explored yet

... coping with LA step for 1024 bit is not utopian

	A systolic architecture for supporting Wiedemann's algorithm
	NFS & (block) Wiedemann
	LA hardware: basic approach
	Multiplying with v GF(p)n
	Collecting rows in stations
	Additional parallelization
	... using intra-station buses
	Multiplying with A again
	Doing another multiplication
	Critical parameters
	Techn(olog)ical limitations
	Matrix handling
	Distributing the matrix
	Block matrix multiplication
	Systolic parallelization
	... combining it all
	Systolic vs. mesh based design
	... how fast can we go?
	Conclusion

