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Abstract 
 

Factorization of large numbers has been a 
constant source of interest in cryptanalysis. The 
fastest known algorithm for factoring large numbers 
is the Number Field Sieve (NFS). The two most time 
consuming phases of NFS are Sieving and Matrix 
Step. In this paper, we propose an efficient way of 
implementing the Matrix step in reconfigurable 
hardware. Our solution is based on the Mesh-
Routing method proposed by Lenstra et al. We 
determine the practical size of a partial mesh that 
can fit in one FPGA device, Xilinx Virtex II 
XC2V8000. We further extrapolate the computation 
time for the case of a square systolic array of 
FPGAs for 512-bit and 1024-bit numbers' 
factorization. We demonstrate that for practical 
sizes of numbers used in cryptography, 1024 bits,  
the Matrix Step of factorization can be performed 
using 1024 Virtex II FPGAs in about 27 days. 
 

1. Introduction 

Factoring a large integer into its prime factors is 
one of the challenging tasks in cryptanalysis both in 
terms of computational complexity and 
implementation. The Number Field Sieve (NFS) 
introduced by Pollard J M in 1988, is the 
asymptotically fastest known algorithm for the 
factorization of large numbers. 

The NFS algorithm consists of the following 
four steps: 

1. Polynomial Selection 
2. Sieving 
3. Matrix Step 
4. Square Root step 

 

The two most time consuming steps of the NFS 
algorithm are the Sieving and the Matrix Step. This 
paper focuses on the Matrix Step. This step is used 
to identify a linear dependence between the entries 
in the sparse matrix obtained as a result of the 
Sieving Step. For the Matrix Step, two hardware 
architectures have been proposed in the literature: 
Mesh Sorting architecture by Bernstein [8] and 
Mesh Routing architecture by Lenstra et al [2]. 
Geiselmann and Steinwandt proposed a distributed 
variant of both aforementioned methods to be 
implemented using an array of ASIC chips [12].  
We propose an implementation of the Mesh Routing 
architecture in reconfigurable hardware. 

We believe that for a computationally intensive 
problem, such as factoring, reconfigurable hardware 
offers inherently better performance, scalability, and 
the price-to-performance ratio than conventional 
computers based on microprocessors. At the same 
time, FPGAs are much more flexible, easy to 
program and experiment with, and reusable 
compared to specialized hardware based on ASICs. 
Particularly in the field of factorization, 
reconfiguration is needed since the best factorization 
algorithms involve computationally intensive 
sequentially executed steps, such as Sieving and 
Matrix Step. In reconfigurable hardware, these steps 
can be executed using the same hardware, without 
any additional cost. Additionally, when the new 
better algorithms for factorization are developed, 
hardware architecture can be upgraded and 
reconfigurable devices re-utilized. It can also be 
expected that once a certain number is factored, the 
next higher number would be targeted, and in such a 
scenario it would be easy to adapt the reconfigurable 
hardware to factor a new larger number. 

 In this paper, we use the space-sharing time-
multiplexing approach by which we are able to 
reutilize the FPGA devices in subsequent stages of 
the computations. This overcomes the problem of 

 

   
   
    



the need for a large number of FPGA devices, and 
the need for a large budget. In order to evaluate 
trade-offs between cost and performance, we report 
all performance measures for a varying number of 
FPGA devices. Our paper presents the first concrete 
performance and resource measurements regarding 
the reconfigurable hardware architecture for the 
NFS Mesh Routing, as the reports to date were only 
theoretical in nature.  

2. Mesh Routing Algorithm 

The matrix step concerns with finding linear 
dependencies in the matrix A obtained from the 
Sieving Step. The linear dependencies are found 
using Block Wiedemann algorithm [7] [10] [9] by 
doing multiple matrix-by-vector multiplications of 
the form: 

      A⋅vi, A2⋅vi,   ….      ,  Ak⋅vi                       (1) 
where vi is one of the random vectors (1 ≤ i ≤ k) and 
k ≈ 2D/K. D is the number of columns of matrix A, 
K is the blocking factor where either K=1 or K ≥ 32 
(and K different vectors vi are handled 
simultaneously). Another random vectors ui are 
selected and the sequences 

     ui ⋅ vi ,  ui A vi,  ……. ui Ak⋅ vi                   (2) 
(1 ≤ i ≤ K) are used to find the linear dependent 
vectors in the Block Wiedemann algorithm [9]. 

Each matrix-by-vector multiplication is done 
using the Mesh Routing circuit. Referring to Fig. 1, 
multiplication can be performed very efficiently by 
considering only the non-zero entries in the columns 
of the sparse matrix. 

Each such column entry of the sparse matrix 
can be viewed as a packet which needs to be routed 
to its destination. The accumulation of the results 
with the same positions will then provide the result 
to the matrix multiplication. Thus, a mesh of cells is 
created and these packets are routed in it to their 
destination cells.   
 
 
 
 
 
 
 
 
   
 
 
 

Figure 1.   Matrix-vector 
multiplication operation through 
routing. 
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Figure 2. Mesh corresponding to the 
sparse matrix A. 
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Figure 3. Routing of the packets to the 
cell in the mesh. 
 

Lenstra et al proposed two versions of the 
routing based circuit, a simpler version and an 
improved routing version. The improved version is 
what we have implemented in hardware. 

It is assumed that each of the D columns of the 
D*D sparse matrix A, has a weight/density of h of 
ones.  The row and the column positions of the 
‘ones’ in the columns are denoted by ‘r’ and ‘c’. 
The vectors are of length D. The mesh has an equal 
number m of columns and rows, m.  Sj denotes the 
j-th cell in the row major order, j ∈{1,2,…, 
(m*m)}. Each cell Sj is the target destination of the 
packet whose destination row and column indices 
match with the cell’s row and column position.  As 
shown in Fig. 3, all the packets to be routed to the 
fifth cell are routed to it. 
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The clockwise transposition algorithm is used 
for routing the individual packets to their 
destinations. This algorithm repeats four steps till all 
the packets are routed to their destination cells. In 
each step of this algorithm the compare and 
exchange operation is done between two 
neighboring row or column cells. The destinations 
of the packets in the cells are compared and packets 
are exchanged only if the exchange leads to the 
shortening of the distance of the farthest traveling 
packet. This compare and exchange operation is 
done till all the packets are routed to their 
destinations. 

   
   
    



3. Implementation 

3.1.  Loading and Unloading 

The row and column indices stored in a packet, 
correspond  to the matrix entries which have non-
zero values. Along with this routing address the 
loading address is also generated.  These packets are  
loaded from the memory to the mesh as shown in 
Fig. 4. The loading of the vectors is done similarly, 
entering the mesh through the leftmost cells, and 
shifting from one cell to another.  
 

 
Figure 4. Loading and Unloading. 

 
The result of the matrix-by-vector 

multiplication is a vector produced after completing 
Mesh Routing. After the computation is finished, 
and the result vector stored in each cell, the result 
vector is unloaded from the rightmost cells. 

3.2.  Mesh Routing Operation 

The matrix-by-vector multiplication operation 
is done by routing each packet, together with the 
corresponding vector bits, to the destination cells 
determined by the r and c address of the packet.  
Whenever a packet reaches its destination, the 
vector bits in the packet are xored with the partial 
result stored in the destination cell.  

The maximum number of non-zero entries in 
each column of the original matrix A determines the 
maximum number of packets each cell is holding at 
the beginning. This determines the number of 
iterations for which the routing operation has to be 
repeated.  
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Figure 5. Four iterations of Compare-
Exchange. 
 
Clockwise transposition routing repeats four 

phases of compare-exchange operations.   As shown 
in Fig. 5, in the first phase, the odd row does the 
compare-exchange operation with the top even row. 
In the second phase, the odd column does compare-
exchange with the right even column.  In the third 
phase, the odd row does compare-exchange with the 
bottom even row. In the fourth phase, the odd 
column does compare exchange with the left even 
column.   

It can be observed that the first cell does 
comparisons in the clockwise order. The second cell 
does compare-exchange in the anticlockwise 
fashion. These clockwise and anticlockwise 
compare and exchange operations are as shown in 
Fig. 6.    

        

 
                

Figure  6.  Compare- exchange 
direction  for each cell. 
 

In each compare-exchange the two neighbors 
send their packet to the each other and each cell 
independently compares the incoming packet with 
its packet and decides on whether to exchange by 
replacing its packet with the incoming packet or not 
to exchange by discarding the incoming packet.  
After reaching its destination, a packet becomes 
invalid. An analysis reveals that there are four cases 
of compare-exchanges, as follows: 
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Figure  7. Compare-exchange cases. 
 

a) Both packets are valid (Fig.7a). Thus, each cell 
may need to exchange the packets.  Each cell 
decides independently by comparing the incoming 
packet’s destination cell with the current packet’s 
destination cell. 
b) Current packet in the cell is invalid but the 
incoming new packet is valid (Fig. 7b). The cell 
may need to keep the new packet if it is traveling in 
the right direction.   
c) Current packet in the cell is valid and the 
incoming new packet is invalid (Fig. 7c). The cell 
may need to destroy (annihilate) its packet if the 
other neighbor keeps its packet. 
d) Current packet in the cell is invalid and the 
incoming new packet is also invalid (Fig 7d). In this 
case, nothing needs to be done. 
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Figure 8. Comparator Unit. 
 

The Comparator Unit is implemented in each cell 
as shown in Fig. 8. The Comparator takes in three 
values, the current packet, the new packet, and the 
cell’s coordinates. Based on the phase of iteration, 
either row or column values have to be compared.   
Then the status of the current packet (s1) and the 
new incoming packet (s2) are used to evaluate 
between which of the four cases to decide the 
comparison upon.  

Even though each cell is doing independent 
comparisons, the same logic of compare-exchange 
in each cell ensures that both cells’ decisions match 

with each other. So if for both valid packets, if one 
cell exchanges, the other one also exchanges or 
none of them exchange.   

The circuit for each cell is shown in Fig. 9.  The 
comparator resides in each cell and does comparison 
operation as described previously.  The comparison 
operation is dynamic as the cell compares in 
clockwise or anticlockwise direction and its role of 
being preceding or following neighbor changes per 
a phase of clock.  The oper control signal signifies 
whether to decide on less than comparison or greater 
than comparison.  

Each cell is connected to its four neighbors. So 
each cell gets input from its four neighbors and 
sends its current packet value to its four neighbors. 
The P[i] registers, being a part of the Loading Unit, 
store input vector bits. The design is scalable to 
handle any number of vector bits with a 
corresponding change in the area.  The R[i] is the 
local memory (implemented using LUT-RAM) used 
for the storage of packets in each cell. Each cell 
keeps the packets corresponding to the non-zero 
entries of one column in the original matrix A. The 
decode unit decodes if the address of loading 
matches the cell’s address and enables the write 
operation to the memory.   

The cell stores its coordinates in r, c format. 
The P’[i] registers, in the Result Calculation Unit, 
store the intermediate result vector bits after each 
routing. When a packet reaches the destination, the 
new vector bits are xored with the intermediate 
result bits stored in P’[i]. The Check_Dest unit 
checks if the packet has reached its destination by 
comparing the cell’s coordinates with the new 
packet’s coordinates or its current packet 
coordinates.  

The Comparator Unit generates three control 
signals. The annihilate signal flips the status bit of 
the packet if annihilation needs to be done.  The 
exchange signal enables loading to the register for 
the current packet register, CR.  The eq_packet 
control signal is utilized when the current packet 
and the new packet have the same destination to 
reduce congestion. 

Each cell has status bits which are constants set 
during synthesis based on the cell’s coordinates. 
Some status bits signify odd or even row or column, 
and others signify whether the cell is at the end of 
mesh. Also, there are status bits to signify whether 
the comparison starts from top or bottom and 
direction of compare-exchange for each cell 
(clockwise/anticlockwise).  The action performed by 
each cell depends on these status values of the cell 
and the particular phase of iteration. So, the 
determination of which neighbor to compare, and to 
compare using lesser than or greater than relation 
are  
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Figure 9. Detailed architecture of the Basic Cell. 

   
   
    



determined by these status bits and the phase of 
iteration. Additionally, there are external control 
signals distributed to each cell to command on 
certain operation of loading, computing and 
unloading. 
 In the Improved Mesh Routing Design, each 
cell handles multiple columns of the original matrix. 
The general schematic of the basic cell, depicted in 
Fig. 9a remains the same, however the block 
diagrams of the component units become more 
complicated. The impact of this change on the 
circuit area is reduced by moving storage from 
registers (based on flip-flops) to LUT (look-up-
table) RAMs available in Virtex FPGAs. 
 
3.3 Sub-Matrix Computation 
 

Since the particular hardware device of fixed 
size cannot perform the huge matrix-by-vector 
multiplication, the computation has to be divided 
into sub-computations composed of multiplications 
of smaller sub-matrices with parts of the input 
vector, as proposed in [12].  This way, the same 
device can be utilized to do sub-computations one 
after another, with the number of repetitions 
dependent on how many devices are available and 
affordable.  The rectangular matrix A from the 
sieving step is assumed to have been preprocessed 
to have a uniform distribution of non-zero entries in 
each column.  The matrix A is split into s*s sub 
matrices Ai,j of the same size as shown below. 
 

A 1,1v1 + A1,2v2    + A1,3v3

A 2,1v1 + A2,2v2    + A2,3v3

A 3,1v1 + A3,2v2    + A3,3v3

A 1,1       A 1,2    A 1,3

A 2,1       A 2,2    A 2,3

A 3,1       A 3,2    A 3,3

v1

v2

v3

=

A 1,1v1 + A1,2v2    + A1,3v3

A 2,1v1 + A2,2v2    + A2,3v3

A 3,1v1 + A3,2v2    + A3,3v3

A 1,1       A 1,2    A 1,3

A 2,1       A 2,2    A 2,3

A 3,1       A 3,2    A 3,3

v1

v2

v3

=

A 1,1       A 1,2    A 1,3

A 2,1       A 2,2    A 2,3

A 3,1       A 3,2    A 3,3

v1

v2

v3

=

 
 

Similarly, the vector  vj is also subdivided into r 
sub-vectors. Then, the final result A*v can be 
obtained as shown in equation (3). 
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           (3) 
 

If only a certain number of FPGAs are 
available, we need to load the contents of sub-
matrices Ai,j of the mesh into the chip together with 
sub-vectors vj.  Maximum number of I/O pins 
available in the chip is used to load the inputs and 
unload the outputs for faster processing time. After 
the computation is over the results are unloaded.  

4.  Methodology and testing 

The design is developed in VHDL code and the 
testing code is written in C in order to generate test 
vectors. The design is verified using Aldec Active 
HDL simulation environment. The synthesis of the 
circuit is done using Synplicity Synplify Pro, and 
mapping, placing, and routing using Xilinx ISE. The 
target FPGA device is Virtex II XC2V8000. 

5.   Results 

Based on the analysis of multiple sets of design 
parameters, the following values of parameters have 
been found optimum from the point of view of 
minimizing the total execution time, using a fixed 
amount of computational resources available in the 
Virtex II XC2V8000 FPGA device: 

• Mesh size, m x m = 12 x 12 cells 
• Number of vectors vi multiplied 

simultaneously by the same matrix A, 
K=50 

• Number of matrix columns handled by one 
mesh cell, p=16. 

With these parameters, 93% of the CLB resources of 
the FPGA device have been utilized. Our design can 
be used for a multiplication of a 2304 x 2304 sparse 
matrix, by 50 different 2304 x 1 vectors (please note 
that 2304 = m·m·p = 12·12·16). 

The density in each column of the matrix A 
(which is obtained after the sieving step for a 512-
bit factorization) is about 63 when the matrix has 
D=6.7 x 10 6 columns [2]. This matrix is 
preprocessed to have uniform distribution of non-
zero entries. The matrix is divided into sub-matrices 
of the size 2304 x 2304. The maximum density per 
column for each sub-matrix thus turns out to be 1, as 
63 ones are uniformly distributed among a very 
large number of sub-matrices (D/2304).  Hence, d 
(density of the input submatrix) is assumed to be 
equal to 1.  

The resource usage and results of timing 
analysis after synthesis, placing, and routing, are 
shown in Table 1 for different values of parameter 
K. Since for K>1, multiple matrix-by-vector 
multiplications are performed in parallel, larger 
values of K correspond to a shorter time per single 
matrix-by-vector multiplication. K=50 is the largest 
value of K for which the circuit still fits in the 
Virtex II XC2V8000 FPGA. 

Using distributed approach proposed by 
Geiselmann and Steinwandt [12], the larger matrix-
by-vector multiplication can be broken down into a 
sequence of smaller matrix-by-vector 
multiplications, and the partial results can be 
combined together to get the final result. 

 
 

   
   
    



Table 1.  Results for the Improved 
Mesh Routing Design in Virtex II 8000 

FPGA. 

 
In practice, only limited amount of FPGA 

devices is typically available for the implementation 
of the entire operation. Below, we estimate the total 
execution time of the Matrix Step under the 
assumption that the number of available Virtex II 
8000 FPGAs is equal to 1, 102, 162, and 322, 
respectively. We assume that all FPGAs are 
connected into a generic rectangular array. 

We also assume that the matrix-by-vector 
multiplications dominate the total execution time of 
the Matrix Step, and the remaining operations of the 
block Wiedemann algorithm can be performed in 
either software or hardware in a much shorter 
amount of time.  

We consider two cases corresponding to the 
size of a factored number equal to 512 bits and 1024 
bits respectively. 

For the case of factoring a 512-bit number, 
Table 2 shows the results of our estimations, based 
on practical implementation results obtained for a 
single Virtex II 8000 FPGA. D is the number of 
columns in the matrix obtained after the sieving 
step.  The mesh dimension is m x m. n is the number 
of sub-matrix by sub-vector multiplications 
necessary to perform the entire operation, as 
described in [12]. 

The matrix A from the sieving step has the size 
of D x D, where D=6.7 x 10 6. The mesh of the size 
m x m can handle the sub-matrix of the size p⋅m2 x 
p⋅m2, where p=16. Thus, the total number of sub-
matrix computations required to perform a single 
matrix-by-vector multiplication is equal to n = D2/ 
(p⋅m2)2.  The matrix step needs about 3D/K 
multiplications for the block Wiedemann algorithm 
[2].   Thus, the total time  

Table 2. Time estimates for the Matrix 
Step of  factoring of a 512-bit number 

with one Virtex II chip and multiple Virtex 
II chips in Improved Mesh Routing. 

Matrix 
Size 

 
K  
 

CLB LUT FF Period 
(ns) 

Time 
for 

K mult
(ns) 

Time 
for 1 
mult
(ns) 

2304 x 
2304 

(Mesh 
12x12, 
p=16 ) 

 

1 6,738 
(14%) 

10,438 
(11%) 

6,279 
(7%) 14.5 11,136 11136

2304 x 
2304 

(Mesh 
12x12, 
p=16 ) 

 

32 29,938 
(64%) 

50,983 
(54%) 

19,651 
(21%) 16.7 12,826 401 

2304 x 
2304 

(Mesh 
12x12, 
p=16 ) 

 

50 43,402 
(93%) 

74,030 
(89%) 

27,406 
(29%) 17.7 13,593 271 

K= number of concurrent multiplications=50 
p=number of columns handled in one cell=16 
D = number of columns in matrix A 
m = mesh dimension  
n = number of times to repeat sub-multiplications  
TK = time for K multiplications in the mesh 
TLoad  = time for loading and unloading for K 
multiplications  
TTotal  = total time for the Matrix Step =  3·(D/K)· n · ( 
TK +  TLoad) 
 

Virtex 
II 

chips 
D m n TK

(ns) 
TLoad

(ns) 
TTotal

(days) 

1 
6.7
x 

106
12 8.4 x 

106 13593 1568 593 

102
6.7
x 

106
120 846 8 x 

105
2.1 x 
105 4 

162
6.7
x 

106
192 129 1.3 

x106
3.8 

x105 0.96 

322
6.7
x 

106
384 8 2.6 

x106 9 x105 0.13 

 
 
for the matrix step is equal to (3D/K) * n * Time for 
one mesh computation & loading-unloading time. 

For comparison, the results reported in [1] for 
the factorization of a 512 bit number, are 224 CPU 
hours (9.3 days) of a Cray C916, using the block 
Lanczos algorithm to achieve the same goal of 
finding linear dependencies. As shown in Table 2, 
the same task can be accomplished using only 322 = 
1024 FPGA devices in 0.13 days = 3.2 hours, which 
corresponds to the speed-up by a factor of 70. 

For doing sub-computations, the contents of the 
submatrix have to be loaded to the FPGAs together 
with the sub-vectors. The loading and unloading 
scheme described in Section 3.1 is used to calculate 
the loading and unloading time. We also take into 
account the maximum possible number of 
input/output pins that can be utilized in the Virtex II 
FPGAs.  

The partial result vectors are unloaded 
infrequently, since the accumulation of intermediate 
results involves only an xor operation and in 
majority of cases can be done inside of the circuit. 
All loading and unloading operations are taken into 
account for the calculation of the total time.  The 
loading circuit is assumed to be clocked at 200 
MHz.  

Let k be the number of bits used for 
representing row and column coordinates of the 
packet. The status of each cell can be represented 
using one bit. Let b be the number of available I/O 

   
   
    



pins. Each packet is of the size (1+2*k) bits. Since 
there are a total of d non-zero entries in the column 
of sub-matrix and each cell stores d⋅p non-zero 
packets, there are a total of m2·d·p packets that need 
to be loaded and K vectors of the size p⋅m2. Thus, it 
takes (1+2*k+K) * p⋅m2 * d  / b clock cycles to load 
all packets and vector bits. 

The execution time estimates for factoring 1024 
bit numbers using different number of Virtex II 
FPGAs are shown in Table 3. The most significant 
result is that the Matrix Step for a 1024-bit number 
can be performed in 27 days using 1024 Virtex II 
8000 FPGAs. 

The practical implementation results provide 
the improved understanding of the amount of FPGA 
resources required for the Mesh Routing Design, 
and how these resources are utilized. Apart from the 
data path, also resources needed for control, data 
storage, input/output, and routing are taken into 
account. 
 

Table  3. Time estimates for the Matrix 
Step of factoring of a 1024-bit number 
with one Virtex II chip and multiple 
Virtex II chips in Improved Mesh 
Routing. 

K= number of concurrent multiplications=50 
p=number of columns handled in one cell=16 
D = number of columns in matrix A 
m = mesh dimension  
n = number of times to repeat sub-multiplications  
TK = time for K multiplications in the mesh 
TLoad  = time for loading and unloading for K 
multiplications  
TTotal  = total time for the Matrix Step =  3·(D/K)· n · ( TK 
+  TLoad) 

 

Virtex 
II 

chips 
D m n TK

(ns) 
TLoad

(ns) 
TTotal

(days) 

1 
4 
x 
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12 3.0 x 

108 13,593 1,568 126,851 

102
4 
x 
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120 3.0 x 

104 8 x105 2.1 x 
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162
4 
x 

107
192 4599 1.3 
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3.8 x 
105 210 

322
4 
x 

107
384 287 2.6 

x106
9 x 
105 27 

 
6. Using general-purpose reconfigurable 
supercomputers for factoring of large 
numbers 
 

During the last few years, a considerable effort 
has been devoted to the development of general-

purpose reconfigurable computers, machines that 
are based on the close interoperation of traditional 
microprocessors and FPGAs, and can be 
programmed using traditional high-level 
programming languages [15]. Several prototype 
machines of this kind have been developed 
including  

• SRC 6E from SRC Computers Inc. [16], 
• Cray XD1 (formerly OctigaBay 12K) from 

Cray Inc. [17] 
• SGI Altix 3000 from Silicon Graphics, 

Inc., [18], and 
• Star Bridge Hypercomputer from Star 

Bridge Systems Inc. [19].  
These machines have demonstrated speed-ups vs. 
state-of-the art PCs exceeding 1000 for selected 
computationally intensive applications, such as DES 
breaking [20], and Elliptic Curve Cryptography 
[21]. 

Reconfigurable Supercomputers support all 
major features of the specialized ASIC-based 
hardware, such as parallel processing, distributed 
memory, specialized functional units (including 
multiple precision arithmetic units), flexible size and 
number of registers and buses, high-speed data 
transfer and embedded memory access. At the same 
time they eliminate majority of disadvantages of the 
specialized machines, such as long time to the 
solution, high non-recurring costs, fixed 
architecture, and the need for highly trained 
hardware designers.  

Reconfigurable computers are much more 
flexible, easy to program and experiment with, and 
reusable compared to specialized ASIC-based 
hardware. At least in principle, reconfigurable 
computers can be programmed by mathematicians 
themselves, assuming that sufficiently versatile 
library of basic cells  has been earlier developed by 
hardware designers.  

Compared to a generic array of FPGAs, the 
reconfigurable computers offer much greater 
flexibility, the close integration of microprocessors 
and FPGAs, ease of software/hardware co-design, 
and ease of programming resulting from the use of 
traditional programming languages. In particular, 
the purchase of general-purpose reconfigurable  
computing platform can be better justified by its use 
in the wide spectrum of applications, often not 
related to cryptography. 

Our group has over two years of experience 
with developing cryptographic libraries and 
applications for two emerging reconfigurable 
supercomputers, SRC 6E and Starbridge 
Hypercomputer. 

Most recently, an initial attempt has been made 
to port our implementation of the Matrix Step of the 
NFS factoring from the generic array of FPGAs to 
one of the earliest models of the SRC 6E 
reconfigurable supercomputer.  The results of this 

   
   
    



attempt have been documented in [14]. Although the 
initial results of this investigation were somewhat 
unimpressive – a slowdown by a factor of 6 vs. a 
generic array of FPGAs have been observed – the 
general direction of this research is very promising, 
and a fast progress can be expected in the near 
future.  

The main reasons for the observed slowdown in 
the operation of the Mesh Routing circuit after 
porting it to the SRC 6E machine included: 
- the use of a smaller FPGA device XC2V6000 

FPGA in SRC 6E vs. XC2V8000 used in the 
generic array of FPGAs, 

- requirement for a fixed clock frequency of 100 
MHz in SRC 6E, which led to the need of 
redesigning the mesh cell, in such a way that 
each operation of this cell took a larger number 
of clock cycles, 

- relative immaturity of the compiler technology 
that results in a relatively large area and time 
overhead of a digital circuit described in C vs. 
the same circuit described in VHDL or Verilog. 

On the other hand, the reasons for optimism, and 
expected fast progress include 
- the emergence of new companies supporting 

reconfigurable supercomputing, including 
major players in the area of traditional 
supercomputing, such as Cray Inc. and SGI [17, 
18]. 

-  constant progress in the capabilities, 
performance, and flexibility of existing 
reconfigurable computing platforms developed 
by companies specializing in reconfigurable 
supercomputing, such as SRC Computers Inc., 
and Star Bridge Systems [16, 19] 

- constant progress in the compiler technology, 
and logic synthesis of high level programming 
languages. 

Our future work will include the investigation which 
of the existing and emerging reconfigurable 
computing platforms and software environments is 
the most suitable  for the implementation of 
factoring, and other problems related to breaking 
cryptographic systems. We will also attempt to 
determine which algorithms and architectures used 
for codebreaking can be most efficiently 
implemented using reconfigurable platforms. 
 
7. Conclusions 

 
Factoring of large numbers is a problem of 

great practical importance. The difficulty of this 
problem determines the security of common public 
key cryptosystems (such as RSA) which are used as 
a basis for electronic commerce. Users of these 
cryptosystems need accurate assessments of the cost 
of integer factorization in order to select minimum 
secure key sizes that guarantee computational 
resistance against even the most powerful 

adversaries. Since such powerful adversaries are 
likely to employ hardware in their attacks, it is 
misleading to merely assess the cost of factorization 
in software using conventional general-purpose 
computers. On the other hand, building specialized 
hardware for the purpose of cost assessment is too 
expensive and inflexible. 

In this paper, we move a step closer to a 
realistic estimate of the difficulty of factoring in 
hardware for practical sizes of numbers used in 
cryptography. One of the two most time consuming 
steps of the factoring algorithm, Matrix Step, has 
been practically implemented for the first time. A 
Mesh Routing architecture proposed by Lenstra et 
al. has been analyzed, designed, and implemented in 
reconfigurable hardware, using a scalable approach. 
The area and timing of the implementation has been 
determined for the state-of-the-art Xilinx Virtex II 
XC2V8000 FPGA devices. The applicability of the 
circuit for factoring 512-bit and 1024-bit numbers 
using an array of FPGA devices has been 
demonstrated..  With only 1024 Virtex II chips, the 
Matrix Step of factorization of a 1024-bit number 
can be performed in 27 days. 

Our future work will include the 
implementation of all remaining steps of the NFS 
factoring algorithm using a generic array of FPGA 
devices, and then porting our designs to a selected 
general-purpose reconfigurable supercomputer. 
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