
Reconfigurable Hardware Implementation of Mesh Routing
in the Number Field Sieve Factorization

Sashisu Bajracharya1, Deapesh Misra1, Kris Gaj1, Tarek El-Ghazawi2

1ECE Department, George Mason University
4400 University Drive, Fairfax, VA 22030, USA

2ECE Department, The George Washington University
801 22nd street NW, Washington DC 20052, USA

 {sbajrach, dmisra, kgaj}@gmu.edu, tarek@gwu.edu

Abstract

Factorization of large numbers has been a
constant source of interest in cryptanalysis. The
fastest known algorithm for factoring large numbers
is the Number Field Sieve (NFS). The two most time
consuming phases of NFS are Sieving and Matrix
Step. In this paper, we propose an efficient way of
implementing the Matrix step in reconfigurable
hardware. Our solution is based on the Mesh-
Routing method proposed by Lenstra et al. We
determine the practical size of a partial mesh that
can fit in one FPGA device, Xilinx Virtex II
XC2V8000. We further extrapolate the computation
time for the case of a square systolic array of
FPGAs for 512-bit and 1024-bit numbers'
factorization. We demonstrate that for practical
sizes of numbers used in cryptography, 1024 bits,
the Matrix Step of factorization can be performed
using 1024 Virtex II FPGAs in about 27 days.

1. Introduction

Factoring a large integer into its prime factors is
one of the challenging tasks in cryptanalysis both in
terms of computational complexity and
implementation. The Number Field Sieve (NFS)
introduced by Pollard J M in 1988, is the
asymptotically fastest known algorithm for the
factorization of large numbers.

The NFS algorithm consists of the following
four steps:

1. Polynomial Selection
2. Sieving
3. Matrix Step
4. Square Root step

The two most time consuming steps of the NFS
algorithm are the Sieving and the Matrix Step. This
paper focuses on the Matrix Step. This step is used
to identify a linear dependence between the entries
in the sparse matrix obtained as a result of the
Sieving Step. For the Matrix Step, two hardware
architectures have been proposed in the literature:
Mesh Sorting architecture by Bernstein [8] and
Mesh Routing architecture by Lenstra et al [2].
Geiselmann and Steinwandt proposed a distributed
variant of both aforementioned methods to be
implemented using an array of ASIC chips [12].
We propose an implementation of the Mesh Routing
architecture in reconfigurable hardware.

We believe that for a computationally intensive
problem, such as factoring, reconfigurable hardware
offers inherently better performance, scalability, and
the price-to-performance ratio than conventional
computers based on microprocessors. At the same
time, FPGAs are much more flexible, easy to
program and experiment with, and reusable
compared to specialized hardware based on ASICs.
Particularly in the field of factorization,
reconfiguration is needed since the best factorization
algorithms involve computationally intensive
sequentially executed steps, such as Sieving and
Matrix Step. In reconfigurable hardware, these steps
can be executed using the same hardware, without
any additional cost. Additionally, when the new
better algorithms for factorization are developed,
hardware architecture can be upgraded and
reconfigurable devices re-utilized. It can also be
expected that once a certain number is factored, the
next higher number would be targeted, and in such a
scenario it would be easy to adapt the reconfigurable
hardware to factor a new larger number.

 In this paper, we use the space-sharing time-
multiplexing approach by which we are able to
reutilize the FPGA devices in subsequent stages of
the computations. This overcomes the problem of

the need for a large number of FPGA devices, and
the need for a large budget. In order to evaluate
trade-offs between cost and performance, we report
all performance measures for a varying number of
FPGA devices. Our paper presents the first concrete
performance and resource measurements regarding
the reconfigurable hardware architecture for the
NFS Mesh Routing, as the reports to date were only
theoretical in nature.

2. Mesh Routing Algorithm

The matrix step concerns with finding linear
dependencies in the matrix A obtained from the
Sieving Step. The linear dependencies are found
using Block Wiedemann algorithm [7] [10] [9] by
doing multiple matrix-by-vector multiplications of
the form:

 A⋅vi, A2⋅vi, …. , Ak⋅vi (1)
where vi is one of the random vectors (1 ≤ i ≤ k) and
k ≈ 2D/K. D is the number of columns of matrix A,
K is the blocking factor where either K=1 or K ≥ 32
(and K different vectors vi are handled
simultaneously). Another random vectors ui are
selected and the sequences

 ui ⋅ vi , ui A vi, ……. ui Ak⋅ vi (2)
(1 ≤ i ≤ K) are used to find the linear dependent
vectors in the Block Wiedemann algorithm [9].

Each matrix-by-vector multiplication is done
using the Mesh Routing circuit. Referring to Fig. 1,
multiplication can be performed very efficiently by
considering only the non-zero entries in the columns
of the sparse matrix.

Each such column entry of the sparse matrix
can be viewed as a packet which needs to be routed
to its destination. The accumulation of the results
with the same positions will then provide the result
to the matrix multiplication. Thus, a mesh of cells is
created and these packets are routed in it to their
destination cells.

Figure 1. Matrix-vector
multiplication operation through
routing.

cell(S0)

5
2

9
5

86
3

8
1

6
2 2

54
3

85
1

8
4

0 1

0 1 0

0 1 0

1

1
1111

11

1111
11

11
111

11

010010110

9
8
7
6

5
4
3
2
1

cell(S0)

5
2

9
5

86
3

8
1

6
2 2

54
3

85
1

8
4

0 1

0 1 0

0 1 0

1

1
1111

11

1111
11

11
111

11

010010110

9
8
7
6

5
4
3
2
1

9
8
7
6

5
4
3
2
1

Figure 2. Mesh corresponding to the
sparse matrix A.

5
2

9
5

86

3

8

1

6

2 2

54

3

85
1

8

4

0 1

0 1 0

0 1 0

1

5
2

9
5

86

3

8

1

6

2 2

54

3

85
1

8

4

0 1

0 1 0

0 1 0

1

Figure 3. Routing of the packets to the
cell in the mesh.

Lenstra et al proposed two versions of the
routing based circuit, a simpler version and an
improved routing version. The improved version is
what we have implemented in hardware.

It is assumed that each of the D columns of the
D*D sparse matrix A, has a weight/density of h of
ones. The row and the column positions of the
‘ones’ in the columns are denoted by ‘r’ and ‘c’.
The vectors are of length D. The mesh has an equal
number m of columns and rows, m. Sj denotes the
j-th cell in the row major order, j ∈{1,2,…,
(m*m)}. Each cell Sj is the target destination of the
packet whose destination row and column indices
match with the cell’s row and column position. As
shown in Fig. 3, all the packets to be routed to the
fifth cell are routed to it.

0

0

0

0

0

0

1

0

0

0

0

1

0

0 00000

00000

10000

01000

00010

00010

00101

10 00101

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0 00000

00000

10000

01000

00010

00010

00101

10 00101

1

0

0

0

0

0

0

The clockwise transposition algorithm is used
for routing the individual packets to their
destinations. This algorithm repeats four steps till all
the packets are routed to their destination cells. In
each step of this algorithm the compare and
exchange operation is done between two
neighboring row or column cells. The destinations
of the packets in the cells are compared and packets
are exchanged only if the exchange leads to the
shortening of the distance of the farthest traveling
packet. This compare and exchange operation is
done till all the packets are routed to their
destinations.

3. Implementation

3.1. Loading and Unloading

The row and column indices stored in a packet,
correspond to the matrix entries which have non-
zero values. Along with this routing address the
loading address is also generated. These packets are
loaded from the memory to the mesh as shown in
Fig. 4. The loading of the vectors is done similarly,
entering the mesh through the leftmost cells, and
shifting from one cell to another.

Figure 4. Loading and Unloading.

The result of the matrix-by-vector

multiplication is a vector produced after completing
Mesh Routing. After the computation is finished,
and the result vector stored in each cell, the result
vector is unloaded from the rightmost cells.

3.2. Mesh Routing Operation

The matrix-by-vector multiplication operation
is done by routing each packet, together with the
corresponding vector bits, to the destination cells
determined by the r and c address of the packet.
Whenever a packet reaches its destination, the
vector bits in the packet are xored with the partial
result stored in the destination cell.

The maximum number of non-zero entries in
each column of the original matrix A determines the
maximum number of packets each cell is holding at
the beginning. This determines the number of
iterations for which the routing operation has to be
repeated.

Non Zero

Matrix
Entries

Vector Result
Vector

Figure 5. Four iterations of Compare-
Exchange.

Clockwise transposition routing repeats four

phases of compare-exchange operations. As shown
in Fig. 5, in the first phase, the odd row does the
compare-exchange operation with the top even row.
In the second phase, the odd column does compare-
exchange with the right even column. In the third
phase, the odd row does compare-exchange with the
bottom even row. In the fourth phase, the odd
column does compare exchange with the left even
column.

It can be observed that the first cell does
comparisons in the clockwise order. The second cell
does compare-exchange in the anticlockwise
fashion. These clockwise and anticlockwise
compare and exchange operations are as shown in
Fig. 6.

Figure 6. Compare- exchange
direction for each cell.

In each compare-exchange the two neighbors
send their packet to the each other and each cell
independently compares the incoming packet with
its packet and decides on whether to exchange by
replacing its packet with the incoming packet or not
to exchange by discarding the incoming packet.
After reaching its destination, a packet becomes
invalid. An analysis reveals that there are four cases
of compare-exchanges, as follows:

2 1
2

1

N
N

1

1

N
N

N

NN
2

N

2

a

c d

b

2 1
2

1

2 1
2

1

N
N

1

1N
N

1

1

N
N

N

NN
N

N

NN
2

N

2 N
2

N

2

a

c d

b

Figure 7. Compare-exchange cases.

a) Both packets are valid (Fig.7a). Thus, each cell
may need to exchange the packets. Each cell
decides independently by comparing the incoming
packet’s destination cell with the current packet’s
destination cell.
b) Current packet in the cell is invalid but the
incoming new packet is valid (Fig. 7b). The cell
may need to keep the new packet if it is traveling in
the right direction.
c) Current packet in the cell is valid and the
incoming new packet is invalid (Fig. 7c). The cell
may need to destroy (annihilate) its packet if the
other neighbor keeps its packet.
d) Current packet in the cell is invalid and the
incoming new packet is also invalid (Fig 7d). In this
case, nothing needs to be done.

oper

s1 row col s2 row colrow col

>

s1
s2

exchange annihilate eq_packet

cell’s coordinate current packet new packet

en_equal Control Signal Logic

=

oper

s1 row col s2 row colrow col

>

s1
s2

exchange annihilate eq_packet

cell’s coordinate current packet new packet

en_equal Control Signal Logic

=

Figure 8. Comparator Unit.

The Comparator Unit is implemented in each cell
as shown in Fig. 8. The Comparator takes in three
values, the current packet, the new packet, and the
cell’s coordinates. Based on the phase of iteration,
either row or column values have to be compared.
Then the status of the current packet (s1) and the
new incoming packet (s2) are used to evaluate
between which of the four cases to decide the
comparison upon.

Even though each cell is doing independent
comparisons, the same logic of compare-exchange
in each cell ensures that both cells’ decisions match

with each other. So if for both valid packets, if one
cell exchanges, the other one also exchanges or
none of them exchange.

The circuit for each cell is shown in Fig. 9. The
comparator resides in each cell and does comparison
operation as described previously. The comparison
operation is dynamic as the cell compares in
clockwise or anticlockwise direction and its role of
being preceding or following neighbor changes per
a phase of clock. The oper control signal signifies
whether to decide on less than comparison or greater
than comparison.

Each cell is connected to its four neighbors. So
each cell gets input from its four neighbors and
sends its current packet value to its four neighbors.
The P[i] registers, being a part of the Loading Unit,
store input vector bits. The design is scalable to
handle any number of vector bits with a
corresponding change in the area. The R[i] is the
local memory (implemented using LUT-RAM) used
for the storage of packets in each cell. Each cell
keeps the packets corresponding to the non-zero
entries of one column in the original matrix A. The
decode unit decodes if the address of loading
matches the cell’s address and enables the write
operation to the memory.

The cell stores its coordinates in r, c format.
The P’[i] registers, in the Result Calculation Unit,
store the intermediate result vector bits after each
routing. When a packet reaches the destination, the
new vector bits are xored with the intermediate
result bits stored in P’[i]. The Check_Dest unit
checks if the packet has reached its destination by
comparing the cell’s coordinates with the new
packet’s coordinates or its current packet
coordinates.

The Comparator Unit generates three control
signals. The annihilate signal flips the status bit of
the packet if annihilation needs to be done. The
exchange signal enables loading to the register for
the current packet register, CR. The eq_packet
control signal is utilized when the current packet
and the new packet have the same destination to
reduce congestion.

Each cell has status bits which are constants set
during synthesis based on the cell’s coordinates.
Some status bits signify odd or even row or column,
and others signify whether the cell is at the end of
mesh. Also, there are status bits to signify whether
the comparison starts from top or bottom and
direction of compare-exchange for each cell
(clockwise/anticlockwise). The action performed by
each cell depends on these status values of the cell
and the particular phase of iteration. So, the
determination of which neighbor to compare, and to
compare using lesser than or greater than relation
are

CU

Status bits

Comparator

exchange

row/col

oper
annihilate

exchange

annihilate

r c
coordinate eq_packet

Loading

Result
calculation

Current packet

a) General schematic of the basic cell

R[i]
P[i]

decode

LUT-RAM

en

address
P’[i]

 Check Dest

b) Loading Unit c) Result Calculation Unit

CR

annihilate

exchange

d) Current Packet Unit

Figure 9. Detailed architecture of the Basic Cell.

determined by these status bits and the phase of
iteration. Additionally, there are external control
signals distributed to each cell to command on
certain operation of loading, computing and
unloading.
 In the Improved Mesh Routing Design, each
cell handles multiple columns of the original matrix.
The general schematic of the basic cell, depicted in
Fig. 9a remains the same, however the block
diagrams of the component units become more
complicated. The impact of this change on the
circuit area is reduced by moving storage from
registers (based on flip-flops) to LUT (look-up-
table) RAMs available in Virtex FPGAs.

3.3 Sub-Matrix Computation

Since the particular hardware device of fixed
size cannot perform the huge matrix-by-vector
multiplication, the computation has to be divided
into sub-computations composed of multiplications
of smaller sub-matrices with parts of the input
vector, as proposed in [12]. This way, the same
device can be utilized to do sub-computations one
after another, with the number of repetitions
dependent on how many devices are available and
affordable. The rectangular matrix A from the
sieving step is assumed to have been preprocessed
to have a uniform distribution of non-zero entries in
each column. The matrix A is split into s*s sub
matrices Ai,j of the same size as shown below.

A 1,1v1 + A1,2v2 + A1,3v3

A 2,1v1 + A2,2v2 + A2,3v3

A 3,1v1 + A3,2v2 + A3,3v3

A 1,1 A 1,2 A 1,3

A 2,1 A 2,2 A 2,3

A 3,1 A 3,2 A 3,3

v1

v2

v3

=

A 1,1v1 + A1,2v2 + A1,3v3

A 2,1v1 + A2,2v2 + A2,3v3

A 3,1v1 + A3,2v2 + A3,3v3

A 1,1 A 1,2 A 1,3

A 2,1 A 2,2 A 2,3

A 3,1 A 3,2 A 3,3

v1

v2

v3

=

A 1,1 A 1,2 A 1,3

A 2,1 A 2,2 A 2,3

A 3,1 A 3,2 A 3,3

v1

v2

v3

=

Similarly, the vector vj is also subdivided into r
sub-vectors. Then, the final result A*v can be
obtained as shown in equation (3).

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅

⋅

=⋅

∑

∑

=

=

s

j
jjs

s

j
jj

vA

vA

vA

1
,

1
,1

.

.

 (3)

If only a certain number of FPGAs are
available, we need to load the contents of sub-
matrices Ai,j of the mesh into the chip together with
sub-vectors vj. Maximum number of I/O pins
available in the chip is used to load the inputs and
unload the outputs for faster processing time. After
the computation is over the results are unloaded.

4. Methodology and testing

The design is developed in VHDL code and the
testing code is written in C in order to generate test
vectors. The design is verified using Aldec Active
HDL simulation environment. The synthesis of the
circuit is done using Synplicity Synplify Pro, and
mapping, placing, and routing using Xilinx ISE. The
target FPGA device is Virtex II XC2V8000.

5. Results

Based on the analysis of multiple sets of design
parameters, the following values of parameters have
been found optimum from the point of view of
minimizing the total execution time, using a fixed
amount of computational resources available in the
Virtex II XC2V8000 FPGA device:

• Mesh size, m x m = 12 x 12 cells
• Number of vectors vi multiplied

simultaneously by the same matrix A,
K=50

• Number of matrix columns handled by one
mesh cell, p=16.

With these parameters, 93% of the CLB resources of
the FPGA device have been utilized. Our design can
be used for a multiplication of a 2304 x 2304 sparse
matrix, by 50 different 2304 x 1 vectors (please note
that 2304 = m·m·p = 12·12·16).

The density in each column of the matrix A
(which is obtained after the sieving step for a 512-
bit factorization) is about 63 when the matrix has
D=6.7 x 10 6 columns [2]. This matrix is
preprocessed to have uniform distribution of non-
zero entries. The matrix is divided into sub-matrices
of the size 2304 x 2304. The maximum density per
column for each sub-matrix thus turns out to be 1, as
63 ones are uniformly distributed among a very
large number of sub-matrices (D/2304). Hence, d
(density of the input submatrix) is assumed to be
equal to 1.

The resource usage and results of timing
analysis after synthesis, placing, and routing, are
shown in Table 1 for different values of parameter
K. Since for K>1, multiple matrix-by-vector
multiplications are performed in parallel, larger
values of K correspond to a shorter time per single
matrix-by-vector multiplication. K=50 is the largest
value of K for which the circuit still fits in the
Virtex II XC2V8000 FPGA.

Using distributed approach proposed by
Geiselmann and Steinwandt [12], the larger matrix-
by-vector multiplication can be broken down into a
sequence of smaller matrix-by-vector
multiplications, and the partial results can be
combined together to get the final result.

Table 1. Results for the Improved
Mesh Routing Design in Virtex II 8000

FPGA.

In practice, only limited amount of FPGA

devices is typically available for the implementation
of the entire operation. Below, we estimate the total
execution time of the Matrix Step under the
assumption that the number of available Virtex II
8000 FPGAs is equal to 1, 102, 162, and 322,
respectively. We assume that all FPGAs are
connected into a generic rectangular array.

We also assume that the matrix-by-vector
multiplications dominate the total execution time of
the Matrix Step, and the remaining operations of the
block Wiedemann algorithm can be performed in
either software or hardware in a much shorter
amount of time.

We consider two cases corresponding to the
size of a factored number equal to 512 bits and 1024
bits respectively.

For the case of factoring a 512-bit number,
Table 2 shows the results of our estimations, based
on practical implementation results obtained for a
single Virtex II 8000 FPGA. D is the number of
columns in the matrix obtained after the sieving
step. The mesh dimension is m x m. n is the number
of sub-matrix by sub-vector multiplications
necessary to perform the entire operation, as
described in [12].

The matrix A from the sieving step has the size
of D x D, where D=6.7 x 10 6. The mesh of the size
m x m can handle the sub-matrix of the size p⋅m2 x
p⋅m2, where p=16. Thus, the total number of sub-
matrix computations required to perform a single
matrix-by-vector multiplication is equal to n = D2/
(p⋅m2)2. The matrix step needs about 3D/K
multiplications for the block Wiedemann algorithm
[2]. Thus, the total time

Table 2. Time estimates for the Matrix
Step of factoring of a 512-bit number

with one Virtex II chip and multiple Virtex
II chips in Improved Mesh Routing.

Matrix
Size

K

CLB LUT FF Period
(ns)

Time
for

K mult
(ns)

Time
for 1
mult
(ns)

2304 x
2304

(Mesh
12x12,
p=16)

1 6,738
(14%)

10,438
(11%)

6,279
(7%) 14.5 11,136 11136

2304 x
2304

(Mesh
12x12,
p=16)

32 29,938
(64%)

50,983
(54%)

19,651
(21%) 16.7 12,826 401

2304 x
2304

(Mesh
12x12,
p=16)

50 43,402
(93%)

74,030
(89%)

27,406
(29%) 17.7 13,593 271

K= number of concurrent multiplications=50
p=number of columns handled in one cell=16
D = number of columns in matrix A
m = mesh dimension
n = number of times to repeat sub-multiplications
TK = time for K multiplications in the mesh
TLoad = time for loading and unloading for K
multiplications
TTotal = total time for the Matrix Step = 3·(D/K)· n · (
TK + TLoad)

Virtex
II

chips
D m n TK

(ns)
TLoad

(ns)
TTotal

(days)

1
6.7
x

106
12 8.4 x

106 13593 1568 593

102
6.7
x

106
120 846 8 x

105
2.1 x
105 4

162
6.7
x

106
192 129 1.3

x106
3.8

x105 0.96

322
6.7
x

106
384 8 2.6

x106 9 x105 0.13

for the matrix step is equal to (3D/K) * n * Time for
one mesh computation & loading-unloading time.

For comparison, the results reported in [1] for
the factorization of a 512 bit number, are 224 CPU
hours (9.3 days) of a Cray C916, using the block
Lanczos algorithm to achieve the same goal of
finding linear dependencies. As shown in Table 2,
the same task can be accomplished using only 322 =
1024 FPGA devices in 0.13 days = 3.2 hours, which
corresponds to the speed-up by a factor of 70.

For doing sub-computations, the contents of the
submatrix have to be loaded to the FPGAs together
with the sub-vectors. The loading and unloading
scheme described in Section 3.1 is used to calculate
the loading and unloading time. We also take into
account the maximum possible number of
input/output pins that can be utilized in the Virtex II
FPGAs.

The partial result vectors are unloaded
infrequently, since the accumulation of intermediate
results involves only an xor operation and in
majority of cases can be done inside of the circuit.
All loading and unloading operations are taken into
account for the calculation of the total time. The
loading circuit is assumed to be clocked at 200
MHz.

Let k be the number of bits used for
representing row and column coordinates of the
packet. The status of each cell can be represented
using one bit. Let b be the number of available I/O

pins. Each packet is of the size (1+2*k) bits. Since
there are a total of d non-zero entries in the column
of sub-matrix and each cell stores d⋅p non-zero
packets, there are a total of m2·d·p packets that need
to be loaded and K vectors of the size p⋅m2. Thus, it
takes (1+2*k+K) * p⋅m2 * d / b clock cycles to load
all packets and vector bits.

The execution time estimates for factoring 1024
bit numbers using different number of Virtex II
FPGAs are shown in Table 3. The most significant
result is that the Matrix Step for a 1024-bit number
can be performed in 27 days using 1024 Virtex II
8000 FPGAs.

The practical implementation results provide
the improved understanding of the amount of FPGA
resources required for the Mesh Routing Design,
and how these resources are utilized. Apart from the
data path, also resources needed for control, data
storage, input/output, and routing are taken into
account.

Table 3. Time estimates for the Matrix
Step of factoring of a 1024-bit number
with one Virtex II chip and multiple
Virtex II chips in Improved Mesh
Routing.

K= number of concurrent multiplications=50
p=number of columns handled in one cell=16
D = number of columns in matrix A
m = mesh dimension
n = number of times to repeat sub-multiplications
TK = time for K multiplications in the mesh
TLoad = time for loading and unloading for K
multiplications
TTotal = total time for the Matrix Step = 3·(D/K)· n · (TK
+ TLoad)

Virtex
II

chips
D m n TK

(ns)
TLoad

(ns)
TTotal

(days)

1
4
x

107
12 3.0 x

108 13,593 1,568 126,851

102
4
x

107
120 3.0 x

104 8 x105 2.1 x
105 864

162
4
x

107
192 4599 1.3

x106
3.8 x
105 210

322
4
x

107
384 287 2.6

x106
9 x
105 27

6. Using general-purpose reconfigurable
supercomputers for factoring of large
numbers

During the last few years, a considerable effort
has been devoted to the development of general-

purpose reconfigurable computers, machines that
are based on the close interoperation of traditional
microprocessors and FPGAs, and can be
programmed using traditional high-level
programming languages [15]. Several prototype
machines of this kind have been developed
including

• SRC 6E from SRC Computers Inc. [16],
• Cray XD1 (formerly OctigaBay 12K) from

Cray Inc. [17]
• SGI Altix 3000 from Silicon Graphics,

Inc., [18], and
• Star Bridge Hypercomputer from Star

Bridge Systems Inc. [19].
These machines have demonstrated speed-ups vs.
state-of-the art PCs exceeding 1000 for selected
computationally intensive applications, such as DES
breaking [20], and Elliptic Curve Cryptography
[21].

Reconfigurable Supercomputers support all
major features of the specialized ASIC-based
hardware, such as parallel processing, distributed
memory, specialized functional units (including
multiple precision arithmetic units), flexible size and
number of registers and buses, high-speed data
transfer and embedded memory access. At the same
time they eliminate majority of disadvantages of the
specialized machines, such as long time to the
solution, high non-recurring costs, fixed
architecture, and the need for highly trained
hardware designers.

Reconfigurable computers are much more
flexible, easy to program and experiment with, and
reusable compared to specialized ASIC-based
hardware. At least in principle, reconfigurable
computers can be programmed by mathematicians
themselves, assuming that sufficiently versatile
library of basic cells has been earlier developed by
hardware designers.

Compared to a generic array of FPGAs, the
reconfigurable computers offer much greater
flexibility, the close integration of microprocessors
and FPGAs, ease of software/hardware co-design,
and ease of programming resulting from the use of
traditional programming languages. In particular,
the purchase of general-purpose reconfigurable
computing platform can be better justified by its use
in the wide spectrum of applications, often not
related to cryptography.

Our group has over two years of experience
with developing cryptographic libraries and
applications for two emerging reconfigurable
supercomputers, SRC 6E and Starbridge
Hypercomputer.

Most recently, an initial attempt has been made
to port our implementation of the Matrix Step of the
NFS factoring from the generic array of FPGAs to
one of the earliest models of the SRC 6E
reconfigurable supercomputer. The results of this

attempt have been documented in [14]. Although the
initial results of this investigation were somewhat
unimpressive – a slowdown by a factor of 6 vs. a
generic array of FPGAs have been observed – the
general direction of this research is very promising,
and a fast progress can be expected in the near
future.

The main reasons for the observed slowdown in
the operation of the Mesh Routing circuit after
porting it to the SRC 6E machine included:
- the use of a smaller FPGA device XC2V6000

FPGA in SRC 6E vs. XC2V8000 used in the
generic array of FPGAs,

- requirement for a fixed clock frequency of 100
MHz in SRC 6E, which led to the need of
redesigning the mesh cell, in such a way that
each operation of this cell took a larger number
of clock cycles,

- relative immaturity of the compiler technology
that results in a relatively large area and time
overhead of a digital circuit described in C vs.
the same circuit described in VHDL or Verilog.

On the other hand, the reasons for optimism, and
expected fast progress include
- the emergence of new companies supporting

reconfigurable supercomputing, including
major players in the area of traditional
supercomputing, such as Cray Inc. and SGI [17,
18].

- constant progress in the capabilities,
performance, and flexibility of existing
reconfigurable computing platforms developed
by companies specializing in reconfigurable
supercomputing, such as SRC Computers Inc.,
and Star Bridge Systems [16, 19]

- constant progress in the compiler technology,
and logic synthesis of high level programming
languages.

Our future work will include the investigation which
of the existing and emerging reconfigurable
computing platforms and software environments is
the most suitable for the implementation of
factoring, and other problems related to breaking
cryptographic systems. We will also attempt to
determine which algorithms and architectures used
for codebreaking can be most efficiently
implemented using reconfigurable platforms.

7. Conclusions

Factoring of large numbers is a problem of

great practical importance. The difficulty of this
problem determines the security of common public
key cryptosystems (such as RSA) which are used as
a basis for electronic commerce. Users of these
cryptosystems need accurate assessments of the cost
of integer factorization in order to select minimum
secure key sizes that guarantee computational
resistance against even the most powerful

adversaries. Since such powerful adversaries are
likely to employ hardware in their attacks, it is
misleading to merely assess the cost of factorization
in software using conventional general-purpose
computers. On the other hand, building specialized
hardware for the purpose of cost assessment is too
expensive and inflexible.

In this paper, we move a step closer to a
realistic estimate of the difficulty of factoring in
hardware for practical sizes of numbers used in
cryptography. One of the two most time consuming
steps of the factoring algorithm, Matrix Step, has
been practically implemented for the first time. A
Mesh Routing architecture proposed by Lenstra et
al. has been analyzed, designed, and implemented in
reconfigurable hardware, using a scalable approach.
The area and timing of the implementation has been
determined for the state-of-the-art Xilinx Virtex II
XC2V8000 FPGA devices. The applicability of the
circuit for factoring 512-bit and 1024-bit numbers
using an array of FPGA devices has been
demonstrated.. With only 1024 Virtex II chips, the
Matrix Step of factorization of a 1024-bit number
can be performed in 27 days.

Our future work will include the
implementation of all remaining steps of the NFS
factoring algorithm using a generic array of FPGA
devices, and then porting our designs to a selected
general-purpose reconfigurable supercomputer.

8. References

[1] A. K. Lenstra et al., “Factorization of a 512-bit RSA
Modulus”, Advances in Cryptology, Eurocrypt 2000,
LNCS 1807, Springer-Verlag, 2000, pp. 1-17.

[2] A. K. Lenstra, A. Shamir, J. Tomlinson, E. Tromer,
“Analysis of Bernstein's Factorization Circuit,” Proc.
Asiacrypt 2002, LNCS 2501, Springer-Verlag, 2002,
pp. 1-26.

[3] A. K. Lenstra, E. Tromer, A. Shamir, W. Kortsmit, B.
Dodson, J. Hughes, P. Leyland, “Factoring estimates
for a 1024-bit RSA modulus”, Proc. Asiacrypt 2003,
LNCS 2894, Springer-Verlag, 2003, pp. 55-74.

[4] A.K. Lenstra, H.W. Lenstra, Jr., (eds.), The
development of the number field sieve, Lecture Notes
in Math. 1554, Springer-Verlag, 1993.

[5] A.K. Lenstra, H.W. Lenstra, Jr., Algorithms in
number theory, chapter 12 in Handbook of
theoretical computer science, Volume A, algorithms
and complexity (J. van Leeuwen, ed.), Elsevier,
Amsterdam (1990).

[6] A. Shamir, E. Tromer, “On the cost of factoring RSA-
1024”, RSA CryptoBytes, vol. 6 no. 2, 2003, pp. 10-
19.

[7] D. Coppersmith, “Solving homogeneous linear
equations over GF(2) via block Wiedemann
algorithm”, Math. Comp. bf 62 (1994), pp. 333-350.

[8] D. J. Bernstein, “Circuits for integer factorization: a
proposal”, http://cr.yp.to/papers/nfscircuit.pdf.

[9] D. Wiedemann, “Solving sparse linear equations over
finite fields”, IEEE Transactions on Information
Theory, IT-32 (1986), pp. 54-62 .

http://cr.yp.to/papers/nfscircuit.pdf

[10] G. Villard, “Further analysis of Coppersmith's block
Wiedemann algorithm for the solution of sparse
linear systems” (extended abstract), Proc. 1997
International Symposium on Symbolic and Algebraic
Computation, ACM Press, 1997, pp. 32-39.

[11] H. J. Kim and W. H. Mangione-Smith, Factoring
Large Numbers with Programmable Hardware
UCLA Electrical Engineering Dept.
http://klabs.org/richcontent/MAPLDCon99/Presentati
ons/D5A_Kim_S.PDF.

[12] W. Geiselmann, R. Steinwandt, “Hardware to solve
sparse systems of linear equations over GF(2)”, Proc.
CHES 2003, LNCS 2779, Springer-Verlag, 2003, pp.
51-61.

[13] S. Bajracharya, D. Misra, K. Gaj, T. El-Ghazawi,
“Reconfigurable Hardware Implementation of Mesh
Routing in the Number Field Sieve Factorization,”
Proc. Field Programmable Technology Conf.
(FPT’04), Brisbane, Australia, Dec. 2004.

 [14] S. Bajracharya, Reconfigurable Hardware
Implementation and Analysis of Mesh Routing for the
Matrix Step of the Number Field Sieve Factorization,
MS Thesis, ECE Department, George Mason
University, Dec. 2004.

[15] T. El-Ghazawi, D. Buell, M. Gokhale, K. Gaj,
Reconfigurable Supercomputing Systems, Proc.
tutorial presented during Supercomputing 2004
Conf., Pittsburgh, PA, Nov. 2004.

[16] SRC Computers Home Page.
 Available: http://www.srccomp.com

[17] Cray XD1 Overview.
Available: http://www.cray.com/products/xd1

[18] SGI Altix 3000 family of Servers and
Supercomputers.
Available:
http://www.sgi.com/products/servers/altix/

[19] Star Bridge Systems Inc. Home Page.
Available: http://www.starbridgesystems.com

[20] O. D. Fidanci, D. Poznanovic, K. Gaj, T. El-
Ghazawi, and N. Alexandridis, “Performance and
Overhead in a Hybrid Reconfigurable Computer,”
Proc. Reconfigurable Architecture Workshop 2003.

[21] S. Bajracharya, C. Shu, K. Gaj, T. El-Ghazawi,
“Implementation of Elliptic Curve Cryptosystems
over GF(2n) in Optimal Normal Basis on a
Reconfigurable Computer,” 14th International
Conference on Field Programmable Logic and
Applications, FPL 2004, Antwerp, Belgium, Aug. 30
– Sep. 1, 2004, pp. 1001-1005.

	1. Introduction
	Mesh Routing Algorithm
	Implementation
	Loading and Unloading
	The row and column indices stored in a packet, correspond t
	loaded from the memory to the mesh as shown in Fig. 4. The l
	Mesh Routing Operation

	Conclusions

