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Infinite Global Fields and the

Generalized Brauer–Siegel Theorem

M. A. Tsfasman and S. G. Vlăduţ

To our teacher Yu.I.Manin on the occasion of his 65th birthday

Abstract. The paper has two purposes. First, we start to develop a theory
of infinite global fields, i.e., of infinite algebraic extensions either of Q or of
Fr(t). We produce a series of invariants of such fields, and we introduce and
study a kind of zeta-function for them. Second, for sequences of number fields
with growing discriminant we prove generalizations of the Odlyzko–Serre bounds
and of the Brauer–Siegel theorem, taking into account non-archimedean places.
This leads to asymptotic bounds on the ratio loghR/ log

√

|D| valid without the

standard assumption n/ log
√

|D| → 0, thus including, in particular, the case
of unramified towers. Then we produce examples of class field towers, showing
that this assumption is indeed necessary for the Brauer–Siegel theorem to hold.
As an easy consequence we ameliorate on existing bounds for regulators.

2000 Math. Subj. Class. 11G20, 11R37, 11R42, 14G05, 14G15, 14H05
Key words and phrases. Global field, number field, curve over a finite field,

class number, regulator, discriminant bound, explicit formulae, infinite global
field, Brauer–Siegel theorem

1 Introduction

A global field K is a finite algebraic extension either of the field Q of rational
numbers, or of the field Qr = Fr(t) of rational functions in one variable over a
finite field of constants. An infinite global field K is either an infinite algebraic
extension of Q, or such an infinite algebraic extension of Qr that K ∩ F̄r = Fr.
In the first case we call K an infinite number field, in the second an infinite
function field over Fr.

The first raison d’être of our paper is an attempt to convince ourselves and
the reader that there exists a (not yet constructed) non-trivial theory of such
fields. In particular, we produce a series of invariants, and introduce and study
a kind of zeta-function of such a field.

The second one is much more down to earth. For sequences of number fields

0Received June 10, 2001; in revised form April 22, 2002.
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with growing discriminant we prove generalizations of the Odlyzko–Serre bounds
and of the Brauer–Siegel theorem, taking into account non-archimedean places.
This leads to asymptotic bounds on the ratio loghR/ log

√

|D| valid without the

standard assumption n/ log
√

|D| → 0, thus including, in particular, the case
of unramified towers. Then we produce examples of class field towers, showing
that this assumption is indeed necessary for the Brauer–Siegel theorem to hold.

Wanting to study infinite global fields, we should think about examples.
For ”large” fields like Q̄ or Qab the invariants we find are trivial, but there
are numerous ”smaller” ones, like the limit (i.e., the union) of fields of a given
unramified (or ”not too much” ramified) tower of fields. It is for these smaller
ones that the theory we start to develop below is interesting.

To start with, an infinite global field is always the limit of a tower of finite
ones:

K = ind lim
i→∞

Ki =

∞
⋃

i=1

Ki, where K1 ⊂ K2 ⊂ K3 ⊂ . . . .

This tower is, of course, not unique. We are looking for invariants of K, i.e., for
parameters of K1 ⊂ K2 ⊂ K3 ⊂ . . . that do not depend on the tower, but only
on its limit.

We use the following notation: Let {Ki} for i = 1, 2, . . . be a sequence of
pairwise non-isomorphic global fields, either number or function; we set

gi = genus(Ki)

in the function field case, and

gi = log
√

|Di|

in the number field case; we call it the genus of a number field.
Attention: Here and below we use the following agreement. In the number

field case notation log means the natural logarithm loge. In the function field
case over Fr the same notation log means logr. As we shall see below, this is
justified by the uniformity of results obtained.

One of the reasons to think that the definition of genus for the number field
case is natural is that for any given g0 there is only a finite number of number
fields K whose genus does not exceed g0. The same is true for function fields
with a given constant field.

We always doubt, whether the proper definition of genus in the number field
case should be g = log

√

|D|, which we adopt in this paper, or g = log
√

|D|+1.
The latter has the advantage that, for an unramified extension, g−1 is multiplied
by the degree of the extension (see also [6]). The former one has the advantage
that Q is of genus 0 and has no unramified extensions, just as a curve of genus 0
should. However, for infinite number fields and other asymptotic considerations
this is irrelevant, both definitions giving same results.

We call a sequence {Ki} of global fields a family if Ki is non-isomorphic to
Kj for i 6= j. A family is called a tower if also Ki ⊂ Ki+1 for any i. In any
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family gi → ∞ for i→ ∞. In the function field case we always assume that the
constant field of all Ki is one and the same field Fr.

In the number field case let

ni = [Ki : Q] = r1(Ki) + 2r2(Ki),

where r1 and r2 stand for the numbers of real and (pairs of) complex embed-
dings. We suppose also that gi > 0 for any i , i.e., Ki 6= Q in the number
field case, and Ki is non-isomorphic to Fr(T ) in the function field case, this
assumption does not restrict the generality of our considerations.

We consider the set A = {R,C; 2, 3, 4, 5, 7, 8, 9, . . .} of all prime powers plus
two auxiliary symbols R and C as the set of indices. The parameters we are
going to present will be indexed by elements α ∈ A. In the function field case
over Fr the set A is reduced to Ar = {r, r2, r3, . . .}, meaning that for α ∈ A\Ar

the parameters, we are looking at, vanish.
For a prime power q we set

Nq(Ki) := |{v ∈ P (Ki) : Norm(v) = q}| ,

where P (Ki) is the set of non-archimedean places of Ki. We also put NR(Ki) =
r1(Ki) and NC(Ki) = r2(Ki).

By hi we denote the class-number of Ki (which equals the number of Fr-
rational points on the Jacobian of Ki in the function field case); Ri denotes the
regulator of Ki in the number field case and equals 1 in the function field case.

For an infinite global field K =
⋃

Ki and α ∈ A let us introduce the following
quantities:

φα = φα(K) := lim
i→∞

Nα(Ki)

gi
.

Of course, we need to prove that these limits exist and do not depend on the
tower.

Note that φR and φC are finite, since the ratio n/gi = r1(Ki)/gi+2r2(Ki)/gi

is bounded on the set of all number fields 6= Q by the Minkowski bound.
More generally, we call a family K = {Ki}, i = 1, 2, . . ., of global fields

asymptotically exact if and only if for any α ∈ A there exist the limit

φα = φα(K) := lim
i→∞

Nα(Ki)

gi
.

We call the family K asymptotically good (respectively, bad) if there exists
α ∈ A with φα > 0 (respectively, φα = 0 for any α ∈ A).

It is important to point out that, by abuse of notation, K is used both for an
infinite global field and for an asymptotically exact family. This is reasonable
since below we prove that for an infinite global field all our definitions and
results do not depend on the choice of the tower.

The notion of an asymptotically exact family is much more general than
that of a tower. In particular, a simple diagonal argument shows that any
family contains an asymptotically exact subfamily.
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The quantities φ = {φα} give rise to the following definition. The limit
zeta-function of an asymptotically exact family is defined by the product

ζK(s) = ζφ(s) =
∏

q

(1 − q−s)−φq ,

q running over all prime powers. Here and below, by raising to a complex power
a function in s defined for Re s > a ≥ 0 and such that its values are real positive
for real s > a, we mean unique analytic continuation of what is real positive for
real s. The ”completed” zeta-function is defined in the number field case as

ζ̃K(s) = ζ̃φ(s) = es2−φRπ−sφR/2(2π)−sφCΓ(
s

2
)φRΓ(s)φC

∏

q

(1 − q−s)−φq .

In the function field case, consistent with our convention, we set

ζ̃K(s) = ζ̃φ(s) = rs
∞
∏

m=1

(1 − r−ms)−φrm .

The product defining zeta-functions ζφ(s) and ζ̃φ(s) absolutely converges for
Re(s) ≥ 1. These functions depend only on φ = {φα} and do not depend on the
particular sequence of global fields. Therefore, we have defined ζK(s) and ζ̃K(s)
for any infinite global field K.

The zeta-function of a family is thus the limit of g-th roots of usual zeta-
functions of its fields Ki. Moreover, for Re s ≥ 1+ε the convergence is uniform.

It is also true that a family is asymptotically exact if and only if the limit
lim ζKi(s)

1/gi exists.
Let now in the number field case

ξK(s) = ξφ(s) = (log ζ̃φ)′ = ζ̃′φ/ζ̃φ =

1 − φR

2
log π − φC log 2π +

1

2
φRψ(

s

2
) + φCψ(s) −

∑

q

φq
log q

qs − 1
,

where ψ(s) = Γ′

Γ (s), and in the function field case let

ξK(s) = ξφ(s) = (logr ζ̃φ)′ = 1 −
∞
∑

m=1

mφrm

rms − 1
.

Studying the number field case we often assume the generalized Riemann
hypothesis (GRH) to hold for number fields in question, but the most part
of our results also has an unconditional (weaker) formulation. To distinguish
between the two, we always write GRH in relevant cases. Note that the function
field case does not need it, GRH being proved.

Under GRH the above products converge absolutely for Re(s) ≥ 1
2 , and we

have the following
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GRH Theorem A (GRH Basic Inequality). For an infinite global field K
(and for any asymptotically exact family of global fields)

ξK(
1

2
) ≥ 0.

This theorem imposes severe restrictions on the possible values of φ = {φα},
namely

GRH Corollary A (GRH Basic Inequality). For an infinite global field
(and for any asymptotically exact family of global fields)

∑

q

φq log q√
q − 1

+ φR(log 2
√

2π +
π

4
+
γ

2
) + φC(log 8π + γ) ≤ 1,

the sum being taken over all prime powers q.
In the number field case this result generalizes the GRH Odlyzko–Serre in-

equality on discriminants of number fields. Indeed, all terms being non-negative,
we obtain

φR(log 2
√

2π +
π

4
+
γ

2
) + φC(log 8π + γ) ≤ 1,

which means
D ≥ (8πeγ+π

2 )r1(8πeγ)2r2eo(n).

In the function field case over Fr the inequality simplifies. (Recall our con-
vention that log, meaning loge in the number field case, means logr in the
function field case.)

Corollary A′ (Basic Inequality in the Function Field Case). For an infinite
function field (and for any asymptotically exact family of function fields)

∞
∑

m=1

mφrm

rm/2 − 1
≤ 1.

This result generalizes the Drinfeld–Vlăduţ theorem, saying that for the
number N of points of degree one on algebraic curves over a finite field Fr we
have

N ≤ (
√
r − 1)g + o(g),

as g tends to infinity, i.e., that φr ≤ √
r− 1. Indeed, it is enough to omit in the

sum all terms except the first one.
Contemplating the statements of Theorem A and Corollary A one gets inter-

ested in the value of ξK(1
2 ) which equals the deficiency, the difference between

the right hand side and the left hand side of the inequality of Corollary A.
This deficiency happens to be related to the limit distribution of zeroes of zeta-
functions.

We suppose again GRH to hold. Let K = {Kj} be an asymptotically exact
family of number fields. For each Kj we define the measure on R

∆Kj :=
π

gKj

∑

ζKj
(ρ)=0

δt(ρ),
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where t(ρ) = (ρ − 1
2 )/i, and ρ runs over all non-trivial zeroes of the zeta-

function ζKj (s). Because of GRH t(ρ) is real, and ∆Kj is a discrete measure on
R. Moreover, ∆Kj is a measure of slow growth.

GRH Theorem B (GRH Explicit Formula). For an infinite number field
K (and for any asymptotically exact family of number fields) there exists the
limit

∆K = lim
j→∞

∆Kj

in the space of measures of slow growth on R. Moreover, the measure ∆K has a
continuous density MK,

MK(t) = Re

(

ξK

(

1

2
+ it

))

=

1 −
∑

q

φqhq(t) log q+

1

2
φR Reψ

(

1

4
+
it

2

)

+ φC Reψ

(

1

2
+ it

)

− φR

2
log π − φC log 2π,

where

hq(t) =

√
q cos(t log q) − 1

q + 1 − 2
√
q cos(t log q)

, ψ(s) =
Γ′

Γ
(s).

GRH Corollary B (GRH Basic Equality). For an infinite number field K
(and for any asymptotically exact family of number fields)

ξK(
1

2
) = MK(0),

i.e.,

∑

q

φq log q√
q − 1

+ φR(log 2
√

2π +
π

4
+
γ

2
) + φC(log 8π + γ) = 1 −MK(0).

This means that the difference between 1 and the left hand side of the Basic
Inequality, called the deficiency of the infinite global field (or of the family), is
in fact the ”relative number” of zeroes accumulating at the real critical point 1

2 .
In the function field case the same is true and much easier to prove (cf.[36]).

Zeta-functions being periodic, we can of course consider the space of periodic
measures on R to obtain Theorem B and Corollary B in this case. We can also
make the formulation simpler using measures on the circle. We normalise the
circle to be R/2πZ represented by (−π, π]. For a zero ρ of the zeta-function
ζKj (s) let t(ρ) be defined by

t(ρ) =
ρ− 1

2

i
(mod 2π).
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Let
∆j :=

π

gj

∑

ζKj
(ρ)=0

δt(ρ),

where δt(ρ) is, as usual, the Dirac measure supported at t(ρ). Then ∆j is
a measure of total mass 2π on R/2πZ, and ∆j is symmetric with respect to
t 7→ −t.

Corollary B′ (Explicit Formula and Basic Equality in the Function Field
Case). In the function field case in the weak topology on the space of measures
on R/2πZ the limit

∆K = lim
j→∞

∆j

exists. Moreover, the measure ∆K has a continuous density MK,

MK(t) = Re(ξK(
1

2
+

i

loge r
t)) = 1 −

∞
∑

m=1

mφrmhm(t)

for

hm(t) =
rm/2 cos(mt) − 1

rm + 1 − 2rm/2 cos(mt)
,

which depends only on the family of numbers φ = {φrm} and we have the fol-
lowing Basic Equality:

ξK(
1

2
) = 1 −

∞
∑

m=1

mφrm

rm/2 − 1
= MK(0).

In the number field case with no GRH at hand, the results become consid-
erably weaker.

Theorem C (Unconditional Basic Inequality). For an infinite number field
K (and for any asymptotically exact family of number fields)

ξK(1) ≥ 0.

Corollary C (Unconditional Basic Inequality). For an infinite number field
(and for any asymptotically exact family of number fields)

∑

q

φq log q

q − 1
+ (γ/2 + log 2

√
π)φR + (γ + log 2π)φC ≤ 1.

This time, omitting all non-archimedean terms, we get the unconditional
Stark inequality,

D ≥ (4πeγ)r1(2πeγ)2r2eo(n).

The unconditional Odlyzko inequality

D ≥ (4πeγ+1)r1(4πeγ)2r2eo(n)
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can also be generalized, using non-archimedian places.
Our next result concerning zeta-functions concerns the behaviour of class

numbers and regulators. For an asymptotically exact family K of global fields
we would like to consider the limit

BS(K) = lim
i→∞

log hiRi

gi
.

Under certain conditions, as we shall explain below, this limit exists and depends
only on the set of numbers φ = {φα}. Therefore, BS(K) is well defined for an
infinite global field K, as well as for any asymptotically exact family K. We can
also define

κ(K) = lim
i→∞

log κi

gi
,

κi being the residue of ζKi(s) at 1; this invariant exists under the same condi-
tions.

The value of BS(K) is described by the Brauer–Siegel theorem. In our terms
the classical Brauer–Siegel theorem states:

We have
BS(K) = 1 and κ(K) = 0,

if the family K satisfies the following two conditions:
(i) the family K is asymptotically bad;
(ii) either GRH holds, or all fields Ki are normal over Q.
Indeed, the assumption n/ log

√

|D| → 0, usually used in the statement,
means φα = 0 for all α, since it follows that φR = φC = 0 and for a prime p one
has ∞

∑

m=1

mφpm ≤ φR + 2φC.

We are going to generalize the Brauer–Siegel theorem disposing of the first
condition.

GRH Theorem D (GRH Generalized Brauer–Siegel Theorem). For an
infinite global field K (and for any asymptotically exact family of global fields)
the limits BS(K) and κ(K) exist and we have

BS(K) = log ζ̃K(1),

κ(K) = log ζK(1).

GRH Corollary D (GRH Generalized Brauer–Siegel Theorem). For an
infinite global field (and for any asymptotically exact family of global fields)

BS(K) = 1 +
∑

q

φq log
q

q − 1
− φR log 2 − φC log 2π,

κ(K) =
∑

q

φq log
q

q − 1
,
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the sum being taken over all prime powers q.
In the function field case, of course,

BS(K) = lim
i→∞

logr hi

gi
,

where hi is the number of Fr-points on the Jacobian of the curve Xi correspond-
ing to the field Ki. The other parameter κ(K) = BS(K) − 1, and thus becomes
uninteresting.

Corollary D′ (Generalized Brauer–Siegel Theorem in the Function Field
Case). For an infinite function field K (and for any asymptotically exact family
of function fields) the limit BS(K) exists and we have

BS(K) = 1 +

∞
∑

m=1

φrm logr

rm

rm − 1
.

In the number field case half of Theorem D does not depend on GRH, namely
we prove

Theorem E (Generalized Brauer–Siegel Inequality). For an infinite number
field (and for any asymptotically exact family of number fields)

lim sup
i→∞

log(hiRi)

gi
≤ 1 +

∑

q

φq log
q

q − 1
− φR log 2 − φC log 2π,

lim sup
i→∞

log(κi)

gi
≤
∑

q

φq log
q

q − 1
,

the sum being taken over all prime powers q.
As yet, we are unable to prove the generalized Brauer–Siegel theorem uncon-

ditionally. In the general case, even the classical Brauer–Siegel theorem is not
known, one needs normality of the fields in question. However, for an infinite
number field with an auxiliary condition this becomes possible.

Theorem F (Unconditional Generalized Brauer–Siegel Theorem for Infinite
Number Fields ). For an infinite almost normal asymptotically good number field
K the limits BS(K) and κ(K) exist and we have

BS(K) = log ζ̃K(1),

κ(K) = log ζK(1).

Corollary F (Unconditional Generalized Brauer–Siegel Theorem for Infinite
Number Fields). For an infinite almost normal asymptotically good number field
K

BS(K) = 1 +
∑

q

φq log
q

q − 1
− φR log 2 − φC log 2π,

κ(K) =
∑

q

φq log
q

q − 1
,
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the sum being taken over all prime powers q.
Note that the unconditional classical Brauer–Siegel theorem for normal fields

does not follow from our results.
Next question is that of the possible asymptotic behaviour of the Brauer–

Siegel ratios log(hR)/g and log(κ)/g. We prove
GRH Theorem G (GRH Bounds). For any family of number fields

BSlower ≤ lim inf
i→∞

log(hiRi)

gi
≤ lim sup

i→∞

log(hiRi)

gi
≤ BSupper,

0 ≤ lim inf
i→∞

log(κi)

gi
≤ lim sup

i→∞

log(κi)

gi
≤ κupper,

where

BSlower = 1 − log 2π

γ + log 8π
≈ 0.5165...,

BSupper = 1 +
log 3

2 + log 5
4 + log 7

6
γ
2 + π

4 + log 2
√

2π + log 2√
2−1

+ log 3√
3−1

+ log 5√
5−1

+ log 7√
7−1

≈ 1.0938...,

κupper =
log 2 + log 3

2
γ
2 + log 2

√
2π + log 2√

2−1
+ log 3√

3−1

≈ 0.2164 . . .

In what follows we also give some bounds specific for the totally real case
and for the totally complex one.

The function field case was treated in our paper [36]. In our terms we have
Theorem G′ (Function Field Bounds). For any family of function fields

over Fr

1 ≤ lim inf
i→∞

logr hi

gi
≤ lim sup

i→∞

logr hi

gi
≤ 1 + (

√
r − 1) logr

r

r − 1
.

In the number field case, as usual, without GRH Theorem G weakens.
Theorem H (Unconditional Bounds). For any family of number fields

lim sup
i→∞

log(hiRi)

gi
≤ BSunc,upper,

lim sup
i→∞

log(κi)

gi
≤ κunc,upper,

where

BSunc,upper = 1 +

23
∑

p=3
prime

log p
p−1

γ
2 + 1

2 + log 2
√
π + 2

23
∑

p=2
prime

log p
∞
∑

m=1

1
pm+1

≈ 1.1588 . . . ,
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κunc,upper = 1 +

5
∑

p=3
prime

log p
p−1

γ
2 + log 2

√
π + 2

5
∑

p=2
prime

log p
∞
∑

m=1

1
pm+1

≈ 0.3151 . . .

For an infinite almost normal asymptotically good number field K we also have
the lower bound

lim inf
i→∞

log(hiRi)

gi
≥ BSunc,lower,

where

BSunc,lower = 1 − log 2π

γ + log 4π
≈ 0.4087 . . .

Knowing that GRH–possible values of the Brauer–Siegel ratio lie in the
interval

(0.5165..., 1.0938...),

and having in mind the classical value 1 of the Brauer–Siegel theorem itself, we
are curious to know whether in our more general setting there exist examples
when it differs from 1.

They do exist. The method to construct such examples of infinite number
fields is to take the limit of a class field tower given by some splitting conditions.
In particular, we get

GRH Theorem I. The field

K = Q(cos
2π

11
,
√

2,
√
−23)

has an infinite unramified 2-tower K, for which BS(K) ∈ (BSlower(K),BSupper(K)),
where

BSlower(K) = 1 − 10 log 2π

g
,

BSupper(K) = BSlower(K) +
(
√

23 − 1) log 23
22

log 23

(

1 − 10(γ + log 8π)

g

)

,

i.e., approximately
0.5939 . . . ≤ BS(K) ≤ 0.6025 . . . .

Note that we do not need examples giving lower bounds for κ(K) since any
asymptotically bad infinite number field, for example any tower of fields abelian
over Q, attains the obvious lower bound κ(K) = 0.

Without GRH the upper bound is less precise.
Theorem J. The field

K = Q(cos
2π

11
,
√

2,
√
−23)

11



has an infinite unramified 2-tower K, for which BS(K) ∈ (BSlower(K),BSunc,upper(K)),
where BSlower(K) is as above and BSunc,upper(K) ≈ 0.7108 . . ..

The upper bound we have got shows that the condition n/ log |D| → 0 (or in
our terms φα = 0 for every α) in the classical Brauer–Siegel theorem is indeed
indispensable. In other words, the Brauer–Siegel ratio BS(K) can be strictly less
than 1. Can it also be strictly greater than 1? Can κ(K) be strictly positive?
Here is an example.

GRH Theorem K. The field

K = Q(
√

11·13·17·19·23·29·31·37·41·43·47·53·59·61·67)

has an infinite unramified 2-tower K in which nine prime ideals lying over 2,
3, 5, 7 and 71 split completely. Then BS(K) ∈ (BSlower(K),BSupper(K)) and
κ(K) ∈ (κlower(K),κupper(K)), where

BSlower(K) = 1 +
2 log 3

2 + 2 log 5
4 + 2 log 7

6 + log 5041
5040

g
,

BSupper(K) = BSlower(K) +
1

g

47
∑

p=11

log
p

p− 1
+

√
53 − 1

g log 53

(

g − γ − π

2
− log 8π − 2

7
∑

p=2

log p√
p− 1

− log 712

70
−

47
∑

p=11

log p√
p− 1

)

log
53

52
,

κlower(K) =
2 log 2 + 2 log 3

2 + 2 log 5
4 + 2 log 7

6 + log 5041
5040

g
,

κupper(K) = BSupper(K) − 1 +
2 log 2

g
,

the sums being taken over prime p’s. Numerically

BS(K) ∈ (1.0602 . . . , 1.0798 . . .),

κ(K) ∈ (0.1135 . . . , 0.1331 . . .).

Here, as well, without GRH the upper bound changes.
Theorem L. The field

K = Q(
√

11·13·17·19·23·29·31·37·41·43·47·53·59·61·67)

has an infinite unramified 2-tower K in which nine prime ideals lying over 2,
3, 5, 7 and 71 split completely. Then BS(K) ∈ (BSlower(K),BSunc,upper(K))
and κ(K) ∈ (κlower(K),κunc,upper(K)), where BSlower(K) and κlower(K) are as
above, BSunc,upper(K) ≈ 1.0951 . . ., κunc,upper(K) ≈ 0.1454 . . ..

The values of different bounds for BS(K) developed in this paper form the
following table.
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lower lower upper upper

bound example example bound

all fields 0.5165 0.5939–0.6025 1.0602–1.0798 1.0938

GRH totally real 0.7419 0.8009–0.8648 1.0602–1.0798 1.0938

totally complex 0.5165 0.5939–0.6025 1.0482–1.0653 1.0764

all fields 0.4087 0.5939–0.7108 1.0602–1.0921 1.1588

unconditional totally real 0.6625 0.8009–0.9248 1.0602–1.0921 1.1588

totally complex 0.4087 0.5939–0.7108 1.0482–1.0951 1.0965

And here is the table for κ(K). Note that the lower bound κ(K) = 0 is
always attainable.

upper upper

example bound

all fields 0.1135–0.1331 0.2164

GRH totally real 0.1135–0.1331 0.1874

totally complex 0.1162–0.1333 0.2164

all fields 0.1135–0.1454 0.3151

unconditional totally real 0.1135–0.1454 0.2816

totally complex 0.1162–0.1631 0.3151

In the function field case an example of K with BS(K) = 1, κ(K) = 0 is
provided by any tower with φα = 0 for every α. In particular, any tower of
fields abelian over Fr(t) has this property. An example reaching the upper
bound must have φr =

√
r − 1 and φα = 0 for every other α. The existence of

such towers is known only when r is a square. For a square r, different modular
towers enjoy this property.

As an application of the Generalized Brauer-Siegel Theorem one obtains
a lower bound for regulators of number fields in asymptotically good families
which is better than Zimmert’s bound.

Theorem M (Regulator Bound). For an asymptotically good tower of num-
ber fields K = {Ki} we have

lim inf
i→∞

logRi

gi
≥ (log

√
πe+

γ

2
)φR + (log 2 + γ)φC.

Under GRH we get the same estimate for any asymptotically good family of
number fields.

—————————
Our work resulting in this paper was started about ten years ago. Now we

are convinced that there is a non-trivial theory of infinite global fields, though
we do not yet understand what it should really look like.

—————————
The paper starts with generalities on infinite global fields and their zeta-

functions. In Section 2 we introduce the invariants φα(K). In Section 3 we
prove the first form of the Basic Inequality. Then we introduce zeta-functions
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(Section 4) and prove the Explicit Formula (Section 5). In Section 6 we discuss
possible directions of further study of infinite global fields.

Part 2 is consacrated to the Brauer–Siegel theorem. We prove the generalized
Brauer–Siegel theorem in Section 7, as well as regulator bounds. In Section 8
we provide the bounds for the Brauer–Siegel ratio. Section 9 is devoted to class
field towers. We finish by discussing open questions.

——————————
It is a pleasure for us to acknowledge the previous work without which

this paper would have never been written. Any unified treatment of number
and function fields makes appeal to the heritage of A.Weil. A great part of
this work develops two classical results, the Odlyzko–Serre inequalities and the
Brauer–Siegel theorem, both ideologically and technically. We first understood
what is going on in the function field case [36]. Y. Ihara [12] obtained most
part of results of Section 3 below in the particular case of unramified towers,
both in the function field case and in the number field one. (Unfortunately,
we were unaware of [12] while writing [36].) His technique helped us a lot. A
version of a particular case (the asymptotically bad one) of GRH Theorem B is
the main result of Lang’s paper [15]. Discussions with many of our friends and
collegues were extremely useful. We would especially like to thank for many
valuable remarks J.-P.Serre and the anonymous author of a 13 page long referee
report on one of the previous versions of this paper. We thank G.Lachaud for
his interest in our work and for attracting our attention to the question about
the minimum zeta-zero.

It is our greatest pleasure to devote this paper to our teacher Yuri Ivanovich
Manin, who taught us to consider number fields, zeta functions and algebraic
curves as different facets of one diamond. Congratulating him with his 65th
birthday, we wish him many happy returns of the day.

Part I

Zeta-function of an infinite global

field

Let us repeat the definition. An infinite global field K is either an infinite
algebraic extension of Q, or an infinite algebraic extension of Qr = Fr(t) such
that K ∩ F̄r = Fr. In the first case we call K an infinite number field, in the
second an infinite function field over Fr.

Our main problem here is to find out parameters of infinite global fields and
to construct a zeta-function of such a field.
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2 Invariants of infinite global fields

Here we give some basics on infinite global fields and asymptotically exact fam-
ilies showing that these notions are worth studying.

Lemma 2.1. For any given g0 there is only a finite number of number fields
K whose genus does not exceed g0. The same is true for function fields over a
given constant field (considered up to an isomorphism).

Proof. In the number field case this is proved by the geometry of numbers (cf.
[16], Theorem V.4.5). In the function field case this follows from the existence
of moduli spaces for genus g curves. Indeed, those are varieties over the ground
field which is finite, and thus they have but a finite number of points defined
over it. 2

For a global field K and for a prime power q we set

Nq(K) := |{v ∈ P (K) : Norm v = q}|,

where P (K) is the set of non-archimedean places of K. We also write NR(K) =
r1(K) for the number of real places and NC(K) = r2(K) for that of complex
ones. In the function field case we set NR(K) = NC(K) = 0.

We call a sequence {Ki} of global fields a family if Ki is non-isomorphic to
Kj for i 6= j. In any family gi = g(Ki) → ∞ for i → ∞. (In the function field
case we always assume that the constant field of all Ki equals one and the same
Fr.)

Definition 2.1. We call a family {Ki} asymptotically exact if and only if
for any α ∈ A = {R,C; 2, 3, 4, 5, 7, 8, 9, . . .} there exists a limit

φα := lim
i→∞

Nα(Ki)

gi
.

Note that we can as well divide by gi − 1 instead of gi, since for almost all
i we have gi > 1 and gi → ∞. We shall use this division in the function field
case.

Lemma 2.2. Every family of global fields {Ki} contains an asymptotically
exact subfamily.

Proof. In the number field case, for any q we have Nq(Ki) ≤ n(Ki), where
n(K) = [K : Q]. On the other hand, since Ki 6= Q there exists a universal
constant C such that |DKi |1/n ≥ C. This follows, e.g., from the Odlyzko–Serre
inequalities (or even from the Minkowski constant argument), and Lemma 2.1.
Thus n(Ki)/g(Ki) ≤ 1/logC, and all limit points of Nq(Ki)/g(Ki) lie between
0 and 1/logC.

Therefore, for each separate q there is a limit over some subsequence of
K = {Ki}. The same is true for rα(Ki)/g(Ki), α = R,C.

Choose such a subsequence K0 that φR exists. Take its subsequence K1

where φC exists, then its subsequence K2 where φ2 exists, and so on. Now take
a diagonal sequence, i.e., such that K1 ∈ K1, K2 ∈ K2, etc. For this sequence
φα exists for any α.

The function field case is treated similarly. 2
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Remark 2.1. As it was pointed out by J.-P. Serre, this proof only uses the
fact that the space of positive measures with mass 1 is a metric compact space.

The lemma shows that the study of any family can be reduced in a certain
sense to that of asymptotically exact families, and from now on we mostly
suppose all our families to be asymptotically exact.

Lemma 2.3. Let L ⊇ K. Then, in the number field case, for g(K) ≥ 1,

NR(L)

g(L)
+ 2

NC(L)

g(L)
≤ NR(K)

g(K)
+ 2

NC(K)

g(K)
,

and, for any prime p and any n ≥ 1,

n
∑

m=1

mNpm(L)

g(L)
≤

n
∑

m=1

mNpm(K)

g(K)
.

In the function field case, for g(K) ≥ 2 and for any n ≥ 1,

n
∑

m=1

mNrm(L)

g(L) − 1
≤

n
∑

m=1

mNrm(K)

g(K) − 1
.

Proof. In the number field case, for an extension L ⊃ K we have

|DL| ≥ |DK |[L:K],

and in the function field case we have

g(L) − 1 ≥ [L : K](g(K) − 1).

On the other hand, if a place v of K is decomposed into a set {v1, v2, . . .} of
places of L then

∏

Norm vi ≤ (Norm v)[L:K].

Therefore,
n
∑

m=1

mNpm(L) ≤ [L : K]

n
∑

m=1

mNpm(K)

for any prime p and any n ≥ 1. Dividing, we get the required monotonicity.
The archimedean inequality and that for function fields are similar. 2

Lemma 2.4. Any infinite tower K0 ⊂ K1 ⊂ K2 ⊂ . . . is an asymptotically
exact family.

Proof. For a given prime p, by the second inequality of Lemma 2.3, the

sequence
n
∑

m=1

mNpm(Ki)

g(Ki)
, i = 1, 2, . . . is non-increasing for any fixed n, and hence

has a limit. (In the function field case we divide by g(Ki) − 1.) Taking n = 1
we see that φp exists, setting n = 2 we derive the existence of φp2 , etc.

Using the first inequality of Lemma 2.3 we prove the existence of φR and
then of φC.

16



The function field case is treated similarly. 2

Let K be an infinite global field. Then K =
⋃∞

i=1Ki, where K1 ⊂ K2 ⊂
K3 ⊂ . . ., and we can define the corresponding parameters φα, α ∈ A =
{R,C; 2, 3, 4, 5, 7, 8, 9, . . .}.

Lemma 2.5. For an infinite global field K the parameters φα do not depend
on the choice of the tower K1 ⊂ K2 ⊂ K3 ⊂ . . ..

Proof. Let K =
⋃∞

i=1Ki =
⋃∞

i=1 Li be two representations. Since each Ki is
generated by a finite number of elements of K, it is contained in some Lj . Using
the inequalities of Lemma 2.3 we see that the limit of the ratio in question for
the tower {Lj} is less than or equal to the corresponding value for the tower
{Ki}. As in the proof of Lemma 2.4, we have to treat φp first, and then to
use induction over the degree. We get φα(L) ≤ φα(K) and, by symmetry, vice
versa. 2

Lemma 2.6. Let K ⊂ L be infinite global fields. Then

φR(K) + 2φC(K) ≥ φR(L) + 2φC(L)

and for any prime p and any n ≥ 1

n
∑

m=1

mφpm(K) ≥
n
∑

m=1

mφpm(L).

In particular,
φp(K) ≥ φp(L).

Proof. We follow the same lines as above. Consider a tower {Lj} filtering
L. Then {Kj = K∩Lj} filters K. Using the monotonicity of Lemma 2.3 for the
pair Kj ⊂ Lj we get the result. 2

Definition 2.2. An infinite global field K (or an asymptotically exact family
K = {Ki}) is called asymptotically bad if and only if all φα = 0. If at least one
of the parameters φα > 0, it is called asymptotically good.

For example, any sequence of global fields of bounded degree is asymptoti-
cally bad.

Example 2.1. Families {Ki} satisfying the condition

n/ log
√

|D| → 0

of the Brauer–Siegel theorem are asymptotically bad. Indeed, this condition
clearly implies φR = φC = 0 and then all φq = 0 as well, since one has

Lemma 2.7. For any asymptotically exact family K = {Ki} of number
fields and for any prime p one has

∞
∑

m=1

mφpm ≤ φR + 2φC.
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Proof. Indeed, all places of a number field K whose norm is a power of p
lie over p in Q and the product of their norms is not greater than pn, where
n = r1 + 2r2 is the degree of K. 2

Lemma 2.8. Let L be a (finite) global field and Lab be its maximal abelian
extension. If for an infinite global field K the field K∩Lab is also infinite, then
K is asymptotically bad. In particular, if K is abelian over a finite global field,
then K is asymptotically bad.

In the function field case this lemma is proved in [3]. In the number field
case this can be proved using Artin’s dicriminant-conductor formula. Since we
do not use this result in our paper, we do not prove it here.

Example 2.2. Let now K1 be a number field with the infinite Hilbert class
field tower {Ki} — recall that the existence of such fields was proved in [7] —
or any other unramified tower. Then the family {Ki} is asymptotically good,
since the ratio ni/gi is constant in such a tower, and thus at least one of φR

and φC is nonzero. In fact, in the number field case we do not know essentially
different methods for constructing asymptotically good families (however, one
can take composita with a fixed number field, one can mix different class field
towers, etc).

Remark 2.2. It might happen that φR + φC > 0 but φq = 0 for any q.
Moreover, we suspect this to be the case for the example of Theorem 9.2 below.
As yet we are however unable to prove it.

In the function field case there exist three essentially different techniques
to construct asymptotically good families: a version of the Golod-Shafarevich
method due to Serre [29] which applies to any finite ground field Fr (cf. [26],
[23]), the method of modular curves of different types: classical, Drinfeld,
Shimura (cf. [11], [37], [41]) which applies only if r is a square (or sometimes
another power) but gives much better results, and explicit construction of the
same towers (cf. [5]). For any r one knows the existence of an asymptotically
exact family K with φr(K) > 0 (cf. [29]).

3 Basic inequality

In this section we prove the basic GRH inequality, as well as its weaker versions
that do not require GRH. We treat the number field case first.

Let K be a number field of degree n and disriminant D with r1 real and r2
pairs of complex embeddings, and let ζK(s) be its Dedekind zeta-function; by
P (K) we denote the set of prime divisors of K which can be identified with the
set of non-archimedean places of K.

We use the following form of the Guinand-Weil explicit formula (see [20],
p.122, eq.2.3).

Let F (x) be a differentiable even real positive function defined on the whole
real line R such that F (0) = 1 and there exist positive real constants c and ε
such that

F (x), F ′(x) ≤ ce−(1/2+ε)|x| as |x| → ∞.
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Define

Φ(s) :=

∫ ∞

−∞
F (x)e(s−1/2)xdx .

Then we have the following formula:

log |D| = r1
π

2
+ n(γ + log 8π) − n

∫ ∞

0

1 − F (x)

2 sh x
2

dx− r1

∫ ∞

0

1 − F (x)

2 ch x
2

dx

−4

∫ ∞

0

F (x) ch
x

2
dx+

∑

ρ

′
Φ(ρ)+ 2

∑

P

∞
∑

m=1

N(P )−m/2F (m logN(P )) logN(P ),

where in the first sum ρ runs over the zeroes of ζK(s) in the critical strip,
∑′

meaning that the ρ and ρ̄ terms are to be grouped together, the external sum in
the last term is taken over all prime divisors P ∈ P (K), and in the internal
sum N(P ) denotes the absolute norm of P .

3.1 GRH basic inequality

Let us now apply this formula to the case of an asymptotically exact family
K = {Ki} of number fields.

GRH Theorem 3.1 (GRH Basic Inequality). For an asymptotically exact
family of number fields one has

∑

q

φq log q√
q − 1

+ φR(log
√

8π +
π

4
+
γ

2
) + φC(log 8π + γ) ≤ 1 ,

the sum being taken over all prime powers q.
(In the special case of unramified towers this theorem was proved by Y.Ihara

[12].)
Proof. Let us apply the above explicit formula to the field K = Ki from our

sequence, substituting F (x) = e−yx2

for a real positive y. We get

log |D| = r1
π

2
+ n(γ + log 8π) − n

∫ ∞

0

1 − e−yx2

2 sh x
2

dx

−r1
∫ ∞

0

1 − e−yx2

2 ch x
2

dx− 4

∫ ∞

0

e−yx2

ch
x

2
dx

+ Re
∑

t

′
∫ ∞

−∞
eitx−yx2

dx+ 2
∑

P

∞
∑

m=1

N(P )−m/2e−ym2 log2 N(P ) logN(P ),

where in the first sum t runs over all reals such that ζK(1/2 + it) = 0, and the
exernal sum in the last term is taken over all prime divisors P of K.

Dividing the last equation by 2g = log |D| and using the relation n = r1+2r2
one gets:
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1 =
r1
g

(
π

4
+
γ

2
+

log 8π

2
) +

r2
g

(γ + log 8π) − n

g

∫ ∞

0

1 − e−yx2

4 sh x
2

dx

−r1
g

∫ ∞

0

1 − e−yx2

4 ch x
2

dx− 2

g

∫ ∞

0

e−yx2

ch
x

2
dx+ Re

1

2g

∑

t

∫ ∞

−∞
eitx−yx2

dx

+
∑

q

N(q)

g

∞
∑

m=1

q−m/2e−ym2 log2 q log q ,

where N(q) is the number of prime divisors in K of norm q.
Thus 1 = T1 + T2 − T3 − T4 − T5 + T6 + T7 is presented as a sum of seven

terms Tj , j = 1, . . ., 7. Now we set y = 1/log g and tend g to infinity. Then
y tends to zero, and we are going to show that T1 + T2 + T7 tends to the left
hand side of the Basic Inequality, while T3 + T4 + T5 tends to zero, T6 being
non-negative, which proves the theorem.

Indeed, it is clear that T1 tends to φR(log 2
√

2π + π
4 + γ

2 ), and T2 tends to
φC(log 8π + γ). Then, for T7 we have:

T7 =
∑

q

N(q)

g

∞
∑

m=1

q−m/2e−ym2 log2 q log q ≤
∑

q

N(q)

g

∞
∑

m=1

q−m/2 log q

since e−ym2 log2 q ≤ 1. On the other hand, since e−ym2 log2 q ≥ 1 − ym2 log2 q,
we get

T7 ≥
∑

q≤log g

N(q)

g

[log1/4 g]
∑

m=1

q−m/2(1 − ym2 log2 q) log q

≥ (1 − (log log g)2√
log g

)
∑

q≤log g

N(q)

g

[log1/4 g]
∑

m=1

q−m/2 log q.

These inequalities show that T7 tends to

∑

q

φq

∞
∑

m=1

q−m/2 log q =
∑

q

φq log q√
q − 1

when g → ∞.
Now let us estimate T3, T4, and T5. Since

0 ≤
∫ ∞

0

1 − e−yx2

4 ch x
2

dx ≤
∫ ∞

0

1 − e−yx2

4 sh x
2

dx ,

if we show that T3 tends to zero then T4 also tends to 0. We write

∫ ∞

0

1 − e−yx2

sh x
2

dx =

∫ 1

0

1 − e−yx2

sh x
2

dx +

∫ δ

1

1 − e−yx2

sh x
2

dx+

∫ ∞

δ

1 − e−yx2

sh x
2

dx
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for any δ > 1, all three integrals being positive. Since e−yx2 ≥ 1 − yx2,

∫ 1

0

1 − e−yx2

sh x
2

dx ≤
∫ 1

0

yx2

sh x
2

dx = O(y).

By the same reason

∫ δ

1

1 − e−yx2

sh x
2

dx ≤ (δ − 1) max
1≤x≤δ

1 − e−yx2

sh x
2

≤ (δ − 1)
1 − e−yδ2

sh 1
2

≤ δ − 1

sh 1
2

yδ2 .

For the third integral we have

∫ ∞

δ

1 − e−yx2

sh x
2

dx ≤
∫ ∞

δ

1

sh x
2

dx = O(e−δ) ,

as δ tends to infinity. If δ tends to infinity in such a way that yδ3 tends to zero

(e.g., put δ = y−1/4 = log
1
4 g), these inequalities show that T3 (and thus T4)

tends to zero.
For T5 we have

0 ≤ T5 =
2

g

∫ ∞

0

e−yx2

ch
x

2
dx ≤ 2

g

∫ ∞

0

e−yx2+ x
2 dx ≤ 2

g

∫ ∞

−∞
e−yx2+x

2 dx

=
2

g

√

π

y
e

1
16y = 2g−15/16

√

π log g,

which shows that it also tends to zero.
Then it is sufficient to note that all terms in the sum T6 are positive; indeed,

∫ ∞

−∞
eitx−yx2

dx = e−t2/4y

∫ ∞

−∞
e−y(x− it

2y )2dx =

√

π

y
e−t2/4y > 0 ,

which finishes the proof.2
Recall that in the function field case we also have the Basic Inequality (cf.

[12], [34], [36]), which is valid unconditionally:
Theorem 3.2. ∞

∑

m=1

mβm

rm/2 − 1
≤ 1

for any asymptotically exact family of function fields over Fr . 2
Question. How large the difference δ between the right hand side and the

left hand side of Theorems 3.1 and 3.2 can be?
We call δ the deficiency of the family. Of course, 0 ≤ δ ≤ 1, and for

asymptotically bad families δ = 1. In the function field case, at least when
r is an even prime power, families of modular curves provide examples with
δ = 0. In the number field case we do not know such a family. In fact, all
known examples are those of unramified class field towers, sometimes with extra
splitting conditions (see Section 9). Ihara [12] produced an example of a class
field tower of the field Q(

√
−3·5·7·11·13·17·23·31) with δ ≤ 0.248...
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Then Yamamura [39] presented other examples of fields having infinite un-
ramified class towers and very small δ’s. The best of his examples would have
δ ≤ 0.088... The main tool of his paper is a theorem giving a condition for a field
to have an infinite unramified class field tower. This theorem looks however not
to be true, at least, as we are going to show in Section 9, it contradicts GRH.
Unfortunately all the examples of [39] depend heavily on this theorem, and
therefore cannot be considered as correct. In Section 9 we discuss the problem
in more detail.

Let us remark that the class field tower of the Martinet field

Q(cos
2π

11
,
√

2,
√
−23)

has δ ≤ 0.1601..., which was the best one known for many years. Quite recently
Hajir and Maire [8] produced several better examples, the best one they get
is given as follows. Let K = Q(ξ), where ξ is a root of the polynomial x8 −
9x6+24182x4+60281988x2+895172213, then K has an infinite class field tower
ramified (tamely) only at two places over 5. This tower has δ ≤ 0.141 . . ..

3.2 Unconditional basic inequalities

Let us now give some partial results which can be obtained without assuming
GRH. Unfortunately, they are much weaker.

Proposition 3.1 (Basic Inequality′). For any asymptotically exact family
of number fields one has

2
∑

q

φq log q

∞
∑

m=1

1

qm + 1
+ φR(γ/2 + 1/2 + log 2

√
π) + φC(γ + log 4π) ≤ 1 ,

the first sum being taken over all prime powers q.
Note that archimedean coefficients are

α′
R := γ/2 + 1/2 + log 2

√
π ≈ 2.054..., and α′

C := γ + log 4π ≈ 3.108...,

whereas in Theorem 3.1 they are

αR = γ/2 + π/4 + log 2
√

2π ≈ 2.686..., and αC = γ + log 8π ≈ 3.801... .

This result ameliorates the unconditional Odlyzko–Serre inequality.
Proof. The method of the proof is exactly the same as for the Basic Inequality

(GRH Theorem 3.1) with the only difference in the choice of the function F (x);

without GRH we choose F (x) = e−yx2

ch x
2

to have Re Φ(s) positive on the whole

critical strip, which is checked by an elementary calculation using the maximum
principle (cf. [20], eq. 2.4). Using the Guinand–Weil explicit formula given at
the beginning of Section 3 and dividing the obtained equality by 2g we get

1 =
r1
g

(
π

4
+
γ

2
+

log 8π

2
) +

r2
g

(γ + log 8π) − n

g

∫ ∞

0

1 − (e−yx2

/ ch x
2 )

4 sh x
2

dx
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−r1
g

∫ ∞

0

1 − (e−yx2

/ ch x
2 )

4 ch x
2

dx−2

g

∫ ∞

0

e−yx2

dx+Re
1

2g

∑

u+it

∫ ∞

−∞

eitx+(u− 1
2 )x−yx2

ch x
2

dx

+
∑

q

N(q)

g

∞
∑

m=1

2q−m/2e−ym2 log2 q log q

q−m/2 + qm/2
,

where in the first sum s = u + it runs over all zeroes of ζK(s) in the critical
strip, the rest of the notation being that of the proof of GRH Theorem 3.1. Thus
1 = T ′

1+T ′
2−T ′

3(y)−T ′
4(y)−T ′

5(y)+T
′
6(y)+T

′
7(y) is presented as a sum of seven

terms, some of which depend on the value of y. Note that T ′
1+T ′

2 = T1+T2. We
are going to show that if y tends to 0 exactly as described in the proof of GRH

Theorem 3.1 then T ′
3(y) tends to (φR+2φC) log 2

2 , T4(y) tends to φR(π
4 − 1

2 ), T ′
5(y)

tends to 0, T ′
6(y) is non-negative, T ′

7(y) tending to 2
∑

q
φq log q

∑∞
m=1(q

m + 1)−1,

which proves the result. Indeed, the statement on T6 is obvious from the very
choice of F (x), as explained above. The statement on T ′

5(y) follows from the
bound |T ′

5(y)| ≤ T5 implied by the inequality chx
2 ≥ 1. Note that here, as

above, we take y = 1
log g . To prove the statements on T ′

i (y) for i = 3, 4 and

7 it is sufficient to notice that T ′
3(0) = n log 2

2g , T ′
4(0) = r1

g (π
4 − 1

2 ), which is an

elementary calculation of integrals, T ′
7(0) = 2

∑

q
φq log q

∑∞
m=1(q

m + 1)−1, and

that |T ′
i (y) − T ′

i (0)| ≤ Ti for i = 3, 4, 7, which follows from the same inequality
ch x

2 ≥ 1 as well. 2

We shall also present the following weaker result, proved by Y.Ihara [12]
for the case of unramified towers. It is sometimes easier to calculate with (cf.
the proof of Theorem 9.7), and has a nice interpretation in terms of the limit
zeta-function (cf. Remark 4.3).

Proposition 3.2 (Basic Inequality′′). For any asymptotically exact family
of number fields one has

∑

q

φq log q

q − 1
+ (γ/2 + log 2

√
π)φR + (γ + log 2π)φC ≤ 1 .

Note that archimedean coefficients are

α′′
R := γ/2 + log 2

√
π ≈ 1.554..., and α′′

C := γ + log 2π ≈ 2.415... .

Proof. To prove the result one uses Stark’s formula (cf. [20], p. 120)

log |D| = r1(log π − ψ(s/2)) + 2r2(log(2π) − ψ(s)) − 2

s
− 2

s− 1

+2
∑

ρ

′ 1

s− ρ
+ 2

∑

P

∞
∑

m=1

N(P )−ms logN(P ) ,

where in the first sum ρ runs over the zeroes of ζK(s) in the critical strip, and
∑′

means that the ρ and ρ̄ are to be grouped together, while the external sum in
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the double sum is taken over all prime divisors P of K, and ψ(s) = Γ′(s)/Γ(s).
We then apply this formula to K = Kj for s = 1 + 1√

gj
, where as usual gj =

log
√

|Dj |, and divide it by 2gj. We get

1 =
r1
2gj

(log π − ψ(s/2)) +
r2
gj

(log 2π − ψ(s)) − 1
√
gj(1 +

√
gj)

− 1
√
gj

+
1

gj

∑

ρ

′ 1

s− ρ
+

1

gj

∑

P

∞
∑

m=1

N(P )−ms logN(P ).

When gj grows, the first two terms tend, respectively, to α′′
RφR and α′′

CφC

since ψ(1
2 ) = −γ − log 4 and ψ(1) = −γ; the third and the forth terms tend

to zero, the fifth being positive, and the last term tends to
∑

q

φq log q
q−1 , which

finishes the proof. 2

Proposition 3.2 ameliorates Stark’s inequality

α′′
R
φR + α′′

CφC ≤ 1.

4 Zeta function

We define the limit zeta function of an asymptotically exact family K as

ζK(s) = ζφ(s) :=
∏

q

(1 − q−s)−φq ,

and its completed limit zeta function as

ζ̃K(s) = ζ̃φ(s) := es2−φRπ−sφR/2(2π)−sφCΓ(
s

2
)φRΓ(s)φC

∏

q

(1 − q−s)−φq

in the number field case, and

ζ̃K(s) = ζ̃φ(s) := rs
∏

q

(1 − q−s)−φq

in the function field case; q runs over all prime powers in the number field case
and over powers of r in the function field case. As usual, by raising to a complex
power a function in s defined for Re s > a ≥ 0 and such that its values are real
positive for real s > a, we mean unique analytic continuation of what is real
positive for real s. For an expression (1 − q−s)−φq this is the same as to take
the value given by the binomial series.

Note that our definition of ζ̃φ slightly differs in the function field case from

that of [36]. Note also that ζφ(s) and ζ̃φ(s) depend only on φ = {φα} and do
not depend on the particular sequence of global fields.

GRH Proposition 4.1. For any asymptotically exact family of global fields
the product defining ζφ (and ζ̃φ) converges absolutely in the closed half-plane
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Re(s) ≥ 1
2 , and defines an analytic function in Re(s) > 1

2 . In the function field
case the result is unconditional.

Proof. The product converges absolutely if and only if the series

∑

q

φq log | 1

1 − q−s
|

does, but for Re(s) ≥ 1/2 one has

∑

q

φq log | 1

1 − q−s
| ≤

∑

q

φq log
1

1 − q−1/2
,

which in its turn converges, since, starting from some q,

φq log
1

1 − q−1/2
≤ φq log q√

q − 1
,

and the series
∑

q

φq log q√
q − 1

converges by GRH Theorem 3.1. 2

Remark 4.1. In fact since the coefficients of the Dirichlet series correspond-
ing to ζφ are positive and ζφ(1/2) is finite, the product converges absolutely for
Re(s) > 1

2 − ε(φ), where ε(φ) depends on how large φq are. It can even hap-

pen that ζ̃φ(s) is an entire function. For asymptotically bad families we have

ζ̃φ(s) = es or rs depending on the case under consideration. In fact, we do not
know a single example of an infinite global field for which the product does not
converge in the half-plane Re(s) > 0; note also that the archimedean factors are
analytic in this half-plane.

Let now
ξφ(s) := (log ζ̃φ)′ = ζ̃′φ/ζ̃φ =

1 − φR

2
log π − φC log 2π +

1

2
φRψ(

s

2
) + φCψ(s) −

∑

q

φq
log q

qs − 1

in the number field case (where, as before, ψ(s) = Γ′

Γ (s) ), and

ξφ(s) := (logr ζ̃φ)′ =
1

log r

(

ζ̃′φ

ζ̃φ

)

= 1 −
∞
∑

m=1

mφrm

rms − 1

in the function field case.
Then one can express the Basic Inequality (GRH Theorem 3.1 and Theorem

3.2) as
ξφ(1/2) ≥ 0 ,

and the Generalized Brauer–Siegel Theorem (GRH Theorem 7.2 and Theorem
7.3 below) either as

lim
i→∞

log hiRi

gi
= log ζ̃φ(1),
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or as

lim
i→∞

log κi

gi
= log ζφ(1),

where κi is the residue of ζKi(s) at 1. The function field case of the Generalized
Brauer–Siegel Theorem reads either as

lim
i→∞

logr hi

gi
= logr(ζ̃φ(1))

or as

lim
i→∞

logr κi

gi
= logr(ζφ(1)) .

Unconditionally, we have
Proposition 4.2. a) For any asymptotically exact family of global fields

the product defining ζφ (and ζ̃φ) converges absolutely in the closed half-plane
Re s ≥ 1 , and defines an analytic function in Re s > 1 .

b) For Re s > 1 we have the pointwise limits

ζ0
φ(s) = lim

j→∞
ζKj (s)

1/gj ,

ζ̃φ(s) = lim
j→∞

ζ̃Kj (s)
1/gj ,

where ζ̃Kj (s) is the completed zeta-function defined by

ζ̃Kj (s) =| Dj |s/2 2−r1(Kj)π−sr1(Kj)/2(2π)−sr2(Kj)Γ(s/2)r1(Kj)Γ(s)r2(Kj)ζKj (s)

in the number field case, and by

ζ̃Kj (s) = rs(g−1)ζKj (s)

in the function field case. For any ε > 0 the convergence is uniform in the half-
plane Re s > 1 + ε (and, thus on compact subsets in the half-plane Re s > 1).

c) Let s0 > 1, s0 6= 2, 4, be a real number such that the limit

lim
j→∞

ζ̃Kj (s0)
1/gj

exists for some family {Kj}. Then the family is asymptotically exact.
Proof. The proof of a) is the same as that of GRH Proposition 4.1, but in

place of GRH Theorem 3.1 we use Proposition 3.2.
Let us prove b). The proof is essentially the same as in the function fields case

considered in [36]. Let Kj be a field from our family. Note that it is sufficient to
consider the case of real s, since | ζKj (x)

1/g/ζφ(x) − 1 |≤| ζKj (s)
1/g/ζφ(s) − 1 |

if x = s+ it with s > 1 (look at the corresponding Dirichlet series). For a real
s > 1 we have

ζKj (s)
1/g/ζφ(s) =

∏

q

(1 − q−s)Nq(Kj)/gj−φq .
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Let g0 be a positive integer such that for any q ≤ M (here M is a positive
integer to be specified below) one has |φq −Nq(Kj)/gj| ≤ δ1 for gj ≥ g0, where
a real positive δ1 is also to be specified. Then we have

∏

q≤M

(1 − q−s)δ1 ≤
∏

q≤M

(1 − q−s)Nq(Kj)/gj−φq ≤
∏

q≤M

(1 − q−s)−δ1 .

For any s ≥ 1 + ǫ the product
∏

q≤M (1 − q−s) satisfies the inequalities

FM (ǫ)−1 ≤
∏

q≤M

(1 − q−s) ≤ FM (ǫ)

for some real FM (ǫ) > 1. Thus

FM (ǫ)−δ1 ≤
∏

q≤M

(1 − q−s)Nq(Kj)/gj−φq ≤ FM (ǫ)δ1 .

Let us now estimate the “tail”
∏

q≥M+1(1 − q−s)Nq(Kj)/gj−φq .
We show first that always |Nq(Kj)/gj − φq | ≤ 3q for sufficiently large q.

Indeed, in the function field case we have

Nq(Kj)/gj ≤ q + 1 + 2gjq
1/2

gj
≤ 2q

and φq ≤ (q1/2 − 1)/m < q1/2 by the Basic Inequality, which proves the asser-
tion in this case. In the number field case Nq(Kj) ≤ nj = degKj ≤ const ·gj

and thus Nq(Kj)/gj is bounded by a constant; on the other hand the uncon-
ditional Basic Inequality implies that φq < q, which proves the assertion (with
much room to spare) in the number field case.

The assertion implies that the tail lies between

G(ǫ,M) =

∞
∏

q≥M+1

(

1 − q−(1+ǫ)
)3q

and its inverse.

Since (1 − q−(1+ǫ))3q =
(

(1 − q−(1+ǫ))3q(1+ǫ))q−ǫ

and (1 − q−(1+ǫ))3q(1+ǫ)

tends to e−3 for q → ∞ we get the tail to be between C exp
( ∞

∑

q≥M+1

q−ǫ
)

and

its inverse for any C > 1, s ≥ 1 + ǫ, and M sufficiently large. Choosing C and

δ1 such that FM (ǫ)δ1 ≤
√

1 + δ and M such that C exp
( ∞

∑

q≥M+1

q−ǫ
)

≤
√

1 + δ,

we get the result.
Let us prove c). Let us suppose that the family is not asymptotically exact;

it means that there exists α such that the sequence Nα(Kj)/gj has at least
two different limit points, which we denote φ′α and φ′′α. We can choose two
asymptotically exact subfamilies K′ and K′′ of our family such that φβ(K′) =
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φβ(K′′) for all β 6= α and φα(K′) = φ′α, φα(K′′) = φ′′α. Then using b) we see

that our condition implies (fα(s0))
φ′

α = (fα(s0))
φ′′

α where fα is the factor in the
product defining ζ̃φ, corresponding to α. Since fα(s0) 6= 1 for s0 6= 2, 4 (for
non-archemedean factors this is true for any s0, but for the gamma factors one
needs to throw out the values s0 = 2, 4) we get the result. 2

Remark 4.2. Let us sketch briefly another way to prove Proposition 4.2, b.
Each ζKj (s)

1/gj can be expressed as an ordinary Dirichlet series
∑∞

m=1 aj(m)m−s

convergent for Re(s) > 1 if the terms in the Euler product, raised to the 1/gj

power are expanded using the binomial theorem. For each fixed m ≥ 1 the
sequence aj(m), j = 1, 2, . . ., goes to a limit as j → ∞.

Remark 4.3. Proposition 3.2 can be rewritten as ξφ(1) ≥ 0.
Remark 4.4. Part b) of Proposition 4.2 shows in which sense the sequence

of zeta-functions of an asymptotically exact family of global fields tends to the
limit zeta-function.

Remark 4.5. The definition of ζ̃φ(s) in the number field case is chosen on
the one hand so as to write the Basic Inequality and the Generalized Brauer–
Siegel Theorem in the shortest possible way, and on the other hand so that it
is the natural analogue of the function

ζ̃K(s) = |D|s/22−r1π−sr1/2(2π)−sr2Γ(s/2)r1Γ(s)r2ζK(s)

which is invariant under s 7→ 1 − s. Note however, that the condition to be
invariant under s 7→ 1 − s does not change if the function is multiplied by a
constant, and our function ζ̃K(s) differs from the function ΛK(s) used in [16]
by the factor 2−r1 . The above formulae strongly suggest our normalization to
be the natural one.

Remark 4.6. Comparing the definitions and results for the number field
case and for the function field one, we conclude that the “ground field” of a
number field “is” of cardinality e ≈ 2.718281828459045...

5 Zeta zeroes and the explicit formula

We are going to study the asymptotic distribution of zeroes of ζK for gK tending
to infinity. We start with number fields and suppose GRH to hold. Note that
in the case of asymptotically bad families this result was essentially obtained in
[15].

5.1 Number field case

Let us recall several standard notions and facts from the theory of distributions
(cf. [28]). Let S = S(R) be the space of complex valued infinitely differentiable
functions on R which are rapidly (i.e., faster than any polynomial) decreasing
together with all their derivatives. This vector space is naturally equipped with
a standard topology, so that the Fourier transform is a topological automor-
phism of S. Its topological dual S′ is called the space of tempered distributions.
By duality, the Fourier transform is also defined on S′ and it is also a topological
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automorphism there. The space S′ is contained in the space D′ of all distribu-
tions, which is the topological dual of the space D of complex valued infinitely
differentiable functions with compact support on R. The space of measures
M is the topological dual of the space of complex valued continuous functions
with compact support on R. Of course, M ⊂ D′. The space of measures M
contains the cone of positive measures M+, i.e., of those measures whose value
at a positive real-valued function is positive. The space of distributions D′ also
contains the cone of positive distributions D′

+. It is known that D′
+ = M+ (cf.

[28], Thm.V of Ch.I). The intersection Msl = M ∩ S′ is called the space of
measures of slow growth. The criterion for a measure to be of slow growth is
that for some positive integer k the integral

Ik =

∫ ∞

−∞
(x2 + 1)−kdµ

converges (cf. [28], Thm.VII of Ch.VII).
Let F = {Kj} be an asymptotically exact family of number fields. For each

Kj we define the measure

∆Kj :=
π

gj

∑

ζKj
(ρ)=0

δt(ρ) ,

where gj := gKj , t(ρ) = (ρ − 1
2 )/i, and ρ runs over all non-trivial zeroes of the

zeta-function ζKj (s); here δa denotes the atomic (Dirac) measure at a. Because
of GRH t(ρ) is real, and ∆Kj is a discrete measure on R. Moreover, ∆Kj is a
measure of slow growth, which follows, e.g., from the Weil Explicit Formula (see
the proof of GRH Theorem 5.1 below).

Now we are ready to formulate the main result of this section, expressing
the limit distribution of zeta zeroes in terms of the parameters φ = {φα} of the
asymtotically exact family.

GRH Theorem 5.1 (GRH Explicit Formula). For an asymptotically exact
family K, in the space of measures of slow growth on R the limit

∆ = ∆K := lim
j→∞

∆Kj

exists. Moreover, the measure ∆ has a continuous density Mφ ,

Mφ(t) = Re

(

ξφ

(

1

2
+ it

))

=

1−
∑

q

φqhq(t) log q+
1

2
φR Reψ

(

1

4
+
it

2

)

+φC Reψ

(

1

2
+ it

)

−φR

2
log π−φC log 2π

where

hq(t) =

√
q cos(t log q) − 1

q + 1 − 2
√
q cos(t log q)

, ψ(s) =
Γ′

Γ
(s) .
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Remark 5.6. This density depends only on the parameters φ = {φα}.
GRH Corollary 5.1 (GRH Basic Equality). We have

∑

q

φq log q√
q − 1

+ φR(log
√

8π +
π

4
+
γ

2
) + φC(log 8π + γ) = 1 −Mφ(0) ,

in other words, the deficiency

δK = ξφ(
1

2
) = Mφ(0) .

Proof of GRH Corollary 5.1. Put t = 0 in the formula for Mφ(t).2
Proof of GRH Theorem 5.1. Here is the strategy of the proof: First we

are going to prove that ∆ exists as a limit in S′, therefore, being positive, it
lies in Msl,+ = S′

+. The next point is to show that this measure is absolutely
continuous, i.e., of the form F (t)dt; to do it we have to prove that neither
skyscraper, nor singular component occurs. Then we shall compare this measure
∆ = F (t)dt with the measure ∆0 = Mφ(t)dt of the theorem: we first show that
they coincide on the set of some specific functions Hy,a(t), and then that this is
enough for the measures to be equal.

We begin by proving that ∆ is well-defined as a tempered distribution. We
are going to use the Weil Explicit Formula in the form presented in [24], Section
1. We use the notation of Section 3; here we suppose that F ∈ S(R), and that
it satisfies the condition

F (x), F ′(x) ≤ ce−(1/2+ε)|x| as |x| → ∞. (∗)

Note that for s = 1
2 + it

Φ(s) :=

∫ ∞

−∞
F (x)e(s−1/2)xdx = F̂ (t) ,

where

F̂ (t) =

∫ ∞

−∞
F (x)eitxdx ∈ S(R)

is the Fourier transform of F.
The abovementioned Weil Explicit Formula reads as follows:
Let K be a number field, then the limit

∑′
Φ(ρ) := lim

T→∞

∑

|ρ|<T

Φ(ρ) = lim
T→∞

∑

| 1
2
+it|<T

ζK( 1
2
+it)=0

F̂ (t)

exists, where in the sum ρ runs over the set of zeroes of ζK(s) on the critical
line Re(s) = 1/2 (which is supposed to be the set of all critical zeroes of ζK(s) ),
and we have the following formula:
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∑′
Φ(ρ) − Φ(0) − Φ(1) = F (0)(log |DK | − r1 log π − 2r2 log 2π)

−
∑

P

∞
∑

m=1

N(P )−m/2[F (m logN(P )) + F (−m logN(P ))] logN(P )+

r1
2π

∫ ∞

−∞

F̂ (t) + F̂ (−t)
2

Reψ

(

1

4
+
it

2

)

dt+
r2
π

∫ ∞

−∞

F̂ (t) + F̂ (−t)
2

Reψ

(

1

2
+ it

)

dt ,

where the external sum is taken over all primes P of K, and N(P ) denotes the
absolute norm of P .

This is exactly the formula of [24], Section 1. We apply the formula only to
functions from S(R) which clearly satisfy the other conditions of the theorem
of [24], Section 1. Though there the function F is assumed to be even, we can

apply the result to any function F from S(R), replacing it by F (t)+F (−t)
2 .

One can rewrite the sum

∑

P

∞
∑

m=1

N(P )−m/2[F (m logN(P )) + F (−m logN(P ))] logN(P )

as
∑

q

Nq(K)

∞
∑

m=1

q−m/2[F (m log q) + F (−m log q)] log q,

the sum being taken over all prime powers q.
Let D̂ ⊂ S be the Fourier dual of D; it is a dense subspace of S (since D is

dense in S). Let K = Kj be a field from our family. Take any f ∈ D̂ and let

f = F̂ , F ∈ D. We have f(t) = Φ(1
2 + it). The function F satisfies the above

condition (*), and, dividing by 2gKj = log |DKj |, we get:

∆Kj (f) =
π

gKj

∑′

ζK( 1
2+it)=0

f(t) =

2π

(

Φ(0) + Φ(1)

2gKj

+ F (0)

(

1 − r1
2gKj

log π − r2
gKj

log 2π

))

−2π

(

∑

q

Nq(Kj)

2gKj

∞
∑

m=1

q−m/2[F (m log q) + F (−m log q)] log q

)

+

r1
2gKj

∫ ∞

−∞

f(t) + f(−t)
2

Reψ

(

1

4
+
it

2

)

dt+
r2
gKj

∫ ∞

−∞

f(t) + f(−t)
2

Reψ

(

1

2
+ it

)

dt .

If we fix f and tend j to infinity then the right hand side tends to

∆(f) := 2πF (0)

(

1 − φR

2
log π − φC log 2π

)
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−π
∑

q

φq

∞
∑

m=1

q−m/2[F (m log q) + F (−m log q)] log q+

φR

2

∫ ∞

−∞

f(t) + f(−t)
2

Reψ

(

1

4
+
it

2

)

dt+φC

∫ ∞

−∞

f(t) + f(−t)
2

Reψ

(

1

2
+ it

)

dt ,

since the family is asymptotically exact. This shows the existence of the limit

∆(f) = lim
j→∞

∆Kj (f)

for any f ∈ D̂. The map f 7→ ∆(f) is obviously linear. Thus in order to prove
that ∆ is a tempered distribution it is sufficient to verify that ∆ is continuous
on D̂ in the topology of S, since D̂ is dense in S. Let now {fi}, i = 1, 2, ..., be
a sequence with fi ∈ D̂ tending to zero in the topology of S. Since the Fourier
transform is a topological automorphism of S, we conlude that the sequence
{Fi}, where fi = F̂i, tends to zero as well. In particular, both sequences {fi}
and {Fi} tend to zero uniformly. Let us then show that ∆ is continuous. Indeed,

∆(fi) = T1(fi) − T2(fi) + T3(fi) + T4(fi) ,

where

T1(fi) = 2πFi(0)

(

1 − φR

2
log π − φC log 2π

)

= δ(f̂i)

(

1 − φR

2
log π − φC log 2π

)

,

T2(fi) = π
∑

q

φq

∞
∑

m=1

q−m/2[Fi(m log q) + Fi(−m log q)] log q ,

T3(fi) =
φR

2

∫ ∞

−∞

fi(t) + fi(−t)
2

Reψ

(

1

4
+
it

2

)

dt ,

and

T4(fi) = φC

∫ ∞

−∞

fi(t) + fi(−t)
2

Reψ

(

1

2
+ it

)

dt .

The term T1(fi) is clearly continuous as well as the terms T3(fi) and T4(fi),
since the measures Reψ

(

1
2 + it

)

dt and Reψ
(

1
4 + it

2

)

dt are of slow growth (cf.
[16], XVIII.1). To prove the continuity of T2(fi) one notes that from the GRH
version of the Basic Inequality (GRH Theorem 3.1 above) it follows that

T2(fi) ≤ 2π sup
x∈R

|Fi(x)|

which finishes the proof of the continuity of ∆.
Thus we see that ∆ is a tempered distribution, ∆ ∈ S′. Note that by its very

definition this distribution is positive, i.e., ∆(f) is real non-negative for a real
non-negative f ∈ S(R). Since any positive distribution is a (positive) measure,
one concludes that ∆ is a measure of slow growth. Then we have to show that
∆ = Mφdx. To do that we need the following lemmata.
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For any a ∈ R and any y > 0 let us define the function Hy,a(x) ∈ S(R)

Hy,a(x) :=
1

2
√
πy

exp(
−(a− x)2

4y
)

so that

Fy,a(x) =
Ĥy,a(x)

2π
:=

1

2π
exp(−yx2 + iax).

Lemma 5.1. We have

lim
y→+0

∆(Hy,a) = Mφ(a) .

Note that for y tending to zero the function Hy,a tends to δa in the sense of
distributions, where δa is the Dirac measure concentrated in a.

Lemma 5.2. Let µ be a positive mesure on R such that for any a ∈ R one
has

lim
y→+0

µ(Hy,a) = M(a) (2)

with a function M continuous on R. Then µ = M(x)dx.
One notes that the theorem follows from these two lemmata. Let us now

prove them.
Proof of Lemma 5.1. Let us apply the explicit formula to f = Hy,a. Since

Hy,a is even, we get

∆Kj (Hy,a) =
π(Hy,a(0) +Hy,a(1))

gKj

+2πFy,a(0)

(

1 − r1
2gKj

log π − r2
gKj

log 2π

)

−

∑

q

Nq(Kj)

2gKj

∞
∑

m=1

q−m/2[Ĥy,a(m log q) + Ĥy,a(−m log q)] log q+

r1
2gKj

∫ ∞

−∞
Hy,a(t)Reψ

(

1

4
+
it

2

)

dt+
r2
gKj

∫ ∞

−∞
Hy,a(t)Reψ

(

1

2
+ it

)

dt .

Since
∆(Hy,a) = lim

j→∞
∆Kj (Hy,a),

2πFy,a(0) = 1,

we get

∆(Hy,a) = 1−φR

2
log π−φC log 2π−1

2

∑

q

φq log q

∞
∑

m=1

q−m/2e−y(m log q)2(qiam+q−iam)+

φR

2

∫ ∞

−∞
Hy,a(t)Reψ

(

1

4
+
it

2

)

dt+ φC

∫ ∞

−∞
Hy,a(t)Reψ

(

1

2
+ it

)

dt .
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Let us tend y to zero. Then the expression e−y(m log q)2(qiam + q−iam) tends to
qiam + q−iam = 2 cos(am log q) and thus

1

2

∑

q

φq log q
∞
∑

m=1

q−m/2e−y(m log q)2(qiam + q−iam) →
∑

q

φqhq(a) log q ,

since hq(a) =
∑∞

m=1 q
−m/2 cos(am log q). Since Hy,a(t) tends to δa in the space

M, and Reψ
(

1
4 + it

2

)

is a C∞-function, Hy,a(t)Reψ
(

1
4 + it

2

)

tends to
δa Reψ(1

4 + ia
2 ), and thus

φR

2

∫ ∞

−∞
Hy,a(t)Reψ

(

1

4
+
it

2

)

dt → φR

2
Reψ

(

1

4
+
ia

2

)

for y tending to zero. A similar argument shows that the term

φC

∫ ∞

−∞
Hy,a(t)Reψ

(

1

2
+ it

)

dt → φC Reψ

(

1

2
+ ia

)

for y → 0, which finishes the proof.2
Proof of Lemma 5.2. Since µ is a positive measure one can write µ = dG for

a non-decreasing function G, and the standard decomposition G = G0+G1+G2

with absolutely continuous G0, singular G1 and a jump-function G2 (cf. [13]
Ch. VI, section 4) shows that µ = dG = dG0 + dG1 + dG2. Let us prove that
the property (1) implies G2 = G1 = 0. Indeed, it is sufficient to show that

∫

Hy,a(t)dGi, i = 1, 2

cannot be bounded for y → +0. For G2 it is almost obvious, since

dG2 =
∑

n

snδtn ,

where
G2(t) =

∑

n:tn≤t

sn,

and δtn is the Dirac measure at tn. If G2 6= 0, i.e., if the sum is non-empty, let
si > 0 and consider

∫

Hy,ti(t)dG2 =
∑

n

snHy,ti(tn) ≥ siHy,ti(ti) =
si

2
√
πy
,

which obviously tends to infinity for y → +0. Thus, G2 = 0. If G1 6= 0 then
there exist a, b ∈ R, a < b, with G1(a) < G1(b). Recall that since G1 is singular,
its derivative G′

1 is zero almost everywhere. Let us now show that there exists
x0 ∈ [a, b] such that

lim sup
ε→+0

G1(x0 + ε) −G1(x0 − ε)

ε
= ∞. (2)
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Indeed, if
G1(x0 + ε) −G1(x0 − ε)

ε
≤M

for any x0 ∈ [a, b] and any ε > 0 then one can cover the set Supp G1

⋂

[a, b] by
the union of a countable set of intervals (ai, bi) with

∑

i(bi − ai) < ε (which is
possible since the Lebesgue measure of Supp G1

⋂

[a, b] is zero) and thus deduce
that

G1(b) −G1(a) ≤Mε

for any ε > 0, which would imply that G1(b) = G1(a). Let us fix x0 ∈ [a, b]
satifying the condition (2) and let us consider the value of

∫ ∞

−∞
Hε2,x0

(x)dG1.

Since for | x− x0 |≤ ε

Hε2,x0
(x) ≥ e−1/4

2
√
πε

,

we get

∫ ∞

−∞
Hε2,x0

(x)dG1 ≥
∫ x0+ε

x0−ε

Hε2,x0
(x)dG1 ≥ e−1/4

2
√
πε

(G1(x0 + ε) −G1(x0 − ε)),

and thus

lim sup
ε→+0

∫ ∞

−∞
Hε2,x0

(x)dG1 = ∞

which gives the desired contradiction and shows that G1 = 0.
Therefore, the measure µ is absolutely continuous, µ = D(t)dt for a non-

negative density function D(t). Then it is sufficient to show that D(t) = M(t)
almost everywhere. Indeed, it is sufficient to show that

∫ ∞

−∞
Hy,a(t)D(t)dt

tends to D(a) for y tending to zero for any point a at which D(t) is continuous.
If not, one supposes that, say,

F (a) := lim
y→0

∫ ∞

−∞
Hy,a(t)D(t)dt > D(a)

(if F (a) < D(a), the argument is the same). Let us choose ε > 0, δ > 0 such
that D(t) ≤ F (a) − ε for any t ∈ (a− δ, a+ δ). Then we have

∫ ∞

−∞
Hy,a(t)D(t)dt =

(

∫ a+δ

a−δ

+

∫ a−δ

−∞
+

∫ ∞

a+δ

)

Hy,a(t)D(t)dt.
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Since

1

2
√
πy

exp(
−(x− a)2

4y
) =

1

2
√
πy

exp(
−(x− a)2

8y
) · exp(

−(x− a)2

8y
)

=
√

2H2y,a(x) · exp(
−(x− a)2

8y
),

we see that

|
∫ a−δ

−∞
Hy,a(t)D(t)dt +

∫ ∞

a+δ

Hy,a(t)D(t)dt |≤

|
∫ ∞

−∞

√
2H2y,a(t)D(t)dt | e−δ2

8y

and thus tends to zero for y tending to zero. Therefore,

F (a) = lim
y→0

∫ ∞

−∞
Hy,a(t)D(t)dt = lim

y→0

∫ a+δ

a−δ

Hy,a(t)D(t)dt ≤

(F (a) − ε) lim
y→0

∫ a+δ

a−δ

Hy,a(t)dt ≤ (F (a) − ε) lim
y→0

∫ ∞

−∞
Hy,a(t)dt = F (a) − ε,

which gives a contradiction, and finishes the proof both of the lemma and the
theorem. 2

Remark 5.1. GRH Theorem 5.1 and GRH Corollary 5.1 gives a partial
answer to the following question of Odlyzko (Open Problem 6.2 of [20]):

Do the zeroes of ζK(s) in the critical strip approach the real axis as n→ ∞,
and if they do, how fast do they so, and how many of them are there?

Remark 5.2. Theorem 5.1 implies that zeta zeroes are asymptotically
uniformly distributed for any asymptotically bad family, e.g., for a family of
number fields of fixed absolute degree. This is the main result of [15].

5.2 Function field case

In the function field case, the analogue of Theorem 5.1 is also true. In [36] we
proved the Asymptotic Explicit Formula which gives the asymptotic distribution
law for Frobenius angles for asymptotically exact families of function fields, or,
which is the same, the limit distribution law for zeroes of their zeta-functions.
Let K = {Kj} be such a family. For a zero ρ of the zeta-function ζKj (s) let t(ρ)
be defined by

t(ρ) :=
ρ− 1

2

i
.

Clearly, t(ρ) is a real number (Weil’s theorem) defined modulo 2π, and we
suppose that t(ρ) ∈ (−π, π], which determines it uniquely.

Let
∆j :=

π

gj

∑

ζKj
(ρ)=0

δt(ρ),
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where δt(ρ) is, as usual, the Dirac measure supported at t(ρ). Then ∆j is
a measure of total mass 2π on R/2πZ, and ∆j is symmetric with respect to
t 7→ −t. Points of R/2πZ are given by their representatives in (−π, π].

Theorem 5.2. In the function field case, for an asymptotically exact family,
in the weak topology on the space of measures on R/2πZ the limit

∆ := lim
j→∞

∆j

exists. Moreover, the measure ∆ has a continuous density Mφ, and the following
Asymptotic Explicit Formula holds:

Mφ(t) = Re(ξφ(
1

2
+

i

log r
t)) = 1 −

∞
∑

m=1

mφrmhm(t)

for

hm(t) =
rm/2 cos(mt) − 1

rm + 1 − 2rm/2 cos(mt)
,

which depends only on the family of numbers φ = {φrm} and we have the fol-
lowing Basic Equality:

ξφ(
1

2
) = 1 −

∞
∑

m=1

mφrm

rm/2 − 1
= Mφ(0) .2

Remark 5.3. If one applies Asymptotic Explicit Formula to the case of the
maximal family K (i.e., with φr =

√
r − 1 and φrm = 0 for m ≥ 2) over Fr,

r = p2, given by the reductions of curves X0(n) to characteristic p, then, using
the Eichler-Shimura relation, one obtains a particular case (modular forms of
weight two) of Serre’s results on the asymptotic distribution of eigenvalues of
Hecke operators (cf. [30], especially Sections 3 and 7), namely:

Proposition 5.1. Let p be a fixed prime number, and let Xn ⊂ [−2, 2] for
a positive integer n coprime with p be the set of eigenvalues of the operators
T ′

p(n) = Tp(n)/
√
p, where Tp(n) is the Hecke operator acting on the space of

cusp forms of weight 2 and level n. Then for n → ∞ the set Xn becomes
equidistributed with respect to the measure

µp =
p+ 1

π
· p
√

1 − x2/4 dx

(p+ 1)2 − px2
.2

5.3 Lowest zeta-zero

Theorem 5.1 makes it possible to prove (under GRH) that the lowest zero of the
zeta-function of a global field tends to 1/2. Most probably, this result is known
to experts, but we have not found it in the literature (cf. however, [22]). Let us
denote this lowest zero by ρ0(K) = 1/2 + t0(K)i.
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GRH Proposition 5.2. For any family {Ki} of global fields

lim
g(Ki)→∞

t0(Ki) = 0.

Proof. Let us suppose the contrary:

lim inf
g(Ki)→∞

t0(Ki) = ε > 0.

Passing to a subsequence if necessary, one can suppose that there exists a se-
quence K1,K2, . . . with t0(Kj) ≥ ε for any j. Passing to a subsequence once
again we suppose that our sequence is asymptotically exact and thus we can
apply Theorems 5.1 and 5.2. The condition t0(Kj) ≥ ε implies that the corre-
sponding limit density Mφ identically vanishes on the interval (−ε, ε), which is
impossible since M ′′

φ (0) > 0 for φ 6= 0, and Mφ equals 1 identically for φ = 0
(note also that Mφ(0) > 0 if the deficiency of the family is positive).2

6 Further theory

In this section we discuss some directions of further study of infinite global
fields, and more generally, of asymptotically exact families. Most of the following
problems look very difficult, but some of them seem to be easier than the others,
and we hope to return to them elsewhere.

6.1 Structure of the parameter set

For an infinite global field K we have defined the sequence φK of parameters:

φK = (φR, φC, φ2, . . .)

for the number field case, and

φK = (φr, φr2 , φr3 , . . .)

for the function field one. We have shown that these sequences are sometimes
nontrivial (i.e., nonzero). Then it is natural to ask about the structure of pos-
sible parameters. We define the sets Φ and Φr in R∞ by

Φ = {φK : K an infinite number field},

Φr = {φK : K an infinite function field over Fr}.
We also introduce the sets Φ̃ ⊂ R∞ and Φ̃r ⊂ R∞ defined exactly as Φ and Φr ,
but for all asymptotically exact families. Clearly, {0} ∈ Φ ⊆ Φ̃, {0} ∈ Φr ⊆ Φ̃r.

Above considerations show that neither of these sets reduce to {0}. However,
their structure remains mysterious. Let us put some natural questions on this
structure, for brevity, only in the case of Φ; exactly the same questions are
equally interesting for the other three sets.
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Problem 6.1. Is Φ closed in some natural topology on R∞?
One can propose a natural class of topologies to consider. Let a = (aR, aC, a2, . . .)

be a sequence of positive real numbers indexed exactly as the sequences φ are.
Then one can define the weighted spaces lp,a with 1 ≤ p ≤ ∞ using the norm

|| x ||p,a:= (
∑

α

aα | x |p)1/p.

Our Basic Inequality says that Φ ⊆ l1,a with an appropriate sequence a
depending on the version of the Basic Inequality used.

Problem 6.2. Is Φ (relatively) compact in some natural topology on R∞?
Problem 6.3. Does Φ contain a non-empty open set in R∞? Is it convex?

Is it a restricted cone, i.e., does φ0 ∈ Φ imply µφ0 ∈ Φ for µ ∈ [0, 1]? Is it true
that Φ ⊂ l∞?

Problem 6.4. Show that the cardinality of Suppφ is unbounded on Φ where
Suppφ is the set of indices α with φα 6= 0. Does there exist φ ∈ Φ with infinite
Suppφ?

The last question is also related with the Unramified Fontaine-Mazur con-
jecture, see Subsection 6.3 below, and with the convergence abscissa for ζφ(s),
cf. Remark 4.1.

6.2 The deficiency problem

Since a complete description of the sets Φ̃ and Φ is, most probably, very difficult,
one can be also interested in possible values of the deficiency, which has his own
importance:

Problem 6.5. Does there exist an infinite global field K (an asymptotically
exact family) with zero deficiency δK?

If the answer is positive, one would like to have an explicit construction of
such a family. Note that the positive answer is known for function global fields
over Fr with a square r (it is given by appropriate infinite modular function
fields).

More generally, one can put the following
Problem 6.6. Describe the set of possible values of the deficiency for infinite

global fields (asymptotically exact families).
One can also be interested in properties of this set: whether it is closed,

convex (i.e., an interval), of positive measure, etc.
At the moment these problems seem to be inaccessible and we would like to

put a more modest question concerning amelioration of existing estimates for
δK .

Problem 6.7. Produce an example of an infinite global field K (or of an
asymptotically exact family) with the value δK as small as possible.

The best example known in the number field case is that of [8], with δK ≤
0.141...

In particular one should consider families with φq 6= 0 for at least one prime
power q. It looks promising to search for ramified towers K of number fields
with good values of δK to replace the class field towers of Section 9 below.
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6.3 Unramified Fontaine-Mazur conjecture

Let K be a number field, p a prime, let T be a finite set of primes of K,

none above p, and let G
(p)
K,T = Gal(K(p)

T ) be the Galois group of the maximal

algebraic pro-p extension K(p)
T of K unramified outside T . Then the unramified

Fontaine–Mazur conjecture reads
Any continuous representation

ρ : G
(p)
K,T → GLn(Zp)

has a finite image.

One can consider a just-infinite subextension L/K of K(p)
T , i.e., an exten-

sion which contains no proper infinite subextensions of K. Then Unramified
Fontaine-Mazur Conjecture is equivalent to the finiteness of the image for any
representation

ρ : Gal(L/K) → GLn(Zp)

for all just-infinite extensions L/K.
One says that a pro-p group is torsion-riddled if all its open subgroups have

torsion. N. Boston [1] put forth the following conjecture:
The Galois group Gal(L/K) is torsion-riddled for any just-infinite L.
This conjecture would imply the unramified Fontaine–Mazur conjecture and

it is ultimately connected with the following
Problem 6.8. Does there exist an infinite number field K for which the

set SK of prime powers q such that φq > 0 is infinite? If so, characterize such
families.

Boston’s conjecture would follow from
Conjecture 6.1. Let K be an infinite number field which is just-infinite

over K. Then SK is infinite.
Indeed, if it is the case, there exist in Gal(K/K) infinitely many Frobenius

elements of finite order.
Let us remark that Ihara (cf. [12], p. 695) conjectured the existence of an

unramified extension K with δK = 0 and infinite SK.

6.4 Around the asymptotic explicit formula

One easily sees that almost all GRH results of our paper have their unconditional
counterparts, with one notable exception, namely, GRH Theorem 5.1 (and its
consequences: GRH Corollary 5.1 and GRH Theorem 5.3). It is but natural to
pose

Problem 6.9. What are unconditional analogues of GRH Theorem 5.1.,
Corollary 5.1 and GRH Theorem 5.3?

At the moment we have no approach to this problem.
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6.5 Results specific for the function field case and corre-

sponding problems

In the function field case we have some specific results which do not yet have
their number field counterparts. Let us discuss some of them.

In this case we can get rather good estimates for the coefficients of zeta-
functions. More precisely, let

ZK(t) =
∞
∑

m=1

Dmt
m

for a function field K; one knows that Dm = Dm(K) is the number of positive
divisors of degree m. Then we have (cf. [36], Proposition 4.1 and Theorem 4.1)

Theorem 6.1. Let K = {Kj} be an asymptotically exact family of function
fields over Fr, and let

µ0 =

∞
∑

m=1

mφrm

rm − 1
= 1 − ξφ(1).

Then for any real µ > 0

lim
i→∞

D[µgi]

gi
= µ log Λ +

∞
∑

m=1

φrm log
Λm

Λm − 1
,

where Λ = Λ(µ) equals r for µ ≥ µ0, and is defined from the equation

∞
∑

m=1

mφrm

Λm − 1
= µ

for µ ≤ µ0.2
Moreover, one can get even more precise result for the ratio Dm/h. Let

hj = h(Kj) be the class number. Then (cf. [36], Theorem 5.1)
Theorem 6.2. Let K = {Kj} be an asymptotically exact family. Then for

any ε > 0 and any m with m/g ≥ µ1 + ε, we have

Dm(Kj)

hj
=
rm−g+1

r − 1
(1 + o(1))

for j → ∞, o(1) being uniform in m. Here µ1 = µ1(φ) is defined as the largest
of the two roots of the equation

µ

2
+ µ logr

µ

2
+ (2 − µ) logr(1 − µ

2
) = −2 logr ζφ(1).2

Note that the estimate of Theorem 6.2 is much more precise than that of
Theorem 6.1 (there we have an exponential o(1) instead of the multiplicative
one of Theorem 6.2).
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Problem 6.10. What is the number field counterpart of the above results
on the number of positive divisors?

It does not look likely that Theorem 6.2 has a proper number field analogue.
On the other hand, one can hope to obtain an analogue of Theorem 6.1. (Cf.
Lemma 7.5 below.)

In [36] we also cosidered the asymptotic behaviour of wm(K), the number
of classes of positive divisors of degree m. More precisely, let K = {Kj} be an
asymptotically exact family, and let

w(K, µ)inf := lim inf(w[µg](Kj))
1/gj ,

w(K, µ)sup := lim sup(w[µg](Kj))
1/gj

for a real number µ ∈ (0, 1). Clearly,

w(K, µ)inf ≤ w(K, µ)sup ≤ d(K, µ) = lim
D[µg](Kj)

hj
.

In [36] (Proposition 6.1 and Theorem 6.1, cf. also [38]) we proved that
for µ ∈ (0, 1/r) one has w(K, µ)inf = w(K, µ)sup = d(K, µ) and that for µ >
1/r the ratio w(K, µ)inf/d(K, µ) is bounded from below by r−φrRr(1−µ/φr) for
any asymptotic upper bound Rr for r-ary linear codes (recall that Rr(δ) is a
decreasing continuous function on [0, r−1

r ] with Rr(0) = 1, Rr(
r−1

r ) = 0).
Problem 6.11. Is it true that for any µ ∈ (0, 1) one has w(K, µ)inf =

w(K, µ)sup = d(K, µ) ?
The above results use geometric arguments, in particular, the construction

of algebraic geometry codes and have no evident number theory counterparts.

Part II

Around the Brauer–Siegel

Theorem

Part 1 was devoted to the general theory of infinite global fields and asymp-
totically exact families. In this Part we are considering a specific parameter of
these fields, which we call the Brauer–Siegel ratio.

For an asymptotically exact family K = {Ki} of global fields consider the
limits

BS(K) = lim
i→∞

log hiRi

gi

and

κ(K) = lim
i→∞

log κi

gi
.

Here hi is the class number, Ri the regulator, and κi the zeta-residue at s = 1.
We are going to show that these limits exist and depend only on the numbers
φ = {φα}. Therefore, BS(K) is well defined for an infinite global field K.
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Let us start with the function field case. It was treated in our papers [34]
and [36], therefore we do not present any proofs here. We set R = 1 and, of
course, φα can be nonzero only for α = rm, m = 1, 2, 3, . . ..

First of all we have (cf. [34], Corollary 2) the following Generalized Brauer–
Siegel Theorem:

For an asymptotically exact family of function fields over Fr we have

BS(K) = lim
i→∞

logr hi

gi
= 1 +

∞
∑

m=1

φrm logr

rm

rm − 1
.

We get the function field case analogue of the classical Brauer–Siegel theorem
in the asymptotically bad case (i.e., φα = 0 for any α). Then BS(K) = 1.

Next (cf. [34], theorem 5; [36], theorem 3.1) we have the following Bounds:
For any family of function fields over Fr we have

1 ≤ lim inf
i→∞

logr hi

gi
≤ lim sup

i→∞

logr hi

gi
≤ 1 + (

√
r − 1) logr

r

r − 1
.

We also know some partial existence results. Both bounds 1 and 1 + (
√
r −

1) logr
r

r−1 are attainable. The lower bound 1 is attained for any asymptotically

bad family, while 1+(
√
r−1) logr

r
r−1 is attained for any asymptotically maximal

family, i.e., such that φr =
√
r − 1 and φrm = 0 for all m 6= 1. Such families

(and even such towers) are known to exist for r being a square.
Another limit parameter κ(K) gives no new information in the function field

case, since κ(K) = BS(K) − 1.
In what follows we are going to present the number field analogues of these

results which happen to be much more complicated.

7 The Generalized Brauer–Siegel Theorem

In this section we prove a generalization of the Brauer–Siegel theorem and
present some corollaries.

7.1 Statements

Theorem 7.1 (Generalized Brauer–Siegel Inequality). For an asymptotically
exact family of number fields one has

lim sup
i→∞

log(hiRi)

gi
≤ 1 +

∑

q

φq log
q

q − 1
− φR log 2 − φC log 2π,

lim sup
i→∞

log κi

gi
≤
∑

q

φq log
q

q − 1
,

the sum being taken over all prime powers q.
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This result is unconditional. Assuming GRH we get the equality.
GRH Theorem 7.2 (GRH Generalized Brauer–Siegel Theorem). For an

asymptotically exact family K of number fields the limits BS(K) and κ(K) exist
and we have

BS(K) := lim
i→∞

log(hiRi)

gi
= 1 +

∑

q

φq log
q

q − 1
− φR log 2 − φC log 2π,

κ(K) := lim
i→∞

log κi

gi
=
∑

q

φq log
q

q − 1
,

the sum being taken over all prime powers q.
If we restrict our attention to the case of almost normal towers, we can prove

the same unconditionally. To formulate the result we need one definition more.
Let K be a number field. We call K almost normal if there exists a finite

tower of number fields Q = K0 ⊂ K1 ⊂ . . . ⊂ Km = K such that all the
extension Ki/Ki−1 are normal. A family is called almost normal if all its fields
are. An infinite number field is called almost normal if it is a limit of an almost
normal tower.

Theorem 7.3 (Unconditional Generalized Brauer–Siegel Theorem). For an
asymptotically good tower K = {Ki}, K1 ⊂ K2 ⊂ . . . , of almost normal number
fields (in particular, for an infinite asymptotically good normal number field)
the limits BS(K) and κ(K) exist and we have

BS(K) := lim
i→∞

log(hiRi)

gi
= 1 +

∑

q

φq log
q

q − 1
− φR log 2 − φC log 2π,

κ(K) := lim
i→∞

log κi

gi
=
∑

q

φq log
q

q − 1
,

the sum being taken over all prime powers q.
Remark 7.1. The classical Brauer–Siegel theorem claims that (subject to

its conditions) κ(K) = 0. An upper bound for κ(K) was given by Hoffstein [10].
We shall ameliorate on his bound below (Remark 8.2).

7.2 Proofs

Proof of Theorems 7.1, 7.2 and 7.3. We begin with the inequality of Theorem
7.1 which does not require additional conditions. Passing to a subfamily we can
suppose that there exits the limit (may be, infinite)

lim
i→∞

log(hiRi)

gi
.

For any real s > 1 and any K we have

ζK(s) =
κK

s− 1
FK(s) ,
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κK being the residue of ζK(s) at 1 and FK(s) being an analytic function in a
neighbourhood of 1 with FK(1) = 1. This is just a way to write the residue.

Let us first remark that

log κKj

gj
−→ lim

j→∞

log(hjRj)

gj
− 1 + φR log 2 + φC log 2π .

To see this, start with the standard formula

κK =
2r1(2π)r2(hKRK)

wK

√

|DK |
.

For gj = log
√

|DKj | → ∞, i.e., for j → ∞, its logarithm gives exactly what we
want, if we note that logwKj/ log |DKj | → 0 since wKj ≤ cn2

Kj
for an absolute

constant c (cf. e.g., [16], proof of Lemma 1 of XVI.1).
Let us put s = 1 + θ with θ = θj > 0 being a small positive real number, its

dependence on j to be specified later. Taking the logarithm of

ζKj (s) =
κKj

s− 1
FKj (s)

and dividing by gj we get

log ζKj (1 + θj)

gj
=

log κKj

gj
+

logFKj (1 + θj)

gj
− log θj

gj
.

If j → ∞ then, to prove the theorem, it suffices to show that for a proper choice
of θj the following three points are satisfied:

(i)
log ζKj (1 + θj)

gj
−→

∑

q

φq log
q

q − 1
;

(ii)
log θj

gj
−→ 0;

(iii)

lim inf
logFKj (1 + θj)

gj
≥ 0.

Let us first look at (i). We have

ζKj (1 + θ) =
∏

q

(1 − q−1−θ)−Nj(q)

for any θ > 0, where Nj(q) is the number of places of Kj with the norm q. Let

fj(θ) =
log ζKj (1 + θ)

gj
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and

f(θ) :=
∑

q

φq log
1

1 − q−1−θ
.

Taking logarithms and dividing by gj we get

fj(θ) =
∑

q

Nj(q)

gj
log

1

1 − q−1−θ
,

thus fj(θ) → f(θ) uniformly for θ ≥ θ0 > 0 by definition of φq, Nj(q)/gj being

bounded by an absolute constant and
∑

q

Nj(q)
gj

log 1
1−q−1−θ converging for θ > 0.

Moreover,

f(θ) −→
∑

q

φq log
q

q − 1
for θ → 0 ,

the series
∑

q
φq log q

q−1 being convergent (the series
∑

q

φq log q
q−1 which is at most

1 by Proposition 3.2 provides an upper bound for it).
Then we choose a decreasing sequence θ(N) > 0 in such a way that

|f(θ(N)) −
∑

q

φq log
q

q − 1
| < 1/2N ,

and we can also choose an increasing sequence j(N) such that gj(N) ≥ 1
θ(N) and

also such that for any θ ∈ [θ(N + 1), θ(N)] we have

|f(θ) − fj(N)(θ)| < 1/2N.

This is possible since gj → ∞ and fj(θ) → f(θ) uniformly for θ ≥ θ(N + 1).
Then let N = N(j) be given by j(N) ≤ j ≤ j(N +1)− 1 and put θj = θ(N(j));
note that N(j) → ∞. We see that

|fj(θj) −
∑

q

φq log
q

q − 1
| < 1/N(j) −→ 0

which proves (i). We also get (ii) for granted since 1/gj ≤ 1/gj(N) ≤ θj and
hence log θj/gj → 0.

For (iii), keeping in mind that
(

log ζKj
(s)

gj

)′
=
∑

P

∑∞
m=1 r

−ms log r, we

rewrite Stark’s formula

log |D| = r1(log π − ψ(s/2)) + 2r2(log(2π) − ψ(s)) − 2

s
− 2

s− 1

+2
∑

ρ

′ 1

s− ρ
+ 2

∑

P

∞
∑

m=1

r−ms log r,

for s = 1 + θ as
(

log ζKj (1 + θ) + log θ

gj

)′
= −1 +

r1
2gj

(log π − ψ(
1 + θ

2
))
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+
r2
gj

(log 2π − ψ(1 + θ)) − 1

(1 + θ)gj
+
∑

ρ

′ 1

(1 + θ − ρ)gj
,

which shows that the derivative
(

logFKj (1 + θ)

gj

)′
=

(

log ζj(1 + θ) + log θ

gj

)′

is bounded from below by −2 for any small enough θ since all the terms except
−1 and − 1

(1+θ)gj
are positive. Thus

logFKj (1 + θj)

gj
≥ cθj −→ 0 ,

which proves (iii). Summing up, we get an unconditional proof of the desired
inequality

lim
i→∞

log(κi)

gi
≤
∑

q

φq log
q

q − 1

and the corresponding one for lim log(hiRi)
gi

, i.e., that of Theorem 7.1.

To prove Theorem 7.2 one supposes GRH. In fact, it is sufficient to prove
that

(iii)′

lim inf
logFKj (1 + θj)

gj
≤ 0.

To do this we shall use the following GRH lemma.
GRH Lemma 7.1. For any asymptotically exact family of number fields

the function

Zj(s) :=
−(log(ζKj (s))

′ − 1/(s− 1)

gj

tends for j → ∞ to

Zφ(s) :=
∑

q

φq
log q

qs − 1

uniformly on Re(s) ≥ 1/2 + δ for any δ > 0.
In fact, Lemma 7.1 is the key lemma of Ihara’s paper ([12], p. 698), where

it is proved in the special case of an unramified tower; his proof stays mostly
valid in our situation as well, nevertheless we present it here.

Proof of Lemma 7.1. Note first of all, that the series defining Zφ(s) converges
uniformly on Re s ≥ 1. Indeed, it is bounded from above by

∑

q

φq
log q

q − 1
≤ 1.

If one assumes GRH, the series becomes uniformly convergent and hence analytic
on Re s > 1/2, since it is the case for

∑

q

φq
log q√
q − 1

≤ 1.
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Let us consider a presentation of Zj(s) and Zφ as Mellin transforms of Cheby-
shev step functions. We have a well-known and easy to prove formula (cf. [12],
eq. 5-5 and 5-6) valid for Re s > 1:

s−1Zj(s) =
1

gj

∫ ∞

1

(Gj(x) − x)x−s−1dx ,

where
Gj(x) :=

∑

P, m≥1
N(P)m≤x

logN(P ) =
∑

q, m≥1
qm≤x

Nq(Kj) log q

is the Chebyshev step function for the field Kj, and the first sum is taken over
all prime divisors P of the field Kj.

Similarly, for Zφ we get for Re(s) > 1

s−1Zφ(s) =

∫ ∞

1

H(x)x−s−1dx,

where H(x) is an asymptotic analogue of Gj(x):

H(x) =
∑

q, m≥1
qm≤x

φq log q.

Now we use the Lagarias-Odlyzko estimate for Gj(s) (which uses GRH, cf.
[14], Theorem 9.1):

|Gj(x) − x| ≤ C(nj

√
x(log x)2 + 2gj

√
x log x) ,

where nj = [Kj : Q] and C is an absolute constant. Thus

|Gj(x) − x| ≤ C1gj

√
x(log x)2

with another absolute constant C1.
The last formula shows that the integral in the integral representation of

s−1Zj(s) converges for Re(s) > 1/2, and thus the representation is valid for
Re(s) > 1/2. The same is true for s−1Zφ(s) since it is analytic for Re(s) > 1/2
as explained above. Therefore, for Re(s) > 1/2 we get

s−1Zj(s) − s−1Zφ(s) =

∫ ∞

1

(

Gj(x) − x

gj
−H(x)

)

x−s−1dx .

Fix δ > 0. Let then Re(s) ≥ 1/2 + δ and let ε > 0. We choose M > 1 so
that

C1

∫ ∞

M

(log x)2x−1−δdx ≤ ε

and
∫ ∞

M

H(x)x−
3
2−δdx ≤ ε .
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Let then choose j(M) in such a way that for j ≥ j(M) we have the following
two inequalities:

∣

∣

Gj(x)

gj
−H(x)

∣

∣ ≤ δε for 1 ≤ x ≤M

and

∣

∣

∫ M

1

(

x

gj

)

x−s−1dx
∣

∣ ≤
∫ M

1

(

x

gj

)

x−δ− 3
2 dx =

M
1
2−δ − 1

gj(
1
2 − δ)

≤ ε ,

which is possible since Nq(Kj)/gj tends to φq, and since the sums in the defini-
tion of Gj(x) and H(x) contain only finite (and bounded from above) number
of terms for x ≤ M . Here, by abuse of notation, we agree to understand
(M

1
2−δ − 1)/(1

2 − δ) as logM if δ = 1/2.
We get

|s−1Zj(s) − s−1Zφ(s)| =
∣

∣

∫ ∞

1

(

Gj(x) − x

gj
−H(x)

)

x−s−1dx
∣

∣ =

∣

∣

∫ M

1

(

Gj(x)

gj
−H(x)

)

x−s−1dx −
∫ M

1

(

x

gj

)

x−s−1dx+

∫ ∞

M

(
Gj(x) − x

gj
−H(x))x−s−1dx

∣

∣ ≤

δε

∫ M

1

x−δ− 3
2 dx +

∫ M

1

(

x

gj

)

x−δ− 3
2 dx+

∣

∣

∫ ∞

M

(

Gj(x) − x

gj

)

x−s−1dx
∣

∣+

∫ ∞

M

H(x)x−s−1dx ≤ δε

δ + 1
2

+
∣

∣

M
1
2−δ − 1

gj(
1
2 − δ)

∣

∣+ C1

∫ ∞

M

(log x)2x−1−δdx+

∫ ∞

M

H(x)x−
3
2−δdx ≤ 4ε

for Re(s) ≥ 1/2 + δ and j ≥ j(M) which proves the lemma. Note that j(M)
depends on δ. 2

End of proof of GRH Theorem 7.2. From Lemma 7.1 it follows, in particular,
that Zj(s) tends to Zφ(s) for j → ∞ uniformly on Re(s) ≥ 1. Therefore for
small enough ε, large enough j, and any θ > 0, we have

|(logFKj (1 + θ)/gj)
′| = |Zj(1 + θ)| ≤ |Zφ(1)| + ε ≤ 1,

since |Zφ(1)| < 1 because of Proposition 3.2. Thus

logFKj (1 + θj)/gj ≤ θj .

This proves (iii)′ and the theorem.2
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Remark 7.2. In fact, one notes that Corollary 7.1 remains valid under the
assumption that there are no zeta-zeroes with Re(s) ≥ 1 − δ for arbitrary fixed
δ > 0, so that we do not need the full strength of GRH.

To prove the opposite inequality of Theorem 7.3 it is sufficient to show that
for an asymptotically good almost normal tower {Kj} and for a proper choice
of θj the following conditions are satisfied:

(i)′′ lim inf fj(θj) ≥
∑

q

φq log
q

q − 1
= f(0) ;

(ii)
′′ log θj

gj
−→ 0 ;

(iii)
′′

lim sup logFKj (1 + θj)/gj ≤ 0 .

We should stress that the choice of θj in the proof of Theorem 7.3 is com-
pletely different from that in the proofs of Theorems 7.1 and 7.2. We need the
following definition.

Let K be a number field (of a finite degree n). A real number ρ is called an
exceptional zero of ζK(s) if ζK(ρ) = 0 and

1 − (4 log |DK |)−1 ≤ ρ < 1;

an exceptional zero ρ of ζK(s) is called its Siegel zero if

1 − (16 log |DK |)−1 ≤ ρ < 1.

It is known that for anyK there exists at most one exceptional zero of ζK(s).
We are going to show that under some conditions asymptotically exact fam-

ilies have no Siegel zero. We begin with the following fundamental property of
Siegel zeroes discovered by Heilbronn [9] and precised by Stark ([32], Lemma
10):

Lemma 7.2. Let K be an almost normal number field, and let ρ be a Siegel
zero of ζK(s). Then there is a quadratic subfield k of K such that ζk(ρ) = 0. 2

Lemma 7.3. Let K = {Ki} be an asymptotically good family of almost
normal number fields. Then there exists a positive integer I such that ζKi(s)
has no Siegel zero for any i ≥ I. In other words, in such a family almost all
fields have no Siegel zero.

Proof. In view of Lemma 7.2 it is sufficient to prove that the set Q(K) of
quadratic fields k contained in at least one of the fields Ki is finite. Indeed, if
this is the case, let

β = max{ρ ∈ R : ζk(ρ) = 0 for k ∈ Q(K)}.

Since Q(K) is finite, the maximum exists and β < 1. Now if

gKi >
1

16(1 − β)
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then ζKi(s) has no Siegel zeroes by Lemma 7.2.
Let us verify the finiteness of Q(K). The ratio n/g is non-increasing in

extensions, since
|DK | ≥ |Dk|[K:k].

Moreover, nKi/gKi → φ∞ = φR + 2φC > 0, the family K being asymptotically
good. Therefore, there exists a positive real number ε such that nKi/gKi ≥ ε
for any i. If k ∈ Q(K), k ⊆ Ki then

2/gk = nk/gk ≥ nKi/gKi ≥ ε.

Therefore, gk ≤ 2/ε for any k ∈ Q(K), and |Dk| ≤ e4/ε, which implies the
finiteness of Q(K). 2

Corollary 7.1. Let K1 be a number field with infinite Hilbert class field
tower {Ki}. Then almost all fields Ki have no Siegel zero. 2

Note that for any θ > 0

(

logFKj (1 + θ)

gj

)′
= Zj(1 + θ)

where

Zj(s) :=
−(log(ζKj (s))

′ − 1/(s− 1)

gj

which follows from the definition of FKj .
Lemma 7.4. There exist absolute constants C0 and C > 0, such that for

any number field K which has no Siegel zero we have

|Z(1 + θ)| ≤ Cg6

for any real θ ∈ (0, 1) and for any g > C0. Here

Z(s) :=
−(log(ζK(s))′ − 1/(s− 1)

g
.

Proof of Lemma 7.4. We use the above presentation of Z(s) as the Mellin
transform of the Chebyshev step function:

s−1Z(s) =
1

g

∫ ∞

1

(G(x) − x)x−s−1dx ,

where
G(x) :=

∑

P, m≥1
N(P )m≤x

logN(P ) =
∑

q, m≥1
qm≤x

Nq(K) log q

We use then the (unconditional) Lagarias-Odlyzko estimate for G(x) ( [14],
Theorem 9.2):

|G(x) − x| ≤ C1x exp

(

−C2

√

log x

n

)

+
xρ

ρ
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for log x ≥ C3ng
2, where n = [K : Q] , C1, C2 and C3 being positive absolute

constants, ρ being an eventual exceptinal zero of K; note that since ρ is not
a Siegel zero we can suppose that 1 − (16g)−1 > ρ ≥ 1 − (4g)−1. Under that
condition one easily verifies, using that g ≥ C4n for a positive absolute constant

C4, the condition xρ/ρ = o
(

x exp
(

−C2

√

log x/n
))

, and we can suppose that

|G(x) − x| ≤ C1x exp

(

−C2

√

log x

n

)

.

Since g ≥ C4n for a positive absolute constant C4 we also have

|G(x) − x| ≤ C1x exp

(

−C5

√

log x

g

)

for log x ≥ C6g
3 and positive absolute constants C5 and C6. Note that for

log x ≤ C6g
3 we have the following trivial estimate

0 ≤ G(x) ≤ C7gx log x

with an absolute constant C7; indeed

G(x) =
∑

q, m≥1
qm≤x

Nq(K) log q ≤ n
∑

q, m≥1
qm≤x

log q ≤ C7gx log x,

since n ≤ Cg and
∑

qm≤x log q ≤ C′x log x.
Therefore,

∣

∣

∣

∣

Z(1 + θ)

1 + θ

∣

∣

∣

∣

=

∣

∣

∣

∣

1

g

∫ ∞

1

(G(x) − x)x−2−θdx

∣

∣

∣

∣

=

1

g

∣

∣

∣

∣

∣

∫ exp(C6g3)

1

(G(x) − x)x−2−θdx+

∫ ∞

exp(C6g3)

(G(x) − x)x−2−θdx

∣

∣

∣

∣

∣

≤

(C7 + 1)

∫ exp(C6g3)

1

x−1−θ log xdx+
C1

g

∫ ∞

exp(C6g3)

exp

(

−C5

√

log x

g

)

x−1−θdx.

Then we have

(C7 + 1)

∫ exp(C6g3)

1

x−1−θ log xdx ≤ C6g
3 (C7 + 1)

θ
(1−e−θC6g3

) ≤ (C7 +1)C2
6g

6

and

C1

g

∫ ∞

exp(C6g3)

exp

(

−C5

√

log x

g

)

x−1−θdx = 2C1

∫ ∞

exp(g
√

C6)

z−θg log z−C5−1 log zdz
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which can be seen by the change of variables x = zg log z.
Since

z−θg log z ≤ z−θg2√C6

and
log z ≤ zg−1C

−1/2
6 log(g

√
C6)

for z ≥ exp(g
√
C6) and g > C0, for

α(g) = g2
√

C6, β(g) = g−1C
−1/2
6 log(g

√

C6)

we get the following estimate

C1

∫ ∞

exp(g
√

C6)

z−θg log z−C5−1 log zdz ≤ 2C1

∫ ∞

exp(g
√

C6)

z−θα(g)+β(g)−C5−1dz =

2C1

(θα(g) − β(g) + C5)
exp(−g(θα(g) − β(g) + C5))

√

C6 ≤ C8 exp(−C9g) ≤ C8

with positive absolute constants C8 and C9, which implies the lemma since
(C7 + 1)C2

6g
6 + C8 ≤ Cg6. 2

Now let us set θj = g−7
j , and verify condititions (i)′′, (ii)′′ and (iii)′′ for

that choice, which achieves the proof of Theorem 7.3. The conditition (ii)′′ is
obvious.

Applying Lemmata 7.3 and 7.4 to any field K = Kj from our tower for large
enough j we get

∣

∣

∣

∣

∣

(

logFKj (1 + θ)

gj

)′∣
∣

∣

∣

∣

= |Zj(1 + θ)| ≤ Cg6
j

for any θ ∈ (0, 1).
Therefore, recalling that FKj (1) = 1, we get

∣

∣

∣

∣

logFKj (1 + θj)

gj

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ θj

0

(

logFKj (1 + θ)

gj

)′
dθ

∣

∣

∣

∣

∣

≤ Cg6
j θj =

C

gj
,

which proves (iii)′′.
Let us prove inequality (i)′′. We set

fj(θ) = f
(1)
j (θ) + f

(2)
j (θ),

where

f
(1)
j (θ) :=

∑

p

Nj(p)

gj
log

1

1 − p−1−θ

is the sum over prime p, and

f
(2)
j (θ) :=

∑

q=pm,m≥2

Nj(q)

gj
log

1

1 − q−1−θ
.
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Similarly, we set

f
(1)
j (θ) :=

∑

p

φp log
1

1 − p−1−θ
,

f
(2)
j (θ) :=

∑

q=pm,m≥2

φq log
1

1 − q−1−θ
,

f(θ) = f
(1)
j (θ) + f

(2)
j (θ).

Since for a prime p and any j one has φp ≤ Nj(p)
gj

, we get f
(1)
j (θ) ≥ f (1)(θ)

for any θ > 0. On the other hand, f
(2)
j (θ) and f (2)(θ) converge uniformly on

θ ≥ −δ with a positive δ, and thus f
(2)
j (θj) tends to f (2)(0) for θj tending to

zero. We get

lim inf fj(θj) = lim inf(f
(1)
j (θj)+f

(2)
j (θj)) ≥ lim inf(f (1)(θj)+f

(2)(θj)) = f(0).2

7.3 Lower bounds for regulators

As an application of the Generalized Brauer-Siegel Theorem one obtains a lower
bound for regulators of number fields in asymptotically good families, which is
better than the general bound obtained by Zimmert [40].

GRH Theorem 7.4. For an asymptotically good family of number fields

lim inf
i→∞

logRi

gi
≥ (log

√
πe+ γ/2)φR + (log 2 + γ)φC.

Proof. We begin with an estimate for the class numbers of fields in question
which could be of independent interest.

Proposition 7.1. For an asymptotically exact family of number fields

lim sup
i→∞

log hi

gi
≤ 1 − (log 2

√
π +

γ + 1

2
)φR − (log 4π + γ)φC +

∑

φq log
q

q − 1
.

Proof of Proposition 7.1. Let K = {Ki} be an asymptotically exact family
of number fields and let

ζKi(s) =
∞
∑

n=1

D(i)
n n−s

be the corresponding zeta functions. We shall use the following result on the

asymptotic behaviour of the coefficients D
(i)
n :

Lemma 7.5. Let ni, i = 1, 2, . . . , be a sequence of positive integers such
that the limit

ν := lim
i→∞

ni

gi
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exists. Then

lim sup
i→∞

logD
(i)
ni

gi
= ν lim sup

i→∞

logD
(i)
ni

ni
≤ ν +

∑

q

φq log
q

q − 1
,

where the sum is taken over all prime powers.
Proof of Lemma 7.5. Indeed, from the Euler product for ζKi(s) we see:

a) the function n→ D
(i)
n is multiplicative, i.e., D

(i)
nn′ = D

(i)
n D

(i)
n′ for coprime

n and n′. In particular,

D(i)
n =

∏

D
(i)

p
mj
j

n =
∏

p
mj

j being the prime factorization of n.
b)

D
(i)
pm =

∑

(b1 ,...,bm)
b1+2b2+...+mbm=m

m
∏

s=1

(

Nps(Ki) + bs − 1

bs

)

,

the sum being taken over all partitions of m, bi ∈ Z, bi ≥ 0.
Let ni =

∏

p
mij

j . Then

logD(i)
ni

=
∑

j

logD
(i)

p
mij
j

,

D
(i)

p
mij
j

=
∑

(b1 ,...,bmij
)

b1+2b2+...+mijbmij
=mij

mij
∏

s=1

(

Nps
j
(Ki) + bs − 1

bs

)

.

This implies

logD
(i)

p
mij
j

≤ logp(mij) + max
(b1,...,bmij

)

b1+2b2+...+mijbmij
=mij

(mij
∑

s=1

log

(

Nps
j
(Ki) + bs − 1

bs

)

)

,

where p(x) is the partition function. Now the argument of the proof of Lemma
3.4.10 of [35] shows that

logD
(i)

p
mij
j

≤ O(
√
g) + log p

mij

j + φ
p

mij
j

log
p

mij

j

p
mij

j − 1
,

which proves the lemma.2
End of proof of Proposition 7.1. Zimmert’s theorem on twin classes [40] (cf.

also [21]) states that for λR = log 2
√
π + γ+1

2 , λC = log 4π + γ, and any class C
of ideals of a number field k

ninf(C) + ninf(C∗)

2
≤ g − λRr1 − λCr2

and thus
νinf(C) + νinf(C∗)

2
≤ 1 − λRφR − λCφC,
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where νinf(C) = ninf(C)/g, ninf(C) being the minimum norm of an ideal from C,
and C∗ being the twin class of the class C (i.e., the class DC−1, where D is the
class of the different). This implies that the class number hi of Ki is not greater

than two times the number of ”small norm” ideals, i.e., those counted in D
(i)
n′

i

for n′
i ≤ ñi = gi(1 − λRφR − λCφC) + o(gi). By Lemma 7.5,

lim sup
i→∞

log hi

gi
≤ lim sup

i→∞

1

gi
log(2

∑

n′
i≤ñi

D
(i)
n′

i
) ≤ lim sup

i→∞

1

gi
log( max

n′
i≤ñi

D
(i)
n′

i
)

≤ 1 − λRφR − λCφC +
∑

φq log
q

q − 1
.2

End of proof of Theorem 7.4. To finish the proof one compares the Gener-
alized Brauer-Siegel theorem with Proposition 7.1. 2

Passing to an asymptotically exact subfamily we easily deduce
GRH Corollary 7.3. Let S be any family of number fields which does not

contain an asymptotically bad subfamily. Then there exists a strictly positive
A = A(S) such that

R(K) ≥ A(
√
πe(γ+1)/2)r1(2eγ)r2

for any K ∈ S.2
Remark 7.3. Let us recall that the resut of Zimmert (implicit in [40], but

easily deduced from the argument therein) in our notation reads

lim inf
i→∞

logRi

gi
≥ (log 2 + γ)φR + 2γφC.

The numerical values of Zimmert’s coefficients are log 2 + γ ≈ 1.270 . . . and
2γ ≈ 1.154 . . .; those of ours being log

√
πe + γ/2 ≈ 1.361 . . . and log 2 + γ ≈

1.270 . . ., respectively.
Applying the same argument to the case of an asymptotically good tower of

almost normal number fields we get an unconditional version of Theorem 7.4:
Theorem 7.5. For an asymptotically good tower of almost normal number

fields

lim inf
i→∞

logRi

gi
≥ (log

√
πe+ γ/2)φR + (log 2 + γ)φC.2

8 Bounds for the Brauer–Siegel Ratios

8.1 Linear programming problem

To get optimal estimates (on both sides) for the limit points of log(hiRi)
gi

and
log(κi)

gi
we come to the following linear programming problem.

Let q run over all prime powers and let there be given two sets of non-
negative coefficients {aq} and {bq} as well as non-negative a0, b0, a1, b1 with the
properties that if ai = 0 then bi = 0 for all i = 0, 1, q. Suppose that
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(1)
m

n
≥ apm

apn

,

for any m ≥ n; and
(2)

bq1

aq1

≥ bq2

aq2

for any q1 ≤ q2 such that aq1 6= 0, aq2 6= 0,
(3) if a0 6= 0 and a1 6= 0 then a1 ≥ a0, b1 ≥ b0, and

b0
a0

≤ b1
a1

,

(4)
∑

q

bq =
∑

q

aq = ∞ .

Consider the following optimization problem:
Find the maximum and the minimum of

F (x) =
∑

q

bqxq − b0x0 − b1x1

under the conditions
(i) for any i = 0, 1, or q

xi ≥ 0;

(ii) for any prime p
∞
∑

m=1

mxpm ≤ x0 + 2x1;

(iii)
∑

q

aqxq + a0x0 + a1x1 ≤ 1;

(iv) if for some i = 0, 1, q we have ai = 0 then it is supposed that the
corresponding xi = 0.

We consider this problem in two versions, either when for all i = 0, 1, q
such that ai 6= 0 the corresponding xi are variables, or when x0 and x1 are
fixed and xq vary. We suppose that either x0 or x1 is nonzero, since otherwise
maxF (x) = minF (x) = 0.

Proposition 8.1. If a1 6= 0 then

minF (x) = − b1
a1

.

If a1 = 0 and a0 6= 0 then

minF (x) = − b0
a0

.
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The same problem for fixed x0 and x1 has

min
x0,x1
fixed

F (x) = −b0x0 − b1x1 .

Proof. The assertion is almost obvious. Indeed, given a vector x with a
nonzero xq for some q, change it, putting xq = 0. The value of F (x) then di-
minishes, leaving all the conditions satisfied. Therefore the minimum is attained
when xq = 0 for every q. Then we see that the minimum of −b0x0 − b1x1 under
the conditions xi ≥ 0 and a0x0 + a1x1 ≤ 1 is attained for a0x0 + a1x1 = 1 and
one of the two xi being 0, namely, that with the smaller ratio bi/ai.2

Proposition 8.2. Suppose that x0 and x1 are fixed. Then

max
x0,x1
fixed

F (x) = (x0 + 2x1)





∑

p<p′

bp + αbp′



− b0x0 − b1x1,

where p′ and α ∈ (0, 1] are found from the condition

∑

p<p′

ap + αap′ =
1 − a0x0 − a1x1

x0 + 2x1
.

Proof. Suppose that x satisfies the requirements (i), (ii), and (iii). Let x′

coincide with x in all coordinates except xpm 6= 0 and xpn , n ≤ m, and set
x′pm = xpm − ε and x′pn = xpn + εapm/apn . Then, as we pass from x to x′, the
left hand side of (iii) does not change, that of (ii) can only get less because of
(1), and F (x′) ≥ F (x) because of (2). This proves that we can take

(v)
xpm = 0 for m > 1 ,

and (ii) is reduced to
(ii′)

xp ≤ x0 + 2x1 .

Now let us deal with
(iii′)

∑

p

apxp + a0x0 + a1x1 ≤ 1 .

Suppose again that x satisfies the requirements (v), (i), (ii′), and (iii′). Let
x′ coincide with x in all coordinates but xp1 6= 0 and xp2 , p1 ≥ p2, and set
x′p1

= xp1 − ε and x′p2
= xp2 + ε

ap1

ap2
. Again, as we pass from x to x′, the left

hand side of (iii′) does not change, and F (x′) ≥ F (x) because of (v). Therefore,
it is profitable for F (x) to make for small indices p the value of xp as large as
possible, i.e., to set

xp = x0 + 2x1 .

This we can do, until it starts to contradict (iii′).
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Summing up, we have proved that there exists a prime p′ such that the
maximum of F (x) is attained for some x satisfying the conditions:

xq = 0 for q 6= p;

xp = 0 for p > p′;

xp = x0 + 2x1 for p < p′;

xp′ = α(x0 + 2x1)

for some α ∈ (0, 1]. Here p′ and α are chosen in such a way that (iii′) becomes
an equality. Then

F (x) = (x0 + 2x1)





∑

p<p′

bp + αbp′



− b0x0 − b1x1 ,

the condition being

(x0 + 2x1)





∑

p<p′

ap + αap′



+ a0x0 + a1x1 = 1 . 2

Proposition 8.3. Suppose that x0, x1, and all xq vary. Then

maxF (x) =

∑

p≤p0

bp − b

∑

p≤p0

ap + a
,

where
a = a1

2 , b = b1
2 if a0 = 0 and a1 6= 0,

a = a0, b = b0 if a0 6= 0 and a1 = 0,
and if both a0 6= 0, a1 6= 0 we have to compare two possibilities a = a1

2 ,

b = b1
2 and a = a0, b = b0.

Here, for each choice of a and b, we let p′ run over all primes such that

0 ≤

∑

p≤p′

bp − b

∑

p≤p′

ap + a
≤ bp′

ap′

and take p0 to be the greatest of such p′.
Proof. If x = (x0, x1, xq) is a maximum point (one of) for our problem, then

it is also a maximum point for the problem with x0 and x1 fixed. Therefore, by
Proposition 8.2

max
x0,x1
fixed

F (x) = (x0 + 2x1)

(

∑

p<p′

bp + αbp′

)

− b0x0 − b1x1 .
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Here p′ = p′(y) and α = α(y) depend on and are uniquely determined by

y =
1 − a0x0 − a1x1

x0 + 2x1
.

Recall that y ≥ 0 because of (iii).
Our first goal is to prove that for a fixed y the maximum is attained when

either x0 = 0, or x1 = 0. If a0 = 0 (or a1 = 0) this follows from (iv), so we can
consider the case a0 > 0 (or a1 > 0).

Indeed,

x0 =
1 − (a1 + 2y)x1

y + a0
≥ 0

hence

0 ≤ x1 ≤ 1

a1 + 2y
.

Substituting x0 into the expression for

max
x0,x1fixed

F (x)

we see that for a fixed y it is linear in x1. Thus the maximum is attained at one
of the ends, i.e., either for x1 = 0 or for x0 = 0.

We have to maximize each of them over y which is uniquely determined by
p′ = p′(y) and α = α(y), so we can maximize first over α ∈ (0, 1] and then over
p′. The expressions being linear in α, the maxima are attained at the end, since
α = 0 and α = 1 do not differ up to a change of p′.

Therefore, either x0 = 0 and

maxF (x) =

∑

p≤p′

bp − b1
2

∑

p≤p′

ap + a1

2

or x1 = 0 and

maxF (x) =

∑

p≤p′

bp − b0

∑

p≤p′

ap + a0
.

The last thing to do is to maximize over p′. Let (a, b) be either (a0, b0), or
(a1

2 ,
b1
2 ). When p′ grows, at some point the expression

maxF (x) =

∑

p≤p′

bp − b

∑

p≤p′

ap + a
.

becomes positive because of (4). Then we just use the fact that if a, b, A, B
are non-negative and

B

A
≥ b

a
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then
b

a
≤ B + b

A+ a
≤ B

A
. 2

Remark 8.1. The same result could, of course, be obtained by writing out
the dual linear problem.

8.2 Bounds

GRH Theorem 8.1 (GRH Bounds). For any family of number fields

BSlower ≤ lim inf
i→∞

log(hiRi)

gi
≤ lim sup

i→∞

log(hiRi)

gi
≤ BSupper,

0 ≤ lim inf
i→∞

log κi

gi
≤ lim sup

i→∞

log κi

gi
≤ κupper,

where

BSlower = 1 − log 2π

γ + log 8π
≈ 0.5165...,

BSupper = 1 +
log 3

2 + log 5
4 + log 7

6
γ
2 + π

4 + log 2
√

2π + log 2√
2−1

+ log 3√
3−1

+ log 5√
5−1

+ log 7√
7−1

≈ 1.0938 . . . ,

κupper =
log 2 + log 3

2
γ
2 + log 2

√
2π + log 2√

2−1
+ log 3√

3−1

≈ 0.2164 . . . , .

Moreover, if all the fields in the family are totally real then

lim inf
i→∞

log(hiRi)

gi
≥ BSR,lower

where

BSR,lower = 1 − log 2
γ
2 + π

4 + log 2
√

2π
≈ 0.7419 . . . ,

and

lim inf
i→∞

log(κi)

gi
≤ κR,upper

where

κR,upper =
log 2 + log 3

2
γ
2 + log 2

√
2π + π

4 + log 2√
2−1

+ log 3√
3−1

≈ 0.1874 . . . ,

If all the fields are totally complex then

lim sup
i→∞

log(hiRi)

gi
≤ BSC,upper,
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where

BSC,upper = 1 +

13
∑

p=2
prime

log p
p−1 − 1

2 log 2π

γ
2 + log 2

√
2π +

13
∑

p=2
prime

log p√
p−1

≈ 1.0764 . . . .

Proof. Since any family contains an asymptotically exact one (Lemma 2.2),
any limit point of the ratio is a limit for some asymptotically exact family, and
it is enough to prove the theorem for such families. The Generalized Brauer–
Siegel Theorem (GRH Theorem 7.2) gives us the limit value of the ratio in terms
of φ = {φα}. The Basic Inequality (GRH Theorem 3.1) gives us a restriction.
Up to a constant 1 we get an optimization problem of the type described above
with

b0 = log 2 ≈ 0.693..., a0 = log 2
√

2π + π
4 + γ

2 ≈ 2.686...,

b1 = log 2π ≈ 1.837..., a1 = log 8π + γ ≈ 3.801...,

bq = log q
q−1 , aq = log q√

q−1 .

We have to check the conditions (1)—(4) above (see the beginning of Subsection
8.1). For (1) we see that

m

n
≥ m(pn/2 − 1)

n(pm/2 − 1)
=
apm

apn

for n ≤ m.

To check (2) it is enough to prove that

f(x) =
(
√
x− 1) log x

x−1

log x

is decreasing for x ≥ 2. This is quite straightforward.
As for (3), it is obvious because of the numerical values given.
To prove (4), just note that

∑

q

aq ≥
∑

q

bq ≥ −
∑

p
prime

log(1 − 1

p
) = log ζ(1) = ∞.

So we come to the above optimization problem, where 1 + F (x) is the right
hand side of the Generalized Brauer–Siegel, (i) corresponds to non-negativity
of φq, φR and φC, (ii) is the condition of Lemma 2.4, (iii) is the GRH Basic
Inequality, and (iv) is empty since all ai 6= 0.

We can now use Proposition 8.1. If a1 6= 0 we get

minF (x) = − b1
a1

= − log 2π

log 8π + γ
≈ −0.4834...,
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which gives the value of BSlower = 1+minF (x). If all the fields are totally real,
i.e., a1 = 0, Proposition 8.1 gives

minF (x) = − b0
a0

= − log 2
γ
2 + π

4 + log 2
√

2π
≈ −0.2580...

As for the maxima, Proposition 8.3 gives two possibilities, either

maxF (x) = C0
p′ =

∑

p≤p′

bp − b0

∑

p≤p′

ap + a0
,

or

maxF (x) = C1
p′ =

∑

p≤p′

bp − b1
2

∑

p≤p′

ap + a1

2

,

and in both cases we still have to find out p′. Note that b2 = b0 = log 2. The
values of C0

p′ are easily computable, and we have

0 = C0
2 < C0

3 < C0
5 < C0

7 ≈ 0.0938...

and

C0
7 >

b11
a11

≈ 0.092...

Doing the same for C1
p′ ’s we get

C1
2 < C1

3 < C1
5 < C1

7 < C1
11 < C1

13 ≈ 0.0764...

and
b17
a17

≈ 0.066...

Therefore, by Proposition 8.3, BSupper = C0
7 and BSC,upper = C1

13.
The bounds for κ are obtained in the same way, and we leave details to the

reader. 2

Theorem 8.2 (Unconditional Upper Bound). For any family of number
fields

lim sup
i→∞

log(hiRi)

gi
≤ 1 +

23
∑

p=3
prime

log p
p−1

γ
2 + 1

2 + log 2
√
π + 2

23
∑

p=2
prime

log p
∞
∑

m=1

1
pm+1

≈ 1.1588 . . . ,

lim sup
i→∞

log κi

gi
≤ κunc,upper = 1+

5
∑

p=3
prime

log p
p−1

γ
2 + log 2

√
π + 2

5
∑

p=2
prime

log p
∞
∑

m=1

1
pm+1

≈ 0.3151 . . .
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Moreover, if all the fields are totally complex then

lim sup
i→∞

log(hiRi)

gi
≤ 1 +

179
∑

p=2
prime

log p
p−1 − log

√
2π

γ
2 + log 2

√
π + 2

179
∑

p=2
prime

log p
∞
∑

m=1

1
pm+1

≈ 1.0965 . . . ,

and if all the fields are totally real then

lim sup
i→∞

log κi

gi
≤ 1 +

5
∑

p=3
prime

log p
p−1

γ
2 + log 2

√
π + 1

2 + 2
5
∑

p=2
prime

log p
∞
∑

m=1

1
pm+1

≈ 0.2816 . . . .

Proof. Along the same lines as above. This time we use the unconditional
Basic Inequality′ (Proposition 3.1) and the Generalized Brauer–Siegel Inequality
(Theorem 7.1). We get a maximization problem of the same type with

b0 = log 2 ≈ 0.693..., a′0 = log 2
√
π + 1

2 + γ
2 ≈ 2.054...,

b1 = log 2π ≈ 1.837..., a′1 = log 4π + γ ≈ 3.108...,

bq = log q
q−1 , a′q = 2 log q

∞
∑

m=1
(qm + 1)−1 .

Again, we have to check the conditions (1)—(4). This is done as in the previous
proof. The only tedious point to check is (2), and again it is enough to show
that

f(x) =
log x

x−1

2 logx
∞
∑

m=1
(xm + 1)−1

is decreasing, which is again straightforward.
Using, as above, Proposition 8.3 we have to maximize

c0p′ =

∑

p≤p′

bp − b0

∑

p≤p′

a′p + a′0

and

c1p′ =

∑

p≤p′

bp − b1
2

∑

p≤p′

a′p +
a′
1

2

.

We get
0 = c02 < c03 < c05 < . . . < c023 ≈ 0.1588...,
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b29
a′29

≈ 0.150... .

We also have
c12 < c13 < c15 < . . . < c1179 ≈ 0.0965...,

b181
a′181

≈ 0.0964...

Again, we leave κ to the reader.2
Remark 8.2. In [10] it is proved that

κ(K) ≤ 0.958− 1.936φR − 2.936φC.

Using our estimates one easily gets

κ(K) ≤ 0.946− 1.936φR − 2.936φC,

and also
κ(K) ≤ 0.654− 1.343φR − 2.032φC,

which is always better (for φR and φC allowed by the Odlyzko bound). Still
better estimates of κ(K) in terms of φR and φC follow from Proposition 8.2.
(Note, however, that in [10] the result is not just asymptotic, but effective.)

On the other side we get
Theorem 8.3 (Unconditional Lower Bound). If for a tower of almost nor-

mal number fields there exists α > 0 such that inf Ni

gi
≥ α, then

lim inf
i→∞

log(hiRi)

gi
≥ 1 − log 2π

γ + log 4π
≈ 0.4087...

If, in addition, the fields are totally real, then

lim inf
i→∞

log(hiRi)

gi
≥ 1 − 2log 2

γ + 1 + log 4π
≈ 0.6625...

Sketch of proof. The same argument as in the proof of GRH Theorem 8.1 is
applied. We use the unconditional Generalized Brauer–Siegel Theorem (Theo-
rem 7.3) and Proposition 3.1. 2

9 Class field towers

9.1 Infinite Unramified Towers with Splitting Conditions

We are going to present some examples. The main goal of this section is to
show that the Brauer–Siegel ratio does not necessarily tend to 1. Because of the
Brauer–Siegel theorem, we need families of fields for which [K : Q]/gK does not
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tend to 0. One’s thought turns immediately to unramified towers, and the only
infinite examples we know are Hilbert class field towers satisfying some extra
conditions.

Recall that for a field K its Hilbert class field KHilb is defined as the
maximal unramified abelian extension, and Gal(KHilb/K) = ClK . We fix a
prime ℓ and consider the maximal unramified abelian ℓ-extension KHilb,ℓ with
Gal(KHilb,ℓ/K) = Clℓ,K , where Clℓ,K is the Sylow ℓ-subgroup of ClK . Put
K0 = K,K1 = KHilb,ℓ,K2 = (K1)Hilb,ℓ, etc. There are two possibilities, either
Kn = Kn+1 = . . . for some n, or all these fields are different, i.e., the tower
K = K0 ⊂ K1 ⊂ K2 ⊂ . . . is infinite. The latter is the situation we are looking
for.

Note that if K0 is totally real (respectively, totally complex), such are all
fields of the tower.

For a group A, let dℓ(A) = dimFℓ
(Aab/ℓ) denote its ℓ-rank. For a field F let

r1(F ) be the number of its real, and r2(F ) the number of its complex places.
Consider a degree ℓ extension of number fields K/k. Set r1 = r1(k), r2 =

r2(k), let r be the number of prime ideals of k ramified in K/k and ρ be the
number of real places ramified in K/k (i.e., becoming complex), δℓ = dℓ(WK),
WK being the group of roots of 1 lying in K, i.e., δℓ = 0 if there is no ℓ-root of
1 in k, and δℓ = 1 otherwise. In [18] the following statement is proved.

Proposition 9.1 (J.Martinet). In the above notation, if

r ≥ r1 + r2 + δℓ + 2 − ρ+ 2
√

ℓ(r1 + r2 − ρ/2) + δℓ

then K has an infinite unramified Hilbert class field ℓ-tower K = K0 ⊂ K1 ⊂
K2 ⊂ . . ..2

Here are the best specimens found in the hunt for small discriminants, ob-
tained with the help of Proposition 9.1.

Corollary 9.1 (J.Martinet). The fields

Q(
√

3·5·13·29·61),

Q(
√

2,
√

3·5·7·23·29),

Q(
√
−3·5·17·19),

Q(cos
2π

11
,
√

2,
√
−23)

have infinite unramified class field 2-towers.
Proof. This is a non-obvious corollary of Proposition 9.1 which is proved in

[18], Examples 3.2, 4.2, 5.3 and 6.2.2
We shall also need unramified towers with some extra splitting conditions.

To study them, let us fix some notation. Let CK = JK/K
∗ be the idèle class

group. Let S∞ be the set of archimedean places of K. Fix a finite set S of
prime ideals of K. In what follows if S is empty we omit S in the corresponding
notation. Let OK,S be the ring of S-integers, UK,S =

∏

v∈S∪S∞

K∗
v

∏

v 6∈S∪S∞

O∗
Kv

the group of idèle S-units, EK,S = O∗
K,S = UK,S ∩ K∗ the group of S-units
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in K, IK,S the group of fractional ideals nondivisible by prime ideals of S, IS
K

the group of ideals generated by prime ideals in S (of course, IK = IK,S ⊕ IS
K),

PK,S the image of the principle ideal group PK in IK,S under PK ⊂ IK → IK,S ,
IK → IK,S being the natural projection, ClK,S = IK,S/PK,S = ClK / Im(IS

K)
the group of S-classes, WK the group of roots of unity lying in K.

Theorem 9.1. Let P = {p1, . . . , pt} and Q = {q1, . . . , qr} be disjoint sets
of prime ideals of k, and let t0 be the number of principal ideals in P . Consider
a number field K/k of prime degree ℓ, ramified exactly at Q. Let S be the set of
prime ideals in K lying over P , s = |S|. If

r ≥ s− t0 + r1 + r2 + δℓ + 2 − ρ+ 2
√

ℓ(r1 + r2 − ρ/2) + δℓ + s

then the field K has an infinite unramified class field ℓ-tower K = K0 ⊂ K1 ⊂
K2 ⊂ . . ., where S splits completely.

To prove this theorem we need some lemmata.
In fact, all constructions of unramified towers we know are based on the

following well-known lemma (cf. [25], [17]).
Lemma 9.1. If

dℓ(ClK,S) ≥ 2 + 2
√

dℓ(EK,S) + 1

then K has an infinite class field ℓ-tower K = K0 ⊂ K1 ⊂ K2 ⊂ . . ., where S
splits completely.

Proof. Let L be the union of all Ki, where K0 = K and Ki/Ki−1 is the
abelian ℓ-extension corresponding by the class field theory to the ℓ-Sylow sub-
group of ClKi−1,Si−1 , where Si−1 consists of all places lying over S. The places
of S split completely in L.

Suppose that L/K is of finite degree, G = Gal(L/K), let SL be the set of
places of L lying over S. As for any finite ℓ-group, we have (see [25], eq.6 )

1

4
(dℓ(G))2 − dℓ(G) < dℓ(H2(G,Z)).

Then
H2(G,Z) = H−3(G,Z) = H−1(G, CL)

by Tate’s fundamental theorem (see [33], section 11.3). We have

0 −→ UL,SL/EL,SL −→ CL −→ ClL,SL −→ 0

and the ℓ-Sylow subgroup of ClL,SL is trivial, otherwise L would yet have an-
other nontrivial ℓ-extension splitting SL. Hence

dℓ(H
−1(G, CL)) = dℓ(H

−1(G, UL,SL/EL,SL)).

The extension L/K being unramified, UL,SL is cohomologically trivial, since
first each local component

∏

w 6∈SL∪SL∞

O∗
Lw

is cohomologically trivial, and next
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the points of S split and hence
∏

w∈SL∪SL∞

L∗
w is cohomologically trivial and by

definition
UL,S =

∏

w∈SL∪SL∞

L∗
w

∏

w 6∈SL∪SL∞

O∗
Lw
.

Hence

H−1(G, UL,SL/EL,SL) = Ĥ0(G, EL,SL) = EK,S/NL/K(EL,SL).

The ℓ-rank of the latter being less than or equal to dℓ(EK,S) we see that

1

4
(dℓ(G))2 − dℓ(G) < dℓ(EK,S).

On the other hand, dℓ(G) = dℓ(Gab) = dℓ(Gal(K1/K)) = dℓ(ClK,S) and we get

1

4
(dℓ(ClK,S))2 − dℓ(ClK,S) < dℓ(EK,S),

i.e.,

dℓ(ClK,S) < 2 + 2
√

dℓ(EK,S) + 1.2

Lemma 9.2. We have

dℓ(EK,S) = r1(K) + r2(K) + δℓ(K) − 1 + s

= ℓ(r1 + r2 − ρ/2) + δℓ − 1 + s.

Proof. It is well known that EK,S = WK ⊕ Zr1(K)+r2(K)+s−1 (cf.[16], V.1).
In our case, r1(K) = ℓ(r1 − ρ), r2(K) = ℓr2 + ℓρ/2, and δℓ(K) = δℓ since no
new ℓ-root can appear in an ℓ-extension. 2

Lemma 9.3 (J.Martinet). We have

dℓ(ClK) ≥ r − r1 − r2 + ρ− δℓ.

Proof. This is proved in [18], section 2. 2

Lemma 9.4. We have

dℓ(ClK,S) ≥ dℓ(ClK) − s+ t0.

Proof. Let P0 be the set of principal ideals lying in P . Let φ : IS
K → ClK

be the composition of natural maps IS
K → IK and IK → ClK . By definition

ClK,S = ClK / Imφ. We have IS
K =

∏

p∈P

(
∏

w|p
wZ) ≃ Zs. Look at the kernel of φ.

Since for any p ∈ P0 there is the relation
∏

w|p
w ∈ Kerφ, we get rkZ Kerφ ≥ t0.

Therefore, rkZ Imφ ≤ s− t0. It remains to take dℓ. 2
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Proof of Theorem 9.1. By Lemmata 9.2, 9.3, 9.4 and the inequality of the
theorem we get

dℓ(ClK,S) ≥ dℓ(ClK) − s+ t0

≥ r − r1 − r2 + ρ− δℓ − s+ t0

≥ s−t0+r1+r2+δℓ+2−ρ+2
√

ℓ(r1 + r2 − ρ/2) + δℓ + s−r1−r2+ρ−δℓ−s+t0
= 2 + 2

√

ℓ(r1 + r2 − ρ/2) + δℓ + s

= 2 + 2
√

dℓ(EK,S) + 1.

By Lemma 9.1 this proves the theorem. 2

Corollary 9.2. Let P = {p1, . . . , pt} and Q = {q1, . . . , qr} be disjoint sets
of primes. Consider a quadratic number field K/Q ramified exactly at Q. Let
σ be the number of primes in P that split in K, and s = t+ σ the total number
of prime ideals in K lying over P . Suppose that either K is complex quadratic
and

r ≥ 3 + σ + 2
√

2 + s,

or K is real quadratic and

r ≥ 4 + σ + 2
√

3 + s.

Then K has an infinite unramified class field 2-tower totally splitting all prime
ideals over P .

Proof. Indeed, here k = Q, ℓ = 2, δ2 = 1, r1 = 1, r2 = 0, ρ = 1 for the
complex quadratic case and 0 for the real quadratic one, t0 = t. 2

Here are some numerical examples.
Corollary 9.3.The field

Q(
√

11·13·17·19·23·29·31·37·41·43·47·53·59·61·67)

has an infinite unramified class field 2-tower in which nine prime ideals lying
over 2, 3, 5, 7 and 71 split completely.

Proof. A straightforward check shows that 2, 3, 5, 7 split in K/Q and 71 is
inert. Then we apply Corollary 9.2. 2

Corollary 9.4.The field

Q(
√
−13·17·19·23·29·31·37·41·43·47·53·59·61·73·79)

has an infinite unramified class field 2-tower in which ten prime ideals lying
over 2, 3, 5, 7 and 11 split completely.

Proof. Along the same lines. 2

We shall exploit these examples in Subsection 9.3. We also get
Corollary 9.5 (Y.Ihara [12]). The field

Q(
√
−3·5·7·11·13·17·23·31)

has an infinite unramified class field 2-tower in which two prime ideals lying
over 2 split completely. 2
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9.2 A remark on the deficiency problem

In [39] K.Yamamura writes
“ Combining Ihara’s remark ([12], sect.14) to Golod-Shafarevich theory (cf.[25])

and Martinet’s result ([18]), we easily obtain the following
Theorem. Let K/k be a cyclic extension of degree p (p: a prime number) of

an algebraic number field of finite degree. Let S be a given set of finite primes
of K. Let r′ be the number of those finite primes of k which are ramified in K
and none of its extension to K belongs to S. If

r′ ≥ r1 + r2 + δ
(p)
k + 2 − ρ+ 2

√

H + p(r1 + r2 − ρ/2) + δ
(p)
k ,

then K has an infinite S-decomposing p-class field tower. Here ρ denotes the
number of real primes of k which are ramified in K, r1 = r1(k), r2 = r2(k), and
H = |S|. ”

In our notation, r′ = r, p = ℓ, δ
(p)
k = δℓ, H = s, S= S, and the inequality

reads
r ≥ r1 + r2 + δℓ + 2 − ρ+ 2

√

ℓ(r1 + r2 − ρ/2) + δℓ + s.

We should admit that we consider the Yamamura theorem to be not only
unproved, but most likely false. To explain this point of view let us prove the
following

Proposition 9.3. If the Yamamura theorem is true, the generalized Rie-
mann hypothesis is false.

Proof. Let ℓ = 2, k = Q. Consider the field

K = Q(
√
−13·17·19·23·29·31·37·41·61·101),

We have gK ≈ 17.16493, ρ = r1 = 0, r2 = 1, r = 10, δ2 = 1. Let S consist of
ten ideals lying over 2, 3, 5, 7, 11 (straightforward calculation shows that these
primes split in K/Q ). Then the Yamamura theorem gives the infiniteness of
the unramified class field 2-tower over K since 10 > 3 + 2

√
2 + 10. We have

∑

q

φq log q√
q − 1

+ αRφR + αCφC =

1

g

(

γ + log 8π +
2 log 2√
2 − 1

+
2 log 3√
3 − 1

+
2 log 5√
5 − 1

+
2 log 7√
7 − 1

+
2 log 11√
11 − 1

)

≈ 1.0013... > 1 .

This contradicts GRH Basic Inequality (cf. GRH Theorem 3.1 or [12], 2-2).2
Unfortunately enough, the rest of [39] is derived from the above Yamamura

theorem and we have to discard all his examples.
In particular, the smallest known deficiency δ is that of Hajir and Maire [8]

with δ ≤ 0.141 . . . (cf. the end of Section 3.1). It has S = ∅. Ihara’s example

Q(
√
−3·5·7·11·13·17·23·31),

S consisting of two divisors of 2, has δ ≤ 0.248....
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9.3 Examples

GRH Theorem 9.2. Consider the Martinet field

K = Q(cos
2π

11
,
√

2,
√
−23)

of degree 20 over Q. We have

DK = 23011162310 ,

g = g(K) = log
√

|DK | ≈ 45.2578...

This field has an infinite unramified 2-tower K, and we have

1 − 10 log(2π)

g
= BSlower(K) ≤ BS(K) ≤ BSupper(K),

0 ≤ κ(K) ≤ κupper(K),

where

BSupper(K) = BSlower(K) +
(
√

23 − 1) log 23
22

log 23
(1 − 10(γ + log 8π)

g
),

κupper(K) =
(
√

23 − 1) log 23
22

log 23
(1 − 10(γ + log 8π)

g
),

i.e., approximately,

0.5939 . . . ≤ BS(K) ≤ 0.6025 . . . ,

0 ≤ κ(K) ≤ 0.0086 . . . .

The deficiency δ(K) of this tower is at most

1 − 10(γ + log 8π)

g
≈ 0.1601 . . .

Proof. Recall first (Corollary 9.1) that this field has an infinite unramified
tower.

Let K0 = Q(cos 2π
11 ), K11 = Q( 11

√
1), k = Q(cos 2π

11 ,
√

2), F23 = Q(
√
−23),

F2 = Q(
√

2). The discriminant of a cyclotomic field is well-known (cf., [16],
IV.1), so we have

DK11 = 119.

Hence, DK11/Q and DK0/Q are unramified outside of 11. Since 11 is totally
ramified in DK11/Q, it is also totally ramified in K0/Q, therefore, DK0 = 114.
The field K is the composite of K0, F2 and F23. We get

DK = D4
K0
D10

F2
D10

F23
= 11162302310,
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and derive the above value of g.
The deficiency δ for the tower is at most

1 − 10(γ + log 8π)

g
≈ 0.1601...

Let us first prove that in K/Q we have the following decomposition of small
primes

v 2 3 5 7 11 13 17 19 23
ev 2 1 1 1 5 1 1 1 2
fv 5 10 20 10 4 10 10 20 1
nv 2 2 1 2 1 2 2 1 10

where ev is the ramification index, fv the inertia one, and nv is the number of
places over v.

In K11/Q only 11 is ramified (totally) and for a prime p the inertia index
fp equals the smallest f such that pf ≡ 1(mod11). We easily check that f3 =
f5 = 5, f2 = f7 = f13 = f17 = f19 = 10 and f23 = 1. Since 2 does not divide
5, K0 being index 2 subfield of K11, we see that in K0/Q all the primes of our
table except 11 and 23 are inert, i.e., fp = 5, that 11 is totally ramified and 23
is totally split. In F2/Q only 2 is ramified, and p is split if and only if 2 is a
square modulo p, i.e., if and only if p ≡ ±1(mod 8); such primes are 7, 17 and
23, and the rest (3, 5, 11, 13, 19) are inert. In F23/Q the only ramified prime is
23 since −23 ≡ 1(mod 4), and the splitting condition is for −23 to be a square
mod p. Thus 2, 3, 13 are split, and 5, 7, 11, 17 and 19 are inert.

Summing up this information we get the above table. Note also that in k/Q
there are 10 prime ideals over 23, and they all ramify in K/k.

Looking at the decomposition table above, we see that the smallest norm for
which there exists a prime ideal of K is 23 (indeed, 25 > 23, etc.)

The next thing to do is to apply the linear programming approach of Sub-
section 8.1 to get the minimum and maximum of BS(K). We set a0 = 0, as well
as aq = 0 for q < 23, recalling that if ai = 0 we have also bi = 0 and we do not
optimize over xi. The right-hand side of GRH Theorem 7.2 becomes

1 − 10

g
log 2π + F (x) = BSlower(K) + F (x),

where
F (x) =

∑

q≥23

bqxq, bq = log
q

q − 1
, xq = φq for q ≥ 23.

The restrictions are, as usual, (i) xq ≥ 0, (ii)
∞
∑

m=1
mxpm ≤ 20

g for any p, and

(iii) 10
g (γ + log 8π) +

∑

q≥23

aqxq ≤ 1, where aq = log q√
q−1 .

The minimum of F (x) is clearly 0, and it is easy to check that the maximum
is attained for all xq = 0 except for

x23 =

√
23 − 1

log 23
(1 − 10

g
(γ + log 8π)).
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Indeed, x23 ≈ 0.19... < 20
g which checks (ii), and x23 is chosen so that (iii)

becomes an equality.
As for κ(K), we have

κ(K) = BS(K) − 1 + φC log(2π).2

Remark 9.1 In all our examples, once we have some information on BS(K),
we also have it on κ(K), the difference between the two being known. That is
why, in many cases, we do not say a word about κ(K).

GRH Theorem 9.3. Consider the real Martinet field

K = Q(
√

2,
√

3·5·7·23·29)

of degree 4 over Q. We have

DK = 28 ·(3·5·7·23·29)2 ,

g = g(K) = log
√

|DK | ≈ 13.9293...

This field has an infinite unramified 2-tower K. Then

BS(K) ∈ (BSlower(K),BSupper(K)),

where

BSlower(K) = 1 − 4 log 2

g

and

BSupper(K) = BSlower(K)+
log 2

g
+

√
7 − 1

g log 7

(

g − 2γ − π − 2 log 8π − log 2√
2 − 1

)

log
7

6
,

i.e., approximately in the interval

(0.8009... , 0.8648...).

The deficiency of this tower is at most

1 − 2γ + π + 2 log 8π

g
≈ 0.2286...

Proof. We proceed as in the proof of Theorem 9.2. Our field has an infinite
unramified tower (Corollary 9.1). Let K1 = Q(

√
2), K2 = Q(

√
3·5·7·23·29),

K = K1 ·K2. Since 3·5·7·23·29 = 70035 ≡ 3(mod4), we have DK2 = 4·70035
and 2, 3, 5, 7, 23 and 29 are ramified in K2. Since DK = 28 ·700352, we see
that the ideal lying over 2 is also ramified in K/K2, i.e., 2 is totally ramified in
K/Q. In K1/Q only 2 is ramified, DK1 = 8. Since 2 is congruent to a square
modulo 7, and noncongruent to a square modulo 3 and 5, we see that 7 splits,
but 3 and 5 remain inert in K1/Q. Thus in K/Q there is one ideal of norm 2,
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no ideals of norm 3 and 5, and two ideals of norm 7. There are 4 real places
and no complex ones.

Using, as above, the linear programming approach, with a1 = a3 = a5 = 0
and x2 ≤ 1

g , we get

BSlower(K) = 1 − 4 log 2

g

and
BSupper(K) = BSlower(K) + maxF (x) ,

where F (x) =
∑

q 6=3,5

bqxq.

The maximum is attained for x2 = 1
g , xq = 0 for q = 4 and q > 7, and the

value of x7 is chosen so that (iii) becomes an equality. 2

Remark 9.2. The other two fields of Corollary 9.1 give the following nu-
merical results. For

K = Q(
√
−3·5·17·19)

we GRH–have
g(K) ≈ 4.9359...,

δ(K) ≤ 0.2298...,

and
BSlower(K) ≈ 0.6276..., BSupper(K) ≈ 0.6402...

For
K = Q(

√
3·5·13·29·61)

we GRH–have
g(K) ≈ 7.0687...,

δ(K) ≤ 0.2400...,

and
BSlower(K) ≈ 0.8038..., BSupper(K) ≈ 0.9020...

GRH Theorem 9.4. Consider the totally real quadratic field

K = Q(
√

11·13·17·19·23·29·31·37·41·43·47·53·59·61·67).

The genus of this field is g ≈ 25.9882 . . .. This field has an infinite unramified 2-
tower K in which nine prime ideals lying over 2, 3, 5, 7 and 71 split completely.
Then BS(K) ∈ (BSlower(K),BSupper(K)) and κ(K) ∈ (κlower(K),κupper(K)),
where

BSlower(K) = 1 +
2 log 3

2 + 2 log 5
4 + 2 log 7

6 + log 5041
5040

g
,

BSupper(K) = BSlower(K) +
1

g

47
∑

p=11

log
p

p− 1
+
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√
53 − 1

g log 53

(

g − γ − π

2
− log 8π − 2

7
∑

p=2

log p√
p− 1

− log 712

70
−

47
∑

p=11

log p√
p− 1

)

log
53

52
,

κlower(K) =
2 log 2 + 2 log 3

2 + 2 log 5
4 + 2 log 7

6 + log 5041
5040

g
,

κupper(K) = BSupper(K) − 1 +
2 log 2

g
,

the sums being taken over prime p’s. Numerically

BS(K) ∈ (1.0602 . . . , 1.0798 . . .),

κ(K) ∈ (0.1135 . . . , 0.1331 . . .).

Proof. Let d = 11·13·17·19·23·29·31·37·41·43·47·53·59·61·67. An easy, though
tedious check shows that d is congruent to 1 modulo 8, and it is a square modulo
3, 5 and 7, but not modulo 71. Hence 2, 3, 5, 7 split in K/Q and 71 is inert.
Corollary 9.3 shows that there is an unramified tower splitting the nine ideals
over 2, 3, 5, 7 and 71. Then we use the same linear programming approach of
Subsection 7.1 to calculate BSlower(K), BSupper(K), κlower(K) and κupper(K).2

GRH Theorem 9.5. Consider the totally complex quadratic field

K = Q(
√
−13·17·19·23·29·31·37·41·43·47·53·59·61·73·79).

This field has an infinite unramified 2-tower K in which ten prime ideals lying
over 2, 3, 5, 7 and 11 split comletely. The genus of this field is g ≈ 27.0169...
Then BS(K) ∈ (BSlower(K),BSupper(K)) and κ(K) ∈ (κlower(K),κupper(K)),
where

BSlower(K) = 1−1

g
log 2π+

2

g
(log 2 + log(3/2) + log(5/4) + log(7/6) + log(11/10)) ,

BSupper(K) = BSlower(K) +
1

g

61
∑

p=13

log
p

p− 1

+

√
67 − 1

g log 67

(

g − γ − log 8π − 2

11
∑

p=2

log p√
p− 1

−
61
∑

p=13

log p√
p− 1

)

log
67

66
,

κlower(K) =
2

g
(log 2 + log(3/2) + log(5/4) + log(7/6) + log(11/10)) ,

κupper(K) = BSupper(K) − 1 +
1

g
log 2π,

the sums being taken over prime p. Numerically

(BSlower(K),BSupper(K)) = (1.0482..., 1.0653...),
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(κlower(K),κupper(K)) = (0.1162..., 0.1333...).

Proof. Along the same lines as the proofs of Theorems 9.4, 9.3 and 9.2, using
Corollary 9.4. 2

Remark 9.3. Ihara’s example of Corollary 9.5

K = Q(
√
−3·5·7·11·13·17·23·31)

with two divisors of 2 splitting in the tower, has g ≈ 9.5097..., its deficiency δ
is at most 0.2483... and (BSlower(K),BSupper(K)) = (0.9525..., 1.010...).

Let us see what can be got without GRH. We consider the same fields as in
GRH Theorems 9.2 and 9.3.

Theorem 9.7. Consider the Martinet field

K = Q(cos
2π

11
,
√

2,
√
−23)

of degree 20 over Q. This field has an infinite unramified 2-tower K, and
BS(K) ∈ (BSlower(K),BSunc,upper(K)), where

BSlower(K) = 1 − 10 log(2π)

g

and

BSunc,upper(K) = BSlower(K) +
10 log(23

22 )

g
+

2 log(32
31 )

g
+

20

g

97
∑

p=37

log
p

p− 1
,

i.e., approximately in the interval

(0.5939..., 0.7108...).

Proof. We proceed along the same lines as before. Having no GRH at
hand, instead of GRH Theorem 7.2 we use Theorem 7.3 (the tower being almost
normal, as any 2-tower over a normal field), and instead of GRH Theorem 3.1
we use either Proposition 3.1 or Proposition 3.2. The latter is easier to calculate.
Knowing the decomposition law for small primes (cf. the proof of GRH Theorem
9.2), we see that in K there are 10 infinite complex places, 10 places whose norm
is 23, 2 places of norm 32 and no other places of norm strictly smaller than 37.
Over any other prime there are at most 20 places.

Then we use the optimization procedure of Section 8, that shows that to
get an upper bound we can exaggerate the number of places with small norms.
Suppose that there were 20 ideals of each of the norms from 37 to 97 (in fact,
there are much less). Even this would contradict the inequality of Proposition
3.2, i.e.,

10

g
(γ + log 2π) +

10

g

log 23

22
+

2

g

log 32

31
+

20

g

97
∑

p=37

log p

p− 1
> 1 ,
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the sum being taken over primes. Therefore, by the inequality of Theorem 7.1,
any limit point of the Brauer–Siegel ratio is at most

1 − 10

g
log 2π +

10

g
log

23

22
+

2

g
log

32

31
+

20

g

97
∑

p=37

log
p

p− 1
≈ 0.7108... 2

Remark 9.4. Using Proposition 3.1 instead of Proposition 3.2 we can do
better. We can also use further information on prime decomposition in K/Q.
(In particular, the only possible norms between 37 and 1000 are in fact 121,
353, 439, 463, 593, 967 and 991.) This makes the constant better. Namely, we
can prove that BS(K) ≤ 0.623 . . .

Theorem 9.8. Consider the real Martinet field

K = Q(
√

2,
√

3·5·7·23·29)

of degree 4 over Q. Its genus equals

g = g(K) = log
√

|DK | ≈ 13.9293...,

it has an infinite unramified 2-tower K, and BS(K) ∈ (BSlower(K),BSunc,upper(K)),
where

BSunc,upper(K) = BSlower(K) +
log 2 + 2 log 7

6 + 4 log 11
10 + 4 log 13

12

g
+

1

2gA17
(g − 2γ − π − 2 log 8π −A2 − 2A7 − 4A11 − 4A13) log

17

16
,

where Ap = 2 log p
∑∞

m=1(p
m + 1)−1, i.e., approximately in the interval

(0.8009 . . . , 0.9248 . . .).2

Remark 9.4. Applying the same technique to the fields of GRH Theorems
9.4 and 9.5 we get the results presented in the table at the end of Section 1. We
do not write out here the exact formulae which are rather cumbersome.

10 Open questions

In this section we discuss some open questions concerning the Generalized
Brauer–Siegel Theorem. First of all, in the proof of the Generalized Brauer–
Siegel Theorem we do not really use the whole strength of GRH; moreover,
under some mild conditions we have totally dispensed with GRH (Theorem
7.3). Therefore, it is but natural to ask whether one really needs GRH to prove
the result, which leads to

Problem 10.1. Prove GRH Theorem 7.2 unconditionally.
Let us now discuss some problems, connected with the Brauer–Siegel ratio

introduced and studied above. First of all, its very existence (i.e., the existence

77



of the corresponding limit) is proved only under GRH or for almost normal
asymptotically good infinite global fields, which leads to

Problem 10.2. Prove unconditionally that for any asymptotically exact
family K of number fields the Brauer–Siegel ratio BS(K) is well defined.

The following problem is connected with the fact that for an arbitrary asymp-
totically exact family unconditionally we have only an upper bound for BS(K),
cf. Theorems 7.1, 7.3 and 8.2.

Problem 10.3. Give an unconditional lower bound for the Brauer–Siegel
ratio BS(K) for any asymptotically exact family.

Note that for towers of normal number fields this results from Theorems 7.3
and 8.2. One can hope that this problem can be solved if one ameliorates the
technique of the usual proof of the Brauer–Siegel theorem, i.e., estimates in the
(adelic) integral representation of the zeta-function (cf. Lemma 3 of Section
XVI.2 of [16]).

There also is the question of how good our bounds and examples are.
Problem 10.4. Ameliorate on the bounds of GRH Theorem 8.1 and/or of

Theorem 8.2.
Problem 10.5. Construct examples of class field towers (or other asymp-

totically exact families) with BS(K) GRH–smaller than those of GRH Theorems
6.2 and 9.3 or GRH–greater than those of GRH Theorems 9.4 and 9.5.

Our results in the present paper are of an asymptotic nature. However, it is
clear that a good part of them can be made effective which leads to

Problem 10.6. Give effective versions of the above results with the remain-
der terms as good as possible.
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