The combinatorial geometry of general flag manifolds

Sofía Pinzón¹ Escuela de Matemáticas Universidad Industrial de Santander Apartado Aéreo 678 Bucaramanga Colombia E-mail address: sofia@matematicas.uis.edu.co

We give and interesting review about some geometrical properties on general flag manifold \mathbb{F} in connection with some differential structures like almost complex structures and f-structures. A tensor field \mathcal{F} of type (1,1) on a Riemannian manifold is called an f-structure if $\mathcal{F}^3 = -\mathcal{F}$, and almost complex if $\mathcal{F}^2 = -I$. We call \mathcal{F} (1,1)-symplectic if the (+, -) part of the derivative $d^{\nabla}\mathcal{F}$ vanishes. Although this property is different than the (1, 2)-symplectic property, the two are identical if \mathcal{F} is almost complex . An f-structure \mathcal{F} on a Riemannian manifold will be called (1,1)-admissible if it is (1,1)-symplectic with respect to some metric on the manifold. Admissibility on a general flag manifold \mathbb{F} is known to play an important role in the analysis of complex harmonic functions with values in \mathbb{F} , but its characterization is known when \mathcal{F} is almost complex or when \mathbb{F} is the classical full flag manifold $\mathbb{F}(n)$. We provide a simple characterization for admissibility, valid for any invariant f-structure on any general flag manifolds. Namely, we reduce admissibility to the local transitivity of an associated intersection graph.

¹In collaboration with Nir Cohen Department of Mathematics IMECC – UNICAMP Cx. Postal 6065, 13083-970 Campinas – SP Brazil E-mail address: nir@ime.unicamp.br