On the complexity of the D5 principle

X. Dahan, É. Schost^a, M. Moreno Maza, W. Wu, Y. Xie^b

^aLIX, École polytechnique, 91128 Palaiseau, France {dahan, schost}@lix.polytechnique.fr

^bORCCA, University of Western Ontario, London, Ontario, Canada {moreno, wwu25, yxie}@orcca.on.ca

The standard approach for computing with an algebraic number using its irreducible minimal polynomial over some base field k. However, many algebraic numbers may appear when solving a polynomial system; applying them this approach requires possibly costly factorization algorithms. Della Dora, Dicrescenzo and Duval introduced "dynamic evaluation" techniques (also termed "D5 principle") [2] as a means to compute with algebraic numbers, avoiding factorization. This approach leads one to compute over *direct products* of field extensions of k, instead of only field extensions.

We address complexity issues for such computations. Let $\mathbf{T} = T_1(X_1), T_2(X_1, X_2), \ldots$ $T_n(X_1, \ldots, X_n)$ be polynomials such that $k \to K = k[X_1, \ldots, X_n]/\mathbf{T}$ is a direct product of fields. We write δ for the dimension of K over k. Using fast polynomial arithmetic, it is a folklore result that for any $\varepsilon > 0$, the operations $(+, \times)$ in K can be performed in $c_{\varepsilon}^n \delta^{1+\varepsilon}$ operations in k, for some constant c_{ε} . Using fast Euclidean algorithm, a similar result carries over to inversion, in the special case when K is a field.

Our main results are similar estimates for the general case. Following the D5 philosophy, meeting zero-divisors in the computation will lead to *splitting* \mathbf{T} into a family thereof, defining the same extension. Inversion is then replaced by *quasi-inversion*: a quasi-inverse [4] of $\alpha \in K$ is a splitting of \mathbf{T} , such that α is either zero or invertible in each component, together with the corresponding inverses. We obtain similar result for gcd computation with coefficients in K. Again, the notion of a gcd has to be adapted: a gcd of two polynomials F and G in K[y] consists of a splitting of \mathbf{T} , together with *monic* polynomials that form gcd's of F and G over each factor.

Theorem. Let $\varepsilon > 0$. There exists $C_{\varepsilon} > 0$ such that addition, multiplication and quasiinversion in K can be done in $C_{\varepsilon}^n \delta^{1+\varepsilon}$ operations in k. There exists C' > 0 such that one can compute a gcd of degree d polynomials in K[y] using $C' C_{\varepsilon}^n d^{1+\varepsilon} \delta^{1+\varepsilon}$ operations in k.

In both cases, the main difficulty comes from handling splittings: if \mathbf{T} has been split into a family $\mathbf{T}_1, \ldots, \mathbf{T}_s$, this corresponds to making effective the map $k[X_1, \ldots, X_n]/\mathbf{T} \rightarrow \prod_{i=1}^s k[X_1, \ldots, X_n]/\mathbf{T}_i$. This operation has a quasi-linear complexity when n = 1; n > 1, a similar result lacks. However, it is possible to extend the result from the univariate case when $\mathbf{T}_1, \ldots, \mathbf{T}_s$ satisfy a regularity condition, the absence of *critical pairs*. To reduce to this case, we have to remove critical pairs. This is done by introducing a new algorithm for *coprime factorization* of univariate polynomials [1] (this tool that was already used in [3] for parallel complexity estimates in a similar context).

References

- [1] D. J. Bernstein. Factoring into coprimes in essentially linear time. J. Algorithms, 54(1):1–30, 2005.
- J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method for computing in algebraic number fields. In Eurocal '85 Vol. 2, volume 204 of Lecture Notes in Computer Science, pages 289–290, 1985.
- [3] T. Gautier and J.-L. Roch. NC² computation of gcd-free basis and application to parallel algebraic numbers computation. In PASCO'97, pages 31–37. ACM Press, 1997.
- M. Moreno Maza and R. Rioboo. Polynomial gcd computations over towers of algebraic extensions. In Proc. AAECC-11, pages 365–382. Springer, 1995.